blob: bf5fafb9620f2cfb5a3da88c33c2e2743b37f7e7 [file] [log] [blame]
#!/usr/bin/env python3.4
#
# Copyright 2022 - The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import csv
import itertools
import numpy
import json
import os
from acts import context
from acts import base_test
from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger
from acts_contrib.test_utils.cellular.performance import cellular_performance_test_utils as cputils
from acts_contrib.test_utils.wifi import wifi_performance_test_utils as wputils
from acts_contrib.test_utils.wifi.wifi_performance_test_utils.bokeh_figure import BokehFigure
from acts_contrib.test_utils.cellular.performance.CellularThroughputBaseTest import CellularThroughputBaseTest
from functools import partial
class CellularFr2SensitivityTest(CellularThroughputBaseTest):
"""Class to test single cell FR1 NSA sensitivity"""
def __init__(self, controllers):
base_test.BaseTestClass.__init__(self, controllers)
self.testcase_metric_logger = (
BlackboxMappedMetricLogger.for_test_case())
self.testclass_metric_logger = (
BlackboxMappedMetricLogger.for_test_class())
self.publish_testcase_metrics = True
self.testclass_params = self.user_params['fr2_sensitivity_test_params']
self.log.info('Hello')
self.tests = self.generate_test_cases(
band_list=['N257', 'N258', 'N260', 'N261'],
channel_list=['low', 'mid', 'high'],
dl_mcs_list=list(numpy.arange(28, -1, -1)),
num_dl_cells_list=[1, 2, 4, 8],
orientation_list=['A_Plane', 'B_Plane'],
dl_mimo_config=2,
nr_ul_mcs=4,
lte_dl_mcs_table='QAM256',
lte_dl_mcs=4,
lte_ul_mcs_table='QAM256',
lte_ul_mcs=4,
schedule_scenario="FULL_TPUT",
schedule_slot_ratio=80,
force_contiguous_nr_channel=True,
transform_precoding=0)
def process_testclass_results(self):
# Plot individual test id results raw data and compile metrics
plots = collections.OrderedDict()
compiled_data = collections.OrderedDict()
for testcase_name, testcase_data in self.testclass_results.items():
nr_cell_index = testcase_data['testcase_params'][
'endc_combo_config']['lte_cell_count']
cell_config = testcase_data['testcase_params'][
'endc_combo_config']['cell_list'][nr_cell_index]
test_id = tuple(('band', cell_config['band']))
if test_id not in plots:
# Initialize test id data when not present
compiled_data[test_id] = {
'mcs': [],
'average_throughput': [],
'theoretical_throughput': [],
'cell_power': [],
}
plots[test_id] = BokehFigure(
title='Band {} - BLER Curves'.format(cell_config['band']),
x_label='Cell Power (dBm)',
primary_y_label='BLER (Mbps)')
test_id_rvr = test_id + tuple('RvR')
plots[test_id_rvr] = BokehFigure(
title='Band {} - RvR'.format(cell_config['band']),
x_label='Cell Power (dBm)',
primary_y_label='PHY Rate (Mbps)')
# Compile test id data and metrics
compiled_data[test_id]['average_throughput'].append(
testcase_data['average_throughput_list'])
compiled_data[test_id]['cell_power'].append(
testcase_data['cell_power_list'])
compiled_data[test_id]['mcs'].append(
testcase_data['testcase_params']['nr_dl_mcs'])
# Add test id to plots
plots[test_id].add_line(
testcase_data['cell_power_list'],
testcase_data['bler_list'],
'MCS {}'.format(testcase_data['testcase_params']['nr_dl_mcs']),
width=1)
plots[test_id_rvr].add_line(
testcase_data['cell_power_list'],
testcase_data['average_throughput_list'],
'MCS {}'.format(testcase_data['testcase_params']['nr_dl_mcs']),
width=1,
style='dashed')
for test_id, test_data in compiled_data.items():
test_id_rvr = test_id + tuple('RvR')
cell_power_interp = sorted(set(sum(test_data['cell_power'], [])))
average_throughput_interp = []
for mcs, cell_power, throughput in zip(
test_data['mcs'], test_data['cell_power'],
test_data['average_throughput']):
throughput_interp = numpy.interp(cell_power_interp,
cell_power[::-1],
throughput[::-1])
average_throughput_interp.append(throughput_interp)
rvr = numpy.max(average_throughput_interp, 0)
plots[test_id_rvr].add_line(cell_power_interp, rvr,
'Rate vs. Range')
figure_list = []
for plot_id, plot in plots.items():
plot.generate_figure()
figure_list.append(plot)
output_file_path = os.path.join(self.log_path, 'results.html')
BokehFigure.save_figures(figure_list, output_file_path)
"""Saves CSV with all test results to enable comparison."""
results_file_path = os.path.join(
context.get_current_context().get_full_output_path(),
'results.csv')
with open(results_file_path, 'w', newline='') as csvfile:
field_names = ['Test Name', 'Sensitivity']
writer = csv.DictWriter(csvfile, fieldnames=field_names)
writer.writeheader()
for testcase_name, testcase_results in self.testclass_results.items(
):
row_dict = {
'Test Name': testcase_name,
'Sensitivity': testcase_results['sensitivity']
}
writer.writerow(row_dict)
def process_testcase_results(self):
if self.current_test_name not in self.testclass_results:
return
testcase_data = self.testclass_results[self.current_test_name]
bler_list = []
average_throughput_list = []
theoretical_throughput_list = []
nr_cell_index = testcase_data['testcase_params']['endc_combo_config'][
'lte_cell_count']
cell_power_list = testcase_data['testcase_params']['cell_power_sweep'][
nr_cell_index]
for result in testcase_data['results']:
bler_list.append(result['throughput_measurements']
['nr_bler_result']['total']['DL']['nack_ratio'])
average_throughput_list.append(
result['throughput_measurements']['nr_tput_result']['total']
['DL']['average_tput'])
theoretical_throughput_list.append(
result['throughput_measurements']['nr_tput_result']['total']
['DL']['theoretical_tput'])
padding_len = len(cell_power_list) - len(average_throughput_list)
average_throughput_list.extend([0] * padding_len)
theoretical_throughput_list.extend([0] * padding_len)
bler_above_threshold = [
bler > self.testclass_params['bler_threshold']
for bler in bler_list
]
for idx in range(len(bler_above_threshold)):
if all(bler_above_threshold[idx:]):
sensitivity_idx = max(idx, 1) - 1
break
else:
sensitivity_idx = -1
sensitivity = cell_power_list[sensitivity_idx]
self.log.info('NR Band {} MCS {} Sensitivity = {}dBm'.format(
testcase_data['testcase_params']['endc_combo_config']['cell_list']
[nr_cell_index]['band'],
testcase_data['testcase_params']['nr_dl_mcs'], sensitivity))
testcase_data['bler_list'] = bler_list
testcase_data['average_throughput_list'] = average_throughput_list
testcase_data[
'theoretical_throughput_list'] = theoretical_throughput_list
testcase_data['cell_power_list'] = cell_power_list
testcase_data['sensitivity'] = sensitivity
results_file_path = os.path.join(
context.get_current_context().get_full_output_path(),
'{}.json'.format(self.current_test_name))
with open(results_file_path, 'w') as results_file:
json.dump(wputils.serialize_dict(testcase_data),
results_file,
indent=4)
def get_per_cell_power_sweeps(self, testcase_params):
# get reference test
current_band = testcase_params['endc_combo_config']['cell_list'][1][
'band']
reference_test = None
reference_sensitivity = None
for testcase_name, testcase_data in self.testclass_results.items():
if testcase_data['testcase_params']['endc_combo_config'][
'cell_list'][1]['band'] == current_band:
reference_test = testcase_name
reference_sensitivity = testcase_data['sensitivity']
if reference_test and reference_sensitivity and not self.retry_flag:
start_atten = reference_sensitivity + self.testclass_params[
'adjacent_mcs_gap']
self.log.info(
"Reference test {} found. Sensitivity {} dBm. Starting at {} dBm"
.format(reference_test, reference_sensitivity, start_atten))
else:
start_atten = self.testclass_params['nr_cell_power_start']
self.log.info(
"Reference test not found. Starting at {} dBm".format(
start_atten))
# get current cell power start
nr_cell_sweep = list(
numpy.arange(start_atten,
self.testclass_params['nr_cell_power_stop'],
self.testclass_params['nr_cell_power_step']))
lte_sweep = [self.testclass_params['lte_cell_power']
] * len(nr_cell_sweep)
cell_power_sweeps = [lte_sweep]
cell_power_sweeps.extend(
[nr_cell_sweep] *
testcase_params['endc_combo_config']['nr_cell_count'])
return cell_power_sweeps
def generate_endc_combo_config(self, test_config):
"""Function to generate ENDC combo config from CSV test config
Args:
test_config: dict containing ENDC combo config from CSV
Returns:
endc_combo_config: dictionary with all ENDC combo settings
"""
endc_combo_config = collections.OrderedDict()
cell_config_list = []
lte_cell_count = 1
lte_carriers = [1]
lte_scc_list = []
endc_combo_config['lte_pcc'] = 1
lte_cell = {
'cell_type': 'LTE',
'cell_number': 1,
'pcc': 1,
'band': self.testclass_params['lte_anchor_band'],
'dl_bandwidth': self.testclass_params['lte_anchor_bandwidth'],
'ul_enabled': 1,
'duplex_mode': self.testclass_params['lte_anchor_duplex_mode'],
'dl_mimo_config': 'D{nss}U{nss}'.format(nss=1),
'ul_mimo_config': 'D{nss}U{nss}'.format(nss=1),
'transmission_mode': 'TM1',
'num_codewords': 1,
'num_layers': 1,
'dl_subframe_allocation': [1] * 10,
}
cell_config_list.append(lte_cell)
nr_cell_count = 0
nr_dl_carriers = []
nr_ul_carriers = []
for nr_cell_idx in range(1, test_config['num_dl_cells'] + 1):
nr_cell = {
'cell_type':
'NR5G',
'cell_number':
nr_cell_idx,
'nr_cell_type':
'NSA',
'band':
test_config['nr_band'],
'duplex_mode':
test_config['nr_duplex_mode'],
'channel':
test_config['nr_channel'],
'dl_mimo_config':
'N{nss}X{nss}'.format(nss=test_config['nr_dl_mimo_config']),
'dl_bandwidth_class':
'A',
'dl_bandwidth':
test_config['nr_bandwidth'],
'ul_enabled':
1 if nr_cell_idx <= test_config['num_ul_cells'] else 0,
'ul_bandwidth_class':
'A',
'ul_mimo_config':
'N{nss}X{nss}'.format(nss=test_config['nr_ul_mimo_config']),
'subcarrier_spacing':
'MU3'
}
cell_config_list.append(nr_cell)
nr_cell_count = nr_cell_count + 1
nr_dl_carriers.append(nr_cell_idx)
if nr_cell_idx <= test_config['num_ul_cells']:
nr_ul_carriers.append(nr_cell_idx)
endc_combo_config['lte_cell_count'] = lte_cell_count
endc_combo_config['nr_cell_count'] = nr_cell_count
endc_combo_config['nr_dl_carriers'] = nr_dl_carriers
endc_combo_config['nr_ul_carriers'] = nr_ul_carriers
endc_combo_config['cell_list'] = cell_config_list
endc_combo_config['lte_scc_list'] = lte_scc_list
endc_combo_config['lte_dl_carriers'] = lte_carriers
endc_combo_config['lte_ul_carriers'] = lte_carriers
return endc_combo_config
def generate_test_cases(self, band_list, channel_list, dl_mcs_list,
num_dl_cells_list, dl_mimo_config,
orientation_list, **kwargs):
"""Function that auto-generates test cases for a test class."""
test_cases = []
for orientation, band, channel, num_dl_cells, nr_dl_mcs in itertools.product(
orientation_list, band_list, channel_list, num_dl_cells_list,
dl_mcs_list):
if channel not in cputils.PCC_PRESET_MAPPING[band]:
continue
test_config = {
'nr_band': band,
'nr_bandwidth': 'BW100',
'nr_duplex_mode': 'TDD',
'nr_channel': channel,
'num_dl_cells': num_dl_cells,
'num_ul_cells': 1,
'nr_dl_mimo_config': dl_mimo_config,
'nr_ul_mimo_config': 1
}
endc_combo_config = self.generate_endc_combo_config(test_config)
test_name = 'test_fr2_{}_{}_{}CC_mcs{}_{}x{}'.format(
band, channel.lower(), num_dl_cells, nr_dl_mcs, dl_mimo_config,
dl_mimo_config)
test_params = collections.OrderedDict(
endc_combo_config=endc_combo_config,
nr_dl_mcs=nr_dl_mcs,
orientation=orientation,
**kwargs)
setattr(self, test_name,
partial(self._test_throughput_bler, test_params))
test_cases.append(test_name)
return test_cases