blob: 28d7fceee0e143fd07ed0d0bc169be343e444d6e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.transform;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.complex.Complex;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;
/**
* Implements the <a href="http://documents.wolfram.com/v5/Add-onsLinks/
* StandardPackages/LinearAlgebra/FourierTrig.html">Fast Sine Transform</a>
* for transformation of one-dimensional data sets. For reference, see
* <b>Fast Fourier Transforms</b>, ISBN 0849371635, chapter 3.
* <p>
* FST is its own inverse, up to a multiplier depending on conventions.
* The equations are listed in the comments of the corresponding methods.</p>
* <p>
* Similar to FFT, we also require the length of data set to be power of 2.
* In addition, the first element must be 0 and it's enforced in function
* transformation after sampling.</p>
* <p>As of version 2.0 this no longer implements Serializable</p>
*
* @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
* @since 1.2
*/
public class FastSineTransformer implements RealTransformer {
/**
* Construct a default transformer.
*/
public FastSineTransformer() {
super();
}
/**
* Transform the given real data set.
* <p>
* The formula is F<sub>n</sub> = &sum;<sub>k=0</sub><sup>N-1</sup> f<sub>k</sub> sin(&pi; nk/N)
* </p>
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(double f[])
throws IllegalArgumentException {
return fst(f);
}
/**
* Transform the given real function, sampled on the given interval.
* <p>
* The formula is F<sub>n</sub> = &sum;<sub>k=0</sub><sup>N-1</sup> f<sub>k</sub> sin(&pi; nk/N)
* </p>
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws FunctionEvaluationException if function cannot be evaluated
* at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(UnivariateRealFunction f,
double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
data[0] = 0.0;
return fst(data);
}
/**
* Transform the given real data set.
* <p>
* The formula is F<sub>n</sub> = &radic;(2/N) &sum;<sub>k=0</sub><sup>N-1</sup> f<sub>k</sub> sin(&pi; nk/N)
* </p>
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(double f[]) throws IllegalArgumentException {
double scaling_coefficient = FastMath.sqrt(2.0 / f.length);
return FastFourierTransformer.scaleArray(fst(f), scaling_coefficient);
}
/**
* Transform the given real function, sampled on the given interval.
* <p>
* The formula is F<sub>n</sub> = &radic;(2/N) &sum;<sub>k=0</sub><sup>N-1</sup> f<sub>k</sub> sin(&pi; nk/N)
* </p>
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws FunctionEvaluationException if function cannot be evaluated
* at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(
UnivariateRealFunction f, double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
data[0] = 0.0;
double scaling_coefficient = FastMath.sqrt(2.0 / n);
return FastFourierTransformer.scaleArray(fst(data), scaling_coefficient);
}
/**
* Inversely transform the given real data set.
* <p>
* The formula is f<sub>k</sub> = (2/N) &sum;<sub>n=0</sub><sup>N-1</sup> F<sub>n</sub> sin(&pi; nk/N)
* </p>
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform(double f[]) throws IllegalArgumentException {
double scaling_coefficient = 2.0 / f.length;
return FastFourierTransformer.scaleArray(fst(f), scaling_coefficient);
}
/**
* Inversely transform the given real function, sampled on the given interval.
* <p>
* The formula is f<sub>k</sub> = (2/N) &sum;<sub>n=0</sub><sup>N-1</sup> F<sub>n</sub> sin(&pi; nk/N)
* </p>
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws FunctionEvaluationException if function cannot be evaluated at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform(UnivariateRealFunction f, double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
data[0] = 0.0;
double scaling_coefficient = 2.0 / n;
return FastFourierTransformer.scaleArray(fst(data), scaling_coefficient);
}
/**
* Inversely transform the given real data set.
* <p>
* The formula is f<sub>k</sub> = &radic;(2/N) &sum;<sub>n=0</sub><sup>N-1</sup> F<sub>n</sub> sin(&pi; nk/N)
* </p>
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform2(double f[]) throws IllegalArgumentException {
return transform2(f);
}
/**
* Inversely transform the given real function, sampled on the given interval.
* <p>
* The formula is f<sub>k</sub> = &radic;(2/N) &sum;<sub>n=0</sub><sup>N-1</sup> F<sub>n</sub> sin(&pi; nk/N)
* </p>
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws FunctionEvaluationException if function cannot be evaluated at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform2(UnivariateRealFunction f, double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
return transform2(f, min, max, n);
}
/**
* Perform the FST algorithm (including inverse).
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
protected double[] fst(double f[]) throws IllegalArgumentException {
final double transformed[] = new double[f.length];
FastFourierTransformer.verifyDataSet(f);
if (f[0] != 0.0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.FIRST_ELEMENT_NOT_ZERO,
f[0]);
}
final int n = f.length;
if (n == 1) { // trivial case
transformed[0] = 0.0;
return transformed;
}
// construct a new array and perform FFT on it
final double[] x = new double[n];
x[0] = 0.0;
x[n >> 1] = 2.0 * f[n >> 1];
for (int i = 1; i < (n >> 1); i++) {
final double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n-i]);
final double b = 0.5 * (f[i] - f[n-i]);
x[i] = a + b;
x[n - i] = a - b;
}
FastFourierTransformer transformer = new FastFourierTransformer();
Complex y[] = transformer.transform(x);
// reconstruct the FST result for the original array
transformed[0] = 0.0;
transformed[1] = 0.5 * y[0].getReal();
for (int i = 1; i < (n >> 1); i++) {
transformed[2 * i] = -y[i].getImaginary();
transformed[2 * i + 1] = y[i].getReal() + transformed[2 * i - 1];
}
return transformed;
}
}