| // Copyright 2018 Developers of the Rand project. |
| // Copyright 2013-2017 The Rust Project Developers. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! [`Rng`] trait |
| |
| use crate::distr::uniform::{SampleRange, SampleUniform}; |
| use crate::distr::{self, Distribution, StandardUniform}; |
| use core::num::Wrapping; |
| use core::{mem, slice}; |
| use rand_core::RngCore; |
| |
| /// User-level interface for RNGs |
| /// |
| /// [`RngCore`] is the `dyn`-safe implementation-level interface for Random |
| /// (Number) Generators. This trait, `Rng`, provides a user-level interface on |
| /// RNGs. It is implemented automatically for any `R: RngCore`. |
| /// |
| /// This trait must usually be brought into scope via `use rand::Rng;` or |
| /// `use rand::prelude::*;`. |
| /// |
| /// # Generic usage |
| /// |
| /// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some |
| /// things are worth noting here: |
| /// |
| /// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no |
| /// difference whether we use `R: Rng` or `R: RngCore`. |
| /// - The `+ ?Sized` un-bounding allows functions to be called directly on |
| /// type-erased references; i.e. `foo(r)` where `r: &mut dyn RngCore`. Without |
| /// this it would be necessary to write `foo(&mut r)`. |
| /// |
| /// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some |
| /// trade-offs. It allows the argument to be consumed directly without a `&mut` |
| /// (which is how `from_rng(rand::rng())` works); also it still works directly |
| /// on references (including type-erased references). Unfortunately within the |
| /// function `foo` it is not known whether `rng` is a reference type or not, |
| /// hence many uses of `rng` require an extra reference, either explicitly |
| /// (`distr.sample(&mut rng)`) or implicitly (`rng.random()`); one may hope the |
| /// optimiser can remove redundant references later. |
| /// |
| /// Example: |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { |
| /// rng.random() |
| /// } |
| /// |
| /// # let v = foo(&mut rand::rng()); |
| /// ``` |
| pub trait Rng: RngCore { |
| /// Return a random value via the [`StandardUniform`] distribution. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// let mut rng = rand::rng(); |
| /// let x: u32 = rng.random(); |
| /// println!("{}", x); |
| /// println!("{:?}", rng.random::<(f64, bool)>()); |
| /// ``` |
| /// |
| /// # Arrays and tuples |
| /// |
| /// The `rng.random()` method is able to generate arrays |
| /// and tuples (up to 12 elements), so long as all element types can be |
| /// generated. |
| /// |
| /// For arrays of integers, especially for those with small element types |
| /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`], |
| /// though note that generated values will differ. |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// let mut rng = rand::rng(); |
| /// let tuple: (u8, i32, char) = rng.random(); // arbitrary tuple support |
| /// |
| /// let arr1: [f32; 32] = rng.random(); // array construction |
| /// let mut arr2 = [0u8; 128]; |
| /// rng.fill(&mut arr2); // array fill |
| /// ``` |
| /// |
| /// [`StandardUniform`]: distr::StandardUniform |
| #[inline] |
| fn random<T>(&mut self) -> T |
| where |
| StandardUniform: Distribution<T>, |
| { |
| StandardUniform.sample(self) |
| } |
| |
| /// Return an iterator over [`random`](Self::random) variates |
| /// |
| /// This is a just a wrapper over [`Rng::sample_iter`] using |
| /// [`distr::StandardUniform`]. |
| /// |
| /// Note: this method consumes its argument. Use |
| /// `(&mut rng).random_iter()` to avoid consuming the RNG. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::{rngs::mock::StepRng, Rng}; |
| /// |
| /// let rng = StepRng::new(1, 1); |
| /// let v: Vec<i32> = rng.random_iter().take(5).collect(); |
| /// assert_eq!(&v, &[1, 2, 3, 4, 5]); |
| /// ``` |
| #[inline] |
| fn random_iter<T>(self) -> distr::Iter<StandardUniform, Self, T> |
| where |
| Self: Sized, |
| StandardUniform: Distribution<T>, |
| { |
| StandardUniform.sample_iter(self) |
| } |
| |
| /// Generate a random value in the given range. |
| /// |
| /// This function is optimised for the case that only a single sample is |
| /// made from the given range. See also the [`Uniform`] distribution |
| /// type which may be faster if sampling from the same range repeatedly. |
| /// |
| /// All types support `low..high_exclusive` and `low..=high` range syntax. |
| /// Unsigned integer types also support `..high_exclusive` and `..=high` syntax. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the range is empty, or if `high - low` overflows for floats. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// let mut rng = rand::rng(); |
| /// |
| /// // Exclusive range |
| /// let n: u32 = rng.random_range(..10); |
| /// println!("{}", n); |
| /// let m: f64 = rng.random_range(-40.0..1.3e5); |
| /// println!("{}", m); |
| /// |
| /// // Inclusive range |
| /// let n: u32 = rng.random_range(..=10); |
| /// println!("{}", n); |
| /// ``` |
| /// |
| /// [`Uniform`]: distr::uniform::Uniform |
| #[track_caller] |
| fn random_range<T, R>(&mut self, range: R) -> T |
| where |
| T: SampleUniform, |
| R: SampleRange<T>, |
| { |
| assert!(!range.is_empty(), "cannot sample empty range"); |
| range.sample_single(self).unwrap() |
| } |
| |
| /// Return a bool with a probability `p` of being true. |
| /// |
| /// See also the [`Bernoulli`] distribution, which may be faster if |
| /// sampling from the same probability repeatedly. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// let mut rng = rand::rng(); |
| /// println!("{}", rng.random_bool(1.0 / 3.0)); |
| /// ``` |
| /// |
| /// # Panics |
| /// |
| /// If `p < 0` or `p > 1`. |
| /// |
| /// [`Bernoulli`]: distr::Bernoulli |
| #[inline] |
| #[track_caller] |
| fn random_bool(&mut self, p: f64) -> bool { |
| match distr::Bernoulli::new(p) { |
| Ok(d) => self.sample(d), |
| Err(_) => panic!("p={:?} is outside range [0.0, 1.0]", p), |
| } |
| } |
| |
| /// Return a bool with a probability of `numerator/denominator` of being |
| /// true. |
| /// |
| /// That is, `random_ratio(2, 3)` has chance of 2 in 3, or about 67%, of |
| /// returning true. If `numerator == denominator`, then the returned value |
| /// is guaranteed to be `true`. If `numerator == 0`, then the returned |
| /// value is guaranteed to be `false`. |
| /// |
| /// See also the [`Bernoulli`] distribution, which may be faster if |
| /// sampling from the same `numerator` and `denominator` repeatedly. |
| /// |
| /// # Panics |
| /// |
| /// If `denominator == 0` or `numerator > denominator`. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// let mut rng = rand::rng(); |
| /// println!("{}", rng.random_ratio(2, 3)); |
| /// ``` |
| /// |
| /// [`Bernoulli`]: distr::Bernoulli |
| #[inline] |
| #[track_caller] |
| fn random_ratio(&mut self, numerator: u32, denominator: u32) -> bool { |
| match distr::Bernoulli::from_ratio(numerator, denominator) { |
| Ok(d) => self.sample(d), |
| Err(_) => panic!( |
| "p={}/{} is outside range [0.0, 1.0]", |
| numerator, denominator |
| ), |
| } |
| } |
| |
| /// Sample a new value, using the given distribution. |
| /// |
| /// ### Example |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// use rand::distr::Uniform; |
| /// |
| /// let mut rng = rand::rng(); |
| /// let x = rng.sample(Uniform::new(10u32, 15).unwrap()); |
| /// // Type annotation requires two types, the type and distribution; the |
| /// // distribution can be inferred. |
| /// let y = rng.sample::<u16, _>(Uniform::new(10, 15).unwrap()); |
| /// ``` |
| fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { |
| distr.sample(self) |
| } |
| |
| /// Create an iterator that generates values using the given distribution. |
| /// |
| /// Note: this method consumes its arguments. Use |
| /// `(&mut rng).sample_iter(..)` to avoid consuming the RNG. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// use rand::distr::{Alphanumeric, Uniform, StandardUniform}; |
| /// |
| /// let mut rng = rand::rng(); |
| /// |
| /// // Vec of 16 x f32: |
| /// let v: Vec<f32> = (&mut rng).sample_iter(StandardUniform).take(16).collect(); |
| /// |
| /// // String: |
| /// let s: String = (&mut rng).sample_iter(Alphanumeric) |
| /// .take(7) |
| /// .map(char::from) |
| /// .collect(); |
| /// |
| /// // Combined values |
| /// println!("{:?}", (&mut rng).sample_iter(StandardUniform).take(5) |
| /// .collect::<Vec<(f64, bool)>>()); |
| /// |
| /// // Dice-rolling: |
| /// let die_range = Uniform::new_inclusive(1, 6).unwrap(); |
| /// let mut roll_die = (&mut rng).sample_iter(die_range); |
| /// while roll_die.next().unwrap() != 6 { |
| /// println!("Not a 6; rolling again!"); |
| /// } |
| /// ``` |
| fn sample_iter<T, D>(self, distr: D) -> distr::Iter<D, Self, T> |
| where |
| D: Distribution<T>, |
| Self: Sized, |
| { |
| distr.sample_iter(self) |
| } |
| |
| /// Fill any type implementing [`Fill`] with random data |
| /// |
| /// This method is implemented for types which may be safely reinterpreted |
| /// as an (aligned) `[u8]` slice then filled with random data. It is often |
| /// faster than using [`Rng::random`] but not value-equivalent. |
| /// |
| /// The distribution is expected to be uniform with portable results, but |
| /// this cannot be guaranteed for third-party implementations. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// let mut arr = [0i8; 20]; |
| /// rand::rng().fill(&mut arr[..]); |
| /// ``` |
| /// |
| /// [`fill_bytes`]: RngCore::fill_bytes |
| #[track_caller] |
| fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) { |
| dest.fill(self) |
| } |
| |
| /// Alias for [`Rng::random`]. |
| #[inline] |
| #[deprecated( |
| since = "0.9.0", |
| note = "Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024." |
| )] |
| fn r#gen<T>(&mut self) -> T |
| where |
| StandardUniform: Distribution<T>, |
| { |
| self.random() |
| } |
| |
| /// Alias for [`Rng::random_range`]. |
| #[inline] |
| #[deprecated(since = "0.9.0", note = "Renamed to `random_range`")] |
| fn gen_range<T, R>(&mut self, range: R) -> T |
| where |
| T: SampleUniform, |
| R: SampleRange<T>, |
| { |
| self.random_range(range) |
| } |
| |
| /// Alias for [`Rng::random_bool`]. |
| #[inline] |
| #[deprecated(since = "0.9.0", note = "Renamed to `random_bool`")] |
| fn gen_bool(&mut self, p: f64) -> bool { |
| self.random_bool(p) |
| } |
| |
| /// Alias for [`Rng::random_ratio`]. |
| #[inline] |
| #[deprecated(since = "0.9.0", note = "Renamed to `random_ratio`")] |
| fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { |
| self.random_ratio(numerator, denominator) |
| } |
| } |
| |
| impl<R: RngCore + ?Sized> Rng for R {} |
| |
| /// Types which may be filled with random data |
| /// |
| /// This trait allows arrays to be efficiently filled with random data. |
| /// |
| /// Implementations are expected to be portable across machines unless |
| /// clearly documented otherwise (see the |
| /// [Chapter on Portability](https://rust-random.github.io/book/portability.html)). |
| pub trait Fill { |
| /// Fill self with random data |
| fn fill<R: Rng + ?Sized>(&mut self, rng: &mut R); |
| } |
| |
| macro_rules! impl_fill_each { |
| () => {}; |
| ($t:ty) => { |
| impl Fill for [$t] { |
| fn fill<R: Rng + ?Sized>(&mut self, rng: &mut R) { |
| for elt in self.iter_mut() { |
| *elt = rng.random(); |
| } |
| } |
| } |
| }; |
| ($t:ty, $($tt:ty,)*) => { |
| impl_fill_each!($t); |
| impl_fill_each!($($tt,)*); |
| }; |
| } |
| |
| impl_fill_each!(bool, char, f32, f64,); |
| |
| impl Fill for [u8] { |
| fn fill<R: Rng + ?Sized>(&mut self, rng: &mut R) { |
| rng.fill_bytes(self) |
| } |
| } |
| |
| /// Call target for unsafe macros |
| const unsafe fn __unsafe() {} |
| |
| /// Implement `Fill` for given type `$t`. |
| /// |
| /// # Safety |
| /// All bit patterns of `[u8; size_of::<$t>()]` must represent values of `$t`. |
| macro_rules! impl_fill { |
| () => {}; |
| ($t:ty) => {{ |
| // Force caller to wrap with an `unsafe` block |
| __unsafe(); |
| |
| impl Fill for [$t] { |
| fn fill<R: Rng + ?Sized>(&mut self, rng: &mut R) { |
| if self.len() > 0 { |
| let size = mem::size_of_val(self); |
| rng.fill_bytes( |
| // SAFETY: `self` non-null and valid for reads and writes within its `size` |
| // bytes. `self` meets the alignment requirements of `&mut [u8]`. |
| // The contents of `self` are initialized. Both `[u8]` and `[$t]` are valid |
| // for all bit-patterns of their contents (note that the SAFETY requirement |
| // on callers of this macro). `self` is not borrowed. |
| unsafe { |
| slice::from_raw_parts_mut(self.as_mut_ptr() |
| as *mut u8, |
| size |
| ) |
| } |
| ); |
| for x in self { |
| *x = x.to_le(); |
| } |
| } |
| } |
| } |
| |
| impl Fill for [Wrapping<$t>] { |
| fn fill<R: Rng + ?Sized>(&mut self, rng: &mut R) { |
| if self.len() > 0 { |
| let size = self.len() * mem::size_of::<$t>(); |
| rng.fill_bytes( |
| // SAFETY: `self` non-null and valid for reads and writes within its `size` |
| // bytes. `self` meets the alignment requirements of `&mut [u8]`. |
| // The contents of `self` are initialized. Both `[u8]` and `[$t]` are valid |
| // for all bit-patterns of their contents (note that the SAFETY requirement |
| // on callers of this macro). `self` is not borrowed. |
| unsafe { |
| slice::from_raw_parts_mut(self.as_mut_ptr() |
| as *mut u8, |
| size |
| ) |
| } |
| ); |
| for x in self { |
| *x = Wrapping(x.0.to_le()); |
| } |
| } |
| } |
| }} |
| }; |
| ($t:ty, $($tt:ty,)*) => {{ |
| impl_fill!($t); |
| // TODO: this could replace above impl once Rust #32463 is fixed |
| // impl_fill!(Wrapping<$t>); |
| impl_fill!($($tt,)*); |
| }} |
| } |
| |
| // SAFETY: All bit patterns of `[u8; size_of::<$t>()]` represent values of `u*`. |
| const _: () = unsafe { impl_fill!(u16, u32, u64, u128,) }; |
| // SAFETY: All bit patterns of `[u8; size_of::<$t>()]` represent values of `i*`. |
| const _: () = unsafe { impl_fill!(i8, i16, i32, i64, i128,) }; |
| |
| impl<T, const N: usize> Fill for [T; N] |
| where |
| [T]: Fill, |
| { |
| fn fill<R: Rng + ?Sized>(&mut self, rng: &mut R) { |
| <[T] as Fill>::fill(self, rng) |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| use crate::rngs::mock::StepRng; |
| use crate::test::rng; |
| #[cfg(feature = "alloc")] |
| use alloc::boxed::Box; |
| |
| #[test] |
| fn test_fill_bytes_default() { |
| let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); |
| |
| // check every remainder mod 8, both in small and big vectors. |
| let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87]; |
| for &n in lengths.iter() { |
| let mut buffer = [0u8; 87]; |
| let v = &mut buffer[0..n]; |
| r.fill_bytes(v); |
| |
| // use this to get nicer error messages. |
| for (i, &byte) in v.iter().enumerate() { |
| if byte == 0 { |
| panic!("byte {} of {} is zero", i, n) |
| } |
| } |
| } |
| } |
| |
| #[test] |
| fn test_fill() { |
| let x = 9041086907909331047; // a random u64 |
| let mut rng = StepRng::new(x, 0); |
| |
| // Convert to byte sequence and back to u64; byte-swap twice if BE. |
| let mut array = [0u64; 2]; |
| rng.fill(&mut array[..]); |
| assert_eq!(array, [x, x]); |
| assert_eq!(rng.next_u64(), x); |
| |
| // Convert to bytes then u32 in LE order |
| let mut array = [0u32; 2]; |
| rng.fill(&mut array[..]); |
| assert_eq!(array, [x as u32, (x >> 32) as u32]); |
| assert_eq!(rng.next_u32(), x as u32); |
| |
| // Check equivalence using wrapped arrays |
| let mut warray = [Wrapping(0u32); 2]; |
| rng.fill(&mut warray[..]); |
| assert_eq!(array[0], warray[0].0); |
| assert_eq!(array[1], warray[1].0); |
| |
| // Check equivalence for generated floats |
| let mut array = [0f32; 2]; |
| rng.fill(&mut array); |
| let arr2: [f32; 2] = rng.random(); |
| assert_eq!(array, arr2); |
| } |
| |
| #[test] |
| fn test_fill_empty() { |
| let mut array = [0u32; 0]; |
| let mut rng = StepRng::new(0, 1); |
| rng.fill(&mut array); |
| rng.fill(&mut array[..]); |
| } |
| |
| #[test] |
| fn test_random_range_int() { |
| let mut r = rng(101); |
| for _ in 0..1000 { |
| let a = r.random_range(-4711..17); |
| assert!((-4711..17).contains(&a)); |
| let a: i8 = r.random_range(-3..42); |
| assert!((-3..42).contains(&a)); |
| let a: u16 = r.random_range(10..99); |
| assert!((10..99).contains(&a)); |
| let a: i32 = r.random_range(-100..2000); |
| assert!((-100..2000).contains(&a)); |
| let a: u32 = r.random_range(12..=24); |
| assert!((12..=24).contains(&a)); |
| |
| assert_eq!(r.random_range(..1u32), 0u32); |
| assert_eq!(r.random_range(-12i64..-11), -12i64); |
| assert_eq!(r.random_range(3_000_000..3_000_001), 3_000_000); |
| } |
| } |
| |
| #[test] |
| fn test_random_range_float() { |
| let mut r = rng(101); |
| for _ in 0..1000 { |
| let a = r.random_range(-4.5..1.7); |
| assert!((-4.5..1.7).contains(&a)); |
| let a = r.random_range(-1.1..=-0.3); |
| assert!((-1.1..=-0.3).contains(&a)); |
| |
| assert_eq!(r.random_range(0.0f32..=0.0), 0.); |
| assert_eq!(r.random_range(-11.0..=-11.0), -11.); |
| assert_eq!(r.random_range(3_000_000.0..=3_000_000.0), 3_000_000.); |
| } |
| } |
| |
| #[test] |
| #[should_panic] |
| #[allow(clippy::reversed_empty_ranges)] |
| fn test_random_range_panic_int() { |
| let mut r = rng(102); |
| r.random_range(5..-2); |
| } |
| |
| #[test] |
| #[should_panic] |
| #[allow(clippy::reversed_empty_ranges)] |
| fn test_random_range_panic_usize() { |
| let mut r = rng(103); |
| r.random_range(5..2); |
| } |
| |
| #[test] |
| #[allow(clippy::bool_assert_comparison)] |
| fn test_random_bool() { |
| let mut r = rng(105); |
| for _ in 0..5 { |
| assert_eq!(r.random_bool(0.0), false); |
| assert_eq!(r.random_bool(1.0), true); |
| } |
| } |
| |
| #[test] |
| fn test_rng_mut_ref() { |
| fn use_rng(mut r: impl Rng) { |
| let _ = r.next_u32(); |
| } |
| |
| let mut rng = rng(109); |
| use_rng(&mut rng); |
| } |
| |
| #[test] |
| fn test_rng_trait_object() { |
| use crate::distr::{Distribution, StandardUniform}; |
| let mut rng = rng(109); |
| let mut r = &mut rng as &mut dyn RngCore; |
| r.next_u32(); |
| r.random::<i32>(); |
| assert_eq!(r.random_range(0..1), 0); |
| let _c: u8 = StandardUniform.sample(&mut r); |
| } |
| |
| #[test] |
| #[cfg(feature = "alloc")] |
| fn test_rng_boxed_trait() { |
| use crate::distr::{Distribution, StandardUniform}; |
| let rng = rng(110); |
| let mut r = Box::new(rng) as Box<dyn RngCore>; |
| r.next_u32(); |
| r.random::<i32>(); |
| assert_eq!(r.random_range(0..1), 0); |
| let _c: u8 = StandardUniform.sample(&mut r); |
| } |
| |
| #[test] |
| #[cfg_attr(miri, ignore)] // Miri is too slow |
| fn test_gen_ratio_average() { |
| const NUM: u32 = 3; |
| const DENOM: u32 = 10; |
| const N: u32 = 100_000; |
| |
| let mut sum: u32 = 0; |
| let mut rng = rng(111); |
| for _ in 0..N { |
| if rng.random_ratio(NUM, DENOM) { |
| sum += 1; |
| } |
| } |
| // Have Binomial(N, NUM/DENOM) distribution |
| let expected = (NUM * N) / DENOM; // exact integer |
| assert!(((sum - expected) as i32).abs() < 500); |
| } |
| } |