blob: af0e15f85f1fa40b617d75f04b36558503f76a2d [file] [log] [blame] [edit]
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/*
The code generator for the plugin for the Google protocol buffer compiler.
It generates Go code from the protocol buffer description files read by the
main routine.
*/
package generator
import (
"bytes"
"fmt"
"go/parser"
"go/printer"
"go/token"
"log"
"os"
"path"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/golang/protobuf/proto"
"github.com/golang/protobuf/protoc-gen-go/descriptor"
plugin "github.com/golang/protobuf/protoc-gen-go/plugin"
)
// A Plugin provides functionality to add to the output during Go code generation,
// such as to produce RPC stubs.
type Plugin interface {
// Name identifies the plugin.
Name() string
// Init is called once after data structures are built but before
// code generation begins.
Init(g *Generator)
// Generate produces the code generated by the plugin for this file,
// except for the imports, by calling the generator's methods P, In, and Out.
Generate(file *FileDescriptor)
// GenerateImports produces the import declarations for this file.
// It is called after Generate.
GenerateImports(file *FileDescriptor)
}
var plugins []Plugin
// RegisterPlugin installs a (second-order) plugin to be run when the Go output is generated.
// It is typically called during initialization.
func RegisterPlugin(p Plugin) {
plugins = append(plugins, p)
}
// Each type we import as a protocol buffer (other than FileDescriptorProto) needs
// a pointer to the FileDescriptorProto that represents it. These types achieve that
// wrapping by placing each Proto inside a struct with the pointer to its File. The
// structs have the same names as their contents, with "Proto" removed.
// FileDescriptor is used to store the things that it points to.
// The file and package name method are common to messages and enums.
type common struct {
file *descriptor.FileDescriptorProto // File this object comes from.
}
// PackageName is name in the package clause in the generated file.
func (c *common) PackageName() string { return uniquePackageOf(c.file) }
func (c *common) File() *descriptor.FileDescriptorProto { return c.file }
func fileIsProto3(file *descriptor.FileDescriptorProto) bool {
return file.GetSyntax() == "proto3"
}
func (c *common) proto3() bool { return fileIsProto3(c.file) }
// Descriptor represents a protocol buffer message.
type Descriptor struct {
common
*descriptor.DescriptorProto
parent *Descriptor // The containing message, if any.
nested []*Descriptor // Inner messages, if any.
ext []*ExtensionDescriptor // Extensions, if any.
typename []string // Cached typename vector.
index int // The index into the container, whether the file or another message.
path string // The SourceCodeInfo path as comma-separated integers.
group bool
}
// TypeName returns the elements of the dotted type name.
// The package name is not part of this name.
func (d *Descriptor) TypeName() []string {
if d.typename != nil {
return d.typename
}
n := 0
for parent := d; parent != nil; parent = parent.parent {
n++
}
s := make([]string, n, n)
for parent := d; parent != nil; parent = parent.parent {
n--
s[n] = parent.GetName()
}
d.typename = s
return s
}
// EnumDescriptor describes an enum. If it's at top level, its parent will be nil.
// Otherwise it will be the descriptor of the message in which it is defined.
type EnumDescriptor struct {
common
*descriptor.EnumDescriptorProto
parent *Descriptor // The containing message, if any.
typename []string // Cached typename vector.
index int // The index into the container, whether the file or a message.
path string // The SourceCodeInfo path as comma-separated integers.
}
// TypeName returns the elements of the dotted type name.
// The package name is not part of this name.
func (e *EnumDescriptor) TypeName() (s []string) {
if e.typename != nil {
return e.typename
}
name := e.GetName()
if e.parent == nil {
s = make([]string, 1)
} else {
pname := e.parent.TypeName()
s = make([]string, len(pname)+1)
copy(s, pname)
}
s[len(s)-1] = name
e.typename = s
return s
}
// Everything but the last element of the full type name, CamelCased.
// The values of type Foo.Bar are call Foo_value1... not Foo_Bar_value1... .
func (e *EnumDescriptor) prefix() string {
if e.parent == nil {
// If the enum is not part of a message, the prefix is just the type name.
return CamelCase(*e.Name) + "_"
}
typeName := e.TypeName()
return CamelCaseSlice(typeName[0:len(typeName)-1]) + "_"
}
// The integer value of the named constant in this enumerated type.
func (e *EnumDescriptor) integerValueAsString(name string) string {
for _, c := range e.Value {
if c.GetName() == name {
return fmt.Sprint(c.GetNumber())
}
}
log.Fatal("cannot find value for enum constant")
return ""
}
// ExtensionDescriptor describes an extension. If it's at top level, its parent will be nil.
// Otherwise it will be the descriptor of the message in which it is defined.
type ExtensionDescriptor struct {
common
*descriptor.FieldDescriptorProto
parent *Descriptor // The containing message, if any.
}
// TypeName returns the elements of the dotted type name.
// The package name is not part of this name.
func (e *ExtensionDescriptor) TypeName() (s []string) {
name := e.GetName()
if e.parent == nil {
// top-level extension
s = make([]string, 1)
} else {
pname := e.parent.TypeName()
s = make([]string, len(pname)+1)
copy(s, pname)
}
s[len(s)-1] = name
return s
}
// DescName returns the variable name used for the generated descriptor.
func (e *ExtensionDescriptor) DescName() string {
// The full type name.
typeName := e.TypeName()
// Each scope of the extension is individually CamelCased, and all are joined with "_" with an "E_" prefix.
for i, s := range typeName {
typeName[i] = CamelCase(s)
}
return "E_" + strings.Join(typeName, "_")
}
// ImportedDescriptor describes a type that has been publicly imported from another file.
type ImportedDescriptor struct {
common
o Object
}
func (id *ImportedDescriptor) TypeName() []string { return id.o.TypeName() }
// FileDescriptor describes an protocol buffer descriptor file (.proto).
// It includes slices of all the messages and enums defined within it.
// Those slices are constructed by WrapTypes.
type FileDescriptor struct {
*descriptor.FileDescriptorProto
desc []*Descriptor // All the messages defined in this file.
enum []*EnumDescriptor // All the enums defined in this file.
ext []*ExtensionDescriptor // All the top-level extensions defined in this file.
imp []*ImportedDescriptor // All types defined in files publicly imported by this file.
// Comments, stored as a map of path (comma-separated integers) to the comment.
comments map[string]*descriptor.SourceCodeInfo_Location
// The full list of symbols that are exported,
// as a map from the exported object to its symbols.
// This is used for supporting public imports.
exported map[Object][]symbol
index int // The index of this file in the list of files to generate code for
proto3 bool // whether to generate proto3 code for this file
}
// PackageName is the package name we'll use in the generated code to refer to this file.
func (d *FileDescriptor) PackageName() string { return uniquePackageOf(d.FileDescriptorProto) }
// goPackageName returns the Go package name to use in the
// generated Go file. The result explicit reports whether the name
// came from an option go_package statement. If explicit is false,
// the name was derived from the protocol buffer's package statement
// or the input file name.
func (d *FileDescriptor) goPackageName() (name string, explicit bool) {
// Does the file have a "go_package" option?
if opts := d.Options; opts != nil {
if pkg := opts.GetGoPackage(); pkg != "" {
return pkg, true
}
}
// Does the file have a package clause?
if pkg := d.GetPackage(); pkg != "" {
return pkg, false
}
// Use the file base name.
return baseName(d.GetName()), false
}
func (d *FileDescriptor) addExport(obj Object, sym symbol) {
d.exported[obj] = append(d.exported[obj], sym)
}
// symbol is an interface representing an exported Go symbol.
type symbol interface {
// GenerateAlias should generate an appropriate alias
// for the symbol from the named package.
GenerateAlias(g *Generator, pkg string)
}
type messageSymbol struct {
sym string
hasExtensions, isMessageSet bool
getters []getterSymbol
}
type getterSymbol struct {
name string
typ string
typeName string // canonical name in proto world; empty for proto.Message and similar
genType bool // whether typ is a generated type (message/group/enum)
}
func (ms *messageSymbol) GenerateAlias(g *Generator, pkg string) {
remoteSym := pkg + "." + ms.sym
g.P("type ", ms.sym, " ", remoteSym)
g.P("func (m *", ms.sym, ") Reset() { (*", remoteSym, ")(m).Reset() }")
g.P("func (m *", ms.sym, ") String() string { return (*", remoteSym, ")(m).String() }")
g.P("func (*", ms.sym, ") ProtoMessage() {}")
if ms.hasExtensions {
g.P("func (*", ms.sym, ") ExtensionRangeArray() []", g.Pkg["proto"], ".ExtensionRange ",
"{ return (*", remoteSym, ")(nil).ExtensionRangeArray() }")
g.P("func (m *", ms.sym, ") ExtensionMap() map[int32]", g.Pkg["proto"], ".Extension ",
"{ return (*", remoteSym, ")(m).ExtensionMap() }")
if ms.isMessageSet {
g.P("func (m *", ms.sym, ") Marshal() ([]byte, error) ",
"{ return (*", remoteSym, ")(m).Marshal() }")
g.P("func (m *", ms.sym, ") Unmarshal(buf []byte) error ",
"{ return (*", remoteSym, ")(m).Unmarshal(buf) }")
}
}
for _, get := range ms.getters {
if get.typeName != "" {
g.RecordTypeUse(get.typeName)
}
typ := get.typ
val := "(*" + remoteSym + ")(m)." + get.name + "()"
if get.genType {
// typ will be "*pkg.T" (message/group) or "pkg.T" (enum).
// Either of those might have a "[]" prefix if it is repeated.
// Drop the package qualifier since we have hoisted the type into this package.
rep := strings.HasPrefix(typ, "[]")
if rep {
typ = typ[2:]
}
star := typ[0] == '*'
typ = typ[strings.Index(typ, ".")+1:]
if star {
typ = "*" + typ
}
if rep {
// Go does not permit conversion between slice types where both
// element types are named. That means we need to generate a bit
// of code in this situation.
// typ is the element type.
// val is the expression to get the slice from the imported type.
ctyp := typ // conversion type expression; "Foo" or "(*Foo)"
if star {
ctyp = "(" + typ + ")"
}
g.P("func (m *", ms.sym, ") ", get.name, "() []", typ, " {")
g.In()
g.P("o := ", val)
g.P("if o == nil {")
g.In()
g.P("return nil")
g.Out()
g.P("}")
g.P("s := make([]", typ, ", len(o))")
g.P("for i, x := range o {")
g.In()
g.P("s[i] = ", ctyp, "(x)")
g.Out()
g.P("}")
g.P("return s")
g.Out()
g.P("}")
continue
}
// Convert imported type into the forwarding type.
val = "(" + typ + ")(" + val + ")"
}
g.P("func (m *", ms.sym, ") ", get.name, "() ", typ, " { return ", val, " }")
}
}
type enumSymbol string
func (es enumSymbol) GenerateAlias(g *Generator, pkg string) {
s := string(es)
g.P("type ", s, " ", pkg, ".", s)
g.P("var ", s, "_name = ", pkg, ".", s, "_name")
g.P("var ", s, "_value = ", pkg, ".", s, "_value")
g.P("func (x ", s, ") Enum() *", s, "{ return (*", s, ")((", pkg, ".", s, ")(x).Enum()) }")
g.P("func (x ", s, ") String() string { return (", pkg, ".", s, ")(x).String() }")
g.P("func (x *", s, ") UnmarshalJSON(data []byte) error { return (*", pkg, ".", s, ")(x).UnmarshalJSON(data) }")
}
type constOrVarSymbol struct {
sym string
typ string // either "const" or "var"
cast string // if non-empty, a type cast is required (used for enums)
}
func (cs constOrVarSymbol) GenerateAlias(g *Generator, pkg string) {
v := pkg + "." + cs.sym
if cs.cast != "" {
v = cs.cast + "(" + v + ")"
}
g.P(cs.typ, " ", cs.sym, " = ", v)
}
// Object is an interface abstracting the abilities shared by enums, messages, extensions and imported objects.
type Object interface {
PackageName() string // The name we use in our output (a_b_c), possibly renamed for uniqueness.
TypeName() []string
File() *descriptor.FileDescriptorProto
}
// Each package name we generate must be unique. The package we're generating
// gets its own name but every other package must have a unique name that does
// not conflict in the code we generate. These names are chosen globally (although
// they don't have to be, it simplifies things to do them globally).
func uniquePackageOf(fd *descriptor.FileDescriptorProto) string {
s, ok := uniquePackageName[fd]
if !ok {
log.Fatal("internal error: no package name defined for " + fd.GetName())
}
return s
}
// Generator is the type whose methods generate the output, stored in the associated response structure.
type Generator struct {
*bytes.Buffer
Request *plugin.CodeGeneratorRequest // The input.
Response *plugin.CodeGeneratorResponse // The output.
Param map[string]string // Command-line parameters.
PackageImportPath string // Go import path of the package we're generating code for
ImportPrefix string // String to prefix to imported package file names.
ImportMap map[string]string // Mapping from import name to generated name
Pkg map[string]string // The names under which we import support packages
packageName string // What we're calling ourselves.
allFiles []*FileDescriptor // All files in the tree
genFiles []*FileDescriptor // Those files we will generate output for.
file *FileDescriptor // The file we are compiling now.
usedPackages map[string]bool // Names of packages used in current file.
typeNameToObject map[string]Object // Key is a fully-qualified name in input syntax.
indent string
}
// New creates a new generator and allocates the request and response protobufs.
func New() *Generator {
g := new(Generator)
g.Buffer = new(bytes.Buffer)
g.Request = new(plugin.CodeGeneratorRequest)
g.Response = new(plugin.CodeGeneratorResponse)
return g
}
// Error reports a problem, including an error, and exits the program.
func (g *Generator) Error(err error, msgs ...string) {
s := strings.Join(msgs, " ") + ":" + err.Error()
log.Print("protoc-gen-go: error:", s)
os.Exit(1)
}
// Fail reports a problem and exits the program.
func (g *Generator) Fail(msgs ...string) {
s := strings.Join(msgs, " ")
log.Print("protoc-gen-go: error:", s)
os.Exit(1)
}
// CommandLineParameters breaks the comma-separated list of key=value pairs
// in the parameter (a member of the request protobuf) into a key/value map.
// It then sets file name mappings defined by those entries.
func (g *Generator) CommandLineParameters(parameter string) {
g.Param = make(map[string]string)
for _, p := range strings.Split(parameter, ",") {
if i := strings.Index(p, "="); i < 0 {
g.Param[p] = ""
} else {
g.Param[p[0:i]] = p[i+1:]
}
}
g.ImportMap = make(map[string]string)
pluginList := "" // Default list of plugin names to enable (empty means all).
for k, v := range g.Param {
switch k {
case "import_prefix":
g.ImportPrefix = v
case "import_path":
g.PackageImportPath = v
case "plugins":
pluginList = v
default:
if len(k) > 0 && k[0] == 'M' {
g.ImportMap[k[1:]] = v
}
}
}
if pluginList != "" {
// Amend the set of plugins.
enabled := make(map[string]bool)
for _, name := range strings.Split(pluginList, "+") {
enabled[name] = true
}
var nplugins []Plugin
for _, p := range plugins {
if enabled[p.Name()] {
nplugins = append(nplugins, p)
}
}
plugins = nplugins
}
}
// DefaultPackageName returns the package name printed for the object.
// If its file is in a different package, it returns the package name we're using for this file, plus ".".
// Otherwise it returns the empty string.
func (g *Generator) DefaultPackageName(obj Object) string {
pkg := obj.PackageName()
if pkg == g.packageName {
return ""
}
return pkg + "."
}
// For each input file, the unique package name to use, underscored.
var uniquePackageName = make(map[*descriptor.FileDescriptorProto]string)
// Package names already registered. Key is the name from the .proto file;
// value is the name that appears in the generated code.
var pkgNamesInUse = make(map[string]bool)
// Create and remember a guaranteed unique package name for this file descriptor.
// Pkg is the candidate name. If f is nil, it's a builtin package like "proto" and
// has no file descriptor.
func RegisterUniquePackageName(pkg string, f *FileDescriptor) string {
// Convert dots to underscores before finding a unique alias.
pkg = strings.Map(badToUnderscore, pkg)
for i, orig := 1, pkg; pkgNamesInUse[pkg]; i++ {
// It's a duplicate; must rename.
pkg = orig + strconv.Itoa(i)
}
// Install it.
pkgNamesInUse[pkg] = true
if f != nil {
uniquePackageName[f.FileDescriptorProto] = pkg
}
return pkg
}
var isGoKeyword = map[string]bool{
"break": true,
"case": true,
"chan": true,
"const": true,
"continue": true,
"default": true,
"else": true,
"defer": true,
"fallthrough": true,
"for": true,
"func": true,
"go": true,
"goto": true,
"if": true,
"import": true,
"interface": true,
"map": true,
"package": true,
"range": true,
"return": true,
"select": true,
"struct": true,
"switch": true,
"type": true,
"var": true,
}
// defaultGoPackage returns the package name to use,
// derived from the import path of the package we're building code for.
func (g *Generator) defaultGoPackage() string {
p := g.PackageImportPath
if i := strings.LastIndex(p, "/"); i >= 0 {
p = p[i+1:]
}
if p == "" {
return ""
}
p = strings.Map(badToUnderscore, p)
// Identifier must not be keyword: insert _.
if isGoKeyword[p] {
p = "_" + p
}
// Identifier must not begin with digit: insert _.
if r, _ := utf8.DecodeRuneInString(p); unicode.IsDigit(r) {
p = "_" + p
}
return p
}
// SetPackageNames sets the package name for this run.
// The package name must agree across all files being generated.
// It also defines unique package names for all imported files.
func (g *Generator) SetPackageNames() {
// Register the name for this package. It will be the first name
// registered so is guaranteed to be unmodified.
pkg, explicit := g.genFiles[0].goPackageName()
// Check all files for an explicit go_package option.
for _, f := range g.genFiles {
thisPkg, thisExplicit := f.goPackageName()
if thisExplicit {
if !explicit {
// Let this file's go_package option serve for all input files.
pkg, explicit = thisPkg, true
} else if thisPkg != pkg {
g.Fail("inconsistent package names:", thisPkg, pkg)
}
}
}
// If we don't have an explicit go_package option but we have an
// import path, use that.
if !explicit {
p := g.defaultGoPackage()
if p != "" {
pkg, explicit = p, true
}
}
// If there was no go_package and no import path to use,
// double-check that all the inputs have the same implicit
// Go package name.
if !explicit {
for _, f := range g.genFiles {
thisPkg, _ := f.goPackageName()
if thisPkg != pkg {
g.Fail("inconsistent package names:", thisPkg, pkg)
}
}
}
g.packageName = RegisterUniquePackageName(pkg, g.genFiles[0])
// Register the support package names. They might collide with the
// name of a package we import.
g.Pkg = map[string]string{
"math": RegisterUniquePackageName("math", nil),
"proto": RegisterUniquePackageName("proto", nil),
}
AllFiles:
for _, f := range g.allFiles {
for _, genf := range g.genFiles {
if f == genf {
// In this package already.
uniquePackageName[f.FileDescriptorProto] = g.packageName
continue AllFiles
}
}
// The file is a dependency, so we want to ignore its go_package option
// because that is only relevant for its specific generated output.
pkg := f.GetPackage()
if pkg == "" {
pkg = baseName(*f.Name)
}
RegisterUniquePackageName(pkg, f)
}
}
// WrapTypes walks the incoming data, wrapping DescriptorProtos, EnumDescriptorProtos
// and FileDescriptorProtos into file-referenced objects within the Generator.
// It also creates the list of files to generate and so should be called before GenerateAllFiles.
func (g *Generator) WrapTypes() {
g.allFiles = make([]*FileDescriptor, len(g.Request.ProtoFile))
for i, f := range g.Request.ProtoFile {
// We must wrap the descriptors before we wrap the enums
descs := wrapDescriptors(f)
g.buildNestedDescriptors(descs)
enums := wrapEnumDescriptors(f, descs)
exts := wrapExtensions(f)
imps := wrapImported(f, g)
fd := &FileDescriptor{
FileDescriptorProto: f,
desc: descs,
enum: enums,
ext: exts,
imp: imps,
exported: make(map[Object][]symbol),
proto3: fileIsProto3(f),
}
extractComments(fd)
g.allFiles[i] = fd
}
g.genFiles = make([]*FileDescriptor, len(g.Request.FileToGenerate))
FindFiles:
for i, fileName := range g.Request.FileToGenerate {
// Search the list. This algorithm is n^2 but n is tiny.
for _, file := range g.allFiles {
if fileName == file.GetName() {
g.genFiles[i] = file
file.index = i
continue FindFiles
}
}
g.Fail("could not find file named", fileName)
}
g.Response.File = make([]*plugin.CodeGeneratorResponse_File, len(g.genFiles))
}
// Scan the descriptors in this file. For each one, build the slice of nested descriptors
func (g *Generator) buildNestedDescriptors(descs []*Descriptor) {
for _, desc := range descs {
if len(desc.NestedType) != 0 {
desc.nested = make([]*Descriptor, len(desc.NestedType))
n := 0
for _, nest := range descs {
if nest.parent == desc {
desc.nested[n] = nest
n++
}
}
if n != len(desc.NestedType) {
g.Fail("internal error: nesting failure for", desc.GetName())
}
}
}
}
// Construct the Descriptor
func newDescriptor(desc *descriptor.DescriptorProto, parent *Descriptor, file *descriptor.FileDescriptorProto, index int) *Descriptor {
d := &Descriptor{
common: common{file},
DescriptorProto: desc,
parent: parent,
index: index,
}
if parent == nil {
d.path = fmt.Sprintf("%d,%d", messagePath, index)
} else {
d.path = fmt.Sprintf("%s,%d,%d", parent.path, messageMessagePath, index)
}
// The only way to distinguish a group from a message is whether
// the containing message has a TYPE_GROUP field that matches.
if parent != nil {
parts := d.TypeName()
if file.Package != nil {
parts = append([]string{*file.Package}, parts...)
}
exp := "." + strings.Join(parts, ".")
for _, field := range parent.Field {
if field.GetType() == descriptor.FieldDescriptorProto_TYPE_GROUP && field.GetTypeName() == exp {
d.group = true
break
}
}
}
d.ext = make([]*ExtensionDescriptor, len(desc.Extension))
for i, field := range desc.Extension {
d.ext[i] = &ExtensionDescriptor{common{file}, field, d}
}
return d
}
// Return a slice of all the Descriptors defined within this file
func wrapDescriptors(file *descriptor.FileDescriptorProto) []*Descriptor {
sl := make([]*Descriptor, 0, len(file.MessageType)+10)
for i, desc := range file.MessageType {
sl = wrapThisDescriptor(sl, desc, nil, file, i)
}
return sl
}
// Wrap this Descriptor, recursively
func wrapThisDescriptor(sl []*Descriptor, desc *descriptor.DescriptorProto, parent *Descriptor, file *descriptor.FileDescriptorProto, index int) []*Descriptor {
sl = append(sl, newDescriptor(desc, parent, file, index))
me := sl[len(sl)-1]
for i, nested := range desc.NestedType {
sl = wrapThisDescriptor(sl, nested, me, file, i)
}
return sl
}
// Construct the EnumDescriptor
func newEnumDescriptor(desc *descriptor.EnumDescriptorProto, parent *Descriptor, file *descriptor.FileDescriptorProto, index int) *EnumDescriptor {
ed := &EnumDescriptor{
common: common{file},
EnumDescriptorProto: desc,
parent: parent,
index: index,
}
if parent == nil {
ed.path = fmt.Sprintf("%d,%d", enumPath, index)
} else {
ed.path = fmt.Sprintf("%s,%d,%d", parent.path, messageEnumPath, index)
}
return ed
}
// Return a slice of all the EnumDescriptors defined within this file
func wrapEnumDescriptors(file *descriptor.FileDescriptorProto, descs []*Descriptor) []*EnumDescriptor {
sl := make([]*EnumDescriptor, 0, len(file.EnumType)+10)
// Top-level enums.
for i, enum := range file.EnumType {
sl = append(sl, newEnumDescriptor(enum, nil, file, i))
}
// Enums within messages. Enums within embedded messages appear in the outer-most message.
for _, nested := range descs {
for i, enum := range nested.EnumType {
sl = append(sl, newEnumDescriptor(enum, nested, file, i))
}
}
return sl
}
// Return a slice of all the top-level ExtensionDescriptors defined within this file.
func wrapExtensions(file *descriptor.FileDescriptorProto) []*ExtensionDescriptor {
sl := make([]*ExtensionDescriptor, len(file.Extension))
for i, field := range file.Extension {
sl[i] = &ExtensionDescriptor{common{file}, field, nil}
}
return sl
}
// Return a slice of all the types that are publicly imported into this file.
func wrapImported(file *descriptor.FileDescriptorProto, g *Generator) (sl []*ImportedDescriptor) {
for _, index := range file.PublicDependency {
df := g.fileByName(file.Dependency[index])
for _, d := range df.desc {
sl = append(sl, &ImportedDescriptor{common{file}, d})
}
for _, e := range df.enum {
sl = append(sl, &ImportedDescriptor{common{file}, e})
}
for _, ext := range df.ext {
sl = append(sl, &ImportedDescriptor{common{file}, ext})
}
}
return
}
func extractComments(file *FileDescriptor) {
file.comments = make(map[string]*descriptor.SourceCodeInfo_Location)
for _, loc := range file.GetSourceCodeInfo().GetLocation() {
if loc.LeadingComments == nil {
continue
}
var p []string
for _, n := range loc.Path {
p = append(p, strconv.Itoa(int(n)))
}
file.comments[strings.Join(p, ",")] = loc
}
}
// BuildTypeNameMap builds the map from fully qualified type names to objects.
// The key names for the map come from the input data, which puts a period at the beginning.
// It should be called after SetPackageNames and before GenerateAllFiles.
func (g *Generator) BuildTypeNameMap() {
g.typeNameToObject = make(map[string]Object)
for _, f := range g.allFiles {
// The names in this loop are defined by the proto world, not us, so the
// package name may be empty. If so, the dotted package name of X will
// be ".X"; otherwise it will be ".pkg.X".
dottedPkg := "." + f.GetPackage()
if dottedPkg != "." {
dottedPkg += "."
}
for _, enum := range f.enum {
name := dottedPkg + dottedSlice(enum.TypeName())
g.typeNameToObject[name] = enum
}
for _, desc := range f.desc {
name := dottedPkg + dottedSlice(desc.TypeName())
g.typeNameToObject[name] = desc
}
}
}
// ObjectNamed, given a fully-qualified input type name as it appears in the input data,
// returns the descriptor for the message or enum with that name.
func (g *Generator) ObjectNamed(typeName string) Object {
o, ok := g.typeNameToObject[typeName]
if !ok {
g.Fail("can't find object with type", typeName)
}
// If the file of this object isn't a direct dependency of the current file,
// or in the current file, then this object has been publicly imported into
// a dependency of the current file.
// We should return the ImportedDescriptor object for it instead.
direct := *o.File().Name == *g.file.Name
if !direct {
for _, dep := range g.file.Dependency {
if *g.fileByName(dep).Name == *o.File().Name {
direct = true
break
}
}
}
if !direct {
found := false
Loop:
for _, dep := range g.file.Dependency {
df := g.fileByName(*g.fileByName(dep).Name)
for _, td := range df.imp {
if td.o == o {
// Found it!
o = td
found = true
break Loop
}
}
}
if !found {
log.Printf("protoc-gen-go: WARNING: failed finding publicly imported dependency for %v, used in %v", typeName, *g.file.Name)
}
}
return o
}
// P prints the arguments to the generated output. It handles strings and int32s, plus
// handling indirections because they may be *string, etc.
func (g *Generator) P(str ...interface{}) {
g.WriteString(g.indent)
for _, v := range str {
switch s := v.(type) {
case string:
g.WriteString(s)
case *string:
g.WriteString(*s)
case bool:
g.WriteString(fmt.Sprintf("%t", s))
case *bool:
g.WriteString(fmt.Sprintf("%t", *s))
case int:
g.WriteString(fmt.Sprintf("%d", s))
case *int32:
g.WriteString(fmt.Sprintf("%d", *s))
case *int64:
g.WriteString(fmt.Sprintf("%d", *s))
case float64:
g.WriteString(fmt.Sprintf("%g", s))
case *float64:
g.WriteString(fmt.Sprintf("%g", *s))
default:
g.Fail(fmt.Sprintf("unknown type in printer: %T", v))
}
}
g.WriteByte('\n')
}
// In Indents the output one tab stop.
func (g *Generator) In() { g.indent += "\t" }
// Out unindents the output one tab stop.
func (g *Generator) Out() {
if len(g.indent) > 0 {
g.indent = g.indent[1:]
}
}
// GenerateAllFiles generates the output for all the files we're outputting.
func (g *Generator) GenerateAllFiles() {
// Initialize the plugins
for _, p := range plugins {
p.Init(g)
}
// Generate the output. The generator runs for every file, even the files
// that we don't generate output for, so that we can collate the full list
// of exported symbols to support public imports.
genFileMap := make(map[*FileDescriptor]bool, len(g.genFiles))
for _, file := range g.genFiles {
genFileMap[file] = true
}
i := 0
for _, file := range g.allFiles {
g.Reset()
g.generate(file)
if _, ok := genFileMap[file]; !ok {
continue
}
g.Response.File[i] = new(plugin.CodeGeneratorResponse_File)
g.Response.File[i].Name = proto.String(goFileName(*file.Name))
g.Response.File[i].Content = proto.String(g.String())
i++
}
}
// Run all the plugins associated with the file.
func (g *Generator) runPlugins(file *FileDescriptor) {
for _, p := range plugins {
p.Generate(file)
}
}
// FileOf return the FileDescriptor for this FileDescriptorProto.
func (g *Generator) FileOf(fd *descriptor.FileDescriptorProto) *FileDescriptor {
for _, file := range g.allFiles {
if file.FileDescriptorProto == fd {
return file
}
}
g.Fail("could not find file in table:", fd.GetName())
return nil
}
// Fill the response protocol buffer with the generated output for all the files we're
// supposed to generate.
func (g *Generator) generate(file *FileDescriptor) {
g.file = g.FileOf(file.FileDescriptorProto)
g.usedPackages = make(map[string]bool)
for _, td := range g.file.imp {
g.generateImported(td)
}
for _, enum := range g.file.enum {
g.generateEnum(enum)
}
for _, desc := range g.file.desc {
// Don't generate virtual messages for maps.
if desc.GetOptions().GetMapEntry() {
continue
}
g.generateMessage(desc)
}
for _, ext := range g.file.ext {
g.generateExtension(ext)
}
g.generateInitFunction()
// Run the plugins before the imports so we know which imports are necessary.
g.runPlugins(file)
// Generate header and imports last, though they appear first in the output.
rem := g.Buffer
g.Buffer = new(bytes.Buffer)
g.generateHeader()
g.generateImports()
g.Write(rem.Bytes())
// Reformat generated code.
fset := token.NewFileSet()
ast, err := parser.ParseFile(fset, "", g, parser.ParseComments)
if err != nil {
g.Fail("bad Go source code was generated:", err.Error())
return
}
g.Reset()
err = (&printer.Config{Mode: printer.TabIndent | printer.UseSpaces, Tabwidth: 8}).Fprint(g, fset, ast)
if err != nil {
g.Fail("generated Go source code could not be reformatted:", err.Error())
}
}
// Generate the header, including package definition
func (g *Generator) generateHeader() {
g.P("// Code generated by protoc-gen-go.")
g.P("// source: ", g.file.Name)
g.P("// DO NOT EDIT!")
g.P()
name := g.file.PackageName()
if g.file.index == 0 {
// Generate package docs for the first file in the package.
g.P("/*")
g.P("Package ", name, " is a generated protocol buffer package.")
g.P()
if loc, ok := g.file.comments[strconv.Itoa(packagePath)]; ok {
// not using g.PrintComments because this is a /* */ comment block.
text := strings.TrimSuffix(loc.GetLeadingComments(), "\n")
for _, line := range strings.Split(text, "\n") {
line = strings.TrimPrefix(line, " ")
// ensure we don't escape from the block comment
line = strings.Replace(line, "*/", "* /", -1)
g.P(line)
}
g.P()
}
g.P("It is generated from these files:")
for _, f := range g.genFiles {
g.P("\t", f.Name)
}
g.P()
g.P("It has these top-level messages:")
for _, msg := range g.file.desc {
if msg.parent != nil {
continue
}
g.P("\t", CamelCaseSlice(msg.TypeName()))
}
g.P("*/")
}
g.P("package ", name)
g.P()
}
// PrintComments prints any comments from the source .proto file.
// The path is a comma-separated list of integers.
// See descriptor.proto for its format.
func (g *Generator) PrintComments(path string) {
if loc, ok := g.file.comments[path]; ok {
text := strings.TrimSuffix(loc.GetLeadingComments(), "\n")
for _, line := range strings.Split(text, "\n") {
g.P("// ", strings.TrimPrefix(line, " "))
}
}
}
func (g *Generator) fileByName(filename string) *FileDescriptor {
for _, fd := range g.allFiles {
if fd.GetName() == filename {
return fd
}
}
return nil
}
// weak returns whether the ith import of the current file is a weak import.
func (g *Generator) weak(i int32) bool {
for _, j := range g.file.WeakDependency {
if j == i {
return true
}
}
return false
}
// Generate the imports
func (g *Generator) generateImports() {
// We almost always need a proto import. Rather than computing when we
// do, which is tricky when there's a plugin, just import it and
// reference it later. The same argument applies to the math package,
// for handling bit patterns for floating-point numbers.
g.P("import " + g.Pkg["proto"] + " " + strconv.Quote(g.ImportPrefix+"github.com/golang/protobuf/proto"))
if !g.file.proto3 {
g.P("import " + g.Pkg["math"] + ` "math"`)
}
for i, s := range g.file.Dependency {
fd := g.fileByName(s)
// Do not import our own package.
if fd.PackageName() == g.packageName {
continue
}
filename := goFileName(s)
if substitution, ok := g.ImportMap[s]; ok {
filename = substitution
}
filename = g.ImportPrefix + filename
if strings.HasSuffix(filename, ".go") {
filename = filename[0 : len(filename)-3]
}
// Skip weak imports.
if g.weak(int32(i)) {
g.P("// skipping weak import ", fd.PackageName(), " ", strconv.Quote(filename))
continue
}
if _, ok := g.usedPackages[fd.PackageName()]; ok {
g.P("import ", fd.PackageName(), " ", strconv.Quote(filename))
} else {
// TODO: Re-enable this when we are more feature-complete.
// For instance, some protos use foreign field extensions, which we don't support.
// Until then, this is just annoying spam.
//log.Printf("protoc-gen-go: discarding unused import from %v: %v", *g.file.Name, s)
g.P("// discarding unused import ", fd.PackageName(), " ", strconv.Quote(filename))
}
}
g.P()
// TODO: may need to worry about uniqueness across plugins
for _, p := range plugins {
p.GenerateImports(g.file)
g.P()
}
g.P("// Reference imports to suppress errors if they are not otherwise used.")
g.P("var _ = ", g.Pkg["proto"], ".Marshal")
if !g.file.proto3 {
g.P("var _ = ", g.Pkg["math"], ".Inf")
}
g.P()
}
func (g *Generator) generateImported(id *ImportedDescriptor) {
// Don't generate public import symbols for files that we are generating
// code for, since those symbols will already be in this package.
// We can't simply avoid creating the ImportedDescriptor objects,
// because g.genFiles isn't populated at that stage.
tn := id.TypeName()
sn := tn[len(tn)-1]
df := g.FileOf(id.o.File())
filename := *df.Name
for _, fd := range g.genFiles {
if *fd.Name == filename {
g.P("// Ignoring public import of ", sn, " from ", filename)
g.P()
return
}
}
g.P("// ", sn, " from public import ", filename)
g.usedPackages[df.PackageName()] = true
for _, sym := range df.exported[id.o] {
sym.GenerateAlias(g, df.PackageName())
}
g.P()
}
// Generate the enum definitions for this EnumDescriptor.
func (g *Generator) generateEnum(enum *EnumDescriptor) {
// The full type name
typeName := enum.TypeName()
// The full type name, CamelCased.
ccTypeName := CamelCaseSlice(typeName)
ccPrefix := enum.prefix()
g.PrintComments(enum.path)
g.P("type ", ccTypeName, " int32")
g.file.addExport(enum, enumSymbol(ccTypeName))
g.P("const (")
g.In()
for i, e := range enum.Value {
g.PrintComments(fmt.Sprintf("%s,%d,%d", enum.path, enumValuePath, i))
name := ccPrefix + *e.Name
g.P(name, " ", ccTypeName, " = ", e.Number)
g.file.addExport(enum, constOrVarSymbol{name, "const", ccTypeName})
}
g.Out()
g.P(")")
g.P("var ", ccTypeName, "_name = map[int32]string{")
g.In()
generated := make(map[int32]bool) // avoid duplicate values
for _, e := range enum.Value {
duplicate := ""
if _, present := generated[*e.Number]; present {
duplicate = "// Duplicate value: "
}
g.P(duplicate, e.Number, ": ", strconv.Quote(*e.Name), ",")
generated[*e.Number] = true
}
g.Out()
g.P("}")
g.P("var ", ccTypeName, "_value = map[string]int32{")
g.In()
for _, e := range enum.Value {
g.P(strconv.Quote(*e.Name), ": ", e.Number, ",")
}
g.Out()
g.P("}")
if !enum.proto3() {
g.P("func (x ", ccTypeName, ") Enum() *", ccTypeName, " {")
g.In()
g.P("p := new(", ccTypeName, ")")
g.P("*p = x")
g.P("return p")
g.Out()
g.P("}")
}
g.P("func (x ", ccTypeName, ") String() string {")
g.In()
g.P("return ", g.Pkg["proto"], ".EnumName(", ccTypeName, "_name, int32(x))")
g.Out()
g.P("}")
if !enum.proto3() {
g.P("func (x *", ccTypeName, ") UnmarshalJSON(data []byte) error {")
g.In()
g.P("value, err := ", g.Pkg["proto"], ".UnmarshalJSONEnum(", ccTypeName, `_value, data, "`, ccTypeName, `")`)
g.P("if err != nil {")
g.In()
g.P("return err")
g.Out()
g.P("}")
g.P("*x = ", ccTypeName, "(value)")
g.P("return nil")
g.Out()
g.P("}")
}
g.P()
}
// The tag is a string like "varint,2,opt,name=fieldname,def=7" that
// identifies details of the field for the protocol buffer marshaling and unmarshaling
// code. The fields are:
// wire encoding
// protocol tag number
// opt,req,rep for optional, required, or repeated
// packed whether the encoding is "packed" (optional; repeated primitives only)
// name= the original declared name
// enum= the name of the enum type if it is an enum-typed field.
// proto3 if this field is in a proto3 message
// def= string representation of the default value, if any.
// The default value must be in a representation that can be used at run-time
// to generate the default value. Thus bools become 0 and 1, for instance.
func (g *Generator) goTag(message *Descriptor, field *descriptor.FieldDescriptorProto, wiretype string) string {
optrepreq := ""
switch {
case isOptional(field):
optrepreq = "opt"
case isRequired(field):
optrepreq = "req"
case isRepeated(field):
optrepreq = "rep"
}
var defaultValue string
if dv := field.DefaultValue; dv != nil { // set means an explicit default
defaultValue = *dv
// Some types need tweaking.
switch *field.Type {
case descriptor.FieldDescriptorProto_TYPE_BOOL:
if defaultValue == "true" {
defaultValue = "1"
} else {
defaultValue = "0"
}
case descriptor.FieldDescriptorProto_TYPE_STRING,
descriptor.FieldDescriptorProto_TYPE_BYTES:
// Nothing to do. Quoting is done for the whole tag.
case descriptor.FieldDescriptorProto_TYPE_ENUM:
// For enums we need to provide the integer constant.
obj := g.ObjectNamed(field.GetTypeName())
if id, ok := obj.(*ImportedDescriptor); ok {
// It is an enum that was publicly imported.
// We need the underlying type.
obj = id.o
}
enum, ok := obj.(*EnumDescriptor)
if !ok {
log.Printf("obj is a %T", obj)
if id, ok := obj.(*ImportedDescriptor); ok {
log.Printf("id.o is a %T", id.o)
}
g.Fail("unknown enum type", CamelCaseSlice(obj.TypeName()))
}
defaultValue = enum.integerValueAsString(defaultValue)
}
defaultValue = ",def=" + defaultValue
}
enum := ""
if *field.Type == descriptor.FieldDescriptorProto_TYPE_ENUM {
// We avoid using obj.PackageName(), because we want to use the
// original (proto-world) package name.
obj := g.ObjectNamed(field.GetTypeName())
if id, ok := obj.(*ImportedDescriptor); ok {
obj = id.o
}
enum = ",enum="
if pkg := obj.File().GetPackage(); pkg != "" {
enum += pkg + "."
}
enum += CamelCaseSlice(obj.TypeName())
}
packed := ""
if field.Options != nil && field.Options.GetPacked() {
packed = ",packed"
}
fieldName := field.GetName()
name := fieldName
if *field.Type == descriptor.FieldDescriptorProto_TYPE_GROUP {
// We must use the type name for groups instead of
// the field name to preserve capitalization.
// type_name in FieldDescriptorProto is fully-qualified,
// but we only want the local part.
name = *field.TypeName
if i := strings.LastIndex(name, "."); i >= 0 {
name = name[i+1:]
}
}
if name == CamelCase(fieldName) {
name = ""
} else {
name = ",name=" + name
}
if message.proto3() {
// We only need the extra tag for []byte fields;
// no need to add noise for the others.
if *field.Type == descriptor.FieldDescriptorProto_TYPE_BYTES {
name += ",proto3"
}
}
return strconv.Quote(fmt.Sprintf("%s,%d,%s%s%s%s%s",
wiretype,
field.GetNumber(),
optrepreq,
packed,
name,
enum,
defaultValue))
}
func needsStar(typ descriptor.FieldDescriptorProto_Type) bool {
switch typ {
case descriptor.FieldDescriptorProto_TYPE_GROUP:
return false
case descriptor.FieldDescriptorProto_TYPE_MESSAGE:
return false
case descriptor.FieldDescriptorProto_TYPE_BYTES:
return false
}
return true
}
// TypeName is the printed name appropriate for an item. If the object is in the current file,
// TypeName drops the package name and underscores the rest.
// Otherwise the object is from another package; and the result is the underscored
// package name followed by the item name.
// The result always has an initial capital.
func (g *Generator) TypeName(obj Object) string {
return g.DefaultPackageName(obj) + CamelCaseSlice(obj.TypeName())
}
// TypeNameWithPackage is like TypeName, but always includes the package
// name even if the object is in our own package.
func (g *Generator) TypeNameWithPackage(obj Object) string {
return obj.PackageName() + CamelCaseSlice(obj.TypeName())
}
// GoType returns a string representing the type name, and the wire type
func (g *Generator) GoType(message *Descriptor, field *descriptor.FieldDescriptorProto) (typ string, wire string) {
// TODO: Options.
switch *field.Type {
case descriptor.FieldDescriptorProto_TYPE_DOUBLE:
typ, wire = "float64", "fixed64"
case descriptor.FieldDescriptorProto_TYPE_FLOAT:
typ, wire = "float32", "fixed32"
case descriptor.FieldDescriptorProto_TYPE_INT64:
typ, wire = "int64", "varint"
case descriptor.FieldDescriptorProto_TYPE_UINT64:
typ, wire = "uint64", "varint"
case descriptor.FieldDescriptorProto_TYPE_INT32:
typ, wire = "int32", "varint"
case descriptor.FieldDescriptorProto_TYPE_UINT32:
typ, wire = "uint32", "varint"
case descriptor.FieldDescriptorProto_TYPE_FIXED64:
typ, wire = "uint64", "fixed64"
case descriptor.FieldDescriptorProto_TYPE_FIXED32:
typ, wire = "uint32", "fixed32"
case descriptor.FieldDescriptorProto_TYPE_BOOL:
typ, wire = "bool", "varint"
case descriptor.FieldDescriptorProto_TYPE_STRING:
typ, wire = "string", "bytes"
case descriptor.FieldDescriptorProto_TYPE_GROUP:
desc := g.ObjectNamed(field.GetTypeName())
typ, wire = "*"+g.TypeName(desc), "group"
case descriptor.FieldDescriptorProto_TYPE_MESSAGE:
desc := g.ObjectNamed(field.GetTypeName())
typ, wire = "*"+g.TypeName(desc), "bytes"
case descriptor.FieldDescriptorProto_TYPE_BYTES:
typ, wire = "[]byte", "bytes"
case descriptor.FieldDescriptorProto_TYPE_ENUM:
desc := g.ObjectNamed(field.GetTypeName())
typ, wire = g.TypeName(desc), "varint"
case descriptor.FieldDescriptorProto_TYPE_SFIXED32:
typ, wire = "int32", "fixed32"
case descriptor.FieldDescriptorProto_TYPE_SFIXED64:
typ, wire = "int64", "fixed64"
case descriptor.FieldDescriptorProto_TYPE_SINT32:
typ, wire = "int32", "zigzag32"
case descriptor.FieldDescriptorProto_TYPE_SINT64:
typ, wire = "int64", "zigzag64"
default:
g.Fail("unknown type for", field.GetName())
}
if isRepeated(field) {
typ = "[]" + typ
} else if message != nil && message.proto3() {
return
} else if needsStar(*field.Type) {
typ = "*" + typ
}
return
}
func (g *Generator) RecordTypeUse(t string) {
if obj, ok := g.typeNameToObject[t]; ok {
// Call ObjectNamed to get the true object to record the use.
obj = g.ObjectNamed(t)
g.usedPackages[obj.PackageName()] = true
}
}
// Method names that may be generated. Fields with these names get an
// underscore appended.
var methodNames = [...]string{
"Reset",
"String",
"ProtoMessage",
"Marshal",
"Unmarshal",
"ExtensionRangeArray",
"ExtensionMap",
"Descriptor",
}
// Generate the type and default constant definitions for this Descriptor.
func (g *Generator) generateMessage(message *Descriptor) {
// The full type name
typeName := message.TypeName()
// The full type name, CamelCased.
ccTypeName := CamelCaseSlice(typeName)
usedNames := make(map[string]bool)
for _, n := range methodNames {
usedNames[n] = true
}
fieldNames := make(map[*descriptor.FieldDescriptorProto]string)
fieldGetterNames := make(map[*descriptor.FieldDescriptorProto]string)
mapFieldTypes := make(map[*descriptor.FieldDescriptorProto]string)
g.PrintComments(message.path)
g.P("type ", ccTypeName, " struct {")
g.In()
for i, field := range message.Field {
g.PrintComments(fmt.Sprintf("%s,%d,%d", message.path, messageFieldPath, i))
fieldName := CamelCase(*field.Name)
for usedNames[fieldName] {
fieldName += "_"
}
fieldGetterName := fieldName
usedNames[fieldName] = true
typename, wiretype := g.GoType(message, field)
jsonName := *field.Name
tag := fmt.Sprintf("protobuf:%s json:%q", g.goTag(message, field, wiretype), jsonName+",omitempty")
if *field.Type == descriptor.FieldDescriptorProto_TYPE_MESSAGE {
desc := g.ObjectNamed(field.GetTypeName())
if d, ok := desc.(*Descriptor); ok && d.GetOptions().GetMapEntry() {
// Figure out the Go types and tags for the key and value types.
keyField, valField := d.Field[0], d.Field[1]
keyType, keyWire := g.GoType(d, keyField)
valType, valWire := g.GoType(d, valField)
keyTag, valTag := g.goTag(d, keyField, keyWire), g.goTag(d, valField, valWire)
// We don't use stars, except for message-typed values.
keyType = strings.TrimPrefix(keyType, "*")
switch *valField.Type {
case descriptor.FieldDescriptorProto_TYPE_MESSAGE:
g.RecordTypeUse(valField.GetTypeName())
default:
valType = strings.TrimPrefix(valType, "*")
}
typename = fmt.Sprintf("map[%s]%s", keyType, valType)
mapFieldTypes[field] = typename // record for the getter generation
tag += fmt.Sprintf(" protobuf_key:%s protobuf_val:%s", keyTag, valTag)
}
}
fieldNames[field] = fieldName
fieldGetterNames[field] = fieldGetterName
g.P(fieldName, "\t", typename, "\t`", tag, "`")
g.RecordTypeUse(field.GetTypeName())
}
if len(message.ExtensionRange) > 0 {
g.P("XXX_extensions\t\tmap[int32]", g.Pkg["proto"], ".Extension `json:\"-\"`")
}
if !message.proto3() {
g.P("XXX_unrecognized\t[]byte `json:\"-\"`")
}
g.Out()
g.P("}")
// Reset, String and ProtoMessage methods.
g.P("func (m *", ccTypeName, ") Reset() { *m = ", ccTypeName, "{} }")
g.P("func (m *", ccTypeName, ") String() string { return ", g.Pkg["proto"], ".CompactTextString(m) }")
g.P("func (*", ccTypeName, ") ProtoMessage() {}")
// Extension support methods
var hasExtensions, isMessageSet bool
if len(message.ExtensionRange) > 0 {
hasExtensions = true
// message_set_wire_format only makes sense when extensions are defined.
if opts := message.Options; opts != nil && opts.GetMessageSetWireFormat() {
isMessageSet = true
g.P()
g.P("func (m *", ccTypeName, ") Marshal() ([]byte, error) {")
g.In()
g.P("return ", g.Pkg["proto"], ".MarshalMessageSet(m.ExtensionMap())")
g.Out()
g.P("}")
g.P("func (m *", ccTypeName, ") Unmarshal(buf []byte) error {")
g.In()
g.P("return ", g.Pkg["proto"], ".UnmarshalMessageSet(buf, m.ExtensionMap())")
g.Out()
g.P("}")
g.P("func (m *", ccTypeName, ") MarshalJSON() ([]byte, error) {")
g.In()
g.P("return ", g.Pkg["proto"], ".MarshalMessageSetJSON(m.XXX_extensions)")
g.Out()
g.P("}")
g.P("func (m *", ccTypeName, ") UnmarshalJSON(buf []byte) error {")
g.In()
g.P("return ", g.Pkg["proto"], ".UnmarshalMessageSetJSON(buf, m.XXX_extensions)")
g.Out()
g.P("}")
g.P("// ensure ", ccTypeName, " satisfies proto.Marshaler and proto.Unmarshaler")
g.P("var _ ", g.Pkg["proto"], ".Marshaler = (*", ccTypeName, ")(nil)")
g.P("var _ ", g.Pkg["proto"], ".Unmarshaler = (*", ccTypeName, ")(nil)")
}
g.P()
g.P("var extRange_", ccTypeName, " = []", g.Pkg["proto"], ".ExtensionRange{")
g.In()
for _, r := range message.ExtensionRange {
end := fmt.Sprint(*r.End - 1) // make range inclusive on both ends
g.P("{", r.Start, ", ", end, "},")
}
g.Out()
g.P("}")
g.P("func (*", ccTypeName, ") ExtensionRangeArray() []", g.Pkg["proto"], ".ExtensionRange {")
g.In()
g.P("return extRange_", ccTypeName)
g.Out()
g.P("}")
g.P("func (m *", ccTypeName, ") ExtensionMap() map[int32]", g.Pkg["proto"], ".Extension {")
g.In()
g.P("if m.XXX_extensions == nil {")
g.In()
g.P("m.XXX_extensions = make(map[int32]", g.Pkg["proto"], ".Extension)")
g.Out()
g.P("}")
g.P("return m.XXX_extensions")
g.Out()
g.P("}")
}
// Default constants
defNames := make(map[*descriptor.FieldDescriptorProto]string)
for _, field := range message.Field {
def := field.GetDefaultValue()
if def == "" {
continue
}
fieldname := "Default_" + ccTypeName + "_" + CamelCase(*field.Name)
defNames[field] = fieldname
typename, _ := g.GoType(message, field)
if typename[0] == '*' {
typename = typename[1:]
}
kind := "const "
switch {
case typename == "bool":
case typename == "string":
def = strconv.Quote(def)
case typename == "[]byte":
def = "[]byte(" + strconv.Quote(def) + ")"
kind = "var "
case def == "inf", def == "-inf", def == "nan":
// These names are known to, and defined by, the protocol language.
switch def {
case "inf":
def = "math.Inf(1)"
case "-inf":
def = "math.Inf(-1)"
case "nan":
def = "math.NaN()"
}
if *field.Type == descriptor.FieldDescriptorProto_TYPE_FLOAT {
def = "float32(" + def + ")"
}
kind = "var "
case *field.Type == descriptor.FieldDescriptorProto_TYPE_ENUM:
// Must be an enum. Need to construct the prefixed name.
obj := g.ObjectNamed(field.GetTypeName())
var enum *EnumDescriptor
if id, ok := obj.(*ImportedDescriptor); ok {
// The enum type has been publicly imported.
enum, _ = id.o.(*EnumDescriptor)
} else {
enum, _ = obj.(*EnumDescriptor)
}
if enum == nil {
log.Printf("don't know how to generate constant for %s", fieldname)
continue
}
def = g.DefaultPackageName(obj) + enum.prefix() + def
}
g.P(kind, fieldname, " ", typename, " = ", def)
g.file.addExport(message, constOrVarSymbol{fieldname, kind, ""})
}
g.P()
// Field getters
var getters []getterSymbol
for _, field := range message.Field {
fname := fieldNames[field]
typename, _ := g.GoType(message, field)
if t, ok := mapFieldTypes[field]; ok {
typename = t
}
mname := "Get" + fieldGetterNames[field]
star := ""
if needsStar(*field.Type) && typename[0] == '*' {
typename = typename[1:]
star = "*"
}
// In proto3, only generate getters for message fields.
if message.proto3() && *field.Type != descriptor.FieldDescriptorProto_TYPE_MESSAGE {
continue
}
// Only export getter symbols for basic types,
// and for messages and enums in the same package.
// Groups are not exported.
// Foreign types can't be hoisted through a public import because
// the importer may not already be importing the defining .proto.
// As an example, imagine we have an import tree like this:
// A.proto -> B.proto -> C.proto
// If A publicly imports B, we need to generate the getters from B in A's output,
// but if one such getter returns something from C then we cannot do that
// because A is not importing C already.
var getter, genType bool
switch *field.Type {
case descriptor.FieldDescriptorProto_TYPE_GROUP:
getter = false
case descriptor.FieldDescriptorProto_TYPE_MESSAGE, descriptor.FieldDescriptorProto_TYPE_ENUM:
// Only export getter if its return type is in this package.
getter = g.ObjectNamed(field.GetTypeName()).PackageName() == message.PackageName()
genType = true
default:
getter = true
}
if getter {
getters = append(getters, getterSymbol{
name: mname,
typ: typename,
typeName: field.GetTypeName(),
genType: genType,
})
}
g.P("func (m *", ccTypeName, ") "+mname+"() "+typename+" {")
g.In()
def, hasDef := defNames[field]
typeDefaultIsNil := false // whether this field type's default value is a literal nil unless specified
switch *field.Type {
case descriptor.FieldDescriptorProto_TYPE_BYTES:
typeDefaultIsNil = !hasDef
case descriptor.FieldDescriptorProto_TYPE_GROUP, descriptor.FieldDescriptorProto_TYPE_MESSAGE:
typeDefaultIsNil = true
}
if isRepeated(field) {
typeDefaultIsNil = true
}
if typeDefaultIsNil {
// A bytes field with no explicit default needs less generated code,
// as does a message or group field, or a repeated field.
g.P("if m != nil {")
g.In()
g.P("return m." + fname)
g.Out()
g.P("}")
g.P("return nil")
g.Out()
g.P("}")
g.P()
continue
}
g.P("if m != nil && m." + fname + " != nil {")
g.In()
g.P("return " + star + "m." + fname)
g.Out()
g.P("}")
if hasDef {
if *field.Type != descriptor.FieldDescriptorProto_TYPE_BYTES {
g.P("return " + def)
} else {
// The default is a []byte var.
// Make a copy when returning it to be safe.
g.P("return append([]byte(nil), ", def, "...)")
}
} else {
switch *field.Type {
case descriptor.FieldDescriptorProto_TYPE_BOOL:
g.P("return false")
case descriptor.FieldDescriptorProto_TYPE_STRING:
g.P(`return ""`)
case descriptor.FieldDescriptorProto_TYPE_ENUM:
// The default default for an enum is the first value in the enum,
// not zero.
obj := g.ObjectNamed(field.GetTypeName())
var enum *EnumDescriptor
if id, ok := obj.(*ImportedDescriptor); ok {
// The enum type has been publicly imported.
enum, _ = id.o.(*EnumDescriptor)
} else {
enum, _ = obj.(*EnumDescriptor)
}
if enum == nil {
log.Printf("don't know how to generate getter for %s", field.GetName())
continue
}
if len(enum.Value) == 0 {
g.P("return 0 // empty enum")
} else {
first := enum.Value[0].GetName()
g.P("return ", g.DefaultPackageName(obj)+enum.prefix()+first)
}
default:
g.P("return 0")
}
}
g.Out()
g.P("}")
g.P()
}
if !message.group {
ms := &messageSymbol{sym: ccTypeName, hasExtensions: hasExtensions, isMessageSet: isMessageSet, getters: getters}
g.file.addExport(message, ms)
}
for _, ext := range message.ext {
g.generateExtension(ext)
}
}
func (g *Generator) generateExtension(ext *ExtensionDescriptor) {
ccTypeName := ext.DescName()
extDesc := g.ObjectNamed(*ext.Extendee).(*Descriptor)
extendedType := "*" + g.TypeName(extDesc)
field := ext.FieldDescriptorProto
fieldType, wireType := g.GoType(ext.parent, field)
tag := g.goTag(extDesc, field, wireType)
g.RecordTypeUse(*ext.Extendee)
if n := ext.FieldDescriptorProto.TypeName; n != nil {
// foreign extension type
g.RecordTypeUse(*n)
}
typeName := ext.TypeName()
// Special case for proto2 message sets: If this extension is extending
// proto2_bridge.MessageSet, and its final name component is "message_set_extension",
// then drop that last component.
mset := false
if extendedType == "*proto2_bridge.MessageSet" && typeName[len(typeName)-1] == "message_set_extension" {
typeName = typeName[:len(typeName)-1]
mset = true
}
// For text formatting, the package must be exactly what the .proto file declares,
// ignoring overrides such as the go_package option, and with no dot/underscore mapping.
extName := strings.Join(typeName, ".")
if g.file.Package != nil {
extName = *g.file.Package + "." + extName
}
g.P("var ", ccTypeName, " = &", g.Pkg["proto"], ".ExtensionDesc{")
g.In()
g.P("ExtendedType: (", extendedType, ")(nil),")
g.P("ExtensionType: (", fieldType, ")(nil),")
g.P("Field: ", field.Number, ",")
g.P(`Name: "`, extName, `",`)
g.P("Tag: ", tag, ",")
g.Out()
g.P("}")
g.P()
if mset {
// Generate a bit more code to register with message_set.go.
g.P("func init() { ")
g.In()
g.P(g.Pkg["proto"], ".RegisterMessageSetType((", fieldType, ")(nil), ", field.Number, ", \"", extName, "\")")
g.Out()
g.P("}")
}
g.file.addExport(ext, constOrVarSymbol{ccTypeName, "var", ""})
}
func (g *Generator) generateInitFunction() {
g.P("func init() {")
g.In()
for _, enum := range g.file.enum {
g.generateEnumRegistration(enum)
}
for _, d := range g.file.desc {
for _, ext := range d.ext {
g.generateExtensionRegistration(ext)
}
}
for _, ext := range g.file.ext {
g.generateExtensionRegistration(ext)
}
g.Out()
g.P("}")
}
func (g *Generator) generateEnumRegistration(enum *EnumDescriptor) {
// // We always print the full (proto-world) package name here.
pkg := enum.File().GetPackage()
if pkg != "" {
pkg += "."
}
// The full type name
typeName := enum.TypeName()
// The full type name, CamelCased.
ccTypeName := CamelCaseSlice(typeName)
g.P(g.Pkg["proto"]+".RegisterEnum(", strconv.Quote(pkg+ccTypeName), ", ", ccTypeName+"_name, ", ccTypeName+"_value)")
}
func (g *Generator) generateExtensionRegistration(ext *ExtensionDescriptor) {
g.P(g.Pkg["proto"]+".RegisterExtension(", ext.DescName(), ")")
}
// And now lots of helper functions.
// Is c an ASCII lower-case letter?
func isASCIILower(c byte) bool {
return 'a' <= c && c <= 'z'
}
// Is c an ASCII digit?
func isASCIIDigit(c byte) bool {
return '0' <= c && c <= '9'
}
// CamelCase returns the CamelCased name.
// If there is an interior underscore followed by a lower case letter,
// drop the underscore and convert the letter to upper case.
// There is a remote possibility of this rewrite causing a name collision,
// but it's so remote we're prepared to pretend it's nonexistent - since the
// C++ generator lowercases names, it's extremely unlikely to have two fields
// with different capitalizations.
// In short, _my_field_name_2 becomes XMyFieldName_2.
func CamelCase(s string) string {
if s == "" {
return ""
}
t := make([]byte, 0, 32)
i := 0
if s[0] == '_' {
// Need a capital letter; drop the '_'.
t = append(t, 'X')
i++
}
// Invariant: if the next letter is lower case, it must be converted
// to upper case.
// That is, we process a word at a time, where words are marked by _ or
// upper case letter. Digits are treated as words.
for ; i < len(s); i++ {
c := s[i]
if c == '_' && i+1 < len(s) && isASCIILower(s[i+1]) {
continue // Skip the underscore in s.
}
if isASCIIDigit(c) {
t = append(t, c)
continue
}
// Assume we have a letter now - if not, it's a bogus identifier.
// The next word is a sequence of characters that must start upper case.
if isASCIILower(c) {
c ^= ' ' // Make it a capital letter.
}
t = append(t, c) // Guaranteed not lower case.
// Accept lower case sequence that follows.
for i+1 < len(s) && isASCIILower(s[i+1]) {
i++
t = append(t, s[i])
}
}
return string(t)
}
// CamelCaseSlice is like CamelCase, but the argument is a slice of strings to
// be joined with "_".
func CamelCaseSlice(elem []string) string { return CamelCase(strings.Join(elem, "_")) }
// dottedSlice turns a sliced name into a dotted name.
func dottedSlice(elem []string) string { return strings.Join(elem, ".") }
// Given a .proto file name, return the output name for the generated Go program.
func goFileName(name string) string {
ext := path.Ext(name)
if ext == ".proto" || ext == ".protodevel" {
name = name[0 : len(name)-len(ext)]
}
return name + ".pb.go"
}
// Is this field optional?
func isOptional(field *descriptor.FieldDescriptorProto) bool {
return field.Label != nil && *field.Label == descriptor.FieldDescriptorProto_LABEL_OPTIONAL
}
// Is this field required?
func isRequired(field *descriptor.FieldDescriptorProto) bool {
return field.Label != nil && *field.Label == descriptor.FieldDescriptorProto_LABEL_REQUIRED
}
// Is this field repeated?
func isRepeated(field *descriptor.FieldDescriptorProto) bool {
return field.Label != nil && *field.Label == descriptor.FieldDescriptorProto_LABEL_REPEATED
}
// badToUnderscore is the mapping function used to generate Go names from package names,
// which can be dotted in the input .proto file. It replaces non-identifier characters such as
// dot or dash with underscore.
func badToUnderscore(r rune) rune {
if unicode.IsLetter(r) || unicode.IsDigit(r) || r == '_' {
return r
}
return '_'
}
// baseName returns the last path element of the name, with the last dotted suffix removed.
func baseName(name string) string {
// First, find the last element
if i := strings.LastIndex(name, "/"); i >= 0 {
name = name[i+1:]
}
// Now drop the suffix
if i := strings.LastIndex(name, "."); i >= 0 {
name = name[0:i]
}
return name
}
// The SourceCodeInfo message describes the location of elements of a parsed
// .proto file by way of a "path", which is a sequence of integers that
// describe the route from a FileDescriptorProto to the relevant submessage.
// The path alternates between a field number of a repeated field, and an index
// into that repeated field. The constants below define the field numbers that
// are used.
//
// See descriptor.proto for more information about this.
const (
// tag numbers in FileDescriptorProto
packagePath = 2 // package
messagePath = 4 // message_type
enumPath = 5 // enum_type
// tag numbers in DescriptorProto
messageFieldPath = 2 // field
messageMessagePath = 3 // nested_type
messageEnumPath = 4 // enum_type
// tag numbers in EnumDescriptorProto
enumValuePath = 2 // value
)