blob: 5009c0eed856dc65d03be6292cb17cd48c78164c [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/blocker.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
// Callback Function to add 3 to every sample in the signal.
class SimpleBlockerCallback : public webrtc::BlockerCallback {
public:
virtual void ProcessBlock(const float* const* input,
int num_frames,
int num_input_channels,
int num_output_channels,
float* const* output) OVERRIDE {
for (int i = 0; i < num_output_channels; ++i) {
for (int j = 0; j < num_frames; ++j) {
output[i][j] = input[i][j] + 3;
}
}
}
};
} // namespace
namespace webrtc {
// Tests blocking with a window that multiplies the signal by 2, a callback
// that adds 3 to each sample in the signal, and different combinations of chunk
// size, block size, and shift amount.
class BlockerTest : public ::testing::Test {
protected:
void RunTest(Blocker* blocker,
int chunk_size,
int num_frames,
const float* const* input,
float* const* input_chunk,
float* const* output,
float* const* output_chunk,
int num_input_channels,
int num_output_channels) {
int start = 0;
int end = chunk_size - 1;
while (end < num_frames) {
CopyTo(input_chunk, 0, start, num_input_channels, chunk_size, input);
blocker->ProcessChunk(input_chunk,
chunk_size,
num_input_channels,
num_output_channels,
output_chunk);
CopyTo(output, start, 0, num_output_channels, chunk_size, output_chunk);
start = start + chunk_size;
end = end + chunk_size;
}
}
void ValidateSignalEquality(const float* const* expected,
const float* const* actual,
int num_channels,
int num_frames) {
for (int i = 0; i < num_channels; ++i) {
for (int j = 0; j < num_frames; ++j) {
EXPECT_FLOAT_EQ(expected[i][j], actual[i][j]);
}
}
}
static void CopyTo(float* const* dst,
int start_index_dst,
int start_index_src,
int num_channels,
int num_frames,
const float* const* src) {
for (int i = 0; i < num_channels; ++i) {
memcpy(&dst[i][start_index_dst],
&src[i][start_index_src],
num_frames * sizeof(float));
}
}
};
TEST_F(BlockerTest, TestBlockerMutuallyPrimeChunkandBlockSize) {
const int kNumInputChannels = 3;
const int kNumOutputChannels = 2;
const int kNumFrames = 10;
const int kBlockSize = 4;
const int kChunkSize = 5;
const int kShiftAmount = 2;
const float kInput[kNumInputChannels][kNumFrames] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
const ChannelBuffer<float> input_cb(kInput[0], kNumFrames, kNumInputChannels);
const float kExpectedOutput[kNumInputChannels][kNumFrames] = {
{6, 6, 12, 12, 20, 20, 20, 20, 20, 20},
{6, 6, 12, 12, 28, 28, 28, 28, 28, 28}};
const ChannelBuffer<float> expected_output_cb(
kExpectedOutput[0], kNumFrames, kNumInputChannels);
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
SimpleBlockerCallback callback;
Blocker blocker(kChunkSize,
kBlockSize,
kNumInputChannels,
kNumOutputChannels,
kWindow,
kShiftAmount,
&callback);
RunTest(&blocker,
kChunkSize,
kNumFrames,
input_cb.channels(),
input_chunk_cb.channels(),
actual_output_cb.channels(),
output_chunk_cb.channels(),
kNumInputChannels,
kNumOutputChannels);
ValidateSignalEquality(expected_output_cb.channels(),
actual_output_cb.channels(),
kNumOutputChannels,
kNumFrames);
}
TEST_F(BlockerTest, TestBlockerMutuallyPrimeShiftAndBlockSize) {
const int kNumInputChannels = 3;
const int kNumOutputChannels = 2;
const int kNumFrames = 12;
const int kBlockSize = 4;
const int kChunkSize = 6;
const int kShiftAmount = 3;
const float kInput[kNumInputChannels][kNumFrames] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
const ChannelBuffer<float> input_cb(kInput[0], kNumFrames, kNumInputChannels);
const float kExpectedOutput[kNumInputChannels][kNumFrames] = {
{6, 6, 6, 12, 10, 10, 20, 10, 10, 20, 10, 10},
{6, 6, 6, 12, 14, 14, 28, 14, 14, 28, 14, 14}};
const ChannelBuffer<float> expected_output_cb(
kExpectedOutput[0], kNumFrames, kNumInputChannels);
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
SimpleBlockerCallback callback;
Blocker blocker(kChunkSize,
kBlockSize,
kNumInputChannels,
kNumOutputChannels,
kWindow,
kShiftAmount,
&callback);
RunTest(&blocker,
kChunkSize,
kNumFrames,
input_cb.channels(),
input_chunk_cb.channels(),
actual_output_cb.channels(),
output_chunk_cb.channels(),
kNumInputChannels,
kNumOutputChannels);
ValidateSignalEquality(expected_output_cb.channels(),
actual_output_cb.channels(),
kNumOutputChannels,
kNumFrames);
}
TEST_F(BlockerTest, TestBlockerNoOverlap) {
const int kNumInputChannels = 3;
const int kNumOutputChannels = 2;
const int kNumFrames = 12;
const int kBlockSize = 4;
const int kChunkSize = 4;
const int kShiftAmount = 4;
const float kInput[kNumInputChannels][kNumFrames] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
const ChannelBuffer<float> input_cb(kInput[0], kNumFrames, kNumInputChannels);
const float kExpectedOutput[kNumInputChannels][kNumFrames] = {
{6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 10},
{6, 6, 6, 6, 14, 14, 14, 14, 14, 14, 14, 14}};
const ChannelBuffer<float> expected_output_cb(
kExpectedOutput[0], kNumFrames, kNumInputChannels);
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
SimpleBlockerCallback callback;
Blocker blocker(kChunkSize,
kBlockSize,
kNumInputChannels,
kNumOutputChannels,
kWindow,
kShiftAmount,
&callback);
RunTest(&blocker,
kChunkSize,
kNumFrames,
input_cb.channels(),
input_chunk_cb.channels(),
actual_output_cb.channels(),
output_chunk_cb.channels(),
kNumInputChannels,
kNumOutputChannels);
ValidateSignalEquality(expected_output_cb.channels(),
actual_output_cb.channels(),
kNumOutputChannels,
kNumFrames);
}
} // namespace webrtc