blob: ef9f15863a4de964de141ca9819f2222f4eed391 [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Glyph normalization
#include "./normalize.h"
#include <inttypes.h>
#include <stddef.h>
#include "./ots.h"
#include "./port.h"
#include "./font.h"
#include "./glyph.h"
#include "./round.h"
#include "./store_bytes.h"
namespace woff2 {
namespace {
void StoreLoca(int index_fmt, uint32_t value, size_t* offset, uint8_t* dst) {
if (index_fmt == 0) {
Store16(value >> 1, offset, dst);
} else {
StoreU32(value, offset, dst);
}
}
void NormalizeSimpleGlyphBoundingBox(Glyph* glyph) {
if (glyph->contours.empty() || glyph->contours[0].empty()) {
return;
}
int16_t x_min = glyph->contours[0][0].x;
int16_t y_min = glyph->contours[0][0].y;
int16_t x_max = x_min;
int16_t y_max = y_min;
for (const auto& contour : glyph->contours) {
for (const auto& point : contour) {
if (point.x < x_min) x_min = point.x;
if (point.x > x_max) x_max = point.x;
if (point.y < y_min) y_min = point.y;
if (point.y > y_max) y_max = point.y;
}
}
glyph->x_min = x_min;
glyph->y_min = y_min;
glyph->x_max = x_max;
glyph->y_max = y_max;
}
} // namespace
bool NormalizeGlyphs(Font* font) {
Font::Table* head_table = font->FindTable(kHeadTableTag);
Font::Table* glyf_table = font->FindTable(kGlyfTableTag);
Font::Table* loca_table = font->FindTable(kLocaTableTag);
if (head_table == NULL || loca_table == NULL || glyf_table == NULL) {
return OTS_FAILURE();
}
int index_fmt = head_table->data[51];
int num_glyphs = NumGlyphs(*font);
// We need to allocate a bit more than its original length for the normalized
// glyf table, since it can happen that the glyphs in the original table are
// 2-byte aligned, while in the normalized table they are 4-byte aligned.
// That gives a maximum of 2 bytes increase per glyph. However, there is no
// theoretical guarantee that the total size of the flags plus the coordinates
// is the smallest possible in the normalized version, so we have to allow
// some general overhead.
// TODO(user) Figure out some more precise upper bound on the size of
// the overhead.
size_t max_normalized_glyf_size = 1.1 * glyf_table->length + 2 * num_glyphs;
glyf_table->buffer.resize(max_normalized_glyf_size);
loca_table->buffer.resize(Round4(loca_table->length));
uint8_t* glyf_dst = &glyf_table->buffer[0];
uint8_t* loca_dst = &loca_table->buffer[0];
uint32_t glyf_offset = 0;
size_t loca_offset = 0;
for (int i = 0; i < num_glyphs; ++i) {
StoreLoca(index_fmt, glyf_offset, &loca_offset, loca_dst);
Glyph glyph;
const uint8_t* glyph_data;
size_t glyph_size;
if (!GetGlyphData(*font, i, &glyph_data, &glyph_size) ||
(glyph_size > 0 && !ReadGlyph(glyph_data, glyph_size, &glyph))) {
return OTS_FAILURE();
}
NormalizeSimpleGlyphBoundingBox(&glyph);
size_t glyf_dst_size = glyf_table->buffer.size() - glyf_offset;
if (!StoreGlyph(glyph, glyf_dst + glyf_offset, &glyf_dst_size)) {
return OTS_FAILURE();
}
glyf_dst_size = Round4(glyf_dst_size);
if (glyf_dst_size > std::numeric_limits<uint32_t>::max() ||
glyf_offset + static_cast<uint32_t>(glyf_dst_size) < glyf_offset ||
(index_fmt == 0 && glyf_offset + glyf_dst_size >= (1UL << 17))) {
return OTS_FAILURE();
}
glyf_offset += glyf_dst_size;
}
StoreLoca(index_fmt, glyf_offset, &loca_offset, loca_dst);
glyf_table->buffer.resize(glyf_offset);
glyf_table->data = &glyf_table->buffer[0];
glyf_table->length = glyf_offset;
loca_table->data = &loca_table->buffer[0];
return true;
}
bool NormalizeOffsets(Font* font) {
uint32_t offset = 12 + 16 * font->num_tables;
for (auto& i : font->tables) {
i.second.offset = offset;
offset += Round4(i.second.length);
}
return true;
}
namespace {
uint32_t ComputeChecksum(const uint8_t* buf, size_t size) {
uint32_t checksum = 0;
for (size_t i = 0; i < size; i += 4) {
checksum += ((buf[i] << 24) |
(buf[i + 1] << 16) |
(buf[i + 2] << 8) |
buf[i + 3]);
}
return checksum;
}
uint32_t ComputeHeaderChecksum(const Font& font) {
uint32_t checksum = font.flavor;
uint16_t max_pow2 = font.num_tables ? Log2Floor(font.num_tables) : 0;
uint16_t search_range = max_pow2 ? 1 << (max_pow2 + 4) : 0;
uint16_t range_shift = (font.num_tables << 4) - search_range;
checksum += (font.num_tables << 16 | search_range);
checksum += (max_pow2 << 16 | range_shift);
for (const auto& i : font.tables) {
checksum += i.second.tag;
checksum += i.second.checksum;
checksum += i.second.offset;
checksum += i.second.length;
}
return checksum;
}
} // namespace
bool FixChecksums(Font* font) {
Font::Table* head_table = font->FindTable(kHeadTableTag);
if (head_table == NULL || head_table->length < 12) {
return OTS_FAILURE();
}
head_table->buffer.resize(Round4(head_table->length));
uint8_t* head_buf = &head_table->buffer[0];
memcpy(head_buf, head_table->data, Round4(head_table->length));
head_table->data = head_buf;
size_t offset = 8;
StoreU32(0, &offset, head_buf);
uint32_t file_checksum = 0;
for (auto& i : font->tables) {
Font::Table* table = &i.second;
table->checksum = ComputeChecksum(table->data, table->length);
file_checksum += table->checksum;
}
file_checksum += ComputeHeaderChecksum(*font);
offset = 8;
StoreU32(0xb1b0afba - file_checksum, &offset, head_buf);
return true;
}
bool NormalizeFont(Font* font) {
return (NormalizeGlyphs(font) &&
NormalizeOffsets(font) &&
FixChecksums(font));
}
} // namespace woff2