blob: 269ca7ee6f34b14d29a5e8d090696eb0f9d74919 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/ssl_client_socket.h"
#include "base/metrics/histogram.h"
#include "base/metrics/sparse_histogram.h"
#include "base/strings/string_util.h"
#include "crypto/ec_private_key.h"
#include "net/base/connection_type_histograms.h"
#include "net/base/host_port_pair.h"
#include "net/ssl/channel_id_service.h"
#include "net/ssl/ssl_config_service.h"
#include "net/ssl/ssl_connection_status_flags.h"
namespace net {
SSLClientSocket::SSLClientSocket()
: was_npn_negotiated_(false),
was_spdy_negotiated_(false),
protocol_negotiated_(kProtoUnknown),
channel_id_sent_(false),
signed_cert_timestamps_received_(false),
stapled_ocsp_response_received_(false),
negotiation_extension_(kExtensionUnknown) {
}
// static
NextProto SSLClientSocket::NextProtoFromString(
const std::string& proto_string) {
if (proto_string == "http1.1" || proto_string == "http/1.1") {
return kProtoHTTP11;
} else if (proto_string == "spdy/2") {
return kProtoDeprecatedSPDY2;
} else if (proto_string == "spdy/3") {
return kProtoSPDY3;
} else if (proto_string == "spdy/3.1") {
return kProtoSPDY31;
} else if (proto_string == "h2-15") {
// This is the HTTP/2 draft-15 identifier. For internal
// consistency, HTTP/2 is named SPDY4 within Chromium.
return kProtoSPDY4;
} else if (proto_string == "quic/1+spdy/3") {
return kProtoQUIC1SPDY3;
} else {
return kProtoUnknown;
}
}
// static
const char* SSLClientSocket::NextProtoToString(NextProto next_proto) {
switch (next_proto) {
case kProtoHTTP11:
return "http/1.1";
case kProtoDeprecatedSPDY2:
return "spdy/2";
case kProtoSPDY3:
return "spdy/3";
case kProtoSPDY31:
return "spdy/3.1";
case kProtoSPDY4:
// This is the HTTP/2 draft-15 identifier. For internal
// consistency, HTTP/2 is named SPDY4 within Chromium.
return "h2-15";
case kProtoQUIC1SPDY3:
return "quic/1+spdy/3";
case kProtoUnknown:
break;
}
return "unknown";
}
// static
const char* SSLClientSocket::NextProtoStatusToString(
const SSLClientSocket::NextProtoStatus status) {
switch (status) {
case kNextProtoUnsupported:
return "unsupported";
case kNextProtoNegotiated:
return "negotiated";
case kNextProtoNoOverlap:
return "no-overlap";
}
return NULL;
}
bool SSLClientSocket::WasNpnNegotiated() const {
return was_npn_negotiated_;
}
NextProto SSLClientSocket::GetNegotiatedProtocol() const {
return protocol_negotiated_;
}
bool SSLClientSocket::IgnoreCertError(int error, int load_flags) {
if (error == OK || load_flags & LOAD_IGNORE_ALL_CERT_ERRORS)
return true;
if (error == ERR_CERT_COMMON_NAME_INVALID &&
(load_flags & LOAD_IGNORE_CERT_COMMON_NAME_INVALID))
return true;
if (error == ERR_CERT_DATE_INVALID &&
(load_flags & LOAD_IGNORE_CERT_DATE_INVALID))
return true;
if (error == ERR_CERT_AUTHORITY_INVALID &&
(load_flags & LOAD_IGNORE_CERT_AUTHORITY_INVALID))
return true;
return false;
}
bool SSLClientSocket::set_was_npn_negotiated(bool negotiated) {
return was_npn_negotiated_ = negotiated;
}
bool SSLClientSocket::was_spdy_negotiated() const {
return was_spdy_negotiated_;
}
bool SSLClientSocket::set_was_spdy_negotiated(bool negotiated) {
return was_spdy_negotiated_ = negotiated;
}
void SSLClientSocket::set_protocol_negotiated(NextProto protocol_negotiated) {
protocol_negotiated_ = protocol_negotiated;
}
void SSLClientSocket::set_negotiation_extension(
SSLNegotiationExtension negotiation_extension) {
negotiation_extension_ = negotiation_extension;
}
bool SSLClientSocket::WasChannelIDSent() const {
return channel_id_sent_;
}
void SSLClientSocket::set_channel_id_sent(bool channel_id_sent) {
channel_id_sent_ = channel_id_sent;
}
void SSLClientSocket::set_signed_cert_timestamps_received(
bool signed_cert_timestamps_received) {
signed_cert_timestamps_received_ = signed_cert_timestamps_received;
}
void SSLClientSocket::set_stapled_ocsp_response_received(
bool stapled_ocsp_response_received) {
stapled_ocsp_response_received_ = stapled_ocsp_response_received;
}
// static
void SSLClientSocket::RecordChannelIDSupport(
ChannelIDService* channel_id_service,
bool negotiated_channel_id,
bool channel_id_enabled,
bool supports_ecc) {
// Since this enum is used for a histogram, do not change or re-use values.
enum {
DISABLED = 0,
CLIENT_ONLY = 1,
CLIENT_AND_SERVER = 2,
CLIENT_NO_ECC = 3,
CLIENT_BAD_SYSTEM_TIME = 4,
CLIENT_NO_CHANNEL_ID_SERVICE = 5,
CHANNEL_ID_USAGE_MAX
} supported = DISABLED;
if (negotiated_channel_id) {
supported = CLIENT_AND_SERVER;
} else if (channel_id_enabled) {
if (!channel_id_service)
supported = CLIENT_NO_CHANNEL_ID_SERVICE;
else if (!supports_ecc)
supported = CLIENT_NO_ECC;
else if (!channel_id_service->IsSystemTimeValid())
supported = CLIENT_BAD_SYSTEM_TIME;
else
supported = CLIENT_ONLY;
}
UMA_HISTOGRAM_ENUMERATION("DomainBoundCerts.Support", supported,
CHANNEL_ID_USAGE_MAX);
}
// static
void SSLClientSocket::RecordConnectionTypeMetrics(int ssl_version) {
UpdateConnectionTypeHistograms(CONNECTION_SSL);
switch (ssl_version) {
case SSL_CONNECTION_VERSION_SSL2:
UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL2);
break;
case SSL_CONNECTION_VERSION_SSL3:
UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL3);
break;
case SSL_CONNECTION_VERSION_TLS1:
UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1);
break;
case SSL_CONNECTION_VERSION_TLS1_1:
UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_1);
break;
case SSL_CONNECTION_VERSION_TLS1_2:
UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_2);
break;
}
}
// static
bool SSLClientSocket::IsChannelIDEnabled(
const SSLConfig& ssl_config,
ChannelIDService* channel_id_service) {
if (!ssl_config.channel_id_enabled)
return false;
if (!channel_id_service) {
DVLOG(1) << "NULL channel_id_service_, not enabling channel ID.";
return false;
}
if (!crypto::ECPrivateKey::IsSupported()) {
DVLOG(1) << "Elliptic Curve not supported, not enabling channel ID.";
return false;
}
if (!channel_id_service->IsSystemTimeValid()) {
DVLOG(1) << "System time is not within the supported range for certificate "
"generation, not enabling channel ID.";
return false;
}
return true;
}
// static
std::vector<uint8_t> SSLClientSocket::SerializeNextProtos(
const std::vector<std::string>& next_protos) {
// Do a first pass to determine the total length.
size_t wire_length = 0;
for (std::vector<std::string>::const_iterator i = next_protos.begin();
i != next_protos.end(); ++i) {
if (i->size() > 255) {
LOG(WARNING) << "Ignoring overlong NPN/ALPN protocol: " << *i;
continue;
}
if (i->size() == 0) {
LOG(WARNING) << "Ignoring empty NPN/ALPN protocol";
continue;
}
wire_length += i->size();
wire_length++;
}
// Allocate memory for the result and fill it in.
std::vector<uint8_t> wire_protos;
wire_protos.reserve(wire_length);
for (std::vector<std::string>::const_iterator i = next_protos.begin();
i != next_protos.end(); i++) {
if (i->size() == 0 || i->size() > 255)
continue;
wire_protos.push_back(i->size());
wire_protos.resize(wire_protos.size() + i->size());
memcpy(&wire_protos[wire_protos.size() - i->size()],
i->data(), i->size());
}
DCHECK_EQ(wire_protos.size(), wire_length);
return wire_protos;
}
void SSLClientSocket::RecordNegotiationExtension() {
if (negotiation_extension_ == kExtensionUnknown)
return;
std::string proto;
SSLClientSocket::NextProtoStatus status = GetNextProto(&proto);
if (status == kNextProtoUnsupported)
return;
// Convert protocol into numerical value for histogram.
NextProto protocol_negotiated = SSLClientSocket::NextProtoFromString(proto);
base::HistogramBase::Sample sample =
static_cast<base::HistogramBase::Sample>(protocol_negotiated);
// In addition to the protocol negotiated, we want to record which TLS
// extension was used, and in case of NPN, whether there was overlap between
// server and client list of supported protocols.
if (negotiation_extension_ == kExtensionNPN) {
if (status == kNextProtoNoOverlap) {
sample += 1000;
} else {
sample += 500;
}
} else {
DCHECK_EQ(kExtensionALPN, negotiation_extension_);
}
UMA_HISTOGRAM_SPARSE_SLOWLY("Net.SSLProtocolNegotiation", sample);
}
} // namespace net