blob: abfac265ace6bd6a67b34bc3e2ebf726206a6b81 [file] [log] [blame]
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
*
* Use of this software is governed by the GNU LGPLv2.1 license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl/ilp.h>
#include "isl_sample.h"
#include <isl/seq.h>
#include "isl_equalities.h"
#include <isl_aff_private.h>
#include <isl_local_space_private.h>
#include <isl_mat_private.h>
/* Given a basic set "bset", construct a basic set U such that for
* each element x in U, the whole unit box positioned at x is inside
* the given basic set.
* Note that U may not contain all points that satisfy this property.
*
* We simply add the sum of all negative coefficients to the constant
* term. This ensures that if x satisfies the resulting constraints,
* then x plus any sum of unit vectors satisfies the original constraints.
*/
static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset)
{
int i, j, k;
struct isl_basic_set *unit_box = NULL;
unsigned total;
if (!bset)
goto error;
if (bset->n_eq != 0) {
unit_box = isl_basic_set_empty_like(bset);
isl_basic_set_free(bset);
return unit_box;
}
total = isl_basic_set_total_dim(bset);
unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset),
0, 0, bset->n_ineq);
for (i = 0; i < bset->n_ineq; ++i) {
k = isl_basic_set_alloc_inequality(unit_box);
if (k < 0)
goto error;
isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
for (j = 0; j < total; ++j) {
if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
continue;
isl_int_add(unit_box->ineq[k][0],
unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
}
}
isl_basic_set_free(bset);
return unit_box;
error:
isl_basic_set_free(bset);
isl_basic_set_free(unit_box);
return NULL;
}
/* Find an integer point in "bset", preferably one that is
* close to minimizing "f".
*
* We first check if we can easily put unit boxes inside bset.
* If so, we take the best base point of any of the unit boxes we can find
* and round it up to the nearest integer.
* If not, we simply pick any integer point in "bset".
*/
static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f)
{
enum isl_lp_result res;
struct isl_basic_set *unit_box;
struct isl_vec *sol;
unit_box = unit_box_base_points(isl_basic_set_copy(bset));
res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
NULL, NULL, &sol);
if (res == isl_lp_ok) {
isl_basic_set_free(unit_box);
return isl_vec_ceil(sol);
}
isl_basic_set_free(unit_box);
return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
}
/* Restrict "bset" to those points with values for f in the interval [l, u].
*/
static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
isl_int *f, isl_int l, isl_int u)
{
int k;
unsigned total;
total = isl_basic_set_total_dim(bset);
bset = isl_basic_set_extend_constraints(bset, 0, 2);
k = isl_basic_set_alloc_inequality(bset);
if (k < 0)
goto error;
isl_seq_cpy(bset->ineq[k], f, 1 + total);
isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);
k = isl_basic_set_alloc_inequality(bset);
if (k < 0)
goto error;
isl_seq_neg(bset->ineq[k], f, 1 + total);
isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);
return bset;
error:
isl_basic_set_free(bset);
return NULL;
}
/* Find an integer point in "bset" that minimizes f (in any) such that
* the value of f lies inside the interval [l, u].
* Return this integer point if it can be found.
* Otherwise, return sol.
*
* We perform a number of steps until l > u.
* In each step, we look for an integer point with value in either
* the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
* The choice depends on whether we have found an integer point in the
* previous step. If so, we look for the next point in half of the remaining
* interval.
* If we find a point, the current solution is updated and u is set
* to its value minus 1.
* If no point can be found, we update l to the upper bound of the interval
* we checked (u or l+floor(u-l-1/2)) plus 1.
*/
static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset,
isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u)
{
isl_int tmp;
int divide = 1;
isl_int_init(tmp);
while (isl_int_le(l, u)) {
struct isl_basic_set *slice;
struct isl_vec *sample;
if (!divide)
isl_int_set(tmp, u);
else {
isl_int_sub(tmp, u, l);
isl_int_fdiv_q_ui(tmp, tmp, 2);
isl_int_add(tmp, tmp, l);
}
slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
sample = isl_basic_set_sample_vec(slice);
if (!sample) {
isl_vec_free(sol);
sol = NULL;
break;
}
if (sample->size > 0) {
isl_vec_free(sol);
sol = sample;
isl_seq_inner_product(f, sol->el, sol->size, opt);
isl_int_sub_ui(u, *opt, 1);
divide = 1;
} else {
isl_vec_free(sample);
if (!divide)
break;
isl_int_add_ui(l, tmp, 1);
divide = 0;
}
}
isl_int_clear(tmp);
return sol;
}
/* Find an integer point in "bset" that minimizes f (if any).
* If sol_p is not NULL then the integer point is returned in *sol_p.
* The optimal value of f is returned in *opt.
*
* The algorithm maintains a currently best solution and an interval [l, u]
* of values of f for which integer solutions could potentially still be found.
* The initial value of the best solution so far is any solution.
* The initial value of l is minimal value of f over the rationals
* (rounded up to the nearest integer).
* The initial value of u is the value of f at the initial solution minus 1.
*
* We then call solve_ilp_search to perform a binary search on the interval.
*/
static enum isl_lp_result solve_ilp(struct isl_basic_set *bset,
isl_int *f, isl_int *opt,
struct isl_vec **sol_p)
{
enum isl_lp_result res;
isl_int l, u;
struct isl_vec *sol;
res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
opt, NULL, &sol);
if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
if (sol_p)
*sol_p = sol;
else
isl_vec_free(sol);
return isl_lp_ok;
}
isl_vec_free(sol);
if (res == isl_lp_error || res == isl_lp_empty)
return res;
sol = initial_solution(bset, f);
if (!sol)
return isl_lp_error;
if (sol->size == 0) {
isl_vec_free(sol);
return isl_lp_empty;
}
if (res == isl_lp_unbounded) {
isl_vec_free(sol);
return isl_lp_unbounded;
}
isl_int_init(l);
isl_int_init(u);
isl_int_set(l, *opt);
isl_seq_inner_product(f, sol->el, sol->size, opt);
isl_int_sub_ui(u, *opt, 1);
sol = solve_ilp_search(bset, f, opt, sol, l, u);
if (!sol)
res = isl_lp_error;
isl_int_clear(l);
isl_int_clear(u);
if (sol_p)
*sol_p = sol;
else
isl_vec_free(sol);
return res;
}
static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max,
isl_int *f, isl_int *opt,
struct isl_vec **sol_p)
{
unsigned dim;
enum isl_lp_result res;
struct isl_mat *T = NULL;
struct isl_vec *v;
bset = isl_basic_set_copy(bset);
dim = isl_basic_set_total_dim(bset);
v = isl_vec_alloc(bset->ctx, 1 + dim);
if (!v)
goto error;
isl_seq_cpy(v->el, f, 1 + dim);
bset = isl_basic_set_remove_equalities(bset, &T, NULL);
v = isl_vec_mat_product(v, isl_mat_copy(T));
if (!v)
goto error;
res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
isl_vec_free(v);
if (res == isl_lp_ok && sol_p) {
*sol_p = isl_mat_vec_product(T, *sol_p);
if (!*sol_p)
res = isl_lp_error;
} else
isl_mat_free(T);
isl_basic_set_free(bset);
return res;
error:
isl_mat_free(T);
isl_basic_set_free(bset);
return isl_lp_error;
}
/* Find an integer point in "bset" that minimizes (or maximizes if max is set)
* f (if any).
* If sol_p is not NULL then the integer point is returned in *sol_p.
* The optimal value of f is returned in *opt.
*
* If there is any equality among the points in "bset", then we first
* project it out. Otherwise, we continue with solve_ilp above.
*/
enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max,
isl_int *f, isl_int *opt,
struct isl_vec **sol_p)
{
unsigned dim;
enum isl_lp_result res;
if (!bset)
return isl_lp_error;
if (sol_p)
*sol_p = NULL;
isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
if (isl_basic_set_plain_is_empty(bset))
return isl_lp_empty;
if (bset->n_eq)
return solve_ilp_with_eq(bset, max, f, opt, sol_p);
dim = isl_basic_set_total_dim(bset);
if (max)
isl_seq_neg(f, f, 1 + dim);
res = solve_ilp(bset, f, opt, sol_p);
if (max) {
isl_seq_neg(f, f, 1 + dim);
isl_int_neg(*opt, *opt);
}
return res;
error:
isl_basic_set_free(bset);
return isl_lp_error;
}
static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max,
__isl_keep isl_aff *obj, isl_int *opt)
{
enum isl_lp_result res;
if (!obj)
return isl_lp_error;
bset = isl_basic_set_copy(bset);
bset = isl_basic_set_underlying_set(bset);
res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL);
isl_basic_set_free(bset);
return res;
}
static __isl_give isl_mat *extract_divs(__isl_keep isl_basic_set *bset)
{
int i;
isl_ctx *ctx = isl_basic_set_get_ctx(bset);
isl_mat *div;
div = isl_mat_alloc(ctx, bset->n_div,
1 + 1 + isl_basic_set_total_dim(bset));
if (!div)
return NULL;
for (i = 0; i < bset->n_div; ++i)
isl_seq_cpy(div->row[i], bset->div[i], div->n_col);
return div;
}
enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max,
__isl_keep isl_aff *obj, isl_int *opt)
{
int *exp1 = NULL;
int *exp2 = NULL;
isl_ctx *ctx;
isl_mat *bset_div = NULL;
isl_mat *div = NULL;
enum isl_lp_result res;
if (!bset || !obj)
return isl_lp_error;
ctx = isl_aff_get_ctx(obj);
if (!isl_space_is_equal(bset->dim, obj->ls->dim))
isl_die(ctx, isl_error_invalid,
"spaces don't match", return isl_lp_error);
if (!isl_int_is_one(obj->v->el[0]))
isl_die(ctx, isl_error_unsupported,
"expecting integer affine expression",
return isl_lp_error);
if (bset->n_div == 0 && obj->ls->div->n_row == 0)
return basic_set_opt(bset, max, obj, opt);
bset = isl_basic_set_copy(bset);
obj = isl_aff_copy(obj);
bset_div = extract_divs(bset);
exp1 = isl_alloc_array(ctx, int, bset_div->n_row);
exp2 = isl_alloc_array(ctx, int, obj->ls->div->n_row);
if (!bset_div || !exp1 || !exp2)
goto error;
div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2);
bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1);
obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2);
res = basic_set_opt(bset, max, obj, opt);
isl_mat_free(bset_div);
isl_mat_free(div);
free(exp1);
free(exp2);
isl_basic_set_free(bset);
isl_aff_free(obj);
return res;
error:
isl_mat_free(div);
isl_mat_free(bset_div);
free(exp1);
free(exp2);
isl_basic_set_free(bset);
isl_aff_free(obj);
return isl_lp_error;
}
/* Compute the minimum (maximum if max is set) of the integer affine
* expression obj over the points in set and put the result in *opt.
*/
enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max,
__isl_keep isl_aff *obj, isl_int *opt)
{
int i;
enum isl_lp_result res;
int empty = 1;
isl_int opt_i;
if (!set || !obj)
return isl_lp_error;
if (set->n == 0)
return isl_lp_empty;
res = isl_basic_set_opt(set->p[0], max, obj, opt);
if (res == isl_lp_error || res == isl_lp_unbounded)
return res;
if (set->n == 1)
return res;
if (res == isl_lp_ok)
empty = 0;
isl_int_init(opt_i);
for (i = 1; i < set->n; ++i) {
res = isl_basic_set_opt(set->p[i], max, obj, &opt_i);
if (res == isl_lp_error || res == isl_lp_unbounded) {
isl_int_clear(opt_i);
return res;
}
if (res == isl_lp_ok)
empty = 0;
if (isl_int_gt(opt_i, *opt))
isl_int_set(*opt, opt_i);
}
isl_int_clear(opt_i);
return empty ? isl_lp_empty : isl_lp_ok;
}
enum isl_lp_result isl_basic_set_max(__isl_keep isl_basic_set *bset,
__isl_keep isl_aff *obj, isl_int *opt)
{
return isl_basic_set_opt(bset, 1, obj, opt);
}
enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
__isl_keep isl_aff *obj, isl_int *opt)
{
return isl_set_opt(set, 1, obj, opt);
}
enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
__isl_keep isl_aff *obj, isl_int *opt)
{
return isl_set_opt(set, 0, obj, opt);
}