blob: 132986ea5b69772f93a319c89ccb2287202557bf [file] [log] [blame]
/*
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the GNU LGPLv2.1 license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
*/
#include <stdlib.h>
#define ISL_DIM_H
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_factorization.h>
#include <isl/lp.h>
#include <isl/seq.h>
#include <isl_union_map_private.h>
#include <isl_constraint_private.h>
#include <isl_polynomial_private.h>
#include <isl_point_private.h>
#include <isl_space_private.h>
#include <isl_mat_private.h>
#include <isl_range.h>
#include <isl_local_space_private.h>
#include <isl_aff_private.h>
#include <isl_config.h>
static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
{
switch (type) {
case isl_dim_param: return 0;
case isl_dim_in: return dim->nparam;
case isl_dim_out: return dim->nparam + dim->n_in;
default: return 0;
}
}
int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
{
if (!up)
return -1;
return up->var < 0;
}
__isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
{
if (!up)
return NULL;
isl_assert(up->ctx, up->var < 0, return NULL);
return (struct isl_upoly_cst *)up;
}
__isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
{
if (!up)
return NULL;
isl_assert(up->ctx, up->var >= 0, return NULL);
return (struct isl_upoly_rec *)up;
}
int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
__isl_keep struct isl_upoly *up2)
{
int i;
struct isl_upoly_rec *rec1, *rec2;
if (!up1 || !up2)
return -1;
if (up1 == up2)
return 1;
if (up1->var != up2->var)
return 0;
if (isl_upoly_is_cst(up1)) {
struct isl_upoly_cst *cst1, *cst2;
cst1 = isl_upoly_as_cst(up1);
cst2 = isl_upoly_as_cst(up2);
if (!cst1 || !cst2)
return -1;
return isl_int_eq(cst1->n, cst2->n) &&
isl_int_eq(cst1->d, cst2->d);
}
rec1 = isl_upoly_as_rec(up1);
rec2 = isl_upoly_as_rec(up2);
if (!rec1 || !rec2)
return -1;
if (rec1->n != rec2->n)
return 0;
for (i = 0; i < rec1->n; ++i) {
int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
if (eq < 0 || !eq)
return eq;
}
return 1;
}
int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
if (!up)
return -1;
if (!isl_upoly_is_cst(up))
return 0;
cst = isl_upoly_as_cst(up);
if (!cst)
return -1;
return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
}
int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
if (!up)
return 0;
if (!isl_upoly_is_cst(up))
return 0;
cst = isl_upoly_as_cst(up);
if (!cst)
return 0;
return isl_int_sgn(cst->n);
}
int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
if (!up)
return -1;
if (!isl_upoly_is_cst(up))
return 0;
cst = isl_upoly_as_cst(up);
if (!cst)
return -1;
return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
}
int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
if (!up)
return -1;
if (!isl_upoly_is_cst(up))
return 0;
cst = isl_upoly_as_cst(up);
if (!cst)
return -1;
return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
}
int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
if (!up)
return -1;
if (!isl_upoly_is_cst(up))
return 0;
cst = isl_upoly_as_cst(up);
if (!cst)
return -1;
return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
}
int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
if (!up)
return -1;
if (!isl_upoly_is_cst(up))
return 0;
cst = isl_upoly_as_cst(up);
if (!cst)
return -1;
return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
}
int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
if (!up)
return -1;
if (!isl_upoly_is_cst(up))
return 0;
cst = isl_upoly_as_cst(up);
if (!cst)
return -1;
return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
}
__isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
{
struct isl_upoly_cst *cst;
cst = isl_alloc_type(ctx, struct isl_upoly_cst);
if (!cst)
return NULL;
cst->up.ref = 1;
cst->up.ctx = ctx;
isl_ctx_ref(ctx);
cst->up.var = -1;
isl_int_init(cst->n);
isl_int_init(cst->d);
return cst;
}
__isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
{
struct isl_upoly_cst *cst;
cst = isl_upoly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 0);
isl_int_set_si(cst->d, 1);
return &cst->up;
}
__isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
{
struct isl_upoly_cst *cst;
cst = isl_upoly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 1);
isl_int_set_si(cst->d, 1);
return &cst->up;
}
__isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
{
struct isl_upoly_cst *cst;
cst = isl_upoly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 1);
isl_int_set_si(cst->d, 0);
return &cst->up;
}
__isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
{
struct isl_upoly_cst *cst;
cst = isl_upoly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, -1);
isl_int_set_si(cst->d, 0);
return &cst->up;
}
__isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
{
struct isl_upoly_cst *cst;
cst = isl_upoly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 0);
isl_int_set_si(cst->d, 0);
return &cst->up;
}
__isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
isl_int n, isl_int d)
{
struct isl_upoly_cst *cst;
cst = isl_upoly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set(cst->n, n);
isl_int_set(cst->d, d);
return &cst->up;
}
__isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
int var, int size)
{
struct isl_upoly_rec *rec;
isl_assert(ctx, var >= 0, return NULL);
isl_assert(ctx, size >= 0, return NULL);
rec = isl_calloc(ctx, struct isl_upoly_rec,
sizeof(struct isl_upoly_rec) +
size * sizeof(struct isl_upoly *));
if (!rec)
return NULL;
rec->up.ref = 1;
rec->up.ctx = ctx;
isl_ctx_ref(ctx);
rec->up.var = var;
rec->n = 0;
rec->size = size;
return rec;
}
__isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
__isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
{
qp = isl_qpolynomial_cow(qp);
if (!qp || !dim)
goto error;
isl_space_free(qp->dim);
qp->dim = dim;
return qp;
error:
isl_qpolynomial_free(qp);
isl_space_free(dim);
return NULL;
}
/* Reset the space of "qp". This function is called from isl_pw_templ.c
* and doesn't know if the space of an element object is represented
* directly or through its domain. It therefore passes along both.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
__isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
__isl_take isl_space *domain)
{
isl_space_free(space);
return isl_qpolynomial_reset_domain_space(qp, domain);
}
isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
{
return qp ? qp->dim->ctx : NULL;
}
__isl_give isl_space *isl_qpolynomial_get_domain_space(
__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_space_copy(qp->dim) : NULL;
}
__isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
{
isl_space *space;
if (!qp)
return NULL;
space = isl_space_copy(qp->dim);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, 1);
return space;
}
/* Externally, an isl_qpolynomial has a map space, but internally, the
* ls field corresponds to the domain of that space.
*/
unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type)
{
if (!qp)
return 0;
if (type == isl_dim_out)
return 1;
if (type == isl_dim_in)
type = isl_dim_set;
return isl_space_dim(qp->dim, type);
}
int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_upoly_is_zero(qp->upoly) : -1;
}
int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_upoly_is_one(qp->upoly) : -1;
}
int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_upoly_is_nan(qp->upoly) : -1;
}
int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_upoly_is_infty(qp->upoly) : -1;
}
int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_upoly_is_neginfty(qp->upoly) : -1;
}
int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_upoly_sgn(qp->upoly) : 0;
}
static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
{
isl_int_clear(cst->n);
isl_int_clear(cst->d);
}
static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
{
int i;
for (i = 0; i < rec->n; ++i)
isl_upoly_free(rec->p[i]);
}
__isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
{
if (!up)
return NULL;
up->ref++;
return up;
}
__isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
{
struct isl_upoly_cst *cst;
struct isl_upoly_cst *dup;
cst = isl_upoly_as_cst(up);
if (!cst)
return NULL;
dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
if (!dup)
return NULL;
isl_int_set(dup->n, cst->n);
isl_int_set(dup->d, cst->d);
return &dup->up;
}
__isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
{
int i;
struct isl_upoly_rec *rec;
struct isl_upoly_rec *dup;
rec = isl_upoly_as_rec(up);
if (!rec)
return NULL;
dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
if (!dup)
return NULL;
for (i = 0; i < rec->n; ++i) {
dup->p[i] = isl_upoly_copy(rec->p[i]);
if (!dup->p[i])
goto error;
dup->n++;
}
return &dup->up;
error:
isl_upoly_free(&dup->up);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
{
if (!up)
return NULL;
if (isl_upoly_is_cst(up))
return isl_upoly_dup_cst(up);
else
return isl_upoly_dup_rec(up);
}
__isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
{
if (!up)
return NULL;
if (up->ref == 1)
return up;
up->ref--;
return isl_upoly_dup(up);
}
void isl_upoly_free(__isl_take struct isl_upoly *up)
{
if (!up)
return;
if (--up->ref > 0)
return;
if (up->var < 0)
upoly_free_cst((struct isl_upoly_cst *)up);
else
upoly_free_rec((struct isl_upoly_rec *)up);
isl_ctx_deref(up->ctx);
free(up);
}
static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
{
isl_int gcd;
isl_int_init(gcd);
isl_int_gcd(gcd, cst->n, cst->d);
if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
isl_int_divexact(cst->n, cst->n, gcd);
isl_int_divexact(cst->d, cst->d, gcd);
}
isl_int_clear(gcd);
}
__isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
__isl_take struct isl_upoly *up2)
{
struct isl_upoly_cst *cst1;
struct isl_upoly_cst *cst2;
up1 = isl_upoly_cow(up1);
if (!up1 || !up2)
goto error;
cst1 = isl_upoly_as_cst(up1);
cst2 = isl_upoly_as_cst(up2);
if (isl_int_eq(cst1->d, cst2->d))
isl_int_add(cst1->n, cst1->n, cst2->n);
else {
isl_int_mul(cst1->n, cst1->n, cst2->d);
isl_int_addmul(cst1->n, cst2->n, cst1->d);
isl_int_mul(cst1->d, cst1->d, cst2->d);
}
isl_upoly_cst_reduce(cst1);
isl_upoly_free(up2);
return up1;
error:
isl_upoly_free(up1);
isl_upoly_free(up2);
return NULL;
}
static __isl_give struct isl_upoly *replace_by_zero(
__isl_take struct isl_upoly *up)
{
struct isl_ctx *ctx;
if (!up)
return NULL;
ctx = up->ctx;
isl_upoly_free(up);
return isl_upoly_zero(ctx);
}
static __isl_give struct isl_upoly *replace_by_constant_term(
__isl_take struct isl_upoly *up)
{
struct isl_upoly_rec *rec;
struct isl_upoly *cst;
if (!up)
return NULL;
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
cst = isl_upoly_copy(rec->p[0]);
isl_upoly_free(up);
return cst;
error:
isl_upoly_free(up);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
__isl_take struct isl_upoly *up2)
{
int i;
struct isl_upoly_rec *rec1, *rec2;
if (!up1 || !up2)
goto error;
if (isl_upoly_is_nan(up1)) {
isl_upoly_free(up2);
return up1;
}
if (isl_upoly_is_nan(up2)) {
isl_upoly_free(up1);
return up2;
}
if (isl_upoly_is_zero(up1)) {
isl_upoly_free(up1);
return up2;
}
if (isl_upoly_is_zero(up2)) {
isl_upoly_free(up2);
return up1;
}
if (up1->var < up2->var)
return isl_upoly_sum(up2, up1);
if (up2->var < up1->var) {
struct isl_upoly_rec *rec;
if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
isl_upoly_free(up1);
return up2;
}
up1 = isl_upoly_cow(up1);
rec = isl_upoly_as_rec(up1);
if (!rec)
goto error;
rec->p[0] = isl_upoly_sum(rec->p[0], up2);
if (rec->n == 1)
up1 = replace_by_constant_term(up1);
return up1;
}
if (isl_upoly_is_cst(up1))
return isl_upoly_sum_cst(up1, up2);
rec1 = isl_upoly_as_rec(up1);
rec2 = isl_upoly_as_rec(up2);
if (!rec1 || !rec2)
goto error;
if (rec1->n < rec2->n)
return isl_upoly_sum(up2, up1);
up1 = isl_upoly_cow(up1);
rec1 = isl_upoly_as_rec(up1);
if (!rec1)
goto error;
for (i = rec2->n - 1; i >= 0; --i) {
rec1->p[i] = isl_upoly_sum(rec1->p[i],
isl_upoly_copy(rec2->p[i]));
if (!rec1->p[i])
goto error;
if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
isl_upoly_free(rec1->p[i]);
rec1->n--;
}
}
if (rec1->n == 0)
up1 = replace_by_zero(up1);
else if (rec1->n == 1)
up1 = replace_by_constant_term(up1);
isl_upoly_free(up2);
return up1;
error:
isl_upoly_free(up1);
isl_upoly_free(up2);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
__isl_take struct isl_upoly *up, isl_int v)
{
struct isl_upoly_cst *cst;
up = isl_upoly_cow(up);
if (!up)
return NULL;
cst = isl_upoly_as_cst(up);
isl_int_addmul(cst->n, cst->d, v);
return up;
}
__isl_give struct isl_upoly *isl_upoly_add_isl_int(
__isl_take struct isl_upoly *up, isl_int v)
{
struct isl_upoly_rec *rec;
if (!up)
return NULL;
if (isl_upoly_is_cst(up))
return isl_upoly_cst_add_isl_int(up, v);
up = isl_upoly_cow(up);
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
if (!rec->p[0])
goto error;
return up;
error:
isl_upoly_free(up);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
__isl_take struct isl_upoly *up, isl_int v)
{
struct isl_upoly_cst *cst;
if (isl_upoly_is_zero(up))
return up;
up = isl_upoly_cow(up);
if (!up)
return NULL;
cst = isl_upoly_as_cst(up);
isl_int_mul(cst->n, cst->n, v);
return up;
}
__isl_give struct isl_upoly *isl_upoly_mul_isl_int(
__isl_take struct isl_upoly *up, isl_int v)
{
int i;
struct isl_upoly_rec *rec;
if (!up)
return NULL;
if (isl_upoly_is_cst(up))
return isl_upoly_cst_mul_isl_int(up, v);
up = isl_upoly_cow(up);
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
if (!rec->p[i])
goto error;
}
return up;
error:
isl_upoly_free(up);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
__isl_take struct isl_upoly *up2)
{
struct isl_upoly_cst *cst1;
struct isl_upoly_cst *cst2;
up1 = isl_upoly_cow(up1);
if (!up1 || !up2)
goto error;
cst1 = isl_upoly_as_cst(up1);
cst2 = isl_upoly_as_cst(up2);
isl_int_mul(cst1->n, cst1->n, cst2->n);
isl_int_mul(cst1->d, cst1->d, cst2->d);
isl_upoly_cst_reduce(cst1);
isl_upoly_free(up2);
return up1;
error:
isl_upoly_free(up1);
isl_upoly_free(up2);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
__isl_take struct isl_upoly *up2)
{
struct isl_upoly_rec *rec1;
struct isl_upoly_rec *rec2;
struct isl_upoly_rec *res = NULL;
int i, j;
int size;
rec1 = isl_upoly_as_rec(up1);
rec2 = isl_upoly_as_rec(up2);
if (!rec1 || !rec2)
goto error;
size = rec1->n + rec2->n - 1;
res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
if (!res)
goto error;
for (i = 0; i < rec1->n; ++i) {
res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
isl_upoly_copy(rec1->p[i]));
if (!res->p[i])
goto error;
res->n++;
}
for (; i < size; ++i) {
res->p[i] = isl_upoly_zero(up1->ctx);
if (!res->p[i])
goto error;
res->n++;
}
for (i = 0; i < rec1->n; ++i) {
for (j = 1; j < rec2->n; ++j) {
struct isl_upoly *up;
up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
isl_upoly_copy(rec1->p[i]));
res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
if (!res->p[i + j])
goto error;
}
}
isl_upoly_free(up1);
isl_upoly_free(up2);
return &res->up;
error:
isl_upoly_free(up1);
isl_upoly_free(up2);
isl_upoly_free(&res->up);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
__isl_take struct isl_upoly *up2)
{
if (!up1 || !up2)
goto error;
if (isl_upoly_is_nan(up1)) {
isl_upoly_free(up2);
return up1;
}
if (isl_upoly_is_nan(up2)) {
isl_upoly_free(up1);
return up2;
}
if (isl_upoly_is_zero(up1)) {
isl_upoly_free(up2);
return up1;
}
if (isl_upoly_is_zero(up2)) {
isl_upoly_free(up1);
return up2;
}
if (isl_upoly_is_one(up1)) {
isl_upoly_free(up1);
return up2;
}
if (isl_upoly_is_one(up2)) {
isl_upoly_free(up2);
return up1;
}
if (up1->var < up2->var)
return isl_upoly_mul(up2, up1);
if (up2->var < up1->var) {
int i;
struct isl_upoly_rec *rec;
if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
isl_ctx *ctx = up1->ctx;
isl_upoly_free(up1);
isl_upoly_free(up2);
return isl_upoly_nan(ctx);
}
up1 = isl_upoly_cow(up1);
rec = isl_upoly_as_rec(up1);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = isl_upoly_mul(rec->p[i],
isl_upoly_copy(up2));
if (!rec->p[i])
goto error;
}
isl_upoly_free(up2);
return up1;
}
if (isl_upoly_is_cst(up1))
return isl_upoly_mul_cst(up1, up2);
return isl_upoly_mul_rec(up1, up2);
error:
isl_upoly_free(up1);
isl_upoly_free(up2);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
unsigned power)
{
struct isl_upoly *res;
if (!up)
return NULL;
if (power == 1)
return up;
if (power % 2)
res = isl_upoly_copy(up);
else
res = isl_upoly_one(up->ctx);
while (power >>= 1) {
up = isl_upoly_mul(up, isl_upoly_copy(up));
if (power % 2)
res = isl_upoly_mul(res, isl_upoly_copy(up));
}
isl_upoly_free(up);
return res;
}
__isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim,
unsigned n_div, __isl_take struct isl_upoly *up)
{
struct isl_qpolynomial *qp = NULL;
unsigned total;
if (!dim || !up)
goto error;
if (!isl_space_is_set(dim))
isl_die(isl_space_get_ctx(dim), isl_error_invalid,
"domain of polynomial should be a set", goto error);
total = isl_space_dim(dim, isl_dim_all);
qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
if (!qp)
goto error;
qp->ref = 1;
qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
if (!qp->div)
goto error;
qp->dim = dim;
qp->upoly = up;
return qp;
error:
isl_space_free(dim);
isl_upoly_free(up);
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
{
if (!qp)
return NULL;
qp->ref++;
return qp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
{
struct isl_qpolynomial *dup;
if (!qp)
return NULL;
dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
isl_upoly_copy(qp->upoly));
if (!dup)
return NULL;
isl_mat_free(dup->div);
dup->div = isl_mat_copy(qp->div);
if (!dup->div)
goto error;
return dup;
error:
isl_qpolynomial_free(dup);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
{
if (!qp)
return NULL;
if (qp->ref == 1)
return qp;
qp->ref--;
return isl_qpolynomial_dup(qp);
}
void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp)
{
if (!qp)
return NULL;
if (--qp->ref > 0)
return NULL;
isl_space_free(qp->dim);
isl_mat_free(qp->div);
isl_upoly_free(qp->upoly);
free(qp);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
{
int i;
struct isl_upoly_rec *rec;
struct isl_upoly_cst *cst;
rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
if (!rec)
return NULL;
for (i = 0; i < 1 + power; ++i) {
rec->p[i] = isl_upoly_zero(ctx);
if (!rec->p[i])
goto error;
rec->n++;
}
cst = isl_upoly_as_cst(rec->p[power]);
isl_int_set_si(cst->n, 1);
return &rec->up;
error:
isl_upoly_free(&rec->up);
return NULL;
}
/* r array maps original positions to new positions.
*/
static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
int *r)
{
int i;
struct isl_upoly_rec *rec;
struct isl_upoly *base;
struct isl_upoly *res;
if (isl_upoly_is_cst(up))
return up;
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
isl_assert(up->ctx, rec->n >= 1, goto error);
base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
for (i = rec->n - 2; i >= 0; --i) {
res = isl_upoly_mul(res, isl_upoly_copy(base));
res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
}
isl_upoly_free(base);
isl_upoly_free(up);
return res;
error:
isl_upoly_free(up);
return NULL;
}
static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
{
int n_row, n_col;
int equal;
isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
div1->n_col >= div2->n_col, return -1);
if (div1->n_row == div2->n_row)
return isl_mat_is_equal(div1, div2);
n_row = div1->n_row;
n_col = div1->n_col;
div1->n_row = div2->n_row;
div1->n_col = div2->n_col;
equal = isl_mat_is_equal(div1, div2);
div1->n_row = n_row;
div1->n_col = n_col;
return equal;
}
static int cmp_row(__isl_keep isl_mat *div, int i, int j)
{
int li, lj;
li = isl_seq_last_non_zero(div->row[i], div->n_col);
lj = isl_seq_last_non_zero(div->row[j], div->n_col);
if (li != lj)
return li - lj;
return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
}
struct isl_div_sort_info {
isl_mat *div;
int row;
};
static int div_sort_cmp(const void *p1, const void *p2)
{
const struct isl_div_sort_info *i1, *i2;
i1 = (const struct isl_div_sort_info *) p1;
i2 = (const struct isl_div_sort_info *) p2;
return cmp_row(i1->div, i1->row, i2->row);
}
/* Sort divs and remove duplicates.
*/
static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
{
int i;
int skip;
int len;
struct isl_div_sort_info *array = NULL;
int *pos = NULL, *at = NULL;
int *reordering = NULL;
unsigned div_pos;
if (!qp)
return NULL;
if (qp->div->n_row <= 1)
return qp;
div_pos = isl_space_dim(qp->dim, isl_dim_all);
array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
qp->div->n_row);
pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
len = qp->div->n_col - 2;
reordering = isl_alloc_array(qp->div->ctx, int, len);
if (!array || !pos || !at || !reordering)
goto error;
for (i = 0; i < qp->div->n_row; ++i) {
array[i].div = qp->div;
array[i].row = i;
pos[i] = i;
at[i] = i;
}
qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
div_sort_cmp);
for (i = 0; i < div_pos; ++i)
reordering[i] = i;
for (i = 0; i < qp->div->n_row; ++i) {
if (pos[array[i].row] == i)
continue;
qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
pos[at[i]] = pos[array[i].row];
at[pos[array[i].row]] = at[i];
at[i] = array[i].row;
pos[array[i].row] = i;
}
skip = 0;
for (i = 0; i < len - div_pos; ++i) {
if (i > 0 &&
isl_seq_eq(qp->div->row[i - skip - 1],
qp->div->row[i - skip], qp->div->n_col)) {
qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
2 + div_pos + i - skip);
qp->div = isl_mat_drop_cols(qp->div,
2 + div_pos + i - skip, 1);
skip++;
}
reordering[div_pos + array[i].row] = div_pos + i - skip;
}
qp->upoly = reorder(qp->upoly, reordering);
if (!qp->upoly || !qp->div)
goto error;
free(at);
free(pos);
free(array);
free(reordering);
return qp;
error:
free(at);
free(pos);
free(array);
free(reordering);
isl_qpolynomial_free(qp);
return NULL;
}
static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
int *exp, int first)
{
int i;
struct isl_upoly_rec *rec;
if (isl_upoly_is_cst(up))
return up;
if (up->var < first)
return up;
if (exp[up->var - first] == up->var - first)
return up;
up = isl_upoly_cow(up);
if (!up)
goto error;
up->var = exp[up->var - first] + first;
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = expand(rec->p[i], exp, first);
if (!rec->p[i])
goto error;
}
return up;
error:
isl_upoly_free(up);
return NULL;
}
static __isl_give isl_qpolynomial *with_merged_divs(
__isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2),
__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
{
int *exp1 = NULL;
int *exp2 = NULL;
isl_mat *div = NULL;
qp1 = isl_qpolynomial_cow(qp1);
qp2 = isl_qpolynomial_cow(qp2);
if (!qp1 || !qp2)
goto error;
isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
qp1->div->n_col >= qp2->div->n_col, goto error);
exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row);
exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row);
if (!exp1 || !exp2)
goto error;
div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
if (!div)
goto error;
isl_mat_free(qp1->div);
qp1->div = isl_mat_copy(div);
isl_mat_free(qp2->div);
qp2->div = isl_mat_copy(div);
qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
if (!qp1->upoly || !qp2->upoly)
goto error;
isl_mat_free(div);
free(exp1);
free(exp2);
return fn(qp1, qp2);
error:
isl_mat_free(div);
free(exp1);
free(exp2);
isl_qpolynomial_free(qp1);
isl_qpolynomial_free(qp2);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
qp1 = isl_qpolynomial_cow(qp1);
if (!qp1 || !qp2)
goto error;
if (qp1->div->n_row < qp2->div->n_row)
return isl_qpolynomial_add(qp2, qp1);
isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
if (!compatible_divs(qp1->div, qp2->div))
return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
if (!qp1->upoly)
goto error;
isl_qpolynomial_free(qp2);
return qp1;
error:
isl_qpolynomial_free(qp1);
isl_qpolynomial_free(qp2);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
__isl_keep isl_set *dom,
__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
qp1 = isl_qpolynomial_add(qp1, qp2);
qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
return qp1;
}
__isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
}
__isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
__isl_take isl_qpolynomial *qp, isl_int v)
{
if (isl_int_is_zero(v))
return qp;
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
if (!qp->upoly)
goto error;
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
{
if (!qp)
return NULL;
return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
}
__isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
__isl_take isl_qpolynomial *qp, isl_int v)
{
if (isl_int_is_one(v))
return qp;
if (qp && isl_int_is_zero(v)) {
isl_qpolynomial *zero;
zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
isl_qpolynomial_free(qp);
return zero;
}
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
if (!qp->upoly)
goto error;
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_scale(
__isl_take isl_qpolynomial *qp, isl_int v)
{
return isl_qpolynomial_mul_isl_int(qp, v);
}
__isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
qp1 = isl_qpolynomial_cow(qp1);
if (!qp1 || !qp2)
goto error;
if (qp1->div->n_row < qp2->div->n_row)
return isl_qpolynomial_mul(qp2, qp1);
isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
if (!compatible_divs(qp1->div, qp2->div))
return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
if (!qp1->upoly)
goto error;
isl_qpolynomial_free(qp2);
return qp1;
error:
isl_qpolynomial_free(qp1);
isl_qpolynomial_free(qp2);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
unsigned power)
{
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
qp->upoly = isl_upoly_pow(qp->upoly, power);
if (!qp->upoly)
goto error;
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
__isl_take isl_pw_qpolynomial *pwqp, unsigned power)
{
int i;
if (power == 1)
return pwqp;
pwqp = isl_pw_qpolynomial_cow(pwqp);
if (!pwqp)
return NULL;
for (i = 0; i < pwqp->n; ++i) {
pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
if (!pwqp->p[i].qp)
return isl_pw_qpolynomial_free(pwqp);
}
return pwqp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
__isl_take isl_space *dim)
{
if (!dim)
return NULL;
return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
__isl_take isl_space *dim)
{
if (!dim)
return NULL;
return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
__isl_take isl_space *dim)
{
if (!dim)
return NULL;
return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
__isl_take isl_space *dim)
{
if (!dim)
return NULL;
return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
__isl_take isl_space *dim)
{
if (!dim)
return NULL;
return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
__isl_take isl_space *dim,
isl_int v)
{
struct isl_qpolynomial *qp;
struct isl_upoly_cst *cst;
if (!dim)
return NULL;
qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
if (!qp)
return NULL;
cst = isl_upoly_as_cst(qp->upoly);
isl_int_set(cst->n, v);
return qp;
}
int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
isl_int *n, isl_int *d)
{
struct isl_upoly_cst *cst;
if (!qp)
return -1;
if (!isl_upoly_is_cst(qp->upoly))
return 0;
cst = isl_upoly_as_cst(qp->upoly);
if (!cst)
return -1;
if (n)
isl_int_set(*n, cst->n);
if (d)
isl_int_set(*d, cst->d);
return 1;
}
int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
{
int is_cst;
struct isl_upoly_rec *rec;
if (!up)
return -1;
if (up->var < 0)
return 1;
rec = isl_upoly_as_rec(up);
if (!rec)
return -1;
if (rec->n > 2)
return 0;
isl_assert(up->ctx, rec->n > 1, return -1);
is_cst = isl_upoly_is_cst(rec->p[1]);
if (is_cst < 0)
return -1;
if (!is_cst)
return 0;
return isl_upoly_is_affine(rec->p[0]);
}
int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
{
if (!qp)
return -1;
if (qp->div->n_row > 0)
return 0;
return isl_upoly_is_affine(qp->upoly);
}
static void update_coeff(__isl_keep isl_vec *aff,
__isl_keep struct isl_upoly_cst *cst, int pos)
{
isl_int gcd;
isl_int f;
if (isl_int_is_zero(cst->n))
return;
isl_int_init(gcd);
isl_int_init(f);
isl_int_gcd(gcd, cst->d, aff->el[0]);
isl_int_divexact(f, cst->d, gcd);
isl_int_divexact(gcd, aff->el[0], gcd);
isl_seq_scale(aff->el, aff->el, f, aff->size);
isl_int_mul(aff->el[1 + pos], gcd, cst->n);
isl_int_clear(gcd);
isl_int_clear(f);
}
int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
__isl_keep isl_vec *aff)
{
struct isl_upoly_cst *cst;
struct isl_upoly_rec *rec;
if (!up || !aff)
return -1;
if (up->var < 0) {
struct isl_upoly_cst *cst;
cst = isl_upoly_as_cst(up);
if (!cst)
return -1;
update_coeff(aff, cst, 0);
return 0;
}
rec = isl_upoly_as_rec(up);
if (!rec)
return -1;
isl_assert(up->ctx, rec->n == 2, return -1);
cst = isl_upoly_as_cst(rec->p[1]);
if (!cst)
return -1;
update_coeff(aff, cst, 1 + up->var);
return isl_upoly_update_affine(rec->p[0], aff);
}
__isl_give isl_vec *isl_qpolynomial_extract_affine(
__isl_keep isl_qpolynomial *qp)
{
isl_vec *aff;
unsigned d;
if (!qp)
return NULL;
d = isl_space_dim(qp->dim, isl_dim_all);
aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
if (!aff)
return NULL;
isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
isl_int_set_si(aff->el[0], 1);
if (isl_upoly_update_affine(qp->upoly, aff) < 0)
goto error;
return aff;
error:
isl_vec_free(aff);
return NULL;
}
int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
__isl_keep isl_qpolynomial *qp2)
{
int equal;
if (!qp1 || !qp2)
return -1;
equal = isl_space_is_equal(qp1->dim, qp2->dim);
if (equal < 0 || !equal)
return equal;
equal = isl_mat_is_equal(qp1->div, qp2->div);
if (equal < 0 || !equal)
return equal;
return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
}
static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
{
int i;
struct isl_upoly_rec *rec;
if (isl_upoly_is_cst(up)) {
struct isl_upoly_cst *cst;
cst = isl_upoly_as_cst(up);
if (!cst)
return;
isl_int_lcm(*d, *d, cst->d);
return;
}
rec = isl_upoly_as_rec(up);
if (!rec)
return;
for (i = 0; i < rec->n; ++i)
upoly_update_den(rec->p[i], d);
}
void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
{
isl_int_set_si(*d, 1);
if (!qp)
return;
upoly_update_den(qp->upoly, d);
}
__isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
__isl_take isl_space *dim, int pos, int power)
{
struct isl_ctx *ctx;
if (!dim)
return NULL;
ctx = dim->ctx;
return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
}
__isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim,
enum isl_dim_type type, unsigned pos)
{
if (!dim)
return NULL;
isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error);
isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error);
if (type == isl_dim_set)
pos += isl_space_dim(dim, isl_dim_param);
return isl_qpolynomial_var_pow_on_domain(dim, pos, 1);
error:
isl_space_free(dim);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
{
int i;
struct isl_upoly_rec *rec;
struct isl_upoly *base, *res;
if (!up)
return NULL;
if (isl_upoly_is_cst(up))
return up;
if (up->var < first)
return up;
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
isl_assert(up->ctx, rec->n >= 1, goto error);
if (up->var >= first + n)
base = isl_upoly_var_pow(up->ctx, up->var, 1);
else
base = isl_upoly_copy(subs[up->var - first]);
res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
for (i = rec->n - 2; i >= 0; --i) {
struct isl_upoly *t;
t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
res = isl_upoly_mul(res, isl_upoly_copy(base));
res = isl_upoly_sum(res, t);
}
isl_upoly_free(base);
isl_upoly_free(up);
return res;
error:
isl_upoly_free(up);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
isl_int denom, unsigned len)
{
int i;
struct isl_upoly *up;
isl_assert(ctx, len >= 1, return NULL);
up = isl_upoly_rat_cst(ctx, f[0], denom);
for (i = 0; i < len - 1; ++i) {
struct isl_upoly *t;
struct isl_upoly *c;
if (isl_int_is_zero(f[1 + i]))
continue;
c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
t = isl_upoly_var_pow(ctx, i, 1);
t = isl_upoly_mul(c, t);
up = isl_upoly_sum(up, t);
}
return up;
}
/* Remove common factor of non-constant terms and denominator.
*/
static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
{
isl_ctx *ctx = qp->div->ctx;
unsigned total = qp->div->n_col - 2;
isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
isl_int_gcd(ctx->normalize_gcd,
ctx->normalize_gcd, qp->div->row[div][0]);
if (isl_int_is_one(ctx->normalize_gcd))
return;
isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
ctx->normalize_gcd, total);
isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
ctx->normalize_gcd);
isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
ctx->normalize_gcd);
}
/* Replace the integer division identified by "div" by the polynomial "s".
* The integer division is assumed not to appear in the definition
* of any other integer divisions.
*/
static __isl_give isl_qpolynomial *substitute_div(
__isl_take isl_qpolynomial *qp,
int div, __isl_take struct isl_upoly *s)
{
int i;
int total;
int *reordering;
if (!qp || !s)
goto error;
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
total = isl_space_dim(qp->dim, isl_dim_all);
qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
if (!qp->upoly)
goto error;
reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
if (!reordering)
goto error;
for (i = 0; i < total + div; ++i)
reordering[i] = i;
for (i = total + div + 1; i < total + qp->div->n_row; ++i)
reordering[i] = i - 1;
qp->div = isl_mat_drop_rows(qp->div, div, 1);
qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
qp->upoly = reorder(qp->upoly, reordering);
free(reordering);
if (!qp->upoly || !qp->div)
goto error;
isl_upoly_free(s);
return qp;
error:
isl_qpolynomial_free(qp);
isl_upoly_free(s);
return NULL;
}
/* Replace all integer divisions [e/d] that turn out to not actually be integer
* divisions because d is equal to 1 by their definition, i.e., e.
*/
static __isl_give isl_qpolynomial *substitute_non_divs(
__isl_take isl_qpolynomial *qp)
{
int i, j;
int total;
struct isl_upoly *s;
if (!qp)
return NULL;
total = isl_space_dim(qp->dim, isl_dim_all);
for (i = 0; qp && i < qp->div->n_row; ++i) {
if (!isl_int_is_one(qp->div->row[i][0]))
continue;
for (j = i + 1; j < qp->div->n_row; ++j) {
if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
continue;
isl_seq_combine(qp->div->row[j] + 1,
qp->div->ctx->one, qp->div->row[j] + 1,
qp->div->row[j][2 + total + i],
qp->div->row[i] + 1, 1 + total + i);
isl_int_set_si(qp->div->row[j][2 + total + i], 0);
normalize_div(qp, j);
}
s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
qp->div->row[i][0], qp->div->n_col - 1);
qp = substitute_div(qp, i, s);
--i;
}
return qp;
}
/* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
* with d the denominator. When replacing the coefficient e of x by
* d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
* inside the division, so we need to add floor(e/d) * x outside.
* That is, we replace q by q' + floor(e/d) * x and we therefore need
* to adjust the coefficient of x in each later div that depends on the
* current div "div" and also in the affine expression "aff"
* (if it too depends on "div").
*/
static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
__isl_keep isl_vec *aff)
{
int i, j;
isl_int v;
unsigned total = qp->div->n_col - qp->div->n_row - 2;
isl_int_init(v);
for (i = 0; i < 1 + total + div; ++i) {
if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
continue;
isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
isl_int_fdiv_r(qp->div->row[div][1 + i],
qp->div->row[div][1 + i], qp->div->row[div][0]);
if (!isl_int_is_zero(aff->el[1 + total + div]))
isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]);
for (j = div + 1; j < qp->div->n_row; ++j) {
if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
continue;
isl_int_addmul(qp->div->row[j][1 + i],
v, qp->div->row[j][2 + total + div]);
}
}
isl_int_clear(v);
}
/* Check if the last non-zero coefficient is bigger that half of the
* denominator. If so, we will invert the div to further reduce the number
* of distinct divs that may appear.
* If the last non-zero coefficient is exactly half the denominator,
* then we continue looking for earlier coefficients that are bigger
* than half the denominator.
*/
static int needs_invert(__isl_keep isl_mat *div, int row)
{
int i;
int cmp;
for (i = div->n_col - 1; i >= 1; --i) {
if (isl_int_is_zero(div->row[row][i]))
continue;
isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
if (cmp)
return cmp > 0;
if (i == 1)
return 1;
}
return 0;
}
/* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
* We only invert the coefficients of e (and the coefficient of q in
* later divs and in "aff"). After calling this function, the
* coefficients of e should be reduced again.
*/
static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
__isl_keep isl_vec *aff)
{
unsigned total = qp->div->n_col - qp->div->n_row - 2;
isl_seq_neg(qp->div->row[div] + 1,
qp->div->row[div] + 1, qp->div->n_col - 1);
isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
isl_int_add(qp->div->row[div][1],
qp->div->row[div][1], qp->div->row[div][0]);
if (!isl_int_is_zero(aff->el[1 + total + div]))
isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]);
isl_mat_col_mul(qp->div, 2 + total + div,
qp->div->ctx->negone, 2 + total + div);
}
/* Assuming "qp" is a monomial, reduce all its divs to have coefficients
* in the interval [0, d-1], with d the denominator and such that the
* last non-zero coefficient that is not equal to d/2 is smaller than d/2.
*
* After the reduction, some divs may have become redundant or identical,
* so we call substitute_non_divs and sort_divs. If these functions
* eliminate divs or merge two or more divs into one, the coefficients
* of the enclosing divs may have to be reduced again, so we call
* ourselves recursively if the number of divs decreases.
*/
static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
{
int i;
isl_vec *aff = NULL;
struct isl_upoly *s;
unsigned n_div;
if (!qp)
return NULL;
aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
aff = isl_vec_clr(aff);
if (!aff)
goto error;
isl_int_set_si(aff->el[1 + qp->upoly->var], 1);
for (i = 0; i < qp->div->n_row; ++i) {
normalize_div(qp, i);
reduce_div(qp, i, aff);
if (needs_invert(qp->div, i)) {
invert_div(qp, i, aff);
reduce_div(qp, i, aff);
}
}
s = isl_upoly_from_affine(qp->div->ctx, aff->el,
qp->div->ctx->one, aff->size);
qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s);
isl_upoly_free(s);
if (!qp->upoly)
goto error;
isl_vec_free(aff);
n_div = qp->div->n_row;
qp = substitute_non_divs(qp);
qp = sort_divs(qp);
if (qp && qp->div->n_row < n_div)
return reduce_divs(qp);
return qp;
error:
isl_qpolynomial_free(qp);
isl_vec_free(aff);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
__isl_take isl_space *dim, const isl_int n, const isl_int d)
{
struct isl_qpolynomial *qp;
struct isl_upoly_cst *cst;
if (!dim)
return NULL;
qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
if (!qp)
return NULL;
cst = isl_upoly_as_cst(qp->upoly);
isl_int_set(cst->n, n);
isl_int_set(cst->d, d);
return qp;
}
static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
{
struct isl_upoly_rec *rec;
int i;
if (!up)
return -1;
if (isl_upoly_is_cst(up))
return 0;
if (up->var < d)
active[up->var] = 1;
rec = isl_upoly_as_rec(up);
for (i = 0; i < rec->n; ++i)
if (up_set_active(rec->p[i], active, d) < 0)
return -1;
return 0;
}
static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
{
int i, j;
int d = isl_space_dim(qp->dim, isl_dim_all);
if (!qp || !active)
return -1;
for (i = 0; i < d; ++i)
for (j = 0; j < qp->div->n_row; ++j) {
if (isl_int_is_zero(qp->div->row[j][2 + i]))
continue;
active[i] = 1;
break;
}
return up_set_active(qp->upoly, active, d);
}
int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
int *active = NULL;
int involves = 0;
if (!qp)
return -1;
if (n == 0)
return 0;
isl_assert(qp->dim->ctx,
first + n <= isl_qpolynomial_dim(qp, type), return -1);
isl_assert(qp->dim->ctx, type == isl_dim_param ||
type == isl_dim_in, return -1);
active = isl_calloc_array(qp->dim->ctx, int,
isl_space_dim(qp->dim, isl_dim_all));
if (set_active(qp, active) < 0)
goto error;
if (type == isl_dim_in)
first += isl_space_dim(qp->dim, isl_dim_param);
for (i = 0; i < n; ++i)
if (active[first + i]) {
involves = 1;
break;
}
free(active);
return involves;
error:
free(active);
return -1;
}
/* Remove divs that do not appear in the quasi-polynomial, nor in any
* of the divs that do appear in the quasi-polynomial.
*/
static __isl_give isl_qpolynomial *remove_redundant_divs(
__isl_take isl_qpolynomial *qp)
{
int i, j;
int d;
int len;
int skip;
int *active = NULL;
int *reordering = NULL;
int redundant = 0;
int n_div;
isl_ctx *ctx;
if (!qp)
return NULL;
if (qp->div->n_row == 0)
return qp;
d = isl_space_dim(qp->dim, isl_dim_all);
len = qp->div->n_col - 2;
ctx = isl_qpolynomial_get_ctx(qp);
active = isl_calloc_array(ctx, int, len);
if (!active)
goto error;
if (up_set_active(qp->upoly, active, len) < 0)
goto error;
for (i = qp->div->n_row - 1; i >= 0; --i) {
if (!active[d + i]) {
redundant = 1;
continue;
}
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
continue;
active[d + j] = 1;
break;
}
}
if (!redundant) {
free(active);
return qp;
}
reordering = isl_alloc_array(qp->div->ctx, int, len);
if (!reordering)
goto error;
for (i = 0; i < d; ++i)
reordering[i] = i;
skip = 0;
n_div = qp->div->n_row;
for (i = 0; i < n_div; ++i) {
if (!active[d + i]) {
qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
qp->div = isl_mat_drop_cols(qp->div,
2 + d + i - skip, 1);
skip++;
}
reordering[d + i] = d + i - skip;
}
qp->upoly = reorder(qp->upoly, reordering);
if (!qp->upoly || !qp->div)
goto error;
free(active);
free(reordering);
return qp;
error:
free(active);
free(reordering);
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
unsigned first, unsigned n)
{
int i;
struct isl_upoly_rec *rec;
if (!up)
return NULL;
if (n == 0 || up->var < 0 || up->var < first)
return up;
if (up->var < first + n) {
up = replace_by_constant_term(up);
return isl_upoly_drop(up, first, n);
}
up = isl_upoly_cow(up);
if (!up)
return NULL;
up->var -= n;
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
if (!rec->p[i])
goto error;
}
return up;
error:
isl_upoly_free(up);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
__isl_take isl_qpolynomial *qp,
enum isl_dim_type type, unsigned pos, const char *s)
{
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
if (!qp->dim)
goto error;
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
__isl_take isl_qpolynomial *qp,
enum isl_dim_type type, unsigned first, unsigned n)
{
if (!qp)
return NULL;
if (type == isl_dim_out)
isl_die(qp->dim->ctx, isl_error_invalid,
"cannot drop output/set dimension",
goto error);
if (type == isl_dim_in)
type = isl_dim_set;
if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
return qp;
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
goto error);
isl_assert(qp->dim->ctx, type == isl_dim_param ||
type == isl_dim_set, goto error);
qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
if (!qp->dim)
goto error;
if (type == isl_dim_set)
first += isl_space_dim(qp->dim, isl_dim_param);
qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
if (!qp->div)
goto error;
qp->upoly = isl_upoly_drop(qp->upoly, first, n);
if (!qp->upoly)
goto error;
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
/* Project the domain of the quasi-polynomial onto its parameter space.
* The quasi-polynomial may not involve any of the domain dimensions.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
__isl_take isl_qpolynomial *qp)
{
isl_space *space;
unsigned n;
int involves;
n = isl_qpolynomial_dim(qp, isl_dim_in);
involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
if (involves < 0)
return isl_qpolynomial_free(qp);
if (involves)
isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
"polynomial involves some of the domain dimensions",
return isl_qpolynomial_free(qp));
qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
space = isl_qpolynomial_get_domain_space(qp);
space = isl_space_params(space);
qp = isl_qpolynomial_reset_domain_space(qp, space);
return qp;
}
static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
{
int i, j, k;
isl_int denom;
unsigned total;
unsigned n_div;
struct isl_upoly *up;
if (!eq)
goto error;
if (eq->n_eq == 0) {
isl_basic_set_free(eq);
return qp;
}
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
qp->div = isl_mat_cow(qp->div);
if (!qp->div)
goto error;
total = 1 + isl_space_dim(eq->dim, isl_dim_all);
n_div = eq->n_div;
isl_int_init(denom);
for (i = 0; i < eq->n_eq; ++i) {
j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
if (j < 0 || j == 0 || j >= total)
continue;
for (k = 0; k < qp->div->n_row; ++k) {
if (isl_int_is_zero(qp->div->row[k][1 + j]))
continue;
isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
&qp->div->row[k][0]);
normalize_div(qp, k);
}
if (isl_int_is_pos(eq->eq[i][j]))
isl_seq_neg(eq->eq[i], eq->eq[i], total);
isl_int_abs(denom, eq->eq[i][j]);
isl_int_set_si(eq->eq[i][j], 0);
up = isl_upoly_from_affine(qp->dim->ctx,
eq->eq[i], denom, total);
qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
isl_upoly_free(up);
}
isl_int_clear(denom);
if (!qp->upoly)
goto error;
isl_basic_set_free(eq);
qp = substitute_non_divs(qp);
qp = sort_divs(qp);
return qp;
error:
isl_basic_set_free(eq);
isl_qpolynomial_free(qp);
return NULL;
}
/* Exploit the equalities in "eq" to simplify the quasi-polynomial.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
{
if (!qp || !eq)
goto error;
if (qp->div->n_row > 0)
eq = isl_basic_set_add(eq, isl_dim_set, qp->div->n_row);
return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
error:
isl_basic_set_free(eq);
isl_qpolynomial_free(qp);
return NULL;
}
static __isl_give isl_basic_set *add_div_constraints(
__isl_take isl_basic_set *bset, __isl_take isl_mat *div)
{
int i;
unsigned total;
if (!bset || !div)
goto error;
bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
if (!bset)
goto error;
total = isl_basic_set_total_dim(bset);
for (i = 0; i < div->n_row; ++i)
if (isl_basic_set_add_div_constraints_var(bset,
total - div->n_row + i, div->row[i]) < 0)
goto error;
isl_mat_free(div);
return bset;
error:
isl_mat_free(div);
isl_basic_set_free(bset);
return NULL;
}
/* Look for equalities among the variables shared by context and qp
* and the integer divisions of qp, if any.
* The equalities are then used to eliminate variables and/or integer
* divisions from qp.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_gist(
__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
{
isl_basic_set *aff;
if (!qp)
goto error;
if (qp->div->n_row > 0) {
isl_basic_set *bset;
context = isl_set_add_dims(context, isl_dim_set,
qp->div->n_row);
bset = isl_basic_set_universe(isl_set_get_space(context));
bset = add_div_constraints(bset, isl_mat_copy(qp->div));
context = isl_set_intersect(context,
isl_set_from_basic_set(bset));
}
aff = isl_set_affine_hull(context);
return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
error:
isl_qpolynomial_free(qp);
isl_set_free(context);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
{
isl_space *space = isl_qpolynomial_get_domain_space(qp);
isl_set *dom_context = isl_set_universe(space);
dom_context = isl_set_intersect_params(dom_context, context);
return isl_qpolynomial_gist(qp, dom_context);
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
__isl_take isl_qpolynomial *qp)
{
isl_set *dom;
if (!qp)
return NULL;
if (isl_qpolynomial_is_zero(qp)) {
isl_space *dim = isl_qpolynomial_get_space(qp);
isl_qpolynomial_free(qp);
return isl_pw_qpolynomial_zero(dim);
}
dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
return isl_pw_qpolynomial_alloc(dom, qp);
}
#undef PW
#define PW isl_pw_qpolynomial
#undef EL
#define EL isl_qpolynomial
#undef EL_IS_ZERO
#define EL_IS_ZERO is_zero
#undef ZERO
#define ZERO zero
#undef IS_ZERO
#define IS_ZERO is_zero
#undef FIELD
#define FIELD qp
#undef DEFAULT_IS_ZERO
#define DEFAULT_IS_ZERO 1
#include <isl_pw_templ.c>
#undef UNION
#define UNION isl_union_pw_qpolynomial
#undef PART
#define PART isl_pw_qpolynomial
#undef PARTS
#define PARTS pw_qpolynomial
#define ALIGN_DOMAIN
#include <isl_union_templ.c>
int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
{
if (!pwqp)
return -1;
if (pwqp->n != -1)
return 0;
if (!isl_set_plain_is_universe(pwqp->p[0].set))
return 0;
return isl_qpolynomial_is_one(pwqp->p[0].qp);
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2)
{
return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2)
{
int i, j, n;
struct isl_pw_qpolynomial *res;
if (!pwqp1 || !pwqp2)
goto error;
isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
goto error);
if (isl_pw_qpolynomial_is_zero(pwqp1)) {
isl_pw_qpolynomial_free(pwqp2);
return pwqp1;
}
if (isl_pw_qpolynomial_is_zero(pwqp2)) {
isl_pw_qpolynomial_free(pwqp1);
return pwqp2;
}
if (isl_pw_qpolynomial_is_one(pwqp1)) {
isl_pw_qpolynomial_free(pwqp1);
return pwqp2;
}
if (isl_pw_qpolynomial_is_one(pwqp2)) {
isl_pw_qpolynomial_free(pwqp2);
return pwqp1;
}
n = pwqp1->n * pwqp2->n;
res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
for (i = 0; i < pwqp1->n; ++i) {
for (j = 0; j < pwqp2->n; ++j) {
struct isl_set *common;
struct isl_qpolynomial *prod;
common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
isl_set_copy(pwqp2->p[j].set));
if (isl_set_plain_is_empty(common)) {
isl_set_free(common);
continue;
}
prod = isl_qpolynomial_mul(
isl_qpolynomial_copy(pwqp1->p[i].qp),
isl_qpolynomial_copy(pwqp2->p[j].qp));
res = isl_pw_qpolynomial_add_piece(res, common, prod);
}
}
isl_pw_qpolynomial_free(pwqp1);
isl_pw_qpolynomial_free(pwqp2);
return res;
error:
isl_pw_qpolynomial_free(pwqp1);
isl_pw_qpolynomial_free(pwqp2);
return NULL;
}
__isl_give struct isl_upoly *isl_upoly_eval(
__isl_take struct isl_upoly *up, __isl_take isl_vec *vec)
{
int i;
struct isl_upoly_rec *rec;
struct isl_upoly *res;
struct isl_upoly *base;
if (isl_upoly_is_cst(up)) {
isl_vec_free(vec);
return up;
}
rec = isl_upoly_as_rec(up);
if (!rec)
goto error;
isl_assert(up->ctx, rec->n >= 1, goto error);
base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]);
res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),