blob: 05e7329613da102a0945fa1eb5a1ddfb921ec4a8 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_lms_norm_q31.c
*
* Description: Processing function for the Q31 NLMS filter.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup LMS_NORM
* @{
*/
/**
* @brief Processing function for Q31 normalized LMS filter.
* @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[in] *pRef points to the block of reference data.
* @param[out] *pOut points to the block of output data.
* @param[out] *pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate
* multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by
* log2(numTaps) bits. The reference signal should not be scaled down.
* After all multiply-accumulates are performed, the 2.62 accumulator is shifted
* and saturated to 1.31 format to yield the final result.
* The output signal and error signal are in 1.31 format.
*
* \par
* In this filter, filter coefficients are updated for each sample and the
* updation of filter cofficients are saturted.
*
*/
void arm_lms_norm_q31(
arm_lms_norm_instance_q31 * S,
q31_t * pSrc,
q31_t * pRef,
q31_t * pOut,
q31_t * pErr,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCurnt; /* Points to the current sample of the state */
q31_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
q31_t mu = S->mu; /* Adaptive factor */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t tapCnt, blkCnt; /* Loop counters */
q63_t energy; /* Energy of the input */
q63_t acc; /* Accumulator */
q31_t e = 0, d = 0; /* error, reference data sample */
q31_t w = 0, in; /* weight factor and state */
q31_t x0; /* temporary variable to hold input sample */
uint32_t shift = 32u - ((uint32_t) S->postShift + 1u); /* Shift to be applied to the output */
q31_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
q31_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
q31_t coef; /* Temporary variable for coef */
energy = S->energy;
x0 = S->x0;
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Loop over blockSize number of values */
blkCnt = blockSize;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
while(blkCnt > 0u)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc;
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* Read the sample from input buffer */
in = *pSrc++;
/* Update the energy calculation */
energy = (q31_t) ((((q63_t) energy << 32) -
(((q63_t) x0 * x0) << 1)) >> 32);
energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
/* Set the accumulator to zero */
acc = 0;
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = numTaps >> 2;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
acc += ((q63_t) (*px++)) * (*pb++);
acc += ((q63_t) (*px++)) * (*pb++);
acc += ((q63_t) (*px++)) * (*pb++);
acc += ((q63_t) (*px++)) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
tapCnt = numTaps % 0x4u;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
acc += ((q63_t) (*px++)) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* Converting the result to 1.31 format */
acc = (q31_t) (acc >> shift);
/* Store the result from accumulator into the destination buffer. */
*pOut++ = (q31_t) acc;
/* Compute and store error */
d = *pRef++;
e = d - (q31_t) acc;
*pErr++ = e;
/* Calculates the reciprocal of energy */
postShift = arm_recip_q31(energy + DELTA_Q31,
&oneByEnergy, &S->recipTable[0]);
/* Calculation of product of (e * mu) */
errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
/* Weighting factor for the normalized version */
w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = numTaps >> 2;
/* Update filter coefficients */
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
/* coef is in 2.30 format */
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
/* get coef in 1.31 format by left shifting */
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
/* update coefficient buffer to next coefficient */
pb++;
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
/* Decrement the loop counter */
tapCnt--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
tapCnt = numTaps % 0x4u;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
/* Decrement the loop counter */
tapCnt--;
}
/* Read the sample from state buffer */
x0 = *pState;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the loop counter */
blkCnt--;
}
/* Save energy and x0 values for the next frame */
S->energy = (q31_t) energy;
S->x0 = x0;
/* Processing is complete. Now copy the last numTaps - 1 samples to the
satrt of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* Loop unrolling for (numTaps - 1u) samples copy */
tapCnt = (numTaps - 1u) >> 2u;
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
/* Calculate remaining number of copies */
tapCnt = (numTaps - 1u) % 0x4u;
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(blkCnt > 0u)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc;
/* Initialize pState pointer */
px = pState;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Read the sample from input buffer */
in = *pSrc++;
/* Update the energy calculation */
energy =
(q31_t) ((((q63_t) energy << 32) - (((q63_t) x0 * x0) << 1)) >> 32);
energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
/* Set the accumulator to zero */
acc = 0;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
acc += ((q63_t) (*px++)) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* Converting the result to 1.31 format */
acc = (q31_t) (acc >> shift);
/* Store the result from accumulator into the destination buffer. */
*pOut++ = (q31_t) acc;
/* Compute and store error */
d = *pRef++;
e = d - (q31_t) acc;
*pErr++ = e;
/* Calculates the reciprocal of energy */
postShift =
arm_recip_q31(energy + DELTA_Q31, &oneByEnergy, &S->recipTable[0]);
/* Calculation of product of (e * mu) */
errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
/* Weighting factor for the normalized version */
w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* Loop over numTaps number of values */
tapCnt = numTaps;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
/* coef is in 2.30 format */
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
/* get coef in 1.31 format by left shifting */
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
/* update coefficient buffer to next coefficient */
pb++;
/* Decrement the loop counter */
tapCnt--;
}
/* Read the sample from state buffer */
x0 = *pState;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the loop counter */
blkCnt--;
}
/* Save energy and x0 values for the next frame */
S->energy = (q31_t) energy;
S->x0 = x0;
/* Processing is complete. Now copy the last numTaps - 1 samples to the
start of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* Loop for (numTaps - 1u) samples copy */
tapCnt = (numTaps - 1u);
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of LMS_NORM group
*/