blob: 40b4ce951dfca7eb031117268faea9d1f83225df [file] [log] [blame]
//! Reader-based compression/decompression streams
use std::io::prelude::*;
use std::io::{self, BufReader};
#[cfg(feature = "tokio")]
use futures::Poll;
#[cfg(feature = "tokio")]
use tokio_io::{AsyncRead, AsyncWrite};
use bufread;
use stream::Stream;
/// A compression stream which wraps an uncompressed stream of data. Compressed
/// data will be read from the stream.
pub struct XzEncoder<R: Read> {
inner: bufread::XzEncoder<BufReader<R>>,
}
/// A decompression stream which wraps a compressed stream of data. Decompressed
/// data will be read from the stream.
pub struct XzDecoder<R: Read> {
inner: bufread::XzDecoder<BufReader<R>>,
}
impl<R: Read> XzEncoder<R> {
/// Create a new compression stream which will compress at the given level
/// to read compress output to the give output stream.
///
/// The `level` argument here is typically 0-9 with 6 being a good default.
pub fn new(r: R, level: u32) -> XzEncoder<R> {
XzEncoder {
inner: bufread::XzEncoder::new(BufReader::new(r), level),
}
}
/// Creates a new encoder with a custom `Stream`.
///
/// The `Stream` can be pre-configured for multithreaded encoding, different
/// compression options/tuning, etc.
pub fn new_stream(r: R, stream: Stream) -> XzEncoder<R> {
XzEncoder {
inner: bufread::XzEncoder::new_stream(BufReader::new(r), stream),
}
}
/// Acquires a reference to the underlying stream
pub fn get_ref(&self) -> &R {
self.inner.get_ref().get_ref()
}
/// Acquires a mutable reference to the underlying stream
///
/// Note that mutation of the stream may result in surprising results if
/// this encoder is continued to be used.
pub fn get_mut(&mut self) -> &mut R {
self.inner.get_mut().get_mut()
}
/// Unwrap the underlying writer, finishing the compression stream.
pub fn into_inner(self) -> R {
self.inner.into_inner().into_inner()
}
/// Returns the number of bytes produced by the compressor
/// (e.g. the number of bytes read from this stream)
///
/// Note that, due to buffering, this only bears any relation to
/// total_in() when the compressor chooses to flush its data
/// (unfortunately, this won't happen this won't happen in general
/// at the end of the stream, because the compressor doesn't know
/// if there's more data to come). At that point,
/// `total_out() / total_in()` would be the compression ratio.
pub fn total_out(&self) -> u64 {
self.inner.total_out()
}
/// Returns the number of bytes consumed by the compressor
/// (e.g. the number of bytes read from the underlying stream)
pub fn total_in(&self) -> u64 {
self.inner.total_in()
}
}
impl<R: Read> Read for XzEncoder<R> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncRead> AsyncRead for XzEncoder<R> {
}
impl<W: Write + Read> Write for XzEncoder<W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.get_mut().write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.get_mut().flush()
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncWrite + Read> AsyncWrite for XzEncoder<R> {
fn shutdown(&mut self) -> Poll<(), io::Error> {
self.get_mut().shutdown()
}
}
impl<R: Read> XzDecoder<R> {
/// Create a new decompression stream, which will read compressed
/// data from the given input stream, and decompress one xz stream.
/// It may also consume input data that follows the xz stream.
/// Use [`xz::bufread::XzDecoder`] instead to process a mix of xz and non-xz data.
pub fn new(r: R) -> XzDecoder<R> {
XzDecoder {
inner: bufread::XzDecoder::new(BufReader::new(r)),
}
}
/// Create a new decompression stream, which will read compressed
/// data from the given input and decompress all the xz stream it contains.
pub fn new_multi_decoder(r: R) -> XzDecoder<R> {
XzDecoder {
inner: bufread::XzDecoder::new_multi_decoder(BufReader::new(r)),
}
}
/// Creates a new decoder with a custom `Stream`.
///
/// The `Stream` can be pre-configured for various checks, different
/// decompression options/tuning, etc.
pub fn new_stream(r: R, stream: Stream) -> XzDecoder<R> {
XzDecoder {
inner: bufread::XzDecoder::new_stream(BufReader::new(r), stream),
}
}
/// Acquires a reference to the underlying stream
pub fn get_ref(&self) -> &R {
self.inner.get_ref().get_ref()
}
/// Acquires a mutable reference to the underlying stream
///
/// Note that mutation of the stream may result in surprising results if
/// this encoder is continued to be used.
pub fn get_mut(&mut self) -> &mut R {
self.inner.get_mut().get_mut()
}
/// Unwrap the underlying writer, finishing the compression stream.
pub fn into_inner(self) -> R {
self.inner.into_inner().into_inner()
}
/// Returns the number of bytes produced by the decompressor
/// (e.g. the number of bytes read from this stream)
///
/// Note that, due to buffering, this only bears any relation to
/// total_in() when the decompressor reaches a sync point
/// (e.g. where the original compressed stream was flushed).
/// At that point, `total_in() / total_out()` is the compression ratio.
pub fn total_out(&self) -> u64 {
self.inner.total_out()
}
/// Returns the number of bytes consumed by the decompressor
/// (e.g. the number of bytes read from the underlying stream)
pub fn total_in(&self) -> u64 {
self.inner.total_in()
}
}
impl<R: Read> Read for XzDecoder<R> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncRead + Read> AsyncRead for XzDecoder<R> {
}
impl<W: Write + Read> Write for XzDecoder<W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.get_mut().write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.get_mut().flush()
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncWrite + Read> AsyncWrite for XzDecoder<R> {
fn shutdown(&mut self) -> Poll<(), io::Error> {
self.get_mut().shutdown()
}
}
#[cfg(test)]
mod tests {
use std::io::prelude::*;
use read::{XzEncoder, XzDecoder};
use rand::{thread_rng, Rng};
#[test]
fn smoke() {
let m: &[u8] = &[1, 2, 3, 4, 5, 6, 7, 8];
let mut c = XzEncoder::new(m, 6);
let mut data = vec![];
c.read_to_end(&mut data).unwrap();
let mut d = XzDecoder::new(&data[..]);
let mut data2 = Vec::new();
d.read_to_end(&mut data2).unwrap();
assert_eq!(data2, m);
}
#[test]
fn smoke2() {
let m: &[u8] = &[1, 2, 3, 4, 5, 6, 7, 8];
let c = XzEncoder::new(m, 6);
let mut d = XzDecoder::new(c);
let mut data = vec![];
d.read_to_end(&mut data).unwrap();
assert_eq!(data, [1, 2, 3, 4, 5, 6, 7, 8]);
}
#[test]
fn smoke3() {
let m = vec![3u8; 128 * 1024 + 1];
let c = XzEncoder::new(&m[..], 6);
let mut d = XzDecoder::new(c);
let mut data = vec![];
d.read_to_end(&mut data).unwrap();
assert!(data == &m[..]);
}
#[test]
fn self_terminating() {
let m = vec![3u8; 128 * 1024 + 1];
let mut c = XzEncoder::new(&m[..], 6);
let mut result = Vec::new();
c.read_to_end(&mut result).unwrap();
let v = thread_rng().gen_iter::<u8>().take(1024).collect::<Vec<_>>();
for _ in 0..200 {
result.extend(v.iter().map(|x| *x));
}
let mut d = XzDecoder::new(&result[..]);
let mut data = Vec::with_capacity(m.len());
unsafe { data.set_len(m.len()); }
assert!(d.read(&mut data).unwrap() == m.len());
assert!(data == &m[..]);
}
#[test]
fn zero_length_read_at_eof() {
let m = Vec::new();
let mut c = XzEncoder::new(&m[..], 6);
let mut result = Vec::new();
c.read_to_end(&mut result).unwrap();
let mut d = XzDecoder::new(&result[..]);
let mut data = Vec::new();
assert!(d.read(&mut data).unwrap() == 0);
}
#[test]
fn zero_length_read_with_data() {
let m = vec![3u8; 128 * 1024 + 1];
let mut c = XzEncoder::new(&m[..], 6);
let mut result = Vec::new();
c.read_to_end(&mut result).unwrap();
let mut d = XzDecoder::new(&result[..]);
let mut data = Vec::new();
assert!(d.read(&mut data).unwrap() == 0);
}
#[test]
fn qc() {
::quickcheck::quickcheck(test as fn(_) -> _);
fn test(v: Vec<u8>) -> bool {
let r = XzEncoder::new(&v[..], 6);
let mut r = XzDecoder::new(r);
let mut v2 = Vec::new();
r.read_to_end(&mut v2).unwrap();
v == v2
}
}
#[test]
fn two_streams() {
let mut input_stream1: Vec<u8> = Vec::new();
let mut input_stream2: Vec<u8> = Vec::new();
let mut all_input : Vec<u8> = Vec::new();
// Generate input data.
const STREAM1_SIZE: usize = 1024;
for num in 0..STREAM1_SIZE {
input_stream1.push(num as u8)
}
const STREAM2_SIZE: usize = 532;
for num in 0..STREAM2_SIZE {
input_stream2.push((num + 32) as u8)
}
all_input.extend(&input_stream1);
all_input.extend(&input_stream2);
// Make a vector with compressed data
let mut decoder_input = Vec::new();
{
let mut encoder = XzEncoder::new(&input_stream1[..], 6);
encoder.read_to_end(&mut decoder_input).unwrap();
}
{
let mut encoder = XzEncoder::new(&input_stream2[..], 6);
encoder.read_to_end(&mut decoder_input).unwrap();
}
// Decoder must be able to read the 2 concatenated xz streams and get the same data as input.
let mut decoder_reader = &decoder_input[..];
{
// using `XzDecoder::new` here would fail because only 1 xz stream would be processed.
let mut decoder = XzDecoder::new_multi_decoder(&mut decoder_reader);
let mut decompressed_data = vec![0u8; all_input.len()];
assert_eq!(decoder.read(&mut decompressed_data).unwrap(), all_input.len());
assert_eq!(decompressed_data, &all_input[..]);
}
}
}