blob: 9d4d93b98d86076284d75c65e9a24845a70543dd [file] [log] [blame]
/*
* Copyright 2012 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege,
* Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
*/
#include <isl/aff.h>
#include <isl/set.h>
#include <isl/ilp.h>
#include <isl/union_map.h>
#include <isl_sort.h>
#include <isl_tarjan.h>
#include <isl_ast_private.h>
#include <isl_ast_build_expr.h>
#include <isl_ast_build_private.h>
#include <isl_ast_graft_private.h>
#include <isl_list_private.h>
/* Add the constraint to the list that "user" points to, if it is not
* a div constraint.
*/
static int collect_constraint(__isl_take isl_constraint *constraint,
void *user)
{
isl_constraint_list **list = user;
if (isl_constraint_is_div_constraint(constraint))
isl_constraint_free(constraint);
else
*list = isl_constraint_list_add(*list, constraint);
return 0;
}
/* Extract the constraints of "bset" (except the div constraints)
* and collect them in an isl_constraint_list.
*/
static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
__isl_take isl_basic_set *bset)
{
int n;
isl_ctx *ctx;
isl_constraint_list *list;
if (!bset)
return NULL;
ctx = isl_basic_set_get_ctx(bset);
n = isl_basic_set_n_constraint(bset);
list = isl_constraint_list_alloc(ctx, n);
if (isl_basic_set_foreach_constraint(bset,
&collect_constraint, &list) < 0)
list = isl_constraint_list_free(list);
isl_basic_set_free(bset);
return list;
}
/* Data used in generate_domain.
*
* "build" is the input build.
* "list" collects the results.
*/
struct isl_generate_domain_data {
isl_ast_build *build;
isl_ast_graft_list *list;
};
static __isl_give isl_ast_graft_list *generate_next_level(
__isl_take isl_union_map *executed,
__isl_take isl_ast_build *build);
static __isl_give isl_ast_graft_list *generate_code(
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
int internal);
/* Generate an AST for a single domain based on
* the (non single valued) inverse schedule "executed".
*
* We extend the schedule with the iteration domain
* and continue generating through a call to generate_code.
*
* In particular, if executed has the form
*
* S -> D
*
* then we continue generating code on
*
* [S -> D] -> D
*
* The extended inverse schedule is clearly single valued
* ensuring that the nested generate_code will not reach this function,
* but will instead create calls to all elements of D that need
* to be executed from the current schedule domain.
*/
static int generate_non_single_valued(__isl_take isl_map *executed,
struct isl_generate_domain_data *data)
{
isl_map *identity;
isl_ast_build *build;
isl_ast_graft_list *list;
build = isl_ast_build_copy(data->build);
identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
executed = isl_map_domain_product(executed, identity);
list = generate_code(isl_union_map_from_map(executed), build, 1);
data->list = isl_ast_graft_list_concat(data->list, list);
return 0;
}
/* Call the at_each_domain callback, if requested by the user,
* after recording the current inverse schedule in the build.
*/
static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
__isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
{
if (!graft || !build)
return isl_ast_graft_free(graft);
if (!build->at_each_domain)
return graft;
build = isl_ast_build_copy(build);
build = isl_ast_build_set_executed(build,
isl_union_map_from_map(isl_map_copy(executed)));
if (!build)
return isl_ast_graft_free(graft);
graft->node = build->at_each_domain(graft->node,
build, build->at_each_domain_user);
isl_ast_build_free(build);
if (!graft->node)
graft = isl_ast_graft_free(graft);
return graft;
}
/* Generate an AST for a single domain based on
* the inverse schedule "executed".
*
* If there is more than one domain element associated to the current
* schedule "time", then we need to continue the generation process
* in generate_non_single_valued.
* Note that the inverse schedule being single-valued may depend
* on constraints that are only available in the original context
* domain specified by the user. We therefore first introduce
* the constraints from data->build->domain.
* On the other hand, we only perform the test after having taken the gist
* of the domain as the resulting map is the one from which the call
* expression is constructed.
*
* Otherwise, we generate a call expression for the single executed
* domain element and put a guard around it based on the (simplified)
* domain of "executed".
*
* If the user has set an at_each_domain callback, it is called
* on the constructed call expression node.
*/
static int generate_domain(__isl_take isl_map *executed, void *user)
{
struct isl_generate_domain_data *data = user;
isl_ast_graft *graft;
isl_ast_graft_list *list;
isl_set *guard;
isl_map *map;
int sv;
executed = isl_map_intersect_domain(executed,
isl_set_copy(data->build->domain));
executed = isl_map_coalesce(executed);
map = isl_map_copy(executed);
map = isl_ast_build_compute_gist_map_domain(data->build, map);
sv = isl_map_is_single_valued(map);
if (sv < 0)
goto error;
if (!sv) {
isl_map_free(map);
return generate_non_single_valued(executed, data);
}
guard = isl_map_domain(isl_map_copy(map));
guard = isl_set_coalesce(guard);
guard = isl_ast_build_compute_gist(data->build, guard);
graft = isl_ast_graft_alloc_domain(map, data->build);
graft = at_each_domain(graft, executed, data->build);
isl_map_free(executed);
graft = isl_ast_graft_add_guard(graft, guard, data->build);
list = isl_ast_graft_list_from_ast_graft(graft);
data->list = isl_ast_graft_list_concat(data->list, list);
return 0;
error:
isl_map_free(map);
isl_map_free(executed);
return -1;
}
/* Call build->create_leaf to a create "leaf" node in the AST,
* encapsulate the result in an isl_ast_graft and return the result
* as a 1-element list.
*
* Note that the node returned by the user may be an entire tree.
*
* Before we pass control to the user, we first clear some information
* from the build that is (presumbably) only meaningful
* for the current code generation.
* This includes the create_leaf callback itself, so we make a copy
* of the build first.
*/
static __isl_give isl_ast_graft_list *call_create_leaf(
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
isl_ast_node *node;
isl_ast_graft *graft;
isl_ast_build *user_build;
user_build = isl_ast_build_copy(build);
user_build = isl_ast_build_set_executed(user_build, executed);
user_build = isl_ast_build_clear_local_info(user_build);
if (!user_build)
node = NULL;
else
node = build->create_leaf(user_build, build->create_leaf_user);
graft = isl_ast_graft_alloc(node, build);
isl_ast_build_free(build);
return isl_ast_graft_list_from_ast_graft(graft);
}
/* Generate an AST after having handled the complete schedule
* of this call to the code generator.
*
* If the user has specified a create_leaf callback, control
* is passed to the user in call_create_leaf.
*
* Otherwise, we generate one or more calls for each individual
* domain in generate_domain.
*/
static __isl_give isl_ast_graft_list *generate_inner_level(
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
isl_ctx *ctx;
struct isl_generate_domain_data data = { build };
if (!build || !executed)
goto error;
if (build->create_leaf)
return call_create_leaf(executed, build);
ctx = isl_union_map_get_ctx(executed);
data.list = isl_ast_graft_list_alloc(ctx, 0);
if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
data.list = isl_ast_graft_list_free(data.list);
if (0)
error: data.list = NULL;
isl_ast_build_free(build);
isl_union_map_free(executed);
return data.list;
}
/* Call the before_each_for callback, if requested by the user.
*/
static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build)
{
isl_id *id;
if (!node || !build)
return isl_ast_node_free(node);
if (!build->before_each_for)
return node;
id = build->before_each_for(build, build->before_each_for_user);
node = isl_ast_node_set_annotation(node, id);
return node;
}
/* Call the after_each_for callback, if requested by the user.
*/
static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
__isl_keep isl_ast_build *build)
{
if (!graft || !build)
return isl_ast_graft_free(graft);
if (!build->after_each_for)
return graft;
graft->node = build->after_each_for(graft->node, build,
build->after_each_for_user);
if (!graft->node)
return isl_ast_graft_free(graft);
return graft;
}
/* Eliminate the schedule dimension "pos" from "executed" and return
* the result.
*/
static __isl_give isl_union_map *eliminate(__isl_take isl_union_map *executed,
int pos, __isl_keep isl_ast_build *build)
{
isl_space *space;
isl_map *elim;
space = isl_ast_build_get_space(build, 1);
space = isl_space_map_from_set(space);
elim = isl_map_identity(space);
elim = isl_map_eliminate(elim, isl_dim_in, pos, 1);
executed = isl_union_map_apply_domain(executed,
isl_union_map_from_map(elim));
return executed;
}
/* Check if the constraint "c" is a lower bound on dimension "pos",
* an upper bound, or independent of dimension "pos".
*/
static int constraint_type(isl_constraint *c, int pos)
{
if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
return 1;
if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
return 2;
return 0;
}
/* Compare the types of the constraints "a" and "b",
* resulting in constraints that are independent of "depth"
* to be sorted before the lower bounds on "depth", which in
* turn are sorted before the upper bounds on "depth".
*/
static int cmp_constraint(const void *a, const void *b, void *user)
{
int *depth = user;
isl_constraint * const *c1 = a;
isl_constraint * const *c2 = b;
int t1 = constraint_type(*c1, *depth);
int t2 = constraint_type(*c2, *depth);
return t1 - t2;
}
/* Extract a lower bound on dimension "pos" from constraint "c".
*
* If the constraint is of the form
*
* a x + f(...) >= 0
*
* then we essentially return
*
* l = ceil(-f(...)/a)
*
* However, if the current dimension is strided, then we need to make
* sure that the lower bound we construct is of the form
*
* f + s a
*
* with f the offset and s the stride.
* We therefore compute
*
* f + s * ceil((l - f)/s)
*/
static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
int pos, __isl_keep isl_ast_build *build)
{
isl_aff *aff;
aff = isl_constraint_get_bound(c, isl_dim_set, pos);
aff = isl_aff_ceil(aff);
if (isl_ast_build_has_stride(build, pos)) {
isl_aff *offset;
isl_int stride;
isl_int_init(stride);
offset = isl_ast_build_get_offset(build, pos);
isl_ast_build_get_stride(build, pos, &stride);
aff = isl_aff_sub(aff, isl_aff_copy(offset));
aff = isl_aff_scale_down(aff, stride);
aff = isl_aff_ceil(aff);
aff = isl_aff_scale(aff, stride);
aff = isl_aff_add(aff, offset);
isl_int_clear(stride);
}
aff = isl_ast_build_compute_gist_aff(build, aff);
return aff;
}
/* Return the exact lower bound (or upper bound if "upper" is set)
* of "domain" as a piecewise affine expression.
*
* If we are computing a lower bound (of a strided dimension), then
* we need to make sure it is of the form
*
* f + s a
*
* where f is the offset and s is the stride.
* We therefore need to include the stride constraint before computing
* the minimum.
*/
static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
__isl_keep isl_ast_build *build, int upper)
{
isl_set *stride;
isl_map *it_map;
isl_pw_aff *pa;
isl_pw_multi_aff *pma;
domain = isl_set_copy(domain);
if (!upper) {
stride = isl_ast_build_get_stride_constraint(build);
domain = isl_set_intersect(domain, stride);
}
it_map = isl_ast_build_map_to_iterator(build, domain);
if (upper)
pma = isl_map_lexmax_pw_multi_aff(it_map);
else
pma = isl_map_lexmin_pw_multi_aff(it_map);
pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
isl_pw_multi_aff_free(pma);
pa = isl_ast_build_compute_gist_pw_aff(build, pa);
pa = isl_pw_aff_coalesce(pa);
return pa;
}
/* Return a list of "n" lower bounds on dimension "pos"
* extracted from the "n" constraints starting at "constraint".
* If "n" is zero, then we extract a lower bound from "domain" instead.
*/
static __isl_give isl_pw_aff_list *lower_bounds(
__isl_keep isl_constraint **constraint, int n, int pos,
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
isl_ctx *ctx;
isl_pw_aff_list *list;
int i;
if (!build)
return NULL;
if (n == 0) {
isl_pw_aff *pa;
pa = exact_bound(domain, build, 0);
return isl_pw_aff_list_from_pw_aff(pa);
}
ctx = isl_ast_build_get_ctx(build);
list = isl_pw_aff_list_alloc(ctx,n);
for (i = 0; i < n; ++i) {
isl_aff *aff;
aff = lower_bound(constraint[i], pos, build);
list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
}
return list;
}
/* Return a list of "n" upper bounds on dimension "pos"
* extracted from the "n" constraints starting at "constraint".
* If "n" is zero, then we extract an upper bound from "domain" instead.
*/
static __isl_give isl_pw_aff_list *upper_bounds(
__isl_keep isl_constraint **constraint, int n, int pos,
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
isl_ctx *ctx;
isl_pw_aff_list *list;
int i;
if (n == 0) {
isl_pw_aff *pa;
pa = exact_bound(domain, build, 1);
return isl_pw_aff_list_from_pw_aff(pa);
}
ctx = isl_ast_build_get_ctx(build);
list = isl_pw_aff_list_alloc(ctx,n);
for (i = 0; i < n; ++i) {
isl_aff *aff;
aff = isl_constraint_get_bound(constraint[i], isl_dim_set, pos);
aff = isl_aff_floor(aff);
list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
}
return list;
}
/* Return an isl_ast_expr that performs the reduction of type "type"
* on AST expressions corresponding to the elements in "list".
*
* The list is assumed to contain at least one element.
* If the list contains exactly one element, then the returned isl_ast_expr
* simply computes that affine expression.
*/
static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
__isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
{
int i, n;
isl_ctx *ctx;
isl_ast_expr *expr;
if (!list)
return NULL;
n = isl_pw_aff_list_n_pw_aff(list);
if (n == 1)
return isl_ast_build_expr_from_pw_aff_internal(build,
isl_pw_aff_list_get_pw_aff(list, 0));
ctx = isl_pw_aff_list_get_ctx(list);
expr = isl_ast_expr_alloc_op(ctx, type, n);
if (!expr)
return NULL;
for (i = 0; i < n; ++i) {
isl_ast_expr *expr_i;
expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
isl_pw_aff_list_get_pw_aff(list, i));
if (!expr_i)
return isl_ast_expr_free(expr);
expr->u.op.args[i] = expr_i;
}
return expr;
}
/* Add a guard to "graft" based on "bound" in the case of a degenerate
* level (including the special case of an eliminated level).
*
* We eliminate the current dimension, simplify the result in the current
* build and add the result as guards to the graft.
*
* Note that we cannot simply drop the constraints on the current dimension
* even in the eliminated case, because the single affine expression may
* not be explicitly available in "bounds". Moreover, the single affine
* expression may only be defined on a subset of the build domain,
* so we do in some cases need to insert a guard even in the eliminated case.
*/
static __isl_give isl_ast_graft *add_degenerate_guard(
__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
__isl_keep isl_ast_build *build)
{
int depth;
isl_set *dom;
depth = isl_ast_build_get_depth(build);
dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
if (isl_ast_build_has_stride(build, depth)) {
isl_set *stride;
stride = isl_ast_build_get_stride_constraint(build);
dom = isl_set_intersect(dom, stride);
}
dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
dom = isl_ast_build_compute_gist(build, dom);
graft = isl_ast_graft_add_guard(graft, dom, build);
return graft;
}
/* Update "graft" based on "bounds" for the eliminated case.
*
* In the eliminated case, no for node is created, so we only need
* to check if "bounds" imply any guards that need to be inserted.
*/
static __isl_give isl_ast_graft *refine_eliminated(
__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
__isl_keep isl_ast_build *build)
{
return add_degenerate_guard(graft, bounds, build);
}
/* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
*
* "build" is the build in which graft->node was created
* "sub_build" contains information about the current level itself,
* including the single value attained.
*
* We first set the initialization part of the for loop to the single
* value attained by the current dimension.
* The increment and condition are not strictly needed as the are known
* to be "1" and "iterator <= value" respectively.
* Then we set the size of the iterator and
* check if "bounds" imply any guards that need to be inserted.
*/
static __isl_give isl_ast_graft *refine_degenerate(
__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
__isl_keep isl_ast_build *build,
__isl_keep isl_ast_build *sub_build)
{
isl_pw_aff *value;
if (!graft || !sub_build)
return isl_ast_graft_free(graft);
value = isl_pw_aff_copy(sub_build->value);
graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
value);
if (!graft->node->u.f.init)
return isl_ast_graft_free(graft);
graft = add_degenerate_guard(graft, bounds, build);
return graft;
}
/* Return the intersection of the "n" constraints starting at "constraint"
* as a set.
*/
static __isl_give isl_set *intersect_constraints(isl_ctx *ctx,
__isl_keep isl_constraint **constraint, int n)
{
int i;
isl_basic_set *bset;
if (n < 1)
isl_die(ctx, isl_error_internal,
"expecting at least one constraint", return NULL);
bset = isl_basic_set_from_constraint(
isl_constraint_copy(constraint[0]));
for (i = 1; i < n; ++i) {
isl_basic_set *bset_i;
bset_i = isl_basic_set_from_constraint(
isl_constraint_copy(constraint[i]));
bset = isl_basic_set_intersect(bset, bset_i);
}
return isl_set_from_basic_set(bset);
}
/* Compute the constraints on the outer dimensions enforced by
* graft->node and add those constraints to graft->enforced,
* in case the upper bound is expressed as a set "upper".
*
* In particular, if l(...) is a lower bound in "lower", and
*
* -a i + f(...) >= 0 or a i <= f(...)
*
* is an upper bound ocnstraint on the current dimension i,
* then the for loop enforces the constraint
*
* -a l(...) + f(...) >= 0 or a l(...) <= f(...)
*
* We therefore simply take each lower bound in turn, plug it into
* the upper bounds and compute the intersection over all lower bounds.
*
* If a lower bound is a rational expression, then
* isl_basic_set_preimage_multi_aff will force this rational
* expression to have only integer values. However, the loop
* itself does not enforce this integrality constraint. We therefore
* use the ceil of the lower bounds instead of the lower bounds themselves.
* Other constraints will make sure that the for loop is only executed
* when each of the lower bounds attains an integral value.
* In particular, potentially rational values only occur in
* lower_bound if the offset is a (seemingly) rational expression,
* but then outer conditions will make sure that this rational expression
* only attains integer values.
*/
static __isl_give isl_ast_graft *set_enforced_from_set(
__isl_take isl_ast_graft *graft,
__isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
{
isl_space *space;
isl_basic_set *enforced;
isl_pw_multi_aff *pma;
int i, n;
if (!graft || !lower)
return isl_ast_graft_free(graft);
space = isl_set_get_space(upper);
enforced = isl_basic_set_universe(isl_space_copy(space));
space = isl_space_map_from_set(space);
pma = isl_pw_multi_aff_identity(space);
n = isl_pw_aff_list_n_pw_aff(lower);
for (i = 0; i < n; ++i) {
isl_pw_aff *pa;
isl_set *enforced_i;
isl_basic_set *hull;
isl_pw_multi_aff *pma_i;
pa = isl_pw_aff_list_get_pw_aff(lower, i);
pa = isl_pw_aff_ceil(pa);
pma_i = isl_pw_multi_aff_copy(pma);
pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
enforced_i = isl_set_copy(upper);
enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
hull = isl_set_simple_hull(enforced_i);
enforced = isl_basic_set_intersect(enforced, hull);
}
isl_pw_multi_aff_free(pma);
graft = isl_ast_graft_enforce(graft, enforced);
return graft;
}
/* Compute the constraints on the outer dimensions enforced by
* graft->node and add those constraints to graft->enforced,
* in case the upper bound is expressed as
* a list of affine expressions "upper".
*
* The enforced condition is that each lower bound expression is less
* than or equal to each upper bound expression.
*/
static __isl_give isl_ast_graft *set_enforced_from_list(
__isl_take isl_ast_graft *graft,
__isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
{
isl_set *cond;
isl_basic_set *enforced;
lower = isl_pw_aff_list_copy(lower);
upper = isl_pw_aff_list_copy(upper);
cond = isl_pw_aff_list_le_set(lower, upper);
enforced = isl_set_simple_hull(cond);
graft = isl_ast_graft_enforce(graft, enforced);
return graft;
}
/* Does "aff" have a negative constant term?
*/
static int aff_constant_is_negative(__isl_take isl_set *set,
__isl_take isl_aff *aff, void *user)
{
int *neg = user;
isl_int v;
isl_int_init(v);
isl_aff_get_constant(aff, &v);
*neg = isl_int_is_neg(v);
isl_int_clear(v);
isl_set_free(set);
isl_aff_free(aff);
return *neg ? 0 : -1;
}
/* Does "pa" have a negative constant term over its entire domain?
*/
static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
{
int r;
int *neg = user;
r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
isl_pw_aff_free(pa);
return *neg ? 0 : -1;
}
/* Does each element in "list" have a negative constant term?
*
* The callback terminates the iteration as soon an element has been
* found that does not have a negative constant term.
*/
static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
{
int neg = 1;
if (isl_pw_aff_list_foreach(list,
&pw_aff_constant_is_negative, &neg) < 0 && neg)
return -1;
return neg;
}
/* Add 1 to each of the elements in "list", where each of these elements
* is defined over the internal schedule space of "build".
*/
static __isl_give isl_pw_aff_list *list_add_one(
__isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
{
int i, n;
isl_space *space;
isl_aff *aff;
isl_pw_aff *one;
space = isl_ast_build_get_space(build, 1);
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
aff = isl_aff_add_constant_si(aff, 1);
one = isl_pw_aff_from_aff(aff);
n = isl_pw_aff_list_n_pw_aff(list);
for (i = 0; i < n; ++i) {
isl_pw_aff *pa;
pa = isl_pw_aff_list_get_pw_aff(list, i);
pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
list = isl_pw_aff_list_set_pw_aff(list, i, pa);
}
isl_pw_aff_free(one);
return list;
}
/* Set the condition part of the for node graft->node in case
* the upper bound is represented as a list of piecewise affine expressions.
*
* In particular, set the condition to
*
* iterator <= min(list of upper bounds)
*
* If each of the upper bounds has a negative constant term, then
* set the condition to
*
* iterator < min(list of (upper bound + 1)s)
*
*/
static __isl_give isl_ast_graft *set_for_cond_from_list(
__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
__isl_keep isl_ast_build *build)
{
int neg;
isl_ast_expr *bound, *iterator, *cond;
enum isl_ast_op_type type = isl_ast_op_le;
if (!graft || !list)
return isl_ast_graft_free(graft);
neg = list_constant_is_negative(list);
if (neg < 0)
return isl_ast_graft_free(graft);
list = isl_pw_aff_list_copy(list);
if (neg) {
list = list_add_one(list, build);
type = isl_ast_op_lt;
}
bound = reduce_list(isl_ast_op_min, list, build);
iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
cond = isl_ast_expr_alloc_binary(type, iterator, bound);
graft->node->u.f.cond = cond;
isl_pw_aff_list_free(list);
if (!graft->node->u.f.cond)
return isl_ast_graft_free(graft);
return graft;
}
/* Set the condition part of the for node graft->node in case
* the upper bound is represented as a set.
*/
static __isl_give isl_ast_graft *set_for_cond_from_set(
__isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
__isl_keep isl_ast_build *build)
{
isl_ast_expr *cond;
if (!graft)
return NULL;
cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
graft->node->u.f.cond = cond;
if (!graft->node->u.f.cond)
return isl_ast_graft_free(graft);
return graft;
}
/* Construct an isl_ast_expr for the increment (i.e., stride) of
* the current dimension.
*/
static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
{
int depth;
isl_int v;
isl_ctx *ctx;
isl_ast_expr *inc;
if (!build)
return NULL;
ctx = isl_ast_build_get_ctx(build);
depth = isl_ast_build_get_depth(build);
if (!isl_ast_build_has_stride(build, depth))
return isl_ast_expr_alloc_int_si(ctx, 1);
isl_int_init(v);
isl_ast_build_get_stride(build, depth, &v);
inc = isl_ast_expr_alloc_int(ctx, v);
isl_int_clear(v);
return inc;
}
/* Should we express the loop condition as
*
* iterator <= min(list of upper bounds)
*
* or as a conjunction of constraints?
*
* The first is constructed from a list of upper bounds.
* The second is constructed from a set.
*
* If there are no upper bounds in "constraints", then this could mean
* that "domain" simply doesn't have an upper bound or that we didn't
* pick any upper bound. In the first case, we want to generate the
* loop condition as a(n empty) conjunction of constraints
* In the second case, we will compute
* a single upper bound from "domain" and so we use the list form.
*
* If there are upper bounds in "constraints",
* then we use the list form iff the atomic_upper_bound option is set.
*/
static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
__isl_keep isl_set *domain, int depth)
{
if (n_upper > 0)
return isl_options_get_ast_build_atomic_upper_bound(ctx);
else
return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
}
/* Fill in the expressions of the for node in graft->node.
*
* In particular,
* - set the initialization part of the loop to the maximum of the lower bounds
* - set the size of the iterator based on the values attained by the iterator
* - extract the increment from the stride of the current dimension
* - construct the for condition either based on a list of upper bounds
* or on a set of upper bound constraints.
*/
static __isl_give isl_ast_graft *set_for_node_expressions(
__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
int use_list, __isl_keep isl_pw_aff_list *upper_list,
__isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
{
isl_ast_node *node;
if (!graft)
return NULL;
build = isl_ast_build_copy(build);
build = isl_ast_build_set_enforced(build,
isl_ast_graft_get_enforced(graft));
node = graft->node;
node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
node->u.f.inc = for_inc(build);
if (use_list)
graft = set_for_cond_from_list(graft, upper_list, build);
else
graft = set_for_cond_from_set(graft, upper_set, build);
isl_ast_build_free(build);
if (!node->u.f.iterator || !node->u.f.init ||
!node->u.f.cond || !node->u.f.inc)
return isl_ast_graft_free(graft);
return graft;
}
/* Update "graft" based on "bounds" and "domain" for the generic,
* non-degenerate, case.
*
* "constraints" contains the "n_lower" lower and "n_upper" upper bounds
* that the loop node should express.
* "domain" is the subset of the intersection of the constraints
* for which some code is executed.
*
* There may be zero lower bounds or zero upper bounds in "constraints"
* in case the list of constraints was created
* based on the atomic option or based on separation with explicit bounds.
* In that case, we use "domain" to derive lower and/or upper bounds.
*
* We first compute a list of one or more lower bounds.
*
* Then we decide if we want to express the condition as
*
* iterator <= min(list of upper bounds)
*
* or as a conjunction of constraints.
*
* The set of enforced constraints is then computed either based on
* a list of upper bounds or on a set of upper bound constraints.
* We do not compute any enforced constraints if we were forced
* to compute a lower or upper bound using exact_bound. The domains
* of the resulting expressions may imply some bounds on outer dimensions
* that we do not want to appear in the enforced constraints since
* they are not actually enforced by the corresponding code.
*
* Finally, we fill in the expressions of the for node.
*/
static __isl_give isl_ast_graft *refine_generic_bounds(
__isl_take isl_ast_graft *graft,
__isl_keep isl_constraint **constraint, int n_lower, int n_upper,
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
int depth;
isl_ctx *ctx;
isl_pw_aff_list *lower;
int use_list;
isl_set *upper_set = NULL;
isl_pw_aff_list *upper_list = NULL;
if (!graft || !build)
return isl_ast_graft_free(graft);
depth = isl_ast_build_get_depth(build);
ctx = isl_ast_graft_get_ctx(graft);
use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
lower = lower_bounds(constraint, n_lower, depth, domain, build);
if (use_list)
upper_list = upper_bounds(constraint + n_lower, n_upper, depth,
domain, build);
else if (n_upper > 0)
upper_set = intersect_constraints(ctx, constraint + n_lower,
n_upper);
else
upper_set = isl_set_universe(isl_set_get_space(domain));
if (n_lower == 0 || n_upper == 0)
;
else if (use_list)
graft = set_enforced_from_list(graft, lower, upper_list);
else
graft = set_enforced_from_set(graft, lower, depth, upper_set);
graft = set_for_node_expressions(graft, lower, use_list, upper_list,
upper_set, build);
isl_pw_aff_list_free(lower);
isl_pw_aff_list_free(upper_list);
isl_set_free(upper_set);
return graft;
}
/* How many constraints in the "constraint" array, starting at position "first"
* are of the give type? "n" represents the total number of elements
* in the array.
*/
static int count_constraints(isl_constraint **constraint, int n, int first,
int pos, int type)
{
int i;
constraint += first;
for (i = 0; first + i < n; i++)
if (constraint_type(constraint[i], pos) != type)
break;
return i;
}
/* Update "graft" based on "bounds" and "domain" for the generic,
* non-degenerate, case.
*
* "list" respresent the list of bounds that need to be encoded by
* the for loop (or a guard around the for loop).
* "domain" is the subset of the intersection of the constraints
* for which some code is executed.
* "build" is the build in which graft->node was created.
*
* We separate lower bounds, upper bounds and constraints that
* are independent of the loop iterator.
*
* The actual for loop bounds are generated in refine_generic_bounds.
* If there are any constraints that are independent of the loop iterator,
* we need to put a guard around the for loop (which may get hoisted up
* to higher levels) and we call refine_generic_bounds in a build
* where this guard is enforced.
*/
static __isl_give isl_ast_graft *refine_generic_split(
__isl_take isl_ast_graft *graft, __isl_keep isl_constraint_list *list,
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
isl_ctx *ctx;
isl_ast_build *for_build;
isl_set *guard;
int n_indep, n_lower, n_upper;
int pos;
int n;
if (!list)
return isl_ast_graft_free(graft);
pos = isl_ast_build_get_depth(build);
if (isl_sort(list->p, list->n, sizeof(isl_constraint *),
&cmp_constraint, &pos) < 0)
return isl_ast_graft_free(graft);
n = list->n;
n_indep = count_constraints(list->p, n, 0, pos, 0);
n_lower = count_constraints(list->p, n, n_indep, pos, 1);
n_upper = count_constraints(list->p, n, n_indep + n_lower, pos, 2);
if (n_indep == 0)
return refine_generic_bounds(graft,
list->p + n_indep, n_lower, n_upper, domain, build);
ctx = isl_ast_graft_get_ctx(graft);
guard = intersect_constraints(ctx, list->p, n_indep);
for_build = isl_ast_build_copy(build);
for_build = isl_ast_build_restrict_pending(for_build,
isl_set_copy(guard));
graft = refine_generic_bounds(graft,
list->p + n_indep, n_lower, n_upper, domain, for_build);
isl_ast_build_free(for_build);
graft = isl_ast_graft_add_guard(graft, guard, build);
return graft;
}
/* Update "graft" based on "bounds" and "domain" for the generic,
* non-degenerate, case.
*
* "bounds" respresent the bounds that need to be encoded by
* the for loop (or a guard around the for loop).
* "domain" is the subset of "bounds" for which some code is executed.
* "build" is the build in which graft->node was created.
*
* We break up "bounds" into a list of constraints and continue with
* refine_generic_split.
*/
static __isl_give isl_ast_graft *refine_generic(
__isl_take isl_ast_graft *graft,
__isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
__isl_keep isl_ast_build *build)
{
isl_constraint_list *list;
if (!build || !graft)
return isl_ast_graft_free(graft);
bounds = isl_basic_set_copy(bounds);
bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
list = isl_constraint_list_from_basic_set(bounds);
graft = refine_generic_split(graft, list, domain, build);
isl_constraint_list_free(list);
return graft;
}
/* Create a for node for the current level.
*
* Mark the for node degenerate if "degenerate" is set.
*/
static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
int degenerate)
{
int depth;
isl_id *id;
isl_ast_node *node;
if (!build)
return NULL;
depth = isl_ast_build_get_depth(build);
id = isl_ast_build_get_iterator_id(build, depth);
node = isl_ast_node_alloc_for(id);
if (degenerate)
node = isl_ast_node_for_mark_degenerate(node);
return node;
}
/* Create an AST node for the current dimension based on
* the schedule domain "bounds" and return the node encapsulated
* in an isl_ast_graft.
*
* "executed" is the current inverse schedule, taking into account
* the bounds in "bounds"
* "domain" is the domain of "executed", with inner dimensions projected out.
* It may be a strict subset of "bounds" in case "bounds" was created
* based on the atomic option or based on separation with explicit bounds.
*
* "domain" may satisfy additional equalities that result
* from intersecting "executed" with "bounds" in add_node.
* It may also satisfy some global constraints that were dropped out because
* we performed separation with explicit bounds.
* The very first step is then to copy these constraints to "bounds".
*
* Since we may be calling before_each_for and after_each_for
* callbacks, we record the current inverse schedule in the build.
*
* We consider three builds,
* "build" is the one in which the current level is created,
* "body_build" is the build in which the next level is created,
* "sub_build" is essentially the same as "body_build", except that
* the depth has not been increased yet.
*
* "build" already contains information (in strides and offsets)
* about the strides at the current level, but this information is not
* reflected in the build->domain.
* We first add this information and the "bounds" to the sub_build->domain.
* isl_ast_build_set_loop_bounds checks whether the current dimension attains
* only a single value and whether this single value can be represented using
* a single affine expression.
* In the first case, the current level is considered "degenerate".
* In the second, sub-case, the current level is considered "eliminated".
* Eliminated level don't need to be reflected in the AST since we can
* simply plug in the affine expression. For degenerate, but non-eliminated,
* levels, we do introduce a for node, but mark is as degenerate so that
* it can be printed as an assignment of the single value to the loop
* "iterator".
*
* If the current level is eliminated, we eliminate the current dimension
* from the inverse schedule to make sure no inner dimensions depend
* on the current dimension. Otherwise, we create a for node, marking
* it degenerate if appropriate. The initial for node is still incomplete
* and will be completed in either refine_degenerate or refine_generic.
*
* We then generate a sequence of grafts for the next level,
* create a surrounding graft for the current level and insert
* the for node we created (if the current level is not eliminated).
*
* Finally, we set the bounds of the for loop and insert guards
* (either in the AST or in the graft) in one of
* refine_eliminated, refine_degenerate or refine_generic.
*/
static __isl_give isl_ast_graft *create_node_scaled(
__isl_take isl_union_map *executed,
__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
__isl_take isl_ast_build *build)
{
int depth;
int degenerate, eliminated;
isl_basic_set *hull;
isl_ast_node *node = NULL;
isl_ast_graft *graft;
isl_ast_graft_list *children;
isl_ast_build *sub_build;
isl_ast_build *body_build;
domain = isl_ast_build_eliminate_divs(build, domain);
domain = isl_set_detect_equalities(domain);
hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
bounds = isl_basic_set_intersect(bounds, hull);
build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
depth = isl_ast_build_get_depth(build);
sub_build = isl_ast_build_copy(build);
sub_build = isl_ast_build_include_stride(sub_build);
sub_build = isl_ast_build_set_loop_bounds(sub_build,
isl_basic_set_copy(bounds));
degenerate = isl_ast_build_has_value(sub_build);
eliminated = isl_ast_build_has_affine_value(sub_build, depth);
if (degenerate < 0 || eliminated < 0)
executed = isl_union_map_free(executed);
if (eliminated)
executed = eliminate(executed, depth, build);
else
node = create_for(build, degenerate);
body_build = isl_ast_build_copy(sub_build);
body_build = isl_ast_build_increase_depth(body_build);
if (!eliminated)
node = before_each_for(node, body_build);
children = generate_next_level(executed,
isl_ast_build_copy(body_build));
graft = isl_ast_graft_alloc_level(children, sub_build);
if (!eliminated)
graft = isl_ast_graft_insert_for(graft, node);
if (eliminated)
graft = refine_eliminated(graft, bounds, build);
else if (degenerate)
graft = refine_degenerate(graft, bounds, build, sub_build);
else
graft = refine_generic(graft, bounds, domain, build);
if (!eliminated)
graft = after_each_for(graft, body_build);
isl_ast_build_free(body_build);
isl_ast_build_free(sub_build);
isl_ast_build_free(build);
isl_basic_set_free(bounds);
isl_set_free(domain);
return graft;
}
/* Internal data structure for checking if all constraints involving
* the input dimension "depth" are such that the other coefficients
* are multiples of "m", reducing "m" if they are not.
* If "m" is reduced all the way down to "1", then the check has failed
* and we break out of the iteration.
* "d" is an initialized isl_int that can be used internally.
*/
struct isl_check_scaled_data {
int depth;
isl_int m, d;
};
/* If constraint "c" involves the input dimension data->depth,
* then make sure that all the other coefficients are multiples of data->m,
* reducing data->m if needed.
* Break out of the iteration if data->m has become equal to "1".
*/
static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
{
struct isl_check_scaled_data *data = user;
int i, j, n;
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
isl_dim_div };
if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
isl_constraint_free(c);
return 0;
}
for (i = 0; i < 4; ++i) {
n = isl_constraint_dim(c, t[i]);
for (j = 0; j < n; ++j) {
if (t[i] == isl_dim_in && j == data->depth)
continue;
if (!isl_constraint_involves_dims(c, t[i], j, 1))
continue;
isl_constraint_get_coefficient(c, t[i], j, &data->d);
isl_int_gcd(data->m, data->m, data->d);
if (isl_int_is_one(data->m))
break;
}
if (j < n)
break;
}
isl_constraint_free(c);
return i < 4 ? -1 : 0;
}
/* For each constraint of "bmap" that involves the input dimension data->depth,
* make sure that all the other coefficients are multiples of data->m,
* reducing data->m if needed.
* Break out of the iteration if data->m has become equal to "1".
*/
static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
{
int r;
r = isl_basic_map_foreach_constraint(bmap,
&constraint_check_scaled, user);
isl_basic_map_free(bmap);
return r;
}
/* For each constraint of "map" that involves the input dimension data->depth,
* make sure that all the other coefficients are multiples of data->m,
* reducing data->m if needed.
* Break out of the iteration if data->m has become equal to "1".
*/
static int map_check_scaled(__isl_take isl_map *map, void *user)
{
int r;
r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
isl_map_free(map);
return r;
}
/* Create an AST node for the current dimension based on
* the schedule domain "bounds" and return the node encapsulated
* in an isl_ast_graft.
*
* "executed" is the current inverse schedule, taking into account
* the bounds in "bounds"
* "domain" is the domain of "executed", with inner dimensions projected out.
*
*
* Before moving on to the actual AST node construction in create_node_scaled,
* we first check if the current dimension is strided and if we can scale
* down this stride. Note that we only do this if the ast_build_scale_strides
* option is set.
*
* In particular, let the current dimension take on values
*
* f + s a
*
* with a an integer. We check if we can find an integer m that (obviouly)
* divides both f and s.
*
* If so, we check if the current dimension only appears in constraints
* where the coefficients of the other variables are multiples of m.
* We perform this extra check to avoid the risk of introducing
* divisions by scaling down the current dimension.
*
* If so, we scale the current dimension down by a factor of m.
* That is, we plug in
*
* i = m i' (1)
*
* Note that in principle we could always scale down strided loops
* by plugging in
*
* i = f + s i'
*
* but this may result in i' taking on larger values than the original i,
* due to the shift by "f".
* By constrast, the scaling in (1) can only reduce the (absolute) value "i".
*/
static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
__isl_take isl_ast_build *build)
{
struct isl_check_scaled_data data;
isl_ctx *ctx;
isl_aff *offset;
ctx = isl_ast_build_get_ctx(build);
if (!isl_options_get_ast_build_scale_strides(ctx))
return create_node_scaled(executed, bounds, domain, build);
data.depth = isl_ast_build_get_depth(build);
if (!isl_ast_build_has_stride(build, data.depth))
return create_node_scaled(executed, bounds, domain, build);
isl_int_init(data.m);
isl_int_init(data.d);
offset = isl_ast_build_get_offset(build, data.depth);
if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
offset = isl_aff_free(offset);
offset = isl_aff_scale_down(offset, data.m);
if (isl_aff_get_denominator(offset, &data.d) < 0)
executed = isl_union_map_free(executed);
if (executed && isl_int_is_divisible_by(data.m, data.d))
isl_int_divexact(data.m, data.m, data.d);
else
isl_int_set_si(data.m, 1);
if (!isl_int_is_one(data.m)) {
if (isl_union_map_foreach_map(executed, &map_check_scaled,
&data) < 0 &&
!isl_int_is_one(data.m))
executed = isl_union_map_free(executed);
}
if (!isl_int_is_one(data.m)) {
isl_space *space;
isl_multi_aff *ma;
isl_aff *aff;
isl_map *map;
isl_union_map *umap;
space = isl_ast_build_get_space(build, 1);
space = isl_space_map_from_set(space);
ma = isl_multi_aff_identity(space);
aff = isl_multi_aff_get_aff(ma, data.depth);
aff = isl_aff_scale(aff, data.m);
ma = isl_multi_aff_set_aff(ma, data.depth, aff);
bounds = isl_basic_set_preimage_multi_aff(bounds,
isl_multi_aff_copy(ma));
domain = isl_set_preimage_multi_aff(domain,
isl_multi_aff_copy(ma));
map = isl_map_reverse(isl_map_from_multi_aff(ma));
umap = isl_union_map_from_map(map);
executed = isl_union_map_apply_domain(executed,
isl_union_map_copy(umap));
build = isl_ast_build_scale_down(build, data.m, umap);
}
isl_aff_free(offset);
isl_int_clear(data.d);
isl_int_clear(data.m);
return create_node_scaled(executed, bounds, domain, build);
}
/* Add the basic set to the list that "user" points to.
*/
static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
{
isl_basic_set_list **list = user;
*list = isl_basic_set_list_add(*list, bset);
return 0;
}
/* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
*/
static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
__isl_take isl_set *set)
{
int n;
isl_ctx *ctx;
isl_basic_set_list *list;
if (!set)
return NULL;
ctx = isl_set_get_ctx(set);
n = isl_set_n_basic_set(set);
list = isl_basic_set_list_alloc(ctx, n);
if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
list = isl_basic_set_list_free(list);
isl_set_free(set);
return list;
}
/* Generate code for the schedule domain "bounds"
* and add the result to "list".
*
* We mainly detect strides and additional equalities here
* and then pass over control to create_node.
*
* "bounds" reflects the bounds on the current dimension and possibly
* some extra conditions on outer dimensions.
* It does not, however, include any divs involving the current dimension,
* so it does not capture any stride constraints.
* We therefore need to compute that part of the schedule domain that
* intersects with "bounds" and derive the strides from the result.
*/
static __isl_give isl_ast_graft_list *add_node(
__isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
__isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
{
isl_ast_graft *graft;
isl_set *domain = NULL;
isl_union_set *uset;
int empty;
uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
executed = isl_union_map_intersect_domain(executed, uset);
empty = isl_union_map_is_empty(executed);
if (empty < 0)
goto error;
if (empty)
goto done;
uset = isl_union_map_domain(isl_union_map_copy(executed));
domain = isl_set_from_union_set(uset);
domain = isl_ast_build_compute_gist(build, domain);
empty = isl_set_is_empty(domain);
if (empty < 0)
goto error;
if (empty)
goto done;
domain = isl_ast_build_eliminate_inner(build, domain);
build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
graft = create_node(executed, bounds, domain,
isl_ast_build_copy(build));
list = isl_ast_graft_list_add(list, graft);
isl_ast_build_free(build);
return list;
error:
list = isl_ast_graft_list_free(list);
done:
isl_set_free(domain);
isl_basic_set_free(bounds);
isl_union_map_free(executed);
isl_ast_build_free(build);
return list;
}
struct isl_domain_follows_at_depth_data {
int depth;
isl_basic_set **piece;
};
/* Does any element of i follow or coincide with any element of j
* at the current depth (data->depth) for equal values of the outer
* dimensions?
*/
static int domain_follows_at_depth(int i, int j, void *user)
{
struct isl_domain_follows_at_depth_data *data = user;
isl_basic_map *test;
int empty;
int l;
test = isl_basic_map_from_domain_and_range(
isl_basic_set_copy(data->piece[i]),
isl_basic_set_copy(data->piece[j]));
for (l = 0; l < data->depth; ++l)
test = isl_basic_map_equate(test, isl_dim_in, l,
isl_dim_out, l);
test = isl_basic_map_order_ge(test, isl_dim_in, data->depth,
isl_dim_out, data->depth);
empty = isl_basic_map_is_empty(test);
isl_basic_map_free(test);
return empty < 0 ? -1 : !empty;
}
static __isl_give isl_ast_graft_list *generate_sorted_domains(
__isl_keep isl_basic_set_list *domain_list,
__isl_keep isl_union_map *executed,
__isl_keep isl_ast_build *build);
/* Generate code for the "n" schedule domains in "domain_list"
* with positions specified by the entries of the "pos" array
* and add the results to "list".
*
* The "n" domains form a strongly connected component in the ordering.
* If n is larger than 1, then this means that we cannot determine a valid
* ordering for the n domains in the component. This should be fairly
* rare because the individual domains have been made disjoint first.
* The problem is that the domains may be integrally disjoint but not
* rationally disjoint. For example, we may have domains
*
* { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
*
* These two domains have an empty intersection, but their rational
* relaxations do intersect. It is impossible to order these domains
* in the second dimension because the first should be ordered before
* the second for outer dimension equal to 0, while it should be ordered
* after for outer dimension equal to 1.
*
* This may happen in particular in case of unrolling since the domain
* of each slice is replaced by its simple hull.
*
* We collect the basic sets in the component, call isl_set_make_disjoint
* and try again. Note that we rely here on isl_set_make_disjoint also
* making the basic sets rationally disjoint. If the basic sets
* are rationally disjoint, then the ordering problem does not occur.
* To see this, there can only be a problem if there are points
* (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
* a < c and b > d. This means that either the interval spanned
* by a en b lies inside that spanned by c and or the other way around.
* In either case, there is a point inside both intervals with the
* convex combination in terms of a and b and in terms of c and d.
* Taking the same combination of i and j gives a point in the intersection.
*/
static __isl_give isl_ast_graft_list *add_nodes(
__isl_take isl_ast_graft_list *list, int *pos, int n,
__isl_keep isl_basic_set_list *domain_list,
__isl_keep isl_union_map *executed,
__isl_keep isl_ast_build *build)
{
int i;
isl_basic_set *bset;
isl_set *set;
bset = isl_basic_set_list_get_basic_set(domain_list, pos[0]);
if (n == 1)
return add_node(list, isl_union_map_copy(executed), bset,
isl_ast_build_copy(build));
set = isl_set_from_basic_set(bset);
for (i = 1; i < n; ++i) {
bset = isl_basic_set_list_get_basic_set(domain_list, pos[i]);
set = isl_set_union(set, isl_set_from_basic_set(bset));
}
set = isl_set_make_disjoint(set);
if (isl_set_n_basic_set(set) == n)
isl_die(isl_ast_graft_list_get_ctx(list), isl_error_internal,
"unable to separate loop parts", goto error);
domain_list = isl_basic_set_list_from_set(set);
list = isl_ast_graft_list_concat(list,
generate_sorted_domains(domain_list, executed, build));
isl_basic_set_list_free(domain_list);
return list;
error:
isl_set_free(set);
return isl_ast_graft_list_free(list);
}
/* Sort the domains in "domain_list" according to the execution order
* at the current depth (for equal values of the outer dimensions),
* generate code for each of them, collecting the results in a list.
* If no code is generated (because the intersection of the inverse schedule
* with the domains turns out to be empty), then an empty list is returned.
*
* The caller is responsible for ensuring that the basic sets in "domain_list"
* are pair-wise disjoint. It can, however, in principle happen that
* two basic sets should be ordered one way for one value of the outer
* dimensions and the other way for some other value of the outer dimensions.
* We therefore play safe and look for strongly connected components.
* The function add_nodes takes care of handling non-trivial components.
*/
static __isl_give isl_ast_graft_list *generate_sorted_domains(
__isl_keep isl_basic_set_list *domain_list,
__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
{
isl_ctx *ctx;
isl_ast_graft_list *list;
struct isl_domain_follows_at_depth_data data;
struct isl_tarjan_graph *g;
int i, n;
if (!domain_list)
return NULL;
ctx = isl_basic_set_list_get_ctx(domain_list);
n = isl_basic_set_list_n_basic_set(domain_list);
list = isl_ast_graft_list_alloc(ctx, n);
if (n == 0)
return list;
if (n == 1)
return add_node(list, isl_union_map_copy(executed),
isl_basic_set_list_get_basic_set(domain_list, 0),
isl_ast_build_copy(build));
data.depth = isl_ast_build_get_depth(build);
data.piece = domain_list->p;
g = isl_tarjan_graph_init(ctx, n, &domain_follows_at_depth, &data);
if (!g)
goto error;
i = 0;
while (list && n) {
int first;
if (g->order[i] == -1)
isl_die(ctx, isl_error_internal, "cannot happen",
goto error);
first = i;
while (g->order[i] != -1) {
++i; --n;
}
list = add_nodes(list, g->order + first, i - first,
domain_list, executed, build);
++i;
}
if (0)
error: list = isl_ast_graft_list_free(list);
isl_tarjan_graph_free(g);
return list;
}
struct isl_shared_outer_data {
int depth;
isl_basic_set **piece;
};
/* Do elements i and j share any values for the outer dimensions?
*/
static int shared_outer(int i, int j, void *user)
{
struct isl_shared_outer_data *data = user;
isl_basic_map *test;
int empty;
int l;
test = isl_basic_map_from_domain_and_range(
isl_basic_set_copy(data->piece[i]),
isl_basic_set_copy(data->piece[j]));
for (l = 0; l < data->depth; ++l)
test = isl_basic_map_equate(test, isl_dim_in, l,
isl_dim_out, l);
empty = isl_basic_map_is_empty(test);
isl_basic_map_free(test);
return empty < 0 ? -1 : !empty;
}
/* Call generate_sorted_domains on a list containing the elements
* of "domain_list indexed by the first "n" elements of "pos".
*/
static __isl_give isl_ast_graft_list *generate_sorted_domains_part(
__isl_keep isl_basic_set_list *domain_list, int *pos, int n,
__isl_keep isl_union_map *executed,
__isl_keep isl_ast_build *build)
{
int i;
isl_ctx *ctx;
isl_basic_set_list *slice;
isl_ast_graft_list *list;
ctx = isl_ast_build_get_ctx(build);
slice = isl_basic_set_list_alloc(ctx, n);
for (i = 0; i < n; ++i) {
isl_basic_set *bset;
bset = isl_basic_set_copy(domain_list->p[pos[i]]);
slice = isl_basic_set_list_add(slice, bset);
}
list = generate_sorted_domains(slice, executed, build);
isl_basic_set_list_free(slice);
return list;
}
/* Look for any (weakly connected) components in the "domain_list"
* of domains that share some values of the outer dimensions.
* That is, domains in different components do not share any values
* of the outer dimensions. This means that these components
* can be freely reorderd.
* Within each of the components, we sort the domains according
* to the execution order at the current depth.
*
* We fuse the result of each call to generate_sorted_domains_part
* into a list with either zero or one graft and collect these (at most)
* single element lists into a bigger list. This means that the elements of the
* final list can be freely reordered. In particular, we sort them
* according to an arbitrary but fixed ordering to ease merging of
* graft lists from different components.
*/
static __isl_give isl_ast_graft_list *generate_parallel_domains(
__isl_keep isl_basic_set_list *domain_list,
__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
{
int i, n;
isl_ctx *ctx;
isl_ast_graft_list *list;
struct isl_shared_outer_data data;
struct isl_tarjan_graph *g;
if (!domain_list)
return NULL;
n = isl_basic_set_list_n_basic_set(domain_list);
if (n <= 1)
return generate_sorted_domains(domain_list, executed, build);
ctx = isl_basic_set_list_get_ctx(domain_list);
data.depth = isl_ast_build_get_depth(build);
data.piece = domain_list->p;
g = isl_tarjan_graph_init(ctx, n, &shared_outer, &data);
if (!g)
return NULL;
i = 0;
do {
int first;
isl_ast_graft_list *list_c;
if (g->order[i] == -1)
isl_die(ctx, isl_error_internal, "cannot happen",
break);
first = i;
while (g->order[i] != -1) {
++i; --n;
}
if (first == 0 && n == 0) {
isl_tarjan_graph_free(g);
return generate_sorted_domains(domain_list,
executed, build);
}
list_c = generate_sorted_domains_part(domain_list,
g->order + first, i - first, executed, build);
list_c = isl_ast_graft_list_fuse(list_c, build);
if (first == 0)
list = list_c;
else
list = isl_ast_graft_list_concat(list, list_c);
++i;
} while (list && n);
if (n > 0)
list = isl_ast_graft_list_free(list);
list = isl_ast_graft_list_sort(list);
isl_tarjan_graph_free(g);
return list;
}
/* Internal data for separate_domain.
*
* "explicit" is set if we only want to use explicit bounds.
*
* "domain" collects the separated domains.
*/
struct isl_separate_domain_data {
isl_ast_build *build;
int explicit;
isl_set *domain;
};
/* Extract implicit bounds on the current dimension for the executed "map".
*
* The domain of "map" may involve inner dimensions, so we
* need to eliminate them.
*/
static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
__isl_keep isl_ast_build *build)
{
isl_set *domain;
domain = isl_map_domain(map);
domain = isl_ast_build_eliminate(build, domain);
return domain;
}
/* Extract explicit bounds on the current dimension for the executed "map".
*
* Rather than eliminating the inner dimensions as in implicit_bounds,
* we simply drop any constraints involving those inner dimensions.
* The idea is that most bounds that are implied by constraints on the
* inner dimensions will be enforced by for loops and not by explicit guards.
* There is then no need to separate along those bounds.
*/
static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
__isl_keep isl_ast_build *build)
{
isl_set *domain;
int depth, dim;
dim = isl_map_dim(map, isl_dim_out);
map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
domain = isl_map_domain(map);
depth = isl_ast_build_get_depth(build);
dim = isl_set_dim(domain, isl_dim_set);
domain = isl_set_detect_equalities(domain);
domain = isl_set_drop_constraints_involving_dims(domain,
isl_dim_set, depth + 1, dim - (depth + 1));
domain = isl_set_remove_divs_involving_dims(domain,
isl_dim_set, depth, 1);
domain = isl_set_remove_unknown_divs(domain);
return domain;
}
/* Split data->domain into pieces that intersect with the range of "map"
* and pieces that do not intersect with the range of "map"
* and then add that part of the range of "map" that does not intersect
* with data->domain.
*/
static int separate_domain(__isl_take isl_map *map, void *user)
{
struct isl_separate_domain_data *data = user;
isl_set *domain;
isl_set *d1, *d2;
if (data->explicit)
domain = explicit_bounds(map, data->build);
else
domain = implicit_bounds(map, data->build);
domain = isl_set_coalesce(domain);
domain = isl_set_make_disjoint(domain);
d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
data->domain = isl_set_intersect(data->domain, domain);
data->domain = isl_set_union(data->domain, d1);
data->domain = isl_set_union(data->domain, d2);
return 0;
}
/* Separate the schedule domains of "executed".
*
* That is, break up the domain of "executed" into basic sets,
* such that for each basic set S, every element in S is associated with
* the same domain spaces.
*
* "space" is the (single) domain space of "executed".
*/
static __isl_give isl_set *separate_schedule_domains(
__isl_take isl_space *space, __isl_take isl_union_map *executed,
__isl_keep isl_ast_build *build)
{
struct isl_separate_domain_data data = { build };
isl_ctx *ctx;
ctx = isl_ast_build_get_ctx(build);
data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
data.domain = isl_set_empty(space);
if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
data.domain = isl_set_free(data.domain);
isl_union_map_free(executed);
return data.domain;
}
/* Temporary data used during the search for a lower bound for unrolling.
*
* "domain" is the original set for which to find a lower bound
* "depth" is the dimension for which to find a lower boudn
*
* "lower" is the best lower bound found so far. It is NULL if we have not
* found any yet.
* "n" is the corresponding size. If lower is NULL, then the value of n
* is undefined.
*
* "tmp" is a temporary initialized isl_int.
*/
struct isl_find_unroll_data {
isl_set *domain;
int depth;
isl_aff *lower;
int *n;
isl_int tmp;
};
/* Check if we can use "c" as a lower bound and if it is better than
* any previously found lower bound.
*
* If "c" does not involve the dimension at the current depth,
* then we cannot use it.
* Otherwise, let "c" be of the form
*
* i >= f(j)/a
*
* We compute the maximal value of
*
* -ceil(f(j)/a)) + i + 1
*
* over the domain. If there is such a value "n", then we know
*
* -ceil(f(j)/a)) + i + 1 <= n
*
* or
*
* i < ceil(f(j)/a)) + n
*
* meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
* We just need to check if we have found any lower bound before and
* if the new lower bound is better (smaller n) than the previously found
* lower bounds.
*/
static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
__isl_keep isl_constraint *c)
{
isl_aff *aff, *lower;
enum isl_lp_result res;
if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
return 0;
lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
lower = isl_aff_ceil(lower);
aff = isl_aff_copy(lower);
aff = isl_aff_neg(aff);
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
aff = isl_aff_add_constant_si(aff, 1);
res = isl_set_max(data->domain, aff, &data->tmp);
isl_aff_free(aff);
if (res == isl_lp_error)
goto error;
if (res == isl_lp_unbounded) {
isl_aff_free(lower);
return 0;
}
if (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0) {
isl_aff_free(data->lower);
data->lower = lower;
*data->n = isl_int_get_si(data->tmp);
} else
isl_aff_free(lower);
return 1;
error:
isl_aff_free(lower);
return -1;
}
/* Check if we can use "c" as a lower bound and if it is better than
* any previously found lower bound.
*/
static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
{
struct isl_find_unroll_data *data;
int r;
data = (struct isl_find_unroll_data *) user;
r = update_unrolling_lower_bound(data, c);
isl_constraint_free(c);
return r;
}
/* Look for a lower bound l(i) on the dimension at "depth"
* and a size n such that "domain" is a subset of
*
* { [i] : l(i) <= i_d < l(i) + n }
*
* where d is "depth" and l(i) depends only on earlier dimensions.
* Furthermore, try and find a lower bound such that n is as small as possible.
* In particular, "n" needs to be finite.
*
* Inner dimensions have been eliminated from "domain" by the caller.
*
* We first construct a collection of lower bounds on the input set
* by computing its simple hull. We then iterate through them,
* discarding those that we cannot use (either because they do not
* involve the dimension at "depth" or because they have no corresponding
* upper bound, meaning that "n" would be unbounded) and pick out the
* best from the remaining ones.
*
* If we cannot find a suitable lower bound, then we consider that
* to be an error.
*/
static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
int depth, int *n)
{
struct isl_find_unroll_data data = { domain, depth, NULL, n };
isl_basic_set *hull;
isl_int_init(data.tmp);
hull = isl_set_simple_hull(isl_set_copy(domain));
if (isl_basic_set_foreach_constraint(hull,
&constraint_find_unroll, &data) < 0)
goto error;
isl_basic_set_free(hull);
isl_int_clear(data.tmp);
if (!data.lower)
isl_die(isl_set_get_ctx(domain), isl_error_invalid,
"cannot find lower bound for unrolling", return NULL);
return data.lower;
error:
isl_basic_set_free(hull);
isl_int_clear(data.tmp);
return isl_aff_free(data.lower);
}
/* Intersect "set" with the constraint
*
* i_"depth" = aff + offset
*/
static __isl_give isl_set *at_offset(__isl_take isl_set *set, int depth,
__isl_keep isl_aff *aff, int offset)
{
isl_constraint *eq;
aff = isl_aff_copy(aff);
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
aff = isl_aff_add_constant_si(aff, offset);
eq = isl_equality_from_aff(aff);
set = isl_set_add_constraint(set, eq);
return set;
}
/* Return a list of basic sets, one for each value of the current dimension
* in "domain".
* The divs that involve the current dimension have not been projected out
* from this domain.
*
* Since we are going to be iterating over the individual values,
* we first check if there are any strides on the current dimension.
* If there is, we rewrite the current dimension i as
*
* i = stride i' + offset
*
* and then iterate over individual values of i' instead.
*
* We then look for a lower bound on i' and a size such that the domain
* is a subset of
*
* { [j,i'] : l(j) <= i' < l(j) + n }
*
* and then take slices of the domain at values of i'
* between l(j) and l(j) + n - 1.
*
* We compute the unshifted simple hull of each slice to ensure that
* we have a single basic set per offset. The slicing constraint
* is preserved by taking the unshifted simple hull, so these basic sets
* remain disjoint. The constraints that are dropped by taking the hull
* will be taken into account at the next level, as in the case of the
* atomic option.
*
* Finally, we map i' back to i and add each basic set to the list.
*/
static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
__isl_keep isl_ast_build *build)
{
int i, n;
int depth;
isl_ctx *ctx;
isl_aff *lower;
isl_basic_set_list *list;
isl_multi_aff *expansion;
isl_basic_map *bmap;
if (!domain)
return NULL;
ctx = isl_set_get_ctx(domain);
depth = isl_ast_build_get_depth(build);
build = isl_ast_build_copy(build);
domain = isl_ast_build_eliminate_inner(build, domain);
build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
expansion = isl_ast_build_get_stride_expansion(build);
domain = isl_set_preimage_multi_aff(domain,
isl_multi_aff_copy(expansion));
domain = isl_ast_build_eliminate_divs(build, domain);
isl_ast_build_free(build);
list = isl_basic_set_list_alloc(ctx, 0);
lower = find_unroll_lower_bound(domain, depth, &n);
if (!lower)
list = isl_basic_set_list_free(list);
bmap = isl_basic_map_from_multi_aff(expansion);
for (i = 0; list && i < n; ++i) {
isl_set *set;
isl_basic_set *bset;
set = at_offset(isl_set_copy(domain), depth, lower, i);
bset = isl_set_unshifted_simple_hull(set);
bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
list = isl_basic_set_list_add(list, bset);
}
isl_aff_free(lower);
isl_set_free(domain);
isl_basic_map_free(bmap);
return list;
}
/* Data structure for storing the results and the intermediate objects
* of compute_domains.
*
* "list" is the main result of the function and contains a list
* of disjoint basic sets for which code should be generated.
*
* "executed" and "build" are inputs to compute_domains.
* "schedule_domain" is the domain of "executed".
*
* "option" constains the domains at the current depth that should by
* atomic, separated or unrolled. These domains are as specified by
* the user, except that inner dimensions have been eliminated and
* that they have been made pair-wise disjoint.
*
* "sep_class" contains the user-specified split into separation classes
* specialized to the current depth.
* "done" contains the union of th separation domains that have already
* been handled.
*/
struct isl_codegen_domains {
isl_basic_set_list *list;
isl_union_map *executed;
isl_ast_build *build;
isl_set *schedule_domain;
isl_set *option[3];
isl_map *sep_class;
isl_set *done;
};
/* Add domains to domains->list for each individual value of the current
* dimension, for that part of the schedule domain that lies in the
* intersection of the option domain and the class domain.
*
* "domain" is the intersection of the class domain and the schedule domain.
* The divs that involve the current dimension have not been projected out
* from this domain.
*
* We first break up the unroll option domain into individual pieces
* and then handle each of them separately. The unroll option domain
* has been made disjoint in compute_domains_init_options,
*
* Note that we actively want to combine different pieces of the
* schedule domain that have the same value at the current dimension.
* We therefore need to break up the unroll option domain before
* intersecting with class and schedule domain, hoping that the
* unroll option domain specified by the user is relatively simple.
*/
static int compute_unroll_domains(struct isl_codegen_domains *domains,
__isl_keep isl_set *domain)
{
isl_set *unroll_domain;
isl_basic_set_list *unroll_list;
int i, n;
int empty;
empty = isl_set_is_empty(domains->option[unroll]);
if (empty < 0)
return -1;
if (empty)
return 0;
unroll_domain = isl_set_copy(domains->option[unroll]);
unroll_list = isl_basic_set_list_from_set(unroll_domain);
n = isl_basic_set_list_n_basic_set(unroll_list);
for (i = 0; i < n; ++i) {
isl_basic_set *bset;
isl_basic_set_list *list;
bset = isl_basic_set_list_get_basic_set(unroll_list, i);
unroll_domain = isl_set_from_basic_set(bset);
unroll_domain = isl_set_intersect(unroll_domain,
isl_set_copy(domain));
empty = isl_set_is_empty(unroll_domain);
if (empty >= 0 && empty) {
isl_set_free(unroll_domain);
continue;
}
list = do_unroll(unroll_domain, domains->build);
domains->list = isl_basic_set_list_concat(domains->list, list);
}
isl_basic_set_list_free(unroll_list);
return 0;
}
/* Construct a single basic set that includes the intersection of
* the schedule domain, the atomic option domain and the class domain.
* Add the resulting basic set to domains->list.
*
* We construct a single domain rather than trying to combine
* the schedule domains of individual domains because we are working
* within a single component so that non-overlapping schedule domains
* should already have been separated.
* Note, though, that this does not take into account the class domain.
* So, it is possible for a class domain to carve out a piece of the
* schedule domain with independent pieces and then we would only
* generate a single domain for them. If this proves to be problematic
* for some users, then this function will have to be adjusted.
*
* "domain" is the intersection of the schedule domain and the class domain,
* with inner dimensions projected out.
*/
static int compute_atomic_domain(struct isl_codegen_domains *domains,
__isl_keep isl_set *domain)
{
isl_basic_set *bset;
isl_set *atomic_domain;
int empty;
atomic_domain = isl_set_copy(domains->option[atomic]);
atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
empty = isl_set_is_empty(atomic_domain);
if (empty < 0 || empty) {
isl_set_free(atomic_domain);
return empty < 0 ? -1 : 0;
}
atomic_domain = isl_set_coalesce(atomic_domain);
bset = isl_set_unshifted_simple_hull(atomic_domain);
domains->list = isl_basic_set_list_add(domains->list, bset);
return 0;
}
/* Split up the schedule domain into uniform basic sets,
* in the sense that each element in a basic set is associated to
* elements of the same domains, and add the result to domains->list.
* Do this for that part of the schedule domain that lies in the
* intersection of "class_domain" and the separate option domain.
*
* "class_domain" may or may not include the constraints
* of the schedule domain, but this does not make a difference
* since we are going to intersect it with the domain of the inverse schedule.
* If it includes schedule domain constraints, then they may involve
* inner dimensions, but we will eliminate them in separation_domain.
*/
static int compute_separate_domain(struct isl_codegen_domains *domains,
__isl_keep isl_set *class_domain)
{
isl_space *space;
isl_set *domain;
isl_union_map *executed;
isl_basic_set_list *list;
int empty;
domain = isl_set_copy(domains->option[separate]);
domain = isl_set_intersect(domain, isl_set_copy(class_domain));
executed = isl_union_map_copy(domains->executed);
executed = isl_union_map_intersect_domain(executed,
isl_union_set_from_set(domain));
empty = isl_union_map_is_empty(executed);
if (empty < 0 || empty) {
isl_union_map_free(executed);
return empty < 0 ? -1 : 0;
}
space = isl_set_get_space(class_domain);
domain = separate_schedule_domains(space, executed, domains->build);
list = isl_basic_set_list_from_set(domain);
domains->list = isl_basic_set_list_concat(domains->list, list);
return 0;
}
/* Split up the domain at the current depth into disjoint
* basic sets for which code should be generated separately
* for the given separation class domain.
*
* If any separation classes have been defined, then "class_domain"
* is the domain of the current class and does not refer to inner dimensions.
* Otherwise, "class_domain" is the universe domain.
*
* We first make sure that the class domain is disjoint from
* previously considered class domains.
*
* The separate domains can be computed directly from the "class_domain".
*
* The unroll, atomic and remainder domains need the constraints
* from the schedule domain.
*
* For unrolling, the actual schedule domain is needed (with divs that
* may refer to the current dimension) so that stride detection can be
* performed.
*
* For atomic and remainder domains, inner dimensions and divs involving
* the current dimensions should be eliminated.
* In case we are working within a separation class, we need to intersect
* the result with the current "class_domain" to ensure that the domains
* are disjoint from those generated from other class domains.
*
* If anything is left after handling separate, unroll and atomic,
* we split it up into basic sets and append the basic sets to domains->list.
*/
static int compute_partial_domains(struct isl_codegen_domains *domains,
__isl_take isl_set *class_domain)
{
isl_basic_set_list *list;
isl_set *domain;
class_domain = isl_set_subtract(class_domain,
isl_set_copy(domains->done));
domains->done = isl_set_union(domains->done,
isl_set_copy(class_domain));
domain = isl_set_copy(class_domain);
if (compute_separate_domain(domains, domain) < 0)
goto error;
domain = isl_set_subtract(domain,
isl_set_copy(domains->option[separate]));
domain = isl_set_intersect(domain,
isl_set_copy(domains->schedule_domain));
if (compute_unroll_domains(domains, domain) < 0)
goto error;
domain = isl_set_subtract(domain,
isl_set_copy(domains->option[unroll]));
domain = isl_ast_build_eliminate(domains->build, domain);
domain = isl_set_intersect(domain, isl_set_copy(class_domain));
if (compute_atomic_domain(domains, domain) < 0)
goto error;
domain = isl_set_subtract(domain,
isl_set_copy(domains->option[atomic]));
domain = isl_set_coalesce(domain);
domain = isl_set_make_disjoint(domain);
list = isl_basic_set_list_from_set(domain);
domains->list = isl_basic_set_list_concat(domains->list, list);
isl_set_free(class_domain);
return 0;
error:
isl_set_free(domain);
isl_set_free(class_domain);
return -1;
}
/* Split up the domain at the current depth into disjoint
* basic sets for which code should be generated separately
* for the separation class identified by "pnt".
*
* We extract the corresponding class domain from domains->sep_class,
* eliminate inner dimensions and pass control to compute_partial_domains.
*/
static int compute_class_domains(__isl_take isl_point *pnt, void *user)
{
struct isl_codegen_domains *domains = user;
isl_set *class_set;
isl_set *domain;
int disjoint;
class_set = isl_set_from_point(pnt);
domain = isl_map_domain(isl_map_intersect_range(
isl_map_copy(domains->sep_class), class_set));
domain = isl_ast_build_eliminate(domains->build, domain);
disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
if (disjoint < 0)
return -1;
if (disjoint) {
isl_set_free(domain);
return 0;
}
return compute_partial_domains(domains, domain);
}
/* Extract the domains at the current depth that should be atomic,
* separated or unrolled and store them in option.
*
* The domains specified by the user might overlap, so we make
* them disjoint by subtracting earlier domains from later domains.
*/
static void compute_domains_init_options(isl_set *option[3],
__isl_keep isl_ast_build *build)
{
enum isl_ast_build_domain_type type, type2;
for (type = atomic; type <= separate; ++type) {
option[type] = isl_ast_build_get_option_domain(build, type);
for (type2 = atomic; type2 < type; ++type2)
option[type] = isl_set_subtract(option[type],
isl_set_copy(option[type2]));
}
option[unroll] = isl_set_coalesce(option[unroll]);
option[unroll] = isl_set_make_disjoint(option[unroll]);
}
/* Split up the domain at the current depth into disjoint
* basic sets for which code should be generated separately,
* based on the user-specified options.
* Return the list of disjoint basic sets.
*
* There are three kinds of domains that we need to keep track of.
* - the "schedule domain" is the domain of "executed"
* - the "class domain" is the domain corresponding to the currrent
* separation class
* - the "option domain" is the domain corresponding to one of the options
* atomic, unroll or separate
*
* We first consider the individial values of the separation classes
* and split up the domain for each of them separately.
* Finally, we consider the remainder. If no separation classes were
* specified, then we call compute_partial_domains with the universe
* "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
* with inner dimensions removed. We do this because we want to
* avoid computing the complement of the class domains (i.e., the difference
* between the universe and domains->done).
*/
static __isl_give isl_basic_set_list *compute_domains(
__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
{
struct isl_codegen_domains domains;
isl_ctx *ctx;
isl_set *domain;
isl_union_set *schedule_domain;
isl_set *classes;
isl_space *space;
int n_param;
enum isl_ast_build_domain_type type;
int empty;
if (!executed)
return NULL;
ctx = isl_union_map_get_ctx(executed);
domains.list = isl_basic_set_list_alloc(ctx, 0);
schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
domain = isl_set_from_union_set(schedule_domain);
compute_domains_init_options(domains.option, build);
domains.sep_class = isl_ast_build_get_separation_class(build);
classes = isl_map_range(isl_map_copy(domains.sep_class));
n_param = isl_set_dim(classes, isl_dim_param);
classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
space = isl_set_get_space(domain);
domains.build = build;
domains.schedule_domain = isl_set_copy(domain);
domains.executed = executed;
domains.done = isl_set_empty(space);
if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
domains.list = isl_basic_set_list_free(domains.list);
isl_set_free(classes);
empty = isl_set_is_empty(domains.done);
if (empty < 0) {
domains.list = isl_basic_set_list_free(domains.list);
domain = isl_set_free(domain);
} else if (empty) {
isl_set_free(domain);
domain = isl_set_universe(isl_set_get_space(domains.done));
} else {
domain = isl_ast_build_eliminate(build, domain);
}
if (compute_partial_domains(&domains, domain) < 0)
domains.list = isl_basic_set_list_free(domains.list);
isl_set_free(domains.schedule_domain);
isl_set_free(domains.done);
isl_map_free(domains.sep_class);
for (type = atomic; type <= separate; ++type)
isl_set_free(domains.option[type]);
return domains.list;
}
/* Generate code for a single component, after shifting (if any)
* has been applied.
*
* We first split up the domain at the current depth into disjoint
* basic sets based on the user-specified options.
* Then we generated code for each of them and concatenate the results.
*/
static __isl_give isl_ast_graft_list *generate_shifted_component(
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
isl_basic_set_list *domain_list;
isl_ast_graft_list *list = NULL;
domain_list = compute_domains(executed, build);
list = generate_parallel_domains(domain_list, executed, build);
isl_basic_set_list_free(domain_list);
isl_union_map_free(executed);
isl_ast_build_free(build);
return list;
}
struct isl_set_map_pair {
isl_set *set;
isl_map *map;
};
/* Given an array "domain" of isl_set_map_pairs and an array "order"
* of indices into the "domain" array,
* return the union of the "map" fields of the elements
* indexed by the first "n" elements of "order".
*/
static __isl_give isl_union_map *construct_component_executed(
struct isl_set_map_pair *domain, int *order, int n)
{
int i;
isl_map *map;
isl_union_map *executed;
map = isl_map_copy(domain[order[0]].map);
executed = isl_union_map_from_map(map);
for (i = 1; i < n; ++i) {
map = isl_map_copy(domain[order[i]].map);
executed = isl_union_map_add_map(executed, map);
}
return executed;
}
/* Generate code for a single component, after shifting (if any)
* has been applied.
*
* The component inverse schedule is specified as the "map" fields
* of the elements of "domain" indexed by the first "n" elements of "order".
*/
static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
struct isl_set_map_pair *domain, int *order, int n,
__isl_take isl_ast_build *build)
{
isl_union_map *executed;
executed = construct_component_executed(domain, order, n);
return generate_shifted_component(executed, build);
}
/* Given an array "domain" of isl_set_map_pairs and an array "order"
* of indices into the "domain" array,
* do all (except for at most one) of the "set" field of the elements
* indexed by the first "n" elements of "order" have a fixed value
* at position "depth"?
*/
static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
int *order, int n, int depth)
{
int i;
int non_fixed = -1;
for (i = 0; i < n; ++i) {
int f;
f = isl_set_plain_is_fixed(domain[order[i]].set,
isl_dim_set, depth, NULL);
if (f < 0)
return -1;
if (f)
continue;
if (non_fixed >= 0)
return 0;
non_fixed = i;
}
return 1;
}
/* Given an array "domain" of isl_set_map_pairs and an array "order"
* of indices into the "domain" array,
* eliminate the inner dimensions from the "set" field of the elements
* indexed by the first "n" elements of "order", provided the current
* dimension does not have a fixed value.
*
* Return the index of the first element in "order" with a corresponding
* "set" field that does not have an (obviously) fixed value.
*/
static int eliminate_non_fixed(struct isl_set_map_pair *domain,
int *order, int n, int depth, __isl_keep isl_ast_build *build)
{
int i;
int base = -1;
for (i = n - 1; i >= 0; --i) {
int f;
f = isl_set_plain_is_fixed(domain[order[i]].set,
isl_dim_set, depth, NULL);
if (f < 0)
return -1;
if (f)
continue;
domain[order[i]].set = isl_ast_build_eliminate_inner(build,
domain[order[i]].set);
base = i;
}
return base;
}
/* Given an array "domain" of isl_set_map_pairs and an array "order"
* of indices into the "domain" array,
* find the element of "domain" (amongst those indexed by the first "n"
* elements of "order") with the "set" field that has the smallest
* value for the current iterator.
*
* Note that the domain with the smallest value may depend on the parameters
* and/or outer loop dimension. Since the result of this function is only
* used as heuristic, we only make a reasonable attempt at finding the best
* domain, one that should work in case a single domain provides the smallest
* value for the current dimension over all values of the parameters
* and outer dimensions.
*
* In particular, we compute the smallest value of the first domain
* and replace it by that of any later domain if that later domain
* has a smallest value that is smaller for at least some value
* of the parameters and outer dimensions.
*/
static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
__isl_keep isl_ast_build *build)
{
int i;
isl_map *min_first;
int first = 0;
min_first = isl_ast_build_map_to_iterator(build,
isl_set_copy(domain[order[0]].set));
min_first = isl_map_lexmin(min_first);
for (i = 1; i < n; ++i) {
isl_map *min, *test;
int empty;
min = isl_ast_build_map_to_iterator(build,
isl_set_copy(domain[order[i]].set));
min = isl_map_lexmin(min);
test = isl_map_copy(min);
test = isl_map_apply_domain(isl_map_copy(min_first), test);
test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
empty = isl_map_is_empty(test);
isl_map_free(test);
if (empty >= 0 && !empty) {
isl_map_free(min_first);
first = i;
min_first = min;
} else
isl_map_free(min);
if (empty < 0)
break;
}
isl_map_free(min_first);
return i < n ? -1 : first;
}
/* Construct a shifted inverse schedule based on the original inverse schedule,
* the stride and the offset.
*
* The original inverse schedule is specified as the "map" fields
* of the elements of "domain" indexed by the first "n" elements of "order".
*
* "stride" and "offset" are such that the difference
* between the values of the current dimension of domain "i"
* and the values of the current dimension for some reference domain are
* equal to
*
* stride * integer + offset[i]
*
* Moreover, 0 <= offset[i] < stride.
*
* For each domain, we create a map
*
* { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
*
* where j refers to the current dimension and the other dimensions are
* unchanged, and apply this map to the original schedule domain.
*
* For example, for the original schedule
*
* { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
*
* and assuming the offset is 0 for the A domain and 1 for the B domain,
* we apply the mapping
*
* { [j] -> [j, 0] }
*
* to the schedule of the "A" domain and the mapping
*
* { [j - 1] -> [j, 1] }
*
* to the schedule of the "B" domain.
*
*
* Note that after the transformation, the differences between pairs
* of values of the current dimension over all domains are multiples
* of stride and that we have therefore exposed the stride.
*
*
* To see that the mapping preserves the lexicographic order,
* first note that each of the individual maps above preserves the order.
* If the value of the current iterator is j1 in one domain and j2 in another,
* then if j1 = j2, we know that the same map is applied to both domains
* and the order is preserved.
* Otherwise, let us assume, without loss of generality, that j1 < j2.
* If c1 >= c2 (with c1 and c2 the corresponding offsets), then
*
* j1 - c1 < j2 - c2
*
* and the order is preserved.
* If c1 < c2, then we know
*
* 0 <= c2 - c1 < s
*
* We also have
*
* j2 - j1 = n * s + r
*
* with n >= 0 and 0 <= r < s.
* In other words, r = c2 - c1.
* If n > 0, then
*
* j1 - c1 < j2 - c2
*
* If n = 0, then
*
* j1 - c1 = j2 - c2
*
* and so
*
* (j1 - c1, c1) << (j2 - c2, c2)
*
* with "<<" the lexicographic order, proving that the order is preserved
* in all cases.
*/
static __isl_give isl_union_map *contruct_shifted_executed(
struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
__isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
{
int i;
isl_int v;
isl_union_map *executed;
isl_space *space;
isl_map *map;
int depth;
isl_constraint *c;
depth = isl_ast_build_get_depth(build);
space = isl_ast_build_get_space(build, 1);
executed = isl_union_map_empty(isl_space_copy(space));
space = isl_space_map_from_set(space);
map = isl_map_identity(isl_space_copy(space));
map = isl_map_eliminate(map, isl_dim_out, depth, 1);
map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
c = isl_equality_alloc(isl_local_space_from_space(space));
c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
isl_int_init(v);
for (i = 0; i < n; ++i) {
isl_map *map_i;
if (isl_vec_get_element(offset, i, &v) < 0)
break;
map_i = isl_map_copy(map);
map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
isl_int_neg(v, v);
c = isl_constraint_set_constant(c, v);
map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
map_i);
executed = isl_union_map_add_map(executed, map_i);
}
isl_constraint_free(c);
isl_map_free(map);
isl_int_clear(v);
if (i < n)
executed = isl_union_map_free(executed);
return executed;
}
/* Generate code for a single component, after exposing the stride,
* given that the schedule domain is "shifted strided".
*
* The component inverse schedule is specified as the "map" fields
* of the elements of "domain" indexed by the first "n" elements of "order".
*
* The schedule domain being "shifted strided" means that the differences
* between the values of the current dimension of domain "i"
* and the values of the current dimension for some reference domain are
* equal to
*
* stride * integer + offset[i]
*
* We first look for the domain with the "smallest" value for the current
* dimension and adjust the offsets such that the offset of the "smallest"
* domain is equal to zero. The other offsets are reduced modulo stride.
*
* Based on this information, we construct a new inverse schedule in
* contruct_shifted_executed that exposes the stride.
* Since this involves the introduction of a new schedule dimension,
* the build needs to be changed accodingly.
* After computing the AST, the newly introduced dimension needs
* to be removed again from the list of grafts. We do this by plugging
* in a mapping that represents the new schedule domain in terms of the
* old schedule domain.
*/
static __isl_give isl_ast_graft_list *generate_shift_component(
struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
__isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
{
isl_ast_graft_list *list;
int first;
int depth;
isl_ctx *ctx;
isl_int val;
isl_vec *v;
isl_space *space;
isl_multi_aff *ma, *zero;
isl_union_map *executed;
ctx = isl_ast_build_get_ctx(build);
depth = isl_ast_build_get_depth(build);
first = first_offset(domain, order, n, build);
if (first < 0)
return isl_ast_build_free(build);
isl_int_init(val);
v = isl_vec_alloc(ctx, n);
if (isl_vec_get_element(offset, first, &val) < 0)
v = isl_vec_free(v);
isl_int_neg(val, val);
v = isl_vec_set(v, val);
v = isl_vec_add(v, isl_vec_copy(offset));
v = isl_vec_fdiv_r(v, stride);
executed = contruct_shifted_executed(domain, order, n, stride, v,
build);
space = isl_ast_build_get_space(build, 1);
space = isl_space_map_from_set(space);
ma = isl_multi_aff_identity(isl_space_copy(space));
space = isl_space_from_domain(isl_space_domain(space));
space = isl_space_add_dims(space, isl_dim_out, 1);
zero = isl_multi_aff_zero(space);
ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
build = isl_ast_build_insert_dim(build, depth + 1);
list = generate_shifted_component(executed, build);
list = isl_ast_graft_list_preimage_multi_aff(list, ma);
isl_vec_free(v);
isl_int_clear(val);
return list;
}
/* Generate code for a single component.
*
* The component inverse schedule is specified as the "map" fields
* of the elements of "domain" indexed by the first "n" elements of "order".
*
* This function may modify the "set" fields of "domain".
*
* Before proceeding with the actual code generation for the component,
* we first check if there are any "shifted" strides, meaning that
* the schedule domains of the individual domains are all strided,
* but that they have different offsets, resulting in the union
* of schedule domains not being strided anymore.
*
* The simplest example is the schedule
*
* { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
*
* Both schedule domains are strided, but their union is not.
* This function detects such cases and then rewrites the schedule to
*
* { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
*
* In the new schedule, the schedule domains have the same offset (modulo
* the stride), ensuring that the union of schedule domains is also strided.
*
*
* If there is only a single domain in the component, then there is
* nothing to do. Similarly, if the current schedule dimension has
* a fixed value for almost all domains then there is nothing to be done.
* In particular, we need at least two domains where the current schedule
* dimension does not have a fixed value.
* Finally, if any of the options refer to the current schedule dimension,
* then we bail out as well. It would be possible to reformulate the options
* in terms of the new schedule domain, but that would introduce constraints
* that separate the domains in the options and that is something we would
* like to avoid.
*
*
* To see if there is any shifted stride, we look at the differences
* between the values of the current dimension in pairs of domains
* for equal values of outer dimensions. These differences should be
* of the form
*
* m x + r
*
* with "m" the stride and "r" a constant. Note that we cannot perform
* this analysis on individual domains as the lower bound in each domain
* may depend on parameters or outer dimensions and so the current dimension
* itself may not have a fixed remainder on division by the stride.
*
* In particular, we compare the first domain that does not have an
* obviously fixed value for the current dimension to itself and all
* other domains and collect the offsets and the gcd of the strides.
* If the gcd becomes one, then we failed to find shifted strides.
* If all the offsets are the same (for those domains that do not have
* an obviously fixed value for the current dimension), then we do not
* apply the transformation.
* If none of the domains were skipped, then there is nothing to do.
* If some of them were skipped, then if we apply separation, the schedule
* domain should get split in pieces with a (non-shifted) stride.
*
* Otherwise, we apply a shift to expose the stride in
* generate_shift_component.
*/
static __isl_give isl_ast_graft_list *generate_component(
struct isl_set_map_pair *domain, int *order, int n,
__isl_take isl_ast_build *build)
{
int i, d;
int depth;
isl_ctx *ctx;
isl_map *map;
isl_set *deltas;
isl_int m, r, gcd;
isl_vec *v;
int fixed, skip;
int base;
isl_ast_graft_list *list;
int res = 0;
depth = isl_ast_build_get_depth(build);
skip = n == 1;
if (skip >= 0 && !skip)
skip = at_most_one_non_fixed(domain, order, n, depth);
if (skip >= 0 && !skip)
skip = isl_ast_build_options_involve_depth(build);
if (skip < 0)
return isl_ast_build_free(build);
if (skip)
return generate_shifted_component_from_list(domain,
order, n, build);
base = eliminate_non_fixed(domain, order, n, depth, build);
if (base < 0)
return isl_ast_build_free(build);
ctx = isl_ast_build_get_ctx(build);
isl_int_init(m);
isl_int_init(r);
isl_int_init(gcd);
v = isl_vec_alloc(ctx, n);
fixed = 1;
for (i = 0; i < n; ++i) {
map = isl_map_from_domain_and_range(
isl_set_copy(domain[order[base]].set),
isl_set_copy(domain[order[i]].set));
for (d = 0; d < depth; ++d)
map = isl_map_equate(map, isl_dim_in, d,
isl_dim_out, d);
deltas = isl_map_deltas(map);
res = isl_set_dim_residue_class(deltas, depth, &m, &r);
isl_set_free(deltas);
if (res < 0)
break;
if (i == 0)
isl_int_set(gcd, m);
else
isl_int_gcd(gcd, gcd, m);
if (isl_int_is_one(gcd))
break;
v = isl_vec_set_element(v, i, r);
res = isl_set_plain_is_fixed(domain[order[i]].set,
isl_dim_set, depth, NULL);
if (res < 0)
break;
if (res)
continue;
if (fixed && i > base) {
isl_vec_get_element(v, base, &m);
if (isl_int_ne(m, r))
fixed = 0;
}
}
if (res < 0) {
isl_ast_build_free(build);
list = NULL;
} else if (i < n || fixed) {
list = generate_shifted_component_from_list(domain,
order, n, build);
} else {
list = generate_shift_component(domain, order, n, gcd, v,
build);
}
isl_vec_free(v);
isl_int_clear(gcd);
isl_int_clear(r);
isl_int_clear(m);
return list;
}
/* Store both "map" itself and its domain in the
* structure pointed to by *next and advance to the next array element.
*/
static int extract_domain(__isl_take isl_map *map, void *user)
{
struct isl_set_map_pair **next = user;
(*next)->map = isl_map_copy(map);
(*next)->set = isl_map_domain(map);
(*next)++;
return 0;
}
/* Internal data for any_scheduled_after.
*
* "depth" is the number of loops that have already been generated
* "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
* "domain" is an array of set-map pairs corresponding to the different
* iteration domains. The set is the schedule domain, i.e., the domain
* of the inverse schedule, while the map is the inverse schedule itself.
*/
struct isl_any_scheduled_after_data {
int depth;
int group_coscheduled;
struct isl_set_map_pair *domain;
};
/* Is any element of domain "i" scheduled after any element of domain "j"
* (for a common iteration of the first data->depth loops)?
*
* data->domain[i].set contains the domain of the inverse schedule
* for domain "i", i.e., elements in the schedule domain.
*
* If data->group_coscheduled is set, then we also return 1 if there
* is any pair of elements in the two domains that are scheduled together.
*/
static int any_scheduled_after(int i, int j, void *user)
{
struct isl_any_scheduled_after_data *data = user;
int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
int pos;
for (pos = data->depth; pos < dim; ++pos) {
int follows;
follows = isl_set_follows_at(data->domain[i].set,
data->domain[j].set, pos);
if (follows < -1)
return -1;
if (follows > 0)
return 1;
if (follows < 0)
return 0;
}
return data->group_coscheduled;
}
/* Look for independent components at the current depth and generate code
* for each component separately. The resulting lists of grafts are
* merged in an attempt to combine grafts with identical guards.
*
* Code for two domains can be generated separately if all the elements
* of one domain are scheduled before (or together with) all the elements
* of the other domain. We therefore consider the graph with as nodes
* the domains and an edge between two nodes if any element of the first
* node is scheduled after any element of the second node.
* If the ast_build_group_coscheduled is set, then we also add an edge if
* there is any pair of elements in the two domains that are scheduled
* together.
* Code is then generated (by generate_component)
* for each of the strongly connected components in this graph
* in their topological order.
*
* Since the test is performed on the domain of the inverse schedules of
* the different domains, we precompute these domains and store
* them in data.domain.
*/
static __isl_give isl_ast_graft_list *generate_components(
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
int i;
isl_ctx *ctx = isl_ast_build_get_ctx(build);
int n = isl_union_map_n_map(executed);
struct isl_any_scheduled_after_data data;
struct isl_set_map_pair *next;
struct isl_tarjan_graph *g = NULL;
isl_ast_graft_list *list = NULL;
int n_domain = 0;
data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
if (!data.domain)
goto error;
n_domain = n;
next = data.domain;
if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
goto error;
if (!build)
goto error;
data.depth = isl_ast_build_get_depth(build);
data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
list = isl_ast_graft_list_alloc(ctx, 0);
i = 0;
while (list && n) {
isl_ast_graft_list *list_c;
int first = i;
if (g->order[i] == -1)
isl_die(ctx, isl_error_internal, "cannot happen",
goto error);
++i; --n;
while (g->order[i] != -1) {
++i; --n;
}
list_c = generate_component(data.domain,
g->order + first, i - first,
isl_ast_build_copy(build));
list = isl_ast_graft_list_merge(list, list_c, build);
++i;
}
if (0)
error: list = isl_ast_graft_list_free(list);
isl_tarjan_graph_free(g);
for (i = 0; i < n_domain; ++i) {
isl_map_free(data.domain[i].map);
isl_set_free(data.domain[i].set);
}
free(data.domain);
isl_union_map_free(executed);
isl_ast_build_free(build);
return list;
}
/* Generate code for the next level (and all inner levels).
*
* If "executed" is empty, i.e., no code needs to be generated,
* then we return an empty list.
*
* If we have already generated code for all loop levels, then we pass
* control to generate_inner_level.
*
* If "executed" lives in a single space, i.e., if code needs to be
* generated for a single domain, then there can only be a single
* component and we go directly to generate_shifted_component.
* Otherwise, we call generate_components to detect the components
* and to call generate_component on each of them separately.
*/
static __isl_give isl_ast_graft_list *generate_next_level(
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
int depth;
if (!build || !executed)
goto error;
if (isl_union_map_is_empty(executed)) {
isl_ctx *ctx = isl_ast_build_get_ctx(build);
isl_union_map_free(executed);
isl_ast_build_free(build);
return isl_ast_graft_list_alloc(ctx, 0);
}
depth = isl_ast_build_get_depth(build);
if (depth >= isl_set_dim(build->domain, isl_dim_set))
return generate_inner_level(executed, build);
if (isl_union_map_n_map(executed) == 1)
return generate_shifted_component(executed, build);
return generate_components(executed, build);
error:
isl_union_map_free(executed);
isl_ast_build_free(build);
return NULL;
}
/* Internal data structure used by isl_ast_build_ast_from_schedule.
* internal, executed and build are the inputs to generate_code.
* list collects the output.
*/
struct isl_generate_code_data {
int internal;
isl_union_map *executed;
isl_ast_build *build;
isl_ast_graft_list *list;
};
/* Given an inverse schedule in terms of the external build schedule, i.e.,
*
* [E -> S] -> D
*
* with E the external build schedule and S the additional schedule "space",
* reformulate the inverse schedule in terms of the internal schedule domain,
* i.e., return
*
* [I -> S] -> D
*
* We first obtain a mapping
*
* I -> E
*
* take the inverse and the product with S -> S, resulting in
*
* [I -> S] -> [E -> S]
*
* Applying the map to the input produces the desired result.
*/
static __isl_give isl_union_map *internal_executed(
__isl_take isl_union_map *executed, __isl_keep isl_space *space,
__isl_keep isl_ast_build *build)
{
isl_map *id, *proj;
proj = isl_ast_build_get_schedule_map(build);
proj = isl_map_reverse(proj);
space = isl_space_map_from_set(isl_space_copy(space));
id = isl_map_identity(space);
proj = isl_map_product(proj, id);
executed = isl_union_map_apply_domain(executed,
isl_union_map_from_map(proj));
return executed;
}
/* Generate an AST that visits the elements in the range of data->executed
* in the relative order specified by the corresponding image element(s)
* for those image elements that belong to "set".
* Add the result to data->list.
*
* The caller ensures that "set" is a universe domain.
* "space" is the space of the additional part of the schedule.
* It is equal to the space of "set" if build->domain is parametric.
* Otherwise, it is equal to the range of the wrapped space of "set".
*
* If the build space is not parametric and if isl_ast_build_ast_from_schedule
* was called from an outside user (data->internal not set), then
* the (inverse) schedule refers to the external build domain and needs to
* be transformed to refer to the internal build domain.
*
* The build is extended to include the additional part of the schedule.
* If the original build space was not parametric, then the options
* in data->build refer only to the additional part of the schedule
* and they need to be adjusted to refer to the complete AST build
* domain.
*
* After having adjusted inverse schedule and build, we start generating
* code with the outer loop of the current code generation
* in generate_next_level.
*
* If the original build space was not parametric, we undo the embedding
* on the resulting isl_ast_node_list so that it can be used within
* the outer AST build.
*/
static int generate_code_in_space(struct isl_generate_code_data *data,
__isl_take isl_set *set, __isl_take isl_space *space)
{
isl_union_map *executed;
isl_ast_build *build;
isl_ast_graft_list *list;
int embed;
executed = isl_union_map_copy(data->executed);
executed = isl_union_map_intersect_domain(executed,
isl_union_set_from_set(set));
embed = !isl_set_is_params(data->build->domain);
if (embed && !data->internal)
executed = internal_executed(executed, space, data->build);
build = isl_ast_build_copy(data->build);
build = isl_ast_build_product(build, space);
list = generate_next_level(executed, build);
list = isl_ast_graft_list_unembed(list, embed);
data->list = isl_ast_graft_list_concat(data->list, list);
return 0;
}
/* Generate an AST that visits the elements in the range of data->executed
* in the relative order specified by the corresponding domain element(s)
* for those domain elements that belong to "set".
* Add the result to data->list.
*
* The caller ensures that "set" is a universe domain.
*
* If the build space S is not parametric, then the space of "set"
* need to be a wrapped relation with S as domain. That is, it needs
* to be of the form
*
* [S -> T]
*
* Check this property and pass control to generate_code_in_space
* passing along T.
* If the build space is not parametric, then T is the space of "set".
*/
static int generate_code_set(__isl_take isl_set *set, void *user)
{
struct isl_generate_code_data *data = user;
isl_space *space, *build_space;
int is_domain;
space = isl_set_get_space(set);
if (isl_set_is_params(data->build->domain))
return generate_code_in_space(data, set, space);
build_space = isl_ast_build_get_space(data->build, data->internal);
space = isl_space_unwrap(space);
is_domain = isl_space_is_domain(build_space, space);
isl_space_free(build_space);
space = isl_space_range(space);
if (is_domain < 0)
goto error;
if (!is_domain)
isl_die(isl_set_get_ctx(set), isl_error_invalid,
"invalid nested schedule space", goto error);
return generate_code_in_space(data, set, space);
error:
isl_set_free(set);
isl_space_free(space);
return -1;
}
/* Generate an AST that visits the elements in the range of "executed"
* in the relative order specified by the corresponding domain element(s).
*
* "build" is an isl_ast_build that has either been constructed by
* isl_ast_build_from_context or passed to a callback set by
* isl_ast_build_set_create_leaf.
* In the first case, the space of the isl_ast_build is typically
* a parametric space, although this is currently not enforced.
* In the second case, the space is never a parametric space.
* If the space S is not parametric, then the domain space(s) of "executed"
* need to be wrapped relations with S as domain.
*
* If the domain of "executed" consists of several spaces, then an AST
* is generated for each of them (in arbitrary order) and the results
* are concatenated.
*
* If "internal" is set, then the domain "S" above refers to the internal
* schedule domain representation. Otherwise, it refers to the external
* representation, as returned by isl_ast_build_get_schedule_space.
*
* We essentially run over all the spaces in the domain of "executed"
* and call generate_code_set on each of them.
*/
static __isl_give isl_ast_graft_list *generate_code(
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
int internal)
{
isl_ctx *ctx;
struct isl_generate_code_data data = { 0 };
isl_space *space;
isl_union_set *schedule_domain;
isl_union_map *universe;
if (!build)
goto error;
space = isl_ast_build_get_space(build, 1);
space = isl_space_align_params(space,
isl_union_map_get_space(executed));
space = isl_space_align_params(space,
isl_union_map_get_space(build->options));
build = isl_ast_build_align_params(build, isl_space_copy(space));
executed = isl_union_map_align_params(executed, space);
if (!executed || !build)
goto error;
ctx = isl_ast_build_get_ctx(build);
data.internal = internal;
data.executed = executed;
data.build = build;
data.list = isl_ast_graft_list_alloc(ctx, 0);
universe = isl_union_map_universe(isl_union_map_copy(executed));
schedule_domain = isl_union_map_domain(universe);
if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
&data) < 0)
data.list = isl_ast_graft_list_free(data.list);
isl_union_set_free(schedule_domain);
isl_union_map_free(executed);
isl_ast_build_free(build);
return data.list;
error:
isl_union_map_free(executed);
isl_ast_build_free(build);
return NULL;
}
/* Generate an AST that visits the elements in the domain of "schedule"
* in the relative order specified by the corresponding image element(s).
*
* "build" is an isl_ast_build that has either been constructed by
* isl_ast_build_from_context or passed to a callback set by
* isl_ast_build_set_create_leaf.
* In the first case, the space of the isl_ast_build is typically
* a parametric space, although this is currently not enforced.
* In the second case, the space is never a parametric space.
* If the space S is not parametric, then the range space(s) of "schedule"
* need to be wrapped relations with S as domain.
*
* If the range of "schedule" consists of several spaces, then an AST
* is generated for each of them (in arbitrary order) and the results
* are concatenated.
*
* We first initialize the local copies of the relevant options.
* We do this here rather than when the isl_ast_build is created
* because the options may have changed between the construction
* of the isl_ast_build and the call to isl_generate_code.
*
* The main computation is performed on an inverse schedule (with
* the schedule domain in the domain and the elements to be executed
* in the range) called "executed".
*/
__isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
__isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
{
isl_ast_graft_list *list;
isl_ast_node *node;
isl_union_map *executed;
executed = isl_union_map_reverse(schedule);
list = generate_code(executed, isl_ast_build_copy(build), 0);
node = isl_ast_node_from_graft_list(list, build);
return node;
}