blob: 2023a90572aca2dc947a8d15d781286a23bb8674 [file] [log] [blame]
#ifndef SkRecordPattern_DEFINED
#define SkRecordPattern_DEFINED
#include "SkTLogic.h"
namespace SkRecords {
// First, some matchers. These match a single command in the SkRecord,
// and may hang onto some data from it. If so, you can get the data by calling .get().
// Matches a command of type T, and stores that command.
template <typename T>
class Is {
public:
Is() : fPtr(NULL) {}
typedef T type;
type* get() { return fPtr; }
bool match(T* ptr) {
fPtr = ptr;
return true;
}
template <typename U>
bool match(U*) {
fPtr = NULL;
return false;
}
private:
type* fPtr;
};
// Matches any command that draws, and stores its paint.
class IsDraw {
SK_CREATE_MEMBER_DETECTOR(paint);
public:
IsDraw() : fPaint(NULL) {}
typedef SkPaint type;
type* get() { return fPaint; }
template <typename T>
SK_WHEN(HasMember_paint<T>, bool) match(T* draw) {
fPaint = AsPtr(draw->paint);
return true;
}
template <typename T>
SK_WHEN(!HasMember_paint<T>, bool) match(T*) {
fPaint = NULL;
return false;
}
private:
// Abstracts away whether the paint is always part of the command or optional.
template <typename T> static T* AsPtr(SkRecords::Optional<T>& x) { return x; }
template <typename T> static T* AsPtr(T& x) { return &x; }
type* fPaint;
};
// Matches if Matcher doesn't. Stores nothing.
template <typename Matcher>
struct Not {
template <typename T>
bool match(T* ptr) { return !Matcher().match(ptr); }
};
// Matches if either of A or B does. Stores nothing.
template <typename A, typename B>
struct Or {
template <typename T>
bool match(T* ptr) { return A().match(ptr) || B().match(ptr); }
};
// Matches if any of A, B or C does. Stores nothing.
template <typename A, typename B, typename C>
struct Or3 : Or<A, Or<B, C> > {};
// We'll use this to choose which implementation of Star suits each Matcher.
SK_CREATE_TYPE_DETECTOR(type);
// Star is a special matcher that matches Matcher 0 or more times _greedily_ in the SkRecord.
// This version stores nothing. It's enabled when Matcher stores nothing.
template <typename Matcher, typename = void>
class Star {
public:
void reset() {}
template <typename T>
bool match(T* ptr) { return Matcher().match(ptr); }
};
// This version stores a list of matches. It's enabled if Matcher stores something.
template <typename Matcher>
class Star<Matcher, SK_WHEN(HasType_type<Matcher>, void)> {
public:
typedef SkTDArray<typename Matcher::type*> type;
type* get() { return &fMatches; }
void reset() { fMatches.rewind(); }
template <typename T>
bool match(T* ptr) {
Matcher matcher;
if (matcher.match(ptr)) {
fMatches.push(matcher.get());
return true;
}
return false;
}
private:
type fMatches;
};
// Cons builds a list of Matchers.
// It first matches Matcher (something from above), then Pattern (another Cons or Nil).
//
// This is the main entry point to pattern matching, and so provides a couple of extra API bits:
// - search scans through the record to look for matches;
// - first, second, and third return the data stored by their respective matchers in the pattern.
//
// These Cons build lists analogously to Lisp's "cons". See Pattern# for the "list" equivalent.
template <typename Matcher, typename Pattern>
class Cons {
public:
// If this pattern matches the SkRecord starting at i,
// return the index just past the end of the pattern, otherwise return 0.
SK_ALWAYS_INLINE unsigned match(SkRecord* record, unsigned i) {
i = this->matchHead(&fHead, record, i);
return i == 0 ? 0 : fTail.match(record, i);
}
// Starting from *end, walk through the SkRecord to find the first span matching this pattern.
// If there is no such span, return false. If there is, return true and set [*begin, *end).
SK_ALWAYS_INLINE bool search(SkRecord* record, unsigned* begin, unsigned* end) {
for (*begin = *end; *begin < record->count(); ++(*begin)) {
*end = this->match(record, *begin);
if (*end != 0) {
return true;
}
}
return false;
}
// Once either match or search has succeeded, access the stored data of the first, second,
// or third matcher in this pattern. Add as needed for longer patterns.
// T is checked statically at compile time; no casting is involved. It's just an API wart.
template <typename T> T* first() { return fHead.get(); }
template <typename T> T* second() { return fTail.fHead.get(); }
template <typename T> T* third() { return fTail.fTail.fHead.get(); }
private:
template <typename T>
void operator()(T* r) { fHeadMatched = fHead.match(r); }
// If head isn't a Star, try to match at i once.
template <typename T>
unsigned matchHead(T*, SkRecord* record, unsigned i) {
if (i < record->count()) {
fHeadMatched = false;
record->mutate(i, *this);
if (fHeadMatched) {
return i+1;
}
}
return 0;
}
// If head is a Star, walk i until it doesn't match.
template <typename T>
unsigned matchHead(Star<T>*, SkRecord* record, unsigned i) {
fHead.reset();
while (i < record->count()) {
fHeadMatched = false;
record->mutate(i, *this);
if (!fHeadMatched) {
return i;
}
i++;
}
return 0;
}
Matcher fHead;
Pattern fTail;
bool fHeadMatched;
friend class ::SkRecord; // So operator() can otherwise stay private.
// All Cons are friends with each other. This lets first, second, and third work.
template <typename, typename> friend class Cons;
};
// Nil is the end of every pattern Cons chain.
struct Nil {
// Bottoms out recursion down the fTail chain. Just return whatever i the front decided on.
unsigned match(SkRecord*, unsigned i) { return i; }
};
// These Pattern# types are syntax sugar over Cons and Nil, just to help eliminate some of the
// template noise. Use these if you can. Feel free to add more for longer patterns.
// All types A, B, C, ... are Matchers.
template <typename A>
struct Pattern1 : Cons<A, Nil> {};
template <typename A, typename B>
struct Pattern2 : Cons<A, Pattern1<B> > {};
template <typename A, typename B, typename C>
struct Pattern3 : Cons<A, Pattern2<B, C> > {};
} // namespace SkRecords
#endif//SkRecordPattern_DEFINED