blob: 1a6638df4feac7307dded09eb46a36a1c4c32dd2 [file] [log] [blame]
use std::fmt;
use std::ops::{Deref, DerefMut};
use std::ptr;
use crate::bytes;
use crate::error::{Error, Result};
use crate::{MAX_BLOCK_SIZE, MAX_INPUT_SIZE};
/// The total number of slots we permit for our hash table of 4 byte repeat
/// sequences.
const MAX_TABLE_SIZE: usize = 1 << 14;
/// The size of a small hash table. This is useful for reducing overhead when
/// compressing very small blocks of bytes.
const SMALL_TABLE_SIZE: usize = 1 << 10;
/// The total number of bytes that we always leave uncompressed at the end
/// of the buffer. This in particular affords us some wiggle room during
/// compression such that faster copy operations can be used.
const INPUT_MARGIN: usize = 16 - 1;
/// The minimum block size that we're willing to consider for compression.
/// Anything smaller than this gets emitted as a literal.
const MIN_NON_LITERAL_BLOCK_SIZE: usize = 1 + 1 + INPUT_MARGIN;
/// Nice names for the various Snappy tags.
enum Tag {
Literal = 0b00,
Copy1 = 0b01,
Copy2 = 0b10,
// Compression never actually emits a Copy4 operation and decompression
// uses tricks so that we never explicitly do case analysis on the copy
// operation type, therefore leading to the fact that we never use Copy4.
#[allow(dead_code)]
Copy4 = 0b11,
}
/// Returns the maximum compressed size given the uncompressed size.
///
/// If the uncompressed size exceeds the maximum allowable size then this
/// returns 0.
pub fn max_compress_len(input_len: usize) -> usize {
let input_len = input_len as u64;
if input_len > MAX_INPUT_SIZE {
return 0;
}
let max = 32 + input_len + (input_len / 6);
if max > MAX_INPUT_SIZE {
0
} else {
max as usize
}
}
/// Encoder is a raw encoder for compressing bytes in the Snappy format.
///
/// Thie encoder does not use the Snappy frame format and simply compresses the
/// given bytes in one big Snappy block (that is, it has a single header).
///
/// Unless you explicitly need the low-level control, you should use
/// [`read::FrameEncoder`](../read/struct.FrameEncoder.html)
/// or
/// [`write::FrameEncoder`](../write/struct.FrameEncoder.html)
/// instead, which compresses to the Snappy frame format.
///
/// It is beneficial to reuse an Encoder when possible.
pub struct Encoder {
small: [u16; SMALL_TABLE_SIZE],
big: Vec<u16>,
}
impl fmt::Debug for Encoder {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Encoder(...)")
}
}
impl Encoder {
/// Return a new encoder that can be used for compressing bytes.
pub fn new() -> Encoder {
Encoder { small: [0; SMALL_TABLE_SIZE], big: vec![] }
}
/// Compresses all bytes in `input` into `output`.
///
/// `input` can be any arbitrary sequence of bytes.
///
/// `output` must be large enough to hold the maximum possible compressed
/// size of `input`, which can be computed using `max_compress_len`.
///
/// On success, this returns the number of bytes written to `output`.
///
/// # Errors
///
/// This method returns an error in the following circumstances:
///
/// * The total number of bytes to compress exceeds `2^32 - 1`.
/// * `output` has length less than `max_compress_len(input.len())`.
pub fn compress(
&mut self,
mut input: &[u8],
output: &mut [u8],
) -> Result<usize> {
match max_compress_len(input.len()) {
0 => {
return Err(Error::TooBig {
given: input.len() as u64,
max: MAX_INPUT_SIZE,
});
}
min if output.len() < min => {
return Err(Error::BufferTooSmall {
given: output.len() as u64,
min: min as u64,
});
}
_ => {}
}
// Handle an edge case specially.
if input.is_empty() {
// Encodes a varint of 0, denoting the total size of uncompressed
// bytes.
output[0] = 0;
return Ok(1);
}
// Write the Snappy header, which is just the total number of
// uncompressed bytes.
let mut d = bytes::write_varu64(output, input.len() as u64);
while !input.is_empty() {
// Find the next block.
let mut src = input;
if src.len() > MAX_BLOCK_SIZE {
src = &src[..MAX_BLOCK_SIZE as usize];
}
input = &input[src.len()..];
// If the block is smallish, then don't waste time on it and just
// emit a literal.
let mut block = Block::new(src, output, d);
if block.src.len() < MIN_NON_LITERAL_BLOCK_SIZE {
let lit_end = block.src.len();
unsafe {
// SAFETY: next_emit is zero (in bounds) and the end is
// the length of the block (in bounds).
block.emit_literal(lit_end);
}
} else {
let table = self.block_table(block.src.len());
block.compress(table);
}
d = block.d;
}
Ok(d)
}
/// Compresses all bytes in `input` into a freshly allocated `Vec`.
///
/// This is just like the `compress` method, except it allocates a `Vec`
/// with the right size for you. (This is intended to be a convenience
/// method.)
///
/// This method returns an error under the same circumstances that
/// `compress` does.
pub fn compress_vec(&mut self, input: &[u8]) -> Result<Vec<u8>> {
let mut buf = vec![0; max_compress_len(input.len())];
let n = self.compress(input, &mut buf)?;
buf.truncate(n);
Ok(buf)
}
}
struct Block<'s, 'd> {
src: &'s [u8],
s: usize,
s_limit: usize,
dst: &'d mut [u8],
d: usize,
next_emit: usize,
}
impl<'s, 'd> Block<'s, 'd> {
#[inline(always)]
fn new(src: &'s [u8], dst: &'d mut [u8], d: usize) -> Block<'s, 'd> {
Block {
src: src,
s: 0,
s_limit: src.len(),
dst: dst,
d: d,
next_emit: 0,
}
}
#[inline(always)]
fn compress(&mut self, mut table: BlockTable<'_>) {
debug_assert!(!table.is_empty());
debug_assert!(self.src.len() >= MIN_NON_LITERAL_BLOCK_SIZE);
self.s += 1;
self.s_limit -= INPUT_MARGIN;
let mut next_hash =
table.hash(bytes::read_u32_le(&self.src[self.s..]));
loop {
let mut skip = 32;
let mut candidate;
let mut s_next = self.s;
loop {
self.s = s_next;
let bytes_between_hash_lookups = skip >> 5;
s_next = self.s + bytes_between_hash_lookups;
skip += bytes_between_hash_lookups;
if s_next > self.s_limit {
return self.done();
}
unsafe {
// SAFETY: next_hash is always computed by table.hash
// which is guaranteed to be in bounds.
candidate = *table.get_unchecked(next_hash) as usize;
*table.get_unchecked_mut(next_hash) = self.s as u16;
let srcp = self.src.as_ptr();
// SAFETY: s_next is guaranteed to be less than s_limit by
// the conditional above, which implies s_next is in
// bounds.
let x = bytes::loadu_u32_le(srcp.add(s_next));
next_hash = table.hash(x);
// SAFETY: self.s is always less than s_next, so it is also
// in bounds by the argument above.
//
// candidate is extracted from table, which is only ever
// set to valid positions in the block and is therefore
// also in bounds.
//
// We only need to compare y/z for equality, so we don't
// need to both with endianness. cur corresponds to the
// bytes at the current position and cand corresponds to
// a potential match. If they're equal, we declare victory
// and move below to try and extend the match.
let cur = bytes::loadu_u32_ne(srcp.add(self.s));
let cand = bytes::loadu_u32_ne(srcp.add(candidate));
if cur == cand {
break;
}
}
}
// While the above found a candidate for compression, before we
// emit a copy operation for it, we need to make sure that we emit
// any bytes between the last copy operation and this one as a
// literal.
let lit_end = self.s;
unsafe {
// SAFETY: next_emit is set to a previous value of self.s,
// which is guaranteed to be less than s_limit (in bounds).
// lit_end is set to the current value of self.s, also
// guaranteed to be less than s_limit (in bounds).
self.emit_literal(lit_end);
}
loop {
// Look for more matching bytes starting at the position of
// the candidate and the current src position. We increment
// self.s and candidate by 4 since we already know the first 4
// bytes match.
let base = self.s;
self.s += 4;
unsafe {
// SAFETY: candidate is always set to a value from our
// hash table, which only contains positions in self.src
// that have been seen for this block that occurred before
// self.s.
self.extend_match(candidate + 4);
}
let (offset, len) = (base - candidate, self.s - base);
self.emit_copy(offset, len);
self.next_emit = self.s;
if self.s >= self.s_limit {
return self.done();
}
// Update the hash table with the byte sequences
// self.src[self.s - 1..self.s + 3] and
// self.src[self.s..self.s + 4]. Instead of reading 4 bytes
// twice, we read 8 bytes once.
//
// If we happen to get a hit on self.src[self.s..self.s + 4],
// then continue this loop and extend the match.
unsafe {
let srcp = self.src.as_ptr();
// SAFETY: self.s can never exceed s_limit given by the
// conditional above and self.s is guaranteed to be
// non-zero and is therefore in bounds.
let x = bytes::loadu_u64_le(srcp.add(self.s - 1));
// The lower 4 bytes of x correspond to
// self.src[self.s - 1..self.s + 3].
let prev_hash = table.hash(x as u32);
// SAFETY: Hash values are guaranteed to be in bounds.
*table.get_unchecked_mut(prev_hash) = (self.s - 1) as u16;
// The lower 4 bytes of x>>8 correspond to
// self.src[self.s..self.s + 4].
let cur_hash = table.hash((x >> 8) as u32);
// SAFETY: Hash values are guaranteed to be in bounds.
candidate = *table.get_unchecked(cur_hash) as usize;
*table.get_unchecked_mut(cur_hash) = self.s as u16;
// SAFETY: candidate is set from table, which always
// contains valid positions in the current block.
let y = bytes::loadu_u32_le(srcp.add(candidate));
if (x >> 8) as u32 != y {
// If we didn't get a hit, update the next hash
// and move on. Our initial 8 byte read continues to
// pay off.
next_hash = table.hash((x >> 16) as u32);
self.s += 1;
break;
}
}
}
}
}
/// Emits one or more copy operations with the given offset and length.
/// offset must be in the range [1, 65535] and len must be in the range
/// [4, 65535].
#[inline(always)]
fn emit_copy(&mut self, offset: usize, mut len: usize) {
debug_assert!(1 <= offset && offset <= 65535);
// Copy operations only allow lengths up to 64, but we'll allow bigger
// lengths and emit as many operations as we need.
//
// N.B. Since our block size is 64KB, we never actually emit a copy 4
// operation.
debug_assert!(4 <= len && len <= 65535);
// Emit copy 2 operations until we don't have to.
// We check on 68 here and emit a shorter copy than 64 below because
// it is cheaper to, e.g., encode a length 67 copy as a length 60
// copy 2 followed by a length 7 copy 1 than to encode it as a length
// 64 copy 2 followed by a length 3 copy 2. They key here is that a
// copy 1 operation requires at least length 4 which forces a length 3
// copy to use a copy 2 operation.
while len >= 68 {
self.emit_copy2(offset, 64);
len -= 64;
}
if len > 64 {
self.emit_copy2(offset, 60);
len -= 60;
}
// If we can squeeze the last copy into a copy 1 operation, do it.
if len <= 11 && offset <= 2047 {
self.dst[self.d] = (((offset >> 8) as u8) << 5)
| (((len - 4) as u8) << 2)
| (Tag::Copy1 as u8);
self.dst[self.d + 1] = offset as u8;
self.d += 2;
} else {
self.emit_copy2(offset, len);
}
}
/// Emits a "copy 2" operation with the given offset and length. The
/// offset and length must be valid for a copy 2 operation. i.e., offset
/// must be in the range [1, 65535] and len must be in the range [1, 64].
#[inline(always)]
fn emit_copy2(&mut self, offset: usize, len: usize) {
debug_assert!(1 <= offset && offset <= 65535);
debug_assert!(1 <= len && len <= 64);
self.dst[self.d] = (((len - 1) as u8) << 2) | (Tag::Copy2 as u8);
bytes::write_u16_le(offset as u16, &mut self.dst[self.d + 1..]);
self.d += 3;
}
/// Attempts to extend a match from the current position in self.src with
/// the candidate position given.
///
/// This method uses unaligned loads and elides bounds checks, so the
/// caller must guarantee that cand points to a valid location in self.src
/// and is less than the current position in src.
#[inline(always)]
unsafe fn extend_match(&mut self, mut cand: usize) {
debug_assert!(cand < self.s);
while self.s + 8 <= self.src.len() {
let srcp = self.src.as_ptr();
// SAFETY: The loop invariant guarantees that there is at least
// 8 bytes to read at self.src + self.s. Since cand must be
// guaranteed by the caller to be valid and less than self.s, it
// also has enough room to read 8 bytes.
//
// TODO(ag): Despite my best efforts, I couldn't get this to
// autovectorize with 128-bit loads. The logic after the loads
// appears to be a little too clever...
let x = bytes::loadu_u64_ne(srcp.add(self.s));
let y = bytes::loadu_u64_ne(srcp.add(cand));
if x == y {
// If all 8 bytes are equal, move on...
self.s += 8;
cand += 8;
} else {
// Otherwise, find the last byte that was equal. We can do
// this efficiently by interpreted x/y as little endian
// numbers, which lets us use the number of trailing zeroes
// as a proxy for the number of equivalent bits (after an XOR).
let z = x.to_le() ^ y.to_le();
self.s += z.trailing_zeros() as usize / 8;
return;
}
}
// When we have fewer than 8 bytes left in the block, fall back to the
// slow loop.
while self.s < self.src.len() && self.src[self.s] == self.src[cand] {
self.s += 1;
cand += 1;
}
}
/// Executes any cleanup when the current block has finished compressing.
/// In particular, it emits any leftover bytes as a literal.
#[inline(always)]
fn done(&mut self) {
if self.next_emit < self.src.len() {
let lit_end = self.src.len();
unsafe {
// SAFETY: Both next_emit and lit_end are trivially in bounds
// given the conditional and definition above.
self.emit_literal(lit_end);
}
}
}
/// Emits a literal from self.src[self.next_emit..lit_end].
///
/// This uses unaligned loads and elides bounds checks, so the caller must
/// guarantee that self.src[self.next_emit..lit_end] is valid.
#[inline(always)]
unsafe fn emit_literal(&mut self, lit_end: usize) {
let lit_start = self.next_emit;
let len = lit_end - lit_start;
let n = len.checked_sub(1).unwrap();
if n <= 59 {
self.dst[self.d] = ((n as u8) << 2) | (Tag::Literal as u8);
self.d += 1;
if len <= 16 && lit_start + 16 <= self.src.len() {
// SAFETY: lit_start is equivalent to self.next_emit, which is
// only set to self.s immediately following a copy emit. The
// conditional above also ensures that there is at least 16
// bytes of room in both src and dst.
//
// dst is big enough because the buffer is guaranteed to
// be big enough to hold biggest possible compressed size plus
// an extra 32 bytes, which exceeds the 16 byte copy here.
let srcp = self.src.as_ptr().add(lit_start);
let dstp = self.dst.as_mut_ptr().add(self.d);
ptr::copy_nonoverlapping(srcp, dstp, 16);
self.d += len;
return;
}
} else if n < 256 {
self.dst[self.d] = (60 << 2) | (Tag::Literal as u8);
self.dst[self.d + 1] = n as u8;
self.d += 2;
} else {
self.dst[self.d] = (61 << 2) | (Tag::Literal as u8);
bytes::write_u16_le(n as u16, &mut self.dst[self.d + 1..]);
self.d += 3;
}
// SAFETY: lit_start is equivalent to self.next_emit, which is only set
// to self.s immediately following a copy, which implies that it always
// points to valid bytes in self.src.
//
// We can't guarantee that there are at least len bytes though, which
// must be guaranteed by the caller and is why this method is unsafe.
let srcp = self.src.as_ptr().add(lit_start);
let dstp = self.dst.as_mut_ptr().add(self.d);
ptr::copy_nonoverlapping(srcp, dstp, len);
self.d += len;
}
}
/// `BlockTable` is a map from 4 byte sequences to positions of their most
/// recent occurrence in a block. In particular, this table lets us quickly
/// find candidates for compression.
///
/// We expose the `hash` method so that callers can be fastidious about the
/// number of times a hash is computed.
struct BlockTable<'a> {
table: &'a mut [u16],
/// The number of bits required to shift the hash such that the result
/// is less than table.len().
shift: u32,
}
impl Encoder {
fn block_table(&mut self, block_size: usize) -> BlockTable<'_> {
let mut shift: u32 = 32 - 8;
let mut table_size = 256;
while table_size < MAX_TABLE_SIZE && table_size < block_size {
shift -= 1;
table_size *= 2;
}
// If our block size is small, then use a small stack allocated table
// instead of putting a bigger one on the heap. This particular
// optimization is important if the caller is using Snappy to compress
// many small blocks. (The memset savings alone is considerable.)
let table: &mut [u16] = if table_size <= SMALL_TABLE_SIZE {
&mut self.small[0..table_size]
} else {
if self.big.is_empty() {
// Interestingly, using `self.big.resize` here led to some
// very weird code getting generated that led to a large
// slow down. Forcing the issue with a new vec seems to
// fix it. ---AG
self.big = vec![0; MAX_TABLE_SIZE];
}
&mut self.big[0..table_size]
};
for x in &mut *table {
*x = 0;
}
BlockTable { table: table, shift: shift }
}
}
impl<'a> BlockTable<'a> {
#[inline(always)]
fn hash(&self, x: u32) -> usize {
(x.wrapping_mul(0x1E35A7BD) >> self.shift) as usize
}
}
impl<'a> Deref for BlockTable<'a> {
type Target = [u16];
fn deref(&self) -> &[u16] {
self.table
}
}
impl<'a> DerefMut for BlockTable<'a> {
fn deref_mut(&mut self) -> &mut [u16] {
self.table
}
}