blob: a1f18e881157c25e1dbe4eb2084b90b098984bcf [file] [log] [blame]
use crate::encoding::{Instance, Item, LibraryInfo, MainOrAdapter, ModuleImportMap};
use crate::{ComponentEncoder, StringEncoding};
use anyhow::{anyhow, bail, Context, Result};
use indexmap::{map::Entry, IndexMap, IndexSet};
use std::hash::{Hash, Hasher};
use std::mem;
use wasm_encoder::ExportKind;
use wasmparser::names::{ComponentName, ComponentNameKind};
use wasmparser::{
types::TypesRef, Encoding, ExternalKind, FuncType, Parser, Payload, TypeRef, ValType,
ValidPayload, Validator,
};
use wit_parser::{
abi::{AbiVariant, WasmSignature, WasmType},
Function, InterfaceId, PackageName, Resolve, Type, TypeDefKind, TypeId, World, WorldId,
WorldItem, WorldKey,
};
fn wasm_sig_to_func_type(signature: WasmSignature) -> FuncType {
fn from_wasm_type(ty: &WasmType) -> ValType {
match ty {
WasmType::I32 => ValType::I32,
WasmType::I64 => ValType::I64,
WasmType::F32 => ValType::F32,
WasmType::F64 => ValType::F64,
WasmType::Pointer => ValType::I32,
WasmType::PointerOrI64 => ValType::I64,
WasmType::Length => ValType::I32,
}
}
FuncType::new(
signature.params.iter().map(from_wasm_type),
signature.results.iter().map(from_wasm_type),
)
}
/// Metadata about a validated module and what was found internally.
///
/// This structure houses information about `imports` and `exports` to the
/// module. Each of these specialized types contains "connection" information
/// between a module's imports/exports and the WIT or component-level constructs
/// they correspond to.
#[derive(Default)]
pub struct ValidatedModule {
/// Information about a module's imports.
pub imports: ImportMap,
/// Information about a module's exports.
pub exports: ExportMap,
}
impl ValidatedModule {
fn new(
encoder: &ComponentEncoder,
bytes: &[u8],
exports: &IndexSet<WorldKey>,
import_map: Option<&ModuleImportMap>,
info: Option<&LibraryInfo>,
) -> Result<ValidatedModule> {
let mut validator = Validator::new();
let mut ret = ValidatedModule::default();
for payload in Parser::new(0).parse_all(bytes) {
let payload = payload?;
if let ValidPayload::End(_) = validator.payload(&payload)? {
break;
}
let types = validator.types(0).unwrap();
match payload {
Payload::Version { encoding, .. } if encoding != Encoding::Module => {
bail!("data is not a WebAssembly module");
}
Payload::ImportSection(s) => {
for import in s {
let import = import?;
ret.imports.add(import, encoder, import_map, info, types)?;
}
}
Payload::ExportSection(s) => {
for export in s {
let export = export?;
ret.exports.add(export, encoder, &exports, types)?;
}
}
_ => continue,
}
}
ret.exports.validate(encoder, exports)?;
Ok(ret)
}
}
/// Metadata information about a module's imports.
///
/// This structure maintains the connection between component model "things" and
/// core wasm "things" by ensuring that all imports to the core wasm module are
/// classified by the `Import` enumeration.
#[derive(Default)]
pub struct ImportMap {
/// The first level of the map here is the module namespace of the import
/// and the second level of the map is the field namespace. The item is then
/// how the import is satisfied.
names: IndexMap<String, ImportInstance>,
}
pub enum ImportInstance {
/// This import is satisfied by an entire instance of another
/// adapter/module.
Whole(MainOrAdapter),
/// This import is satisfied by filling out each name possibly differently.
Names(IndexMap<String, Import>),
}
/// Represents metadata about a `stream<T>` or `future<T>` type for a specific
/// payload type `T`.
///
/// Currently, the name mangling scheme we use to represent `stream` and
/// `future` intrinsics as core module function imports refers to a specific
/// `stream` or `future` type by naming an imported or exported component
/// function which has that type as a parameter or return type (where the
/// specific type is referred to using an ordinal numbering scheme). Not only
/// does this approach unambiguously indicate the type of interest, but it
/// allows us to reuse the `realloc`, string encoding, memory, etc. used by that
/// function when emitting intrinsic declarations.
///
/// TODO: Rather than reusing the same canon opts as the function in which the
/// type appears, consider encoding them in the name mangling stream on an
/// individual basis, similar to how we encode `error-context.*` built-in
/// imports.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct PayloadInfo {
/// The original, mangled import name used to import this built-in
/// (currently used only for hashing and debugging).
pub name: String,
/// The resolved type id for the `stream` or `future` type of interest.
pub ty: TypeId,
/// The component-level function import or export where the type appeared as
/// a parameter or result type.
pub function: String,
/// The world key representing the import or export context of `function`.
pub key: WorldKey,
/// The interface that `function` was imported from or exported in, if any.
pub interface: Option<InterfaceId>,
/// Whether `function` is being imported or exported.
///
/// This may affect how we emit the declaration of the built-in, e.g. if the
/// payload type is an exported resource.
pub imported: bool,
}
impl PayloadInfo {
/// Returns the payload type that this future/stream type is using.
pub fn payload(&self, resolve: &Resolve) -> Option<Type> {
match resolve.types[self.ty].kind {
TypeDefKind::Future(payload) | TypeDefKind::Stream(payload) => payload,
_ => unreachable!(),
}
}
}
impl Hash for PayloadInfo {
/// We derive `Hash` for this type by hand and exclude the `function` field
/// because (A) `Function` doesn't implement `Hash` and (B) the other fields
/// are sufficient to uniquely identify the type of interest, which function
/// it appeared in, and which parameter or return type we found it in.
fn hash<H: Hasher>(&self, state: &mut H) {
self.name.hash(state);
self.ty.hash(state);
self.key.hash(state);
self.interface.hash(state);
self.imported.hash(state);
}
}
/// The different kinds of items that a module or an adapter can import.
///
/// This is intended to be an exhaustive definition of what can be imported into
/// core modules within a component that wit-component supports. This doesn't
/// get down to the level of storing any idx numbers; at its most specific, it
/// gives a name.
#[derive(Debug, Clone)]
pub enum Import {
/// A top-level world function, with the name provided here, is imported
/// into the module.
WorldFunc(WorldKey, String, AbiVariant),
/// An interface's function is imported into the module.
///
/// The `WorldKey` here is the name of the interface in the world in
/// question. The `InterfaceId` is the interface that was imported from and
/// `String` is the WIT name of the function.
InterfaceFunc(WorldKey, InterfaceId, String, AbiVariant),
/// An imported resource's destructor is imported.
///
/// The key provided indicates whether it's for the top-level types of the
/// world (`None`) or an interface (`Some` with the name of the interface).
/// The `TypeId` is what resource is being dropped.
ImportedResourceDrop(WorldKey, Option<InterfaceId>, TypeId),
/// A `canon resource.drop` intrinsic for an exported item is being
/// imported.
///
/// This lists the key of the interface that's exporting the resource plus
/// the id within that interface.
ExportedResourceDrop(WorldKey, TypeId),
/// A `canon resource.new` intrinsic for an exported item is being
/// imported.
///
/// This lists the key of the interface that's exporting the resource plus
/// the id within that interface.
ExportedResourceNew(WorldKey, TypeId),
/// A `canon resource.rep` intrinsic for an exported item is being
/// imported.
///
/// This lists the key of the interface that's exporting the resource plus
/// the id within that interface.
ExportedResourceRep(WorldKey, TypeId),
/// An export of an adapter is being imported with the specified type.
///
/// This is used for when the main module imports an adapter function. The
/// adapter name and function name match the module's own import, and the
/// type must match that listed here.
AdapterExport {
adapter: String,
func: String,
ty: FuncType,
},
/// An adapter is importing the memory of the main module.
///
/// (should be combined with `MainModuleExport` below one day)
MainModuleMemory,
/// An adapter is importing an arbitrary item from the main module.
MainModuleExport { name: String, kind: ExportKind },
/// An arbitrary item from either the main module or an adapter is being
/// imported.
///
/// (should probably subsume `MainModule*` and maybe `AdapterExport` above
/// one day.
Item(Item),
/// A `canon task.return` intrinsic for an exported function.
///
/// This allows an exported function to return a value and then continue
/// running.
///
/// As of this writing, only async-lifted exports use `task.return`, but the
/// plan is to also support it for sync-lifted exports in the future as
/// well.
ExportedTaskReturn(WorldKey, Option<InterfaceId>, String, Option<Type>),
/// A `canon task.cancel` intrinsic for an exported function.
///
/// This allows an exported function to acknowledge a `CANCELLED` event.
ExportedTaskCancel,
/// The `context.get` intrinsic for the nth slot of storage.
ContextGet(u32),
/// The `context.set` intrinsic for the nth slot of storage.
ContextSet(u32),
/// A `canon backpressure.set` intrinsic.
///
/// This allows the guest to dynamically indicate whether it's ready for
/// additional concurrent calls.
BackpressureSet,
/// A `waitable-set.new` intrinsic.
WaitableSetNew,
/// A `canon waitable-set.wait` intrinsic.
///
/// This allows the guest to wait for any pending calls to async-lowered
/// imports and/or `stream` and `future` operations to complete without
/// unwinding the current Wasm stack.
WaitableSetWait { async_: bool },
/// A `canon waitable.poll` intrinsic.
///
/// This allows the guest to check whether any pending calls to
/// async-lowered imports and/or `stream` and `future` operations have
/// completed without unwinding the current Wasm stack and without blocking.
WaitableSetPoll { async_: bool },
/// A `waitable-set.drop` intrinsic.
WaitableSetDrop,
/// A `waitable.join` intrinsic.
WaitableJoin,
/// A `canon yield` intrinsic.
///
/// This allows the guest to yield (e.g. during an computationally-intensive
/// operation) and allow other subtasks to make progress.
Yield { async_: bool },
/// A `canon subtask.drop` intrinsic.
///
/// This allows the guest to release its handle to a completed subtask.
SubtaskDrop,
/// A `canon subtask.cancel` intrinsic.
///
/// This allows the guest to cancel an in-progress subtask.
SubtaskCancel { async_: bool },
/// A `canon stream.new` intrinsic.
///
/// This allows the guest to create a new `stream` of the specified type.
StreamNew(PayloadInfo),
/// A `canon stream.read` intrinsic.
///
/// This allows the guest to read the next values (if any) from the specified
/// stream.
StreamRead { async_: bool, info: PayloadInfo },
/// A `canon stream.write` intrinsic.
///
/// This allows the guest to write one or more values to the specified
/// stream.
StreamWrite { async_: bool, info: PayloadInfo },
/// A `canon stream.cancel-read` intrinsic.
///
/// This allows the guest to cancel a pending read it initiated earlier (but
/// which may have already partially or entirely completed).
StreamCancelRead { info: PayloadInfo, async_: bool },
/// A `canon stream.cancel-write` intrinsic.
///
/// This allows the guest to cancel a pending write it initiated earlier
/// (but which may have already partially or entirely completed).
StreamCancelWrite { info: PayloadInfo, async_: bool },
/// A `canon stream.drop-readable` intrinsic.
///
/// This allows the guest to drop the readable end of a `stream`.
StreamDropReadable(PayloadInfo),
/// A `canon stream.drop-writable` intrinsic.
///
/// This allows the guest to drop the writable end of a `stream`.
StreamDropWritable(PayloadInfo),
/// A `canon future.new` intrinsic.
///
/// This allows the guest to create a new `future` of the specified type.
FutureNew(PayloadInfo),
/// A `canon future.read` intrinsic.
///
/// This allows the guest to read the value (if any) from the specified
/// future.
FutureRead { async_: bool, info: PayloadInfo },
/// A `canon future.write` intrinsic.
///
/// This allows the guest to write a value to the specified future.
FutureWrite { async_: bool, info: PayloadInfo },
/// A `canon future.cancel-read` intrinsic.
///
/// This allows the guest to cancel a pending read it initiated earlier (but
/// which may have already completed).
FutureCancelRead { info: PayloadInfo, async_: bool },
/// A `canon future.cancel-write` intrinsic.
///
/// This allows the guest to cancel a pending write it initiated earlier
/// (but which may have already completed).
FutureCancelWrite { info: PayloadInfo, async_: bool },
/// A `canon future.drop-readable` intrinsic.
///
/// This allows the guest to drop the readable end of a `future`.
FutureDropReadable(PayloadInfo),
/// A `canon future.drop-writable` intrinsic.
///
/// This allows the guest to drop the writable end of a `future`.
FutureDropWritable(PayloadInfo),
/// A `canon error-context.new` intrinsic.
///
/// This allows the guest to create a new `error-context` instance with a
/// specified debug message.
ErrorContextNew { encoding: StringEncoding },
/// A `canon error-context.debug-message` intrinsic.
///
/// This allows the guest to retrieve the debug message from a
/// `error-context` instance. Note that the content of this message might
/// not be identical to what was passed in to `error-context.new`.
ErrorContextDebugMessage { encoding: StringEncoding },
/// A `canon error-context.drop` intrinsic.
///
/// This allows the guest to release its handle to the specified
/// `error-context` instance.
ErrorContextDrop,
}
impl ImportMap {
/// Returns the list of items that the adapter named `name` must export.
pub fn required_from_adapter(&self, name: &str) -> IndexMap<String, FuncType> {
let names = match self.names.get(name) {
Some(ImportInstance::Names(names)) => names,
_ => return IndexMap::new(),
};
names
.iter()
.map(|(_, import)| match import {
Import::AdapterExport { ty, func, adapter } => {
assert_eq!(adapter, name);
(func.clone(), ty.clone())
}
_ => unreachable!(),
})
.collect()
}
/// Returns an iterator over all individual imports registered in this map.
///
/// Note that this doesn't iterate over the "whole instance" imports.
pub fn imports(&self) -> impl Iterator<Item = (&str, &str, &Import)> + '_ {
self.names
.iter()
.filter_map(|(module, m)| match m {
ImportInstance::Names(names) => Some((module, names)),
ImportInstance::Whole(_) => None,
})
.flat_map(|(module, m)| {
m.iter()
.map(move |(field, import)| (module.as_str(), field.as_str(), import))
})
}
/// Returns the map for how all imports must be satisfied.
pub fn modules(&self) -> &IndexMap<String, ImportInstance> {
&self.names
}
/// Classify an import and call `insert_import()` on it. Used during
/// validation to build up this `ImportMap`.
fn add(
&mut self,
import: wasmparser::Import<'_>,
encoder: &ComponentEncoder,
import_map: Option<&ModuleImportMap>,
library_info: Option<&LibraryInfo>,
types: TypesRef<'_>,
) -> Result<()> {
if self.classify_import_with_library(import, library_info)? {
return Ok(());
}
let mut import_to_classify = import;
if let Some(map) = import_map {
if let Some(original_name) = map.original_name(&import) {
import_to_classify.name = original_name;
}
}
let item = self
.classify(import_to_classify, encoder, types)
.with_context(|| {
format!(
"failed to resolve import `{}::{}`",
import.module, import.name,
)
})?;
self.insert_import(import, item)
}
/// Determines what kind of thing is being imported: maps it from the
/// module/name/type triple in the raw wasm module to an enum.
///
/// Handles a few special cases, then delegates to
/// `classify_component_model_import()`.
fn classify(
&self,
import: wasmparser::Import<'_>,
encoder: &ComponentEncoder,
types: TypesRef<'_>,
) -> Result<Import> {
// Special-case the main module's memory imported into adapters which
// currently with `wasm-ld` is not easily configurable.
if import.module == "env" && import.name == "memory" {
return Ok(Import::MainModuleMemory);
}
// Special-case imports from the main module into adapters.
if import.module == "__main_module__" {
return Ok(Import::MainModuleExport {
name: import.name.to_string(),
kind: match import.ty {
TypeRef::Func(_) => ExportKind::Func,
TypeRef::Table(_) => ExportKind::Table,
TypeRef::Memory(_) => ExportKind::Memory,
TypeRef::Global(_) => ExportKind::Global,
TypeRef::Tag(_) => ExportKind::Tag,
},
});
}
let ty_index = match import.ty {
TypeRef::Func(ty) => ty,
_ => bail!("module is only allowed to import functions"),
};
let ty = types[types.core_type_at_in_module(ty_index)].unwrap_func();
// Handle main module imports that match known adapters and set it up as
// an import of an adapter export.
if encoder.adapters.contains_key(import.module) {
return Ok(Import::AdapterExport {
adapter: import.module.to_string(),
func: import.name.to_string(),
ty: ty.clone(),
});
}
let (module, names) = match import.module.strip_prefix("cm32p2") {
Some(suffix) => (suffix, STANDARD),
None if encoder.reject_legacy_names => (import.module, STANDARD),
None => (import.module, LEGACY),
};
self.classify_component_model_import(module, import.name, encoder, ty, names)
}
/// Attempts to classify the import `{module}::{name}` with the rules
/// specified in WebAssembly/component-model#378
fn classify_component_model_import(
&self,
module: &str,
name: &str,
encoder: &ComponentEncoder,
ty: &FuncType,
names: &dyn NameMangling,
) -> Result<Import> {
let resolve = &encoder.metadata.resolve;
let world_id = encoder.metadata.world;
let world = &resolve.worlds[world_id];
let (async_, name) = if let Some(name) = names.async_lower_name(name) {
(true, name)
} else {
(false, name)
};
let abi = if async_ {
AbiVariant::GuestImportAsync
} else {
AbiVariant::GuestImport
};
let validate_not_async = || {
if async_ {
bail!("`{name}` cannot be marked `async`")
}
Ok(())
};
if module == names.import_root() {
if Some(name) == names.error_context_drop() {
validate_not_async()?;
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ErrorContextDrop);
}
if Some(name) == names.backpressure_set() {
validate_not_async()?;
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::BackpressureSet);
}
if Some(name) == names.waitable_set_new() {
validate_not_async()?;
let expected = FuncType::new([], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::WaitableSetNew);
}
if Some(name) == names.waitable_set_wait() {
let expected = FuncType::new([ValType::I32; 2], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::WaitableSetWait {
async_: abi == AbiVariant::GuestImportAsync,
});
}
if Some(name) == names.waitable_set_poll() {
let expected = FuncType::new([ValType::I32; 2], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::WaitableSetPoll {
async_: abi == AbiVariant::GuestImportAsync,
});
}
if Some(name) == names.waitable_set_drop() {
validate_not_async()?;
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::WaitableSetDrop);
}
if Some(name) == names.waitable_join() {
validate_not_async()?;
let expected = FuncType::new([ValType::I32; 2], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::WaitableJoin);
}
if Some(name) == names.yield_() {
let expected = FuncType::new([], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::Yield { async_ });
}
if Some(name) == names.subtask_drop() {
validate_not_async()?;
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::SubtaskDrop);
}
if Some(name) == names.subtask_cancel() {
let expected = FuncType::new([ValType::I32], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::SubtaskCancel { async_ });
}
if let Some(encoding) = names.error_context_new(name) {
validate_not_async()?;
let expected = FuncType::new([ValType::I32; 2], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ErrorContextNew { encoding });
}
if let Some(encoding) = names.error_context_debug_message(name) {
validate_not_async()?;
let expected = FuncType::new([ValType::I32; 2], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ErrorContextDebugMessage { encoding });
}
if let Some(i) = names.context_get(name) {
validate_not_async()?;
let expected = FuncType::new([], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ContextGet(i));
}
if let Some(i) = names.context_set(name) {
validate_not_async()?;
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ContextSet(i));
}
let key = WorldKey::Name(name.to_string());
if let Some(WorldItem::Function(func)) = world.imports.get(&key) {
validate_func(resolve, ty, func, abi)?;
return Ok(Import::WorldFunc(key, func.name.clone(), abi));
}
if let Some(import) =
self.maybe_classify_wit_intrinsic(name, None, encoder, ty, async_, true, names)?
{
return Ok(import);
}
match world.imports.get(&key) {
Some(_) => bail!("expected world top-level import `{name}` to be a function"),
None => bail!("no top-level imported function `{name}` specified"),
}
}
// Check for `[export]$root::[task-return]foo` or similar
if matches!(
module.strip_prefix(names.import_exported_intrinsic_prefix()),
Some(module) if module == names.import_root()
) {
if let Some(import) =
self.maybe_classify_wit_intrinsic(name, None, encoder, ty, async_, false, names)?
{
return Ok(import);
}
}
let interface = match module.strip_prefix(names.import_non_root_prefix()) {
Some(name) => name,
None => bail!("unknown or invalid component model import syntax"),
};
if let Some(interface) = interface.strip_prefix(names.import_exported_intrinsic_prefix()) {
let (key, id) = names.module_to_interface(interface, resolve, &world.exports)?;
if let Some(import) = self.maybe_classify_wit_intrinsic(
name,
Some((key, id)),
encoder,
ty,
async_,
false,
names,
)? {
return Ok(import);
}
bail!("unknown function `{name}`")
}
let (key, id) = names.module_to_interface(interface, resolve, &world.imports)?;
let interface = &resolve.interfaces[id];
if let Some(f) = interface.functions.get(name) {
validate_func(resolve, ty, f, abi).with_context(|| {
let name = resolve.name_world_key(&key);
format!("failed to validate import interface `{name}`")
})?;
return Ok(Import::InterfaceFunc(key, id, f.name.clone(), abi));
}
if let Some(import) = self.maybe_classify_wit_intrinsic(
name,
Some((key, id)),
encoder,
ty,
async_,
true,
names,
)? {
return Ok(import);
}
bail!(
"import interface `{module}` is missing function \
`{name}` that is required by the module",
)
}
/// Attempts to detect and classify `name` as a WIT intrinsic.
///
/// This function is a bit of a sprawling sequence of matches used to
/// detect whether `name` corresponds to a WIT intrinsic, so specifically
/// not a WIT function itself. This is only used for functions imported
/// into a module but the import could be for an imported item in a world
/// or an exported item.
///
/// ## Parameters
///
/// * `name` - the core module name which is being pattern-matched. This
/// should be the "field" of the import. This should have the
/// "[async-lift]" prefix stripped out already.
/// * `key_and_id` - this is the inferred "container" for the function
/// being described which is inferred from the module portion of the core
/// wasm import field. This is `None` for root-level function/type
/// imports, such as when referring to `import x: func();`. This is `Some`
/// when an interface is used (either `import x: interface { .. }` or a
/// standalone `interface`) where the world key is specified for the
/// interface in addition to the interface that was identified.
/// * `encoder` - this is the encoder state that contains
/// `Resolve`/metadata information.
/// * `ty` - the core wasm type of this import.
/// * `async_` - whether or not this import had the `[async-lift]` import.
/// Note that such prefix is not present in `name`.
/// * `import` - whether or not this core wasm import is operating on a WIT
/// level import or export. An example of this being an export is when a
/// core module imports a destructor for an exported resource.
/// * `names` - the name mangling scheme that's configured to be used.
fn maybe_classify_wit_intrinsic(
&self,
name: &str,
key_and_id: Option<(WorldKey, InterfaceId)>,
encoder: &ComponentEncoder,
ty: &FuncType,
async_: bool,
import: bool,
names: &dyn NameMangling,
) -> Result<Option<Import>> {
let resolve = &encoder.metadata.resolve;
let world_id = encoder.metadata.world;
let world = &resolve.worlds[world_id];
// Separate out `Option<WorldKey>` and `Option<InterfaceId>`. If an
// interface is NOT specified then the `WorldKey` which is attached to
// imports is going to be calculated based on the name of the item
// extracted, such as the resource or function referenced.
let (key, id) = match key_and_id {
Some((key, id)) => (Some(key), Some(id)),
None => (None, None),
};
// Tests whether `name` is a resource within `id` (or `world_id`).
let resource_test = |name: &str| match id {
Some(id) => resource_test_for_interface(resolve, id)(name),
None => resource_test_for_world(resolve, world_id)(name),
};
// Test whether this is a `resource.drop` intrinsic.
if let Some(resource) = names.resource_drop_name(name) {
if async_ {
bail!("async `resource.drop` calls not supported");
}
if let Some(resource_id) = resource_test(resource) {
let key = key.unwrap_or_else(|| WorldKey::Name(resource.to_string()));
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(if import {
Import::ImportedResourceDrop(key, id, resource_id)
} else {
Import::ExportedResourceDrop(key, resource_id)
}));
}
}
// There are some intrinsics which are only applicable to exported
// functions/resources, so check those use cases here.
if !import {
if let Some(name) = names.resource_new_name(name) {
if let Some(id) = resource_test(name) {
let key = key.unwrap_or_else(|| WorldKey::Name(name.to_string()));
let expected = FuncType::new([ValType::I32], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(Import::ExportedResourceNew(key, id)));
}
}
if let Some(name) = names.resource_rep_name(name) {
if let Some(id) = resource_test(name) {
let key = key.unwrap_or_else(|| WorldKey::Name(name.to_string()));
let expected = FuncType::new([ValType::I32], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(Import::ExportedResourceRep(key, id)));
}
}
if let Some(name) = names.task_return_name(name) {
let func = get_function(resolve, world, name, id, import)?;
let key = key.unwrap_or_else(|| WorldKey::Name(name.to_string()));
// TODO: should call `validate_func_sig` but would require
// calculating the expected signature based of `func.result`.
return Ok(Some(Import::ExportedTaskReturn(
key,
id,
func.name.clone(),
func.result,
)));
}
if Some(name) == names.task_cancel() {
if async_ {
bail!("async `task.cancel` calls not supported");
}
let expected = FuncType::new([], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(Import::ExportedTaskCancel));
}
}
// Looks for `[$prefix-N]foo` within `name`. If found then `foo` is
// used to find a function within `id` and `world` above. Once found
// then `N` is used to index within that function to extract a
// future/stream type. If that's all found then a `PayloadInfo` is
// returned to get attached to an intrinsic.
let prefixed_payload = |prefix: &str| {
// parse the `prefix` into `func_name` and `type_index`, bailing out
// with `None` if anything doesn't match.
let (type_index, func_name) = prefixed_integer(name, prefix)?;
let type_index = type_index as usize;
// Double-check that `func_name` is indeed a function name within
// this interface/world. Then additionally double-check that
// `type_index` is indeed a valid index for this function's type
// signature.
let function = get_function(resolve, world, func_name, id, import).ok()?;
let ty = *function.find_futures_and_streams(resolve).get(type_index)?;
// And if all that passes wrap up everything in a `PayloadInfo`.
Some(PayloadInfo {
name: name.to_string(),
ty,
function: function.name.clone(),
key: key
.clone()
.unwrap_or_else(|| WorldKey::Name(name.to_string())),
interface: id,
imported: import,
})
};
// Test for a number of async-related intrinsics. All intrinsics are
// prefixed with `[...-N]` where `...` is the name of the intrinsic and
// the `N` is the indexed future/stream that is being referred to.
let import = if let Some(info) = prefixed_payload("[future-new-") {
if async_ {
bail!("async `future.new` calls not supported");
}
validate_func_sig(name, &FuncType::new([], [ValType::I64]), ty)?;
Import::FutureNew(info)
} else if let Some(info) = prefixed_payload("[future-write-") {
validate_func_sig(name, &FuncType::new([ValType::I32; 2], [ValType::I32]), ty)?;
Import::FutureWrite { async_, info }
} else if let Some(info) = prefixed_payload("[future-read-") {
validate_func_sig(name, &FuncType::new([ValType::I32; 2], [ValType::I32]), ty)?;
Import::FutureRead { async_, info }
} else if let Some(info) = prefixed_payload("[future-cancel-write-") {
validate_func_sig(name, &FuncType::new([ValType::I32], [ValType::I32]), ty)?;
Import::FutureCancelWrite { async_, info }
} else if let Some(info) = prefixed_payload("[future-cancel-read-") {
validate_func_sig(name, &FuncType::new([ValType::I32], [ValType::I32]), ty)?;
Import::FutureCancelRead { async_, info }
} else if let Some(info) = prefixed_payload("[future-drop-writable-") {
if async_ {
bail!("async `future.drop-writable` calls not supported");
}
validate_func_sig(name, &FuncType::new([ValType::I32], []), ty)?;
Import::FutureDropWritable(info)
} else if let Some(info) = prefixed_payload("[future-drop-readable-") {
if async_ {
bail!("async `future.drop-readable` calls not supported");
}
validate_func_sig(name, &FuncType::new([ValType::I32], []), ty)?;
Import::FutureDropReadable(info)
} else if let Some(info) = prefixed_payload("[stream-new-") {
if async_ {
bail!("async `stream.new` calls not supported");
}
validate_func_sig(name, &FuncType::new([], [ValType::I64]), ty)?;
Import::StreamNew(info)
} else if let Some(info) = prefixed_payload("[stream-write-") {
validate_func_sig(name, &FuncType::new([ValType::I32; 3], [ValType::I32]), ty)?;
Import::StreamWrite { async_, info }
} else if let Some(info) = prefixed_payload("[stream-read-") {
validate_func_sig(name, &FuncType::new([ValType::I32; 3], [ValType::I32]), ty)?;
Import::StreamRead { async_, info }
} else if let Some(info) = prefixed_payload("[stream-cancel-write-") {
validate_func_sig(name, &FuncType::new([ValType::I32], [ValType::I32]), ty)?;
Import::StreamCancelWrite { async_, info }
} else if let Some(info) = prefixed_payload("[stream-cancel-read-") {
validate_func_sig(name, &FuncType::new([ValType::I32], [ValType::I32]), ty)?;
Import::StreamCancelRead { async_, info }
} else if let Some(info) = prefixed_payload("[stream-drop-writable-") {
if async_ {
bail!("async `stream.drop-writable` calls not supported");
}
validate_func_sig(name, &FuncType::new([ValType::I32], []), ty)?;
Import::StreamDropWritable(info)
} else if let Some(info) = prefixed_payload("[stream-drop-readable-") {
if async_ {
bail!("async `stream.drop-readable` calls not supported");
}
validate_func_sig(name, &FuncType::new([ValType::I32], []), ty)?;
Import::StreamDropReadable(info)
} else {
return Ok(None);
};
Ok(Some(import))
}
fn classify_import_with_library(
&mut self,
import: wasmparser::Import<'_>,
library_info: Option<&LibraryInfo>,
) -> Result<bool> {
let info = match library_info {
Some(info) => info,
None => return Ok(false),
};
let Some((_, instance)) = info
.arguments
.iter()
.find(|(name, _items)| *name == import.module)
else {
return Ok(false);
};
match instance {
Instance::MainOrAdapter(module) => match self.names.get(import.module) {
Some(ImportInstance::Whole(which)) => {
if which != module {
bail!("different whole modules imported under the same name");
}
}
Some(ImportInstance::Names(_)) => {
bail!("cannot mix individual imports and whole module imports")
}
None => {
let instance = ImportInstance::Whole(module.clone());
self.names.insert(import.module.to_string(), instance);
}
},
Instance::Items(items) => {
let Some(item) = items.iter().find(|i| i.alias == import.name) else {
return Ok(false);
};
self.insert_import(import, Import::Item(item.clone()))?;
}
}
Ok(true)
}
/// Map an imported item, by module and field name in `self.names`, to the
/// kind of `Import` it is: for example, a certain-typed function from an
/// adapter.
fn insert_import(&mut self, import: wasmparser::Import<'_>, item: Import) -> Result<()> {
let entry = self
.names
.entry(import.module.to_string())
.or_insert(ImportInstance::Names(IndexMap::default()));
let names = match entry {
ImportInstance::Names(names) => names,
_ => bail!("cannot mix individual imports with module imports"),
};
let entry = match names.entry(import.name.to_string()) {
Entry::Occupied(_) => {
bail!(
"module has duplicate import for `{}::{}`",
import.module,
import.name
);
}
Entry::Vacant(v) => v,
};
log::trace!(
"classifying import `{}::{} as {item:?}",
import.module,
import.name
);
entry.insert(item);
Ok(())
}
}
/// Dual of `ImportMap` except describes the exports of a module instead of the
/// imports.
#[derive(Default)]
pub struct ExportMap {
names: IndexMap<String, Export>,
raw_exports: IndexMap<String, FuncType>,
}
/// All possible (known) exports from a core wasm module that are recognized and
/// handled during the componentization process.
#[derive(Debug)]
pub enum Export {
/// An export of a top-level function of a world, where the world function
/// is named here.
WorldFunc(WorldKey, String, AbiVariant),
/// A post-return for a top-level function of a world.
WorldFuncPostReturn(WorldKey),
/// An export of a function in an interface.
InterfaceFunc(WorldKey, InterfaceId, String, AbiVariant),
/// A post-return for the above function.
InterfaceFuncPostReturn(WorldKey, String),
/// A destructor for an exported resource.
ResourceDtor(TypeId),
/// Memory, typically for an adapter.
Memory,
/// `cabi_realloc`
GeneralPurposeRealloc,
/// `cabi_export_realloc`
GeneralPurposeExportRealloc,
/// `cabi_import_realloc`
GeneralPurposeImportRealloc,
/// `_initialize`
Initialize,
/// `cabi_realloc_adapter`
ReallocForAdapter,
WorldFuncCallback(WorldKey),
InterfaceFuncCallback(WorldKey, String),
}
impl ExportMap {
fn add(
&mut self,
export: wasmparser::Export<'_>,
encoder: &ComponentEncoder,
exports: &IndexSet<WorldKey>,
types: TypesRef<'_>,
) -> Result<()> {
if let Some(item) = self.classify(export, encoder, exports, types)? {
log::debug!("classifying export `{}` as {item:?}", export.name);
let prev = self.names.insert(export.name.to_string(), item);
assert!(prev.is_none());
}
Ok(())
}
fn classify(
&mut self,
export: wasmparser::Export<'_>,
encoder: &ComponentEncoder,
exports: &IndexSet<WorldKey>,
types: TypesRef<'_>,
) -> Result<Option<Export>> {
match export.kind {
ExternalKind::Func => {
let ty = types[types.core_function_at(export.index)].unwrap_func();
self.raw_exports.insert(export.name.to_string(), ty.clone());
}
_ => {}
}
// Handle a few special-cased names first.
if export.name == "canonical_abi_realloc" {
return Ok(Some(Export::GeneralPurposeRealloc));
} else if export.name == "cabi_import_realloc" {
return Ok(Some(Export::GeneralPurposeImportRealloc));
} else if export.name == "cabi_export_realloc" {
return Ok(Some(Export::GeneralPurposeExportRealloc));
} else if export.name == "cabi_realloc_adapter" {
return Ok(Some(Export::ReallocForAdapter));
}
let (name, names) = match export.name.strip_prefix("cm32p2") {
Some(name) => (name, STANDARD),
None if encoder.reject_legacy_names => return Ok(None),
None => (export.name, LEGACY),
};
if let Some(export) = self
.classify_component_export(names, name, &export, encoder, exports, types)
.with_context(|| format!("failed to classify export `{}`", export.name))?
{
return Ok(Some(export));
}
log::debug!("unknown export `{}`", export.name);
Ok(None)
}
fn classify_component_export(
&mut self,
names: &dyn NameMangling,
name: &str,
export: &wasmparser::Export<'_>,
encoder: &ComponentEncoder,
exports: &IndexSet<WorldKey>,
types: TypesRef<'_>,
) -> Result<Option<Export>> {
let resolve = &encoder.metadata.resolve;
let world = encoder.metadata.world;
match export.kind {
ExternalKind::Func => {}
ExternalKind::Memory => {
if name == names.export_memory() {
return Ok(Some(Export::Memory));
}
return Ok(None);
}
_ => return Ok(None),
}
let ty = types[types.core_function_at(export.index)].unwrap_func();
// Handle a few special-cased names first.
if name == names.export_realloc() {
let expected = FuncType::new([ValType::I32; 4], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(Export::GeneralPurposeRealloc));
} else if name == names.export_initialize() {
let expected = FuncType::new([], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(Export::Initialize));
}
let full_name = name;
let (abi, name) = if let Some(name) = names.async_lift_name(name) {
(AbiVariant::GuestExportAsync, name)
} else if let Some(name) = names.async_lift_stackful_name(name) {
(AbiVariant::GuestExportAsyncStackful, name)
} else {
(AbiVariant::GuestExport, name)
};
// Try to match this to a known WIT export that `exports` allows.
if let Some((key, id, f)) = names.match_wit_export(name, resolve, world, exports) {
validate_func(resolve, ty, f, abi).with_context(|| {
let key = resolve.name_world_key(key);
format!("failed to validate export for `{key}`")
})?;
match id {
Some(id) => {
return Ok(Some(Export::InterfaceFunc(
key.clone(),
id,
f.name.clone(),
abi,
)));
}
None => {
return Ok(Some(Export::WorldFunc(key.clone(), f.name.clone(), abi)));
}
}
}
// See if this is a post-return for any known WIT export.
if let Some(remaining) = names.strip_post_return(name) {
if let Some((key, id, f)) = names.match_wit_export(remaining, resolve, world, exports) {
validate_post_return(resolve, ty, f).with_context(|| {
let key = resolve.name_world_key(key);
format!("failed to validate export for `{key}`")
})?;
match id {
Some(_id) => {
return Ok(Some(Export::InterfaceFuncPostReturn(
key.clone(),
f.name.clone(),
)));
}
None => {
return Ok(Some(Export::WorldFuncPostReturn(key.clone())));
}
}
}
}
if let Some(suffix) = names.async_lift_callback_name(full_name) {
if let Some((key, id, f)) = names.match_wit_export(suffix, resolve, world, exports) {
validate_func_sig(
full_name,
&FuncType::new([ValType::I32; 3], [ValType::I32]),
ty,
)?;
return Ok(Some(if id.is_some() {
Export::InterfaceFuncCallback(key.clone(), f.name.clone())
} else {
Export::WorldFuncCallback(key.clone())
}));
}
}
// And, finally, see if it matches a known destructor.
if let Some(dtor) = names.match_wit_resource_dtor(name, resolve, world, exports) {
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(full_name, &expected, ty)?;
return Ok(Some(Export::ResourceDtor(dtor)));
}
Ok(None)
}
/// Returns the name of the post-return export, if any, for the `key` and
/// `func` combo.
pub fn post_return(&self, key: &WorldKey, func: &Function) -> Option<&str> {
self.find(|m| match m {
Export::WorldFuncPostReturn(k) => k == key,
Export::InterfaceFuncPostReturn(k, f) => k == key && func.name == *f,
_ => false,
})
}
/// Returns the name of the async callback export, if any, for the `key` and
/// `func` combo.
pub fn callback(&self, key: &WorldKey, func: &Function) -> Option<&str> {
self.find(|m| match m {
Export::WorldFuncCallback(k) => k == key,
Export::InterfaceFuncCallback(k, f) => k == key && func.name == *f,
_ => false,
})
}
pub fn abi(&self, key: &WorldKey, func: &Function) -> Option<AbiVariant> {
self.names.values().find_map(|m| match m {
Export::WorldFunc(k, f, abi) if k == key && func.name == *f => Some(*abi),
Export::InterfaceFunc(k, _, f, abi) if k == key && func.name == *f => Some(*abi),
_ => None,
})
}
/// Returns the realloc that the exported function `interface` and `func`
/// are using.
pub fn export_realloc_for(&self, key: &WorldKey, func: &str) -> Option<&str> {
// TODO: This realloc detection should probably be improved with
// some sort of scheme to have per-function reallocs like
// `cabi_realloc_{name}` or something like that.
let _ = (key, func);
if let Some(name) = self.find(|m| matches!(m, Export::GeneralPurposeExportRealloc)) {
return Some(name);
}
self.general_purpose_realloc()
}
/// Returns the realloc that the imported function `interface` and `func`
/// are using.
pub fn import_realloc_for(&self, interface: Option<InterfaceId>, func: &str) -> Option<&str> {
// TODO: This realloc detection should probably be improved with
// some sort of scheme to have per-function reallocs like
// `cabi_realloc_{name}` or something like that.
let _ = (interface, func);
self.import_realloc_fallback()
}
/// Returns the general-purpose realloc function to use for imports.
///
/// Note that `import_realloc_for` should be used instead where possible.
pub fn import_realloc_fallback(&self) -> Option<&str> {
if let Some(name) = self.find(|m| matches!(m, Export::GeneralPurposeImportRealloc)) {
return Some(name);
}
self.general_purpose_realloc()
}
/// Returns the realloc that the main module is exporting into the adapter.
pub fn realloc_to_import_into_adapter(&self) -> Option<&str> {
if let Some(name) = self.find(|m| matches!(m, Export::ReallocForAdapter)) {
return Some(name);
}
self.general_purpose_realloc()
}
fn general_purpose_realloc(&self) -> Option<&str> {
self.find(|m| matches!(m, Export::GeneralPurposeRealloc))
}
/// Returns the memory, if exported, for this module.
pub fn memory(&self) -> Option<&str> {
self.find(|m| matches!(m, Export::Memory))
}
/// Returns the `_initialize` intrinsic, if exported, for this module.
pub fn initialize(&self) -> Option<&str> {
self.find(|m| matches!(m, Export::Initialize))
}
/// Returns destructor for the exported resource `ty`, if it was listed.
pub fn resource_dtor(&self, ty: TypeId) -> Option<&str> {
self.find(|m| match m {
Export::ResourceDtor(t) => *t == ty,
_ => false,
})
}
/// NB: this is a linear search and if that's ever a problem this should
/// build up an inverse map during construction to accelerate it.
fn find(&self, f: impl Fn(&Export) -> bool) -> Option<&str> {
let (name, _) = self.names.iter().filter(|(_, m)| f(m)).next()?;
Some(name)
}
/// Iterates over all exports of this module.
pub fn iter(&self) -> impl Iterator<Item = (&str, &Export)> + '_ {
self.names.iter().map(|(n, e)| (n.as_str(), e))
}
fn validate(&self, encoder: &ComponentEncoder, exports: &IndexSet<WorldKey>) -> Result<()> {
let resolve = &encoder.metadata.resolve;
let world = encoder.metadata.world;
// Multi-memory isn't supported because otherwise we don't know what
// memory to put things in.
if self
.names
.values()
.filter(|m| matches!(m, Export::Memory))
.count()
> 1
{
bail!("cannot componentize module that exports multiple memories")
}
// All of `exports` must be exported and found within this module.
for export in exports {
let require_interface_func = |interface: InterfaceId, name: &str| -> Result<()> {
let result = self.find(|e| match e {
Export::InterfaceFunc(_, id, s, _) => interface == *id && name == s,
_ => false,
});
if result.is_some() {
Ok(())
} else {
let export = resolve.name_world_key(export);
bail!("failed to find export of interface `{export}` function `{name}`")
}
};
let require_world_func = |name: &str| -> Result<()> {
let result = self.find(|e| match e {
Export::WorldFunc(_, s, _) => name == s,
_ => false,
});
if result.is_some() {
Ok(())
} else {
bail!("failed to find export of function `{name}`")
}
};
match &resolve.worlds[world].exports[export] {
WorldItem::Interface { id, .. } => {
for (name, _) in resolve.interfaces[*id].functions.iter() {
require_interface_func(*id, name)?;
}
}
WorldItem::Function(f) => {
require_world_func(&f.name)?;
}
WorldItem::Type(_) => unreachable!(),
}
}
Ok(())
}
}
/// Trait dispatch and definition for parsing and interpreting "mangled names"
/// which show up in imports and exports of the component model.
///
/// This trait is used to implement classification of imports and exports in the
/// component model. The methods on `ImportMap` and `ExportMap` will use this to
/// determine what an import is and how it's lifted/lowered in the world being
/// bound.
///
/// This trait has a bit of history behind it as well. Before
/// WebAssembly/component-model#378 there was no standard naming scheme for core
/// wasm imports or exports when componenitizing. This meant that
/// `wit-component` implemented a particular scheme which mostly worked but was
/// mostly along the lines of "this at least works" rather than "someone sat
/// down and designed this". Since then, however, an standard naming scheme has
/// now been specified which was indeed designed.
///
/// This trait serves as the bridge between these two. The historical naming
/// scheme is still supported for now through the `Legacy` implementation below
/// and will be for some time. The transition plan at this time is to support
/// the new scheme, eventually get it supported in bindings generators, and once
/// that's all propagated remove support for the legacy scheme.
trait NameMangling {
fn import_root(&self) -> &str;
fn import_non_root_prefix(&self) -> &str;
fn import_exported_intrinsic_prefix(&self) -> &str;
fn export_memory(&self) -> &str;
fn export_initialize(&self) -> &str;
fn export_realloc(&self) -> &str;
fn resource_drop_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn resource_new_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn resource_rep_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn task_return_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn task_cancel(&self) -> Option<&str>;
fn backpressure_set(&self) -> Option<&str>;
fn waitable_set_new(&self) -> Option<&str>;
fn waitable_set_wait(&self) -> Option<&str>;
fn waitable_set_poll(&self) -> Option<&str>;
fn waitable_set_drop(&self) -> Option<&str>;
fn waitable_join(&self) -> Option<&str>;
fn yield_(&self) -> Option<&str>;
fn subtask_drop(&self) -> Option<&str>;
fn subtask_cancel(&self) -> Option<&str>;
fn async_lift_callback_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn async_lower_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn async_lift_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn async_lift_stackful_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn error_context_new(&self, s: &str) -> Option<StringEncoding>;
fn error_context_debug_message(&self, s: &str) -> Option<StringEncoding>;
fn error_context_drop(&self) -> Option<&str>;
fn context_get(&self, name: &str) -> Option<u32>;
fn context_set(&self, name: &str) -> Option<u32>;
fn module_to_interface(
&self,
module: &str,
resolve: &Resolve,
items: &IndexMap<WorldKey, WorldItem>,
) -> Result<(WorldKey, InterfaceId)>;
fn strip_post_return<'a>(&self, s: &'a str) -> Option<&'a str>;
fn match_wit_export<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, Option<InterfaceId>, &'a Function)>;
fn match_wit_resource_dtor<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<TypeId>;
}
/// Definition of the "standard" naming scheme which currently starts with
/// "cm32p2". Note that wasm64 is not supported at this time.
struct Standard;
const STANDARD: &'static dyn NameMangling = &Standard;
impl NameMangling for Standard {
fn import_root(&self) -> &str {
""
}
fn import_non_root_prefix(&self) -> &str {
"|"
}
fn import_exported_intrinsic_prefix(&self) -> &str {
"_ex_"
}
fn export_memory(&self) -> &str {
"_memory"
}
fn export_initialize(&self) -> &str {
"_initialize"
}
fn export_realloc(&self) -> &str {
"_realloc"
}
fn resource_drop_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_drop")
}
fn resource_new_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_new")
}
fn resource_rep_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_rep")
}
fn task_return_name<'a>(&self, s: &'a str) -> Option<&'a str> {
_ = s;
None
}
fn task_cancel(&self) -> Option<&str> {
None
}
fn backpressure_set(&self) -> Option<&str> {
None
}
fn waitable_set_new(&self) -> Option<&str> {
None
}
fn waitable_set_wait(&self) -> Option<&str> {
None
}
fn waitable_set_poll(&self) -> Option<&str> {
None
}
fn waitable_set_drop(&self) -> Option<&str> {
None
}
fn waitable_join(&self) -> Option<&str> {
None
}
fn yield_(&self) -> Option<&str> {
None
}
fn subtask_drop(&self) -> Option<&str> {
None
}
fn subtask_cancel(&self) -> Option<&str> {
None
}
fn async_lift_callback_name<'a>(&self, s: &'a str) -> Option<&'a str> {
_ = s;
None
}
fn async_lower_name<'a>(&self, s: &'a str) -> Option<&'a str> {
_ = s;
None
}
fn async_lift_name<'a>(&self, s: &'a str) -> Option<&'a str> {
_ = s;
None
}
fn async_lift_stackful_name<'a>(&self, s: &'a str) -> Option<&'a str> {
_ = s;
None
}
fn error_context_new(&self, _: &str) -> Option<StringEncoding> {
None
}
fn error_context_debug_message(&self, _: &str) -> Option<StringEncoding> {
None
}
fn error_context_drop(&self) -> Option<&str> {
None
}
fn context_get(&self, _: &str) -> Option<u32> {
None
}
fn context_set(&self, _: &str) -> Option<u32> {
None
}
fn module_to_interface(
&self,
interface: &str,
resolve: &Resolve,
items: &IndexMap<WorldKey, WorldItem>,
) -> Result<(WorldKey, InterfaceId)> {
for (key, item) in items.iter() {
let id = match key {
// Bare keys are matched exactly against `interface`
WorldKey::Name(name) => match item {
WorldItem::Interface { id, .. } if name == interface => *id,
_ => continue,
},
// ID-identified keys are matched with their "canonical name"
WorldKey::Interface(id) => {
if resolve.canonicalized_id_of(*id).as_deref() != Some(interface) {
continue;
}
*id
}
};
return Ok((key.clone(), id));
}
bail!("failed to find world item corresponding to interface `{interface}`")
}
fn strip_post_return<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_post")
}
fn match_wit_export<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, Option<InterfaceId>, &'a Function)> {
if let Some(world_export_name) = export_name.strip_prefix("||") {
let key = exports.get(&WorldKey::Name(world_export_name.to_string()))?;
match &resolve.worlds[world].exports[key] {
WorldItem::Function(f) => return Some((key, None, f)),
_ => return None,
}
}
let (key, id, func_name) =
self.match_wit_interface(export_name, resolve, world, exports)?;
let func = resolve.interfaces[id].functions.get(func_name)?;
Some((key, Some(id), func))
}
fn match_wit_resource_dtor<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<TypeId> {
let (_key, id, name) =
self.match_wit_interface(export_name.strip_suffix("_dtor")?, resolve, world, exports)?;
let ty = *resolve.interfaces[id].types.get(name)?;
match resolve.types[ty].kind {
TypeDefKind::Resource => Some(ty),
_ => None,
}
}
}
impl Standard {
fn match_wit_interface<'a, 'b>(
&self,
export_name: &'b str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, InterfaceId, &'b str)> {
let world = &resolve.worlds[world];
let export_name = export_name.strip_prefix("|")?;
for export in exports {
let id = match &world.exports[export] {
WorldItem::Interface { id, .. } => *id,
WorldItem::Function(_) => continue,
WorldItem::Type(_) => unreachable!(),
};
let remaining = match export {
WorldKey::Name(name) => export_name.strip_prefix(name),
WorldKey::Interface(_) => {
let prefix = resolve.canonicalized_id_of(id).unwrap();
export_name.strip_prefix(&prefix)
}
};
let item_name = match remaining.and_then(|s| s.strip_prefix("|")) {
Some(name) => name,
None => continue,
};
return Some((export, id, item_name));
}
None
}
}
/// Definition of wit-component's "legacy" naming scheme which predates
/// WebAssembly/component-model#378.
struct Legacy;
const LEGACY: &'static dyn NameMangling = &Legacy;
impl NameMangling for Legacy {
fn import_root(&self) -> &str {
"$root"
}
fn import_non_root_prefix(&self) -> &str {
""
}
fn import_exported_intrinsic_prefix(&self) -> &str {
"[export]"
}
fn export_memory(&self) -> &str {
"memory"
}
fn export_initialize(&self) -> &str {
"_initialize"
}
fn export_realloc(&self) -> &str {
"cabi_realloc"
}
fn resource_drop_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[resource-drop]")
}
fn resource_new_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[resource-new]")
}
fn resource_rep_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[resource-rep]")
}
fn task_return_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[task-return]")
}
fn task_cancel(&self) -> Option<&str> {
Some("[task-cancel]")
}
fn backpressure_set(&self) -> Option<&str> {
Some("[backpressure-set]")
}
fn waitable_set_new(&self) -> Option<&str> {
Some("[waitable-set-new]")
}
fn waitable_set_wait(&self) -> Option<&str> {
Some("[waitable-set-wait]")
}
fn waitable_set_poll(&self) -> Option<&str> {
Some("[waitable-set-poll]")
}
fn waitable_set_drop(&self) -> Option<&str> {
Some("[waitable-set-drop]")
}
fn waitable_join(&self) -> Option<&str> {
Some("[waitable-join]")
}
fn yield_(&self) -> Option<&str> {
Some("[yield]")
}
fn subtask_drop(&self) -> Option<&str> {
Some("[subtask-drop]")
}
fn subtask_cancel(&self) -> Option<&str> {
Some("[subtask-cancel]")
}
fn async_lift_callback_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[callback][async-lift]")
}
fn async_lower_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[async-lower]")
}
fn async_lift_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[async-lift]")
}
fn async_lift_stackful_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[async-lift-stackful]")
}
fn error_context_new(&self, name: &str) -> Option<StringEncoding> {
match name {
"[error-context-new-utf8]" => Some(StringEncoding::UTF8),
"[error-context-new-utf16]" => Some(StringEncoding::UTF16),
"[error-context-new-latin1+utf16]" => Some(StringEncoding::CompactUTF16),
_ => None,
}
}
fn error_context_debug_message(&self, name: &str) -> Option<StringEncoding> {
match name {
"[error-context-debug-message-utf8]" => Some(StringEncoding::UTF8),
"[error-context-debug-message-utf16]" => Some(StringEncoding::UTF16),
"[error-context-debug-message-latin1+utf16]" => Some(StringEncoding::CompactUTF16),
_ => None,
}
}
fn error_context_drop(&self) -> Option<&str> {
Some("[error-context-drop]")
}
fn context_get(&self, name: &str) -> Option<u32> {
let (n, rest) = prefixed_integer(name, "[context-get-")?;
if rest.is_empty() {
Some(n)
} else {
None
}
}
fn context_set(&self, name: &str) -> Option<u32> {
let (n, rest) = prefixed_integer(name, "[context-set-")?;
if rest.is_empty() {
Some(n)
} else {
None
}
}
fn module_to_interface(
&self,
module: &str,
resolve: &Resolve,
items: &IndexMap<WorldKey, WorldItem>,
) -> Result<(WorldKey, InterfaceId)> {
// First see if this is a bare name
let bare_name = WorldKey::Name(module.to_string());
if let Some(WorldItem::Interface { id, .. }) = items.get(&bare_name) {
return Ok((bare_name, *id));
}
// ... and if this isn't a bare name then it's time to do some parsing
// related to interfaces, versions, and such. First up the `module` name
// is parsed as a normal component name from `wasmparser` to see if it's
// of the "interface kind". If it's not then that means the above match
// should have been a hit but it wasn't, so an error is returned.
let kebab_name = ComponentName::new(module, 0);
let name = match kebab_name.as_ref().map(|k| k.kind()) {
Ok(ComponentNameKind::Interface(name)) => name,
_ => bail!("module requires an import interface named `{module}`"),
};
// Prioritize an exact match based on versions, so try that first.
let pkgname = PackageName {
namespace: name.namespace().to_string(),
name: name.package().to_string(),
version: name.version(),
};
if let Some(pkg) = resolve.package_names.get(&pkgname) {
if let Some(id) = resolve.packages[*pkg]
.interfaces
.get(name.interface().as_str())
{
let key = WorldKey::Interface(*id);
if items.contains_key(&key) {
return Ok((key, *id));
}
}
}
// If an exact match wasn't found then instead search for the first
// match based on versions. This means that a core wasm import for
// "1.2.3" might end up matching an interface at "1.2.4", for example.
// (or "1.2.2", depending on what's available).
for (key, _) in items {
let id = match key {
WorldKey::Interface(id) => *id,
WorldKey::Name(_) => continue,
};
// Make sure the interface names match
let interface = &resolve.interfaces[id];
if interface.name.as_ref().unwrap() != name.interface().as_str() {
continue;
}
// Make sure the package name (without version) matches
let pkg = &resolve.packages[interface.package.unwrap()];
if pkg.name.namespace != pkgname.namespace || pkg.name.name != pkgname.name {
continue;
}
let module_version = match name.version() {
Some(version) => version,
None => continue,
};
let pkg_version = match &pkg.name.version {
Some(version) => version,
None => continue,
};
// Test if the two semver versions are compatible
let module_compat = PackageName::version_compat_track(&module_version);
let pkg_compat = PackageName::version_compat_track(pkg_version);
if module_compat == pkg_compat {
return Ok((key.clone(), id));
}
}
bail!("module requires an import interface named `{module}`")
}
fn strip_post_return<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("cabi_post_")
}
fn match_wit_export<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, Option<InterfaceId>, &'a Function)> {
let world = &resolve.worlds[world];
for name in exports {
match &world.exports[name] {
WorldItem::Function(f) => {
if f.legacy_core_export_name(None) == export_name {
return Some((name, None, f));
}
}
WorldItem::Interface { id, .. } => {
let string = resolve.name_world_key(name);
for (_, func) in resolve.interfaces[*id].functions.iter() {
if func.legacy_core_export_name(Some(&string)) == export_name {
return Some((name, Some(*id), func));
}
}
}
WorldItem::Type(_) => unreachable!(),
}
}
None
}
fn match_wit_resource_dtor<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<TypeId> {
let world = &resolve.worlds[world];
for name in exports {
let id = match &world.exports[name] {
WorldItem::Interface { id, .. } => *id,
WorldItem::Function(_) => continue,
WorldItem::Type(_) => unreachable!(),
};
let name = resolve.name_world_key(name);
let resource = match export_name
.strip_prefix(&name)
.and_then(|s| s.strip_prefix("#[dtor]"))
.and_then(|r| resolve.interfaces[id].types.get(r))
{
Some(id) => *id,
None => continue,
};
match resolve.types[resource].kind {
TypeDefKind::Resource => {}
_ => continue,
}
return Some(resource);
}
None
}
}
/// This function validates the following:
///
/// * The `bytes` represent a valid core WebAssembly module.
/// * The module's imports are all satisfied by the given `imports` interfaces
/// or the `adapters` set.
/// * The given default and exported interfaces are satisfied by the module's
/// exports.
///
/// The `ValidatedModule` return value contains the metadata which describes the
/// input module on success. This is then further used to generate a component
/// for this module.
pub fn validate_module(
encoder: &ComponentEncoder,
bytes: &[u8],
import_map: Option<&ModuleImportMap>,
) -> Result<ValidatedModule> {
ValidatedModule::new(
encoder,
bytes,
&encoder.main_module_exports,
import_map,
None,
)
}
/// This function will validate the `bytes` provided as a wasm adapter module.
/// Notably this will validate the wasm module itself in addition to ensuring
/// that it has the "shape" of an adapter module. Current constraints are:
///
/// * The adapter module can import only one memory
/// * The adapter module can only import from the name of `interface` specified,
/// and all function imports must match the `required` types which correspond
/// to the lowered types of the functions in `interface`.
///
/// The wasm module passed into this function is the output of the GC pass of an
/// adapter module's original source. This means that the adapter module is
/// already minimized and this is a double-check that the minimization pass
/// didn't accidentally break the wasm module.
///
/// If `is_library` is true, we waive some of the constraints described above,
/// allowing the module to import tables and globals, as well as import
/// functions at the world level, not just at the interface level.
pub fn validate_adapter_module(
encoder: &ComponentEncoder,
bytes: &[u8],
required_by_import: &IndexMap<String, FuncType>,
exports: &IndexSet<WorldKey>,
library_info: Option<&LibraryInfo>,
) -> Result<ValidatedModule> {
let ret = ValidatedModule::new(encoder, bytes, exports, None, library_info)?;
for (name, required_ty) in required_by_import {
let actual = match ret.exports.raw_exports.get(name) {
Some(ty) => ty,
None => bail!("adapter module did not export `{name}`"),
};
validate_func_sig(name, required_ty, &actual)?;
}
Ok(ret)
}
fn resource_test_for_interface<'a>(
resolve: &'a Resolve,
id: InterfaceId,
) -> impl Fn(&str) -> Option<TypeId> + 'a {
let interface = &resolve.interfaces[id];
move |name: &str| {
let ty = match interface.types.get(name) {
Some(ty) => *ty,
None => return None,
};
if matches!(resolve.types[ty].kind, TypeDefKind::Resource) {
Some(ty)
} else {
None
}
}
}
fn resource_test_for_world<'a>(
resolve: &'a Resolve,
id: WorldId,
) -> impl Fn(&str) -> Option<TypeId> + 'a {
let world = &resolve.worlds[id];
move |name: &str| match world.imports.get(&WorldKey::Name(name.to_string()))? {
WorldItem::Type(r) => {
if matches!(resolve.types[*r].kind, TypeDefKind::Resource) {
Some(*r)
} else {
None
}
}
_ => None,
}
}
fn validate_func(
resolve: &Resolve,
ty: &wasmparser::FuncType,
func: &Function,
abi: AbiVariant,
) -> Result<()> {
validate_func_sig(
&func.name,
&wasm_sig_to_func_type(resolve.wasm_signature(abi, func)),
ty,
)
}
fn validate_post_return(
resolve: &Resolve,
ty: &wasmparser::FuncType,
func: &Function,
) -> Result<()> {
// The expected signature of a post-return function is to take all the
// parameters that are returned by the guest function and then return no
// results. Model this by calculating the signature of `func` and then
// moving its results into the parameters list while emptying out the
// results.
let mut sig = resolve.wasm_signature(AbiVariant::GuestExport, func);
sig.params = mem::take(&mut sig.results);
validate_func_sig(
&format!("{} post-return", func.name),
&wasm_sig_to_func_type(sig),
ty,
)
}
fn validate_func_sig(name: &str, expected: &FuncType, ty: &wasmparser::FuncType) -> Result<()> {
if ty != expected {
bail!(
"type mismatch for function `{}`: expected `{:?} -> {:?}` but found `{:?} -> {:?}`",
name,
expected.params(),
expected.results(),
ty.params(),
ty.results()
);
}
Ok(())
}
/// Matches `name` as `[${prefix}N]...`, and if found returns `(N, "...")`
fn prefixed_integer<'a>(name: &'a str, prefix: &str) -> Option<(u32, &'a str)> {
assert!(prefix.starts_with("["));
assert!(prefix.ends_with("-"));
let suffix = name.strip_prefix(prefix)?;
let index = suffix.find(']')?;
let rest = &suffix[index + 1..];
let n = suffix[..index].parse().ok()?;
Some((n, rest))
}
fn get_function<'a>(
resolve: &'a Resolve,
world: &'a World,
name: &str,
interface: Option<InterfaceId>,
imported: bool,
) -> Result<&'a Function> {
let function = if let Some(id) = interface {
return resolve.interfaces[id]
.functions
.get(name)
.ok_or_else(|| anyhow!("no export `{name}` found"));
} else if imported {
world.imports.get(&WorldKey::Name(name.to_string()))
} else {
world.exports.get(&WorldKey::Name(name.to_string()))
};
let Some(WorldItem::Function(function)) = function else {
bail!("no export `{name}` found");
};
Ok(function)
}