blob: afab3a21fbf31bcb213e1f8c898ef4eaaf70a68e [file] [log] [blame]
/*
* Copyright (C) 2019, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "aidl_language.h"
#include "aidl_typenames.h"
#include "logging.h"
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <limits>
#include <memory>
#include <android-base/parsedouble.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
using android::base::ConsumeSuffix;
using android::base::EndsWith;
using android::base::Join;
using android::base::StartsWith;
using std::string;
using std::unique_ptr;
using std::vector;
template <typename T>
constexpr int CLZ(T x) {
// __builtin_clz(0) is undefined
if (x == 0) return sizeof(T) * 8;
return (sizeof(T) == sizeof(uint64_t)) ? __builtin_clzl(x) : __builtin_clz(x);
}
template <typename T>
class OverflowGuard {
public:
OverflowGuard(T value) : mValue(value) {}
bool Overflowed() const { return mOverflowed; }
T operator+() { return +mValue; }
T operator-() {
if (isMin()) {
mOverflowed = true;
return 0;
}
return -mValue;
}
T operator!() { return !mValue; }
T operator~() { return ~mValue; }
T operator+(T o) {
T out;
mOverflowed = __builtin_add_overflow(mValue, o, &out);
return out;
}
T operator-(T o) {
T out;
mOverflowed = __builtin_sub_overflow(mValue, o, &out);
return out;
}
T operator*(T o) {
T out;
#ifdef _WIN32
// ___mulodi4 not on windows https://bugs.llvm.org/show_bug.cgi?id=46669
// we should still get an error here from ubsan, but the nice error
// is needed on linux for aidl_parser_fuzzer, where we are more
// concerned about overflows elsewhere in the compiler in addition to
// those in interfaces.
out = mValue * o;
#else
mOverflowed = __builtin_mul_overflow(mValue, o, &out);
#endif
return out;
}
T operator/(T o) {
if (o == 0 || (isMin() && o == -1)) {
mOverflowed = true;
return 0;
}
return static_cast<T>(mValue / o);
}
T operator%(T o) {
if (o == 0 || (isMin() && o == -1)) {
mOverflowed = true;
return 0;
}
return static_cast<T>(mValue % o);
}
T operator|(T o) { return mValue | o; }
T operator^(T o) { return mValue ^ o; }
T operator&(T o) { return mValue & o; }
T operator<(T o) { return mValue < o; }
T operator>(T o) { return mValue > o; }
T operator<=(T o) { return mValue <= o; }
T operator>=(T o) { return mValue >= o; }
T operator==(T o) { return mValue == o; }
T operator!=(T o) { return mValue != o; }
T operator>>(T o) {
if (o < 0 || o >= static_cast<T>(sizeof(T) * 8) || mValue < 0) {
mOverflowed = true;
return 0;
}
return static_cast<T>(mValue >> o);
}
T operator<<(T o) {
if (o < 0 || mValue < 0 || o > CLZ(mValue) || o >= static_cast<T>(sizeof(T) * 8)) {
mOverflowed = true;
return 0;
}
return static_cast<T>(mValue << o);
}
T operator||(T o) { return mValue || o; }
T operator&&(T o) { return mValue && o; }
private:
bool isMin() { return mValue == std::numeric_limits<T>::min(); }
T mValue;
bool mOverflowed = false;
};
template <typename T>
bool processGuard(const OverflowGuard<T>& guard, const AidlConstantValue& context) {
if (guard.Overflowed()) {
AIDL_ERROR(context) << "Constant expression computation overflows.";
return false;
}
return true;
}
// TODO: factor out all these macros
#define SHOULD_NOT_REACH() AIDL_FATAL(AIDL_LOCATION_HERE) << "Should not reach."
#define OPEQ(__y__) (string(op_) == string(__y__))
#define COMPUTE_UNARY(T, __op__) \
if (op == string(#__op__)) { \
OverflowGuard<T> guard(val); \
*out = __op__ guard; \
return processGuard(guard, context); \
}
#define COMPUTE_BINARY(T, __op__) \
if (op == string(#__op__)) { \
OverflowGuard<T> guard(lval); \
*out = guard __op__ rval; \
return processGuard(guard, context); \
}
#define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%"))
#define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&"))
#define OP_IS_BIN_COMP \
(OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!="))
#define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<"))
#define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&"))
// NOLINT to suppress missing parentheses warnings about __def__.
#define SWITCH_KIND(__cond__, __action__, __def__) \
switch (__cond__) { \
case Type::BOOLEAN: \
__action__(bool); \
case Type::INT8: \
__action__(int8_t); \
case Type::INT32: \
__action__(int32_t); \
case Type::INT64: \
__action__(int64_t); \
default: \
__def__; /* NOLINT */ \
}
template <class T>
bool handleUnary(const AidlConstantValue& context, const string& op, T val, int64_t* out) {
COMPUTE_UNARY(T, +)
COMPUTE_UNARY(T, -)
COMPUTE_UNARY(T, !)
COMPUTE_UNARY(T, ~)
AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
return false;
}
template <>
bool handleUnary<bool>(const AidlConstantValue& context, const string& op, bool val, int64_t* out) {
COMPUTE_UNARY(bool, +)
COMPUTE_UNARY(bool, -)
COMPUTE_UNARY(bool, !)
if (op == "~") {
AIDL_ERROR(context) << "Bitwise negation of a boolean expression is always true.";
return false;
}
AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
return false;
}
template <class T>
bool handleBinaryCommon(const AidlConstantValue& context, T lval, const string& op, T rval,
int64_t* out) {
COMPUTE_BINARY(T, +)
COMPUTE_BINARY(T, -)
COMPUTE_BINARY(T, *)
COMPUTE_BINARY(T, /)
COMPUTE_BINARY(T, %)
COMPUTE_BINARY(T, |)
COMPUTE_BINARY(T, ^)
COMPUTE_BINARY(T, &)
// comparison operators: return 0 or 1 by nature.
COMPUTE_BINARY(T, ==)
COMPUTE_BINARY(T, !=)
COMPUTE_BINARY(T, <)
COMPUTE_BINARY(T, >)
COMPUTE_BINARY(T, <=)
COMPUTE_BINARY(T, >=)
AIDL_FATAL(context) << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval;
return false;
}
template <class T>
bool handleShift(const AidlConstantValue& context, T lval, const string& op, T rval, int64_t* out) {
// just cast rval to int64_t and it should fit.
COMPUTE_BINARY(T, >>)
COMPUTE_BINARY(T, <<)
AIDL_FATAL(context) << "Could not handleShift for " << lval << " " << op << " " << rval;
return false;
}
bool handleLogical(const AidlConstantValue& context, bool lval, const string& op, bool rval,
int64_t* out) {
COMPUTE_BINARY(bool, ||);
COMPUTE_BINARY(bool, &&);
AIDL_FATAL(context) << "Could not handleLogical for " << lval << " " << op << " " << rval;
return false;
}
static bool isValidLiteralChar(char c) {
return !(c <= 0x1f || // control characters are < 0x20
c >= 0x7f || // DEL is 0x7f
c == '\\'); // Disallow backslashes for future proofing.
}
static std::string PrintCharLiteral(char c) {
std::ostringstream os;
switch (c) {
case '\0':
os << "\\0";
break;
case '\'':
os << "\\'";
break;
case '\\':
os << "\\\\";
break;
case '\a':
os << "\\a";
break;
case '\b':
os << "\\b";
break;
case '\f':
os << "\\f";
break;
case '\n':
os << "\\n";
break;
case '\r':
os << "\\r";
break;
case '\t':
os << "\\t";
break;
case '\v':
os << "\\v";
break;
default:
if (std::isprint(static_cast<unsigned char>(c))) {
os << c;
} else {
os << "\\x" << std::hex << std::uppercase << static_cast<int>(c);
}
}
return os.str();
}
bool ParseFloating(std::string_view sv, double* parsed) {
// float literal should be parsed successfully.
android::base::ConsumeSuffix(&sv, "f");
return android::base::ParseDouble(std::string(sv).data(), parsed);
}
bool ParseFloating(std::string_view sv, float* parsed) {
// we only care about float literal (with suffix "f").
if (!android::base::ConsumeSuffix(&sv, "f")) {
return false;
}
return android::base::ParseFloat(std::string(sv).data(), parsed);
}
bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) {
// Verify the unary type here
switch (type) {
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
return true;
case Type::FLOATING:
return (op == "+" || op == "-");
default:
return false;
}
}
bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) {
switch (t1) {
case Type::ARRAY:
if (t2 == Type::ARRAY) {
return true;
}
break;
case Type::STRING:
if (t2 == Type::STRING) {
return true;
}
break;
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
switch (t2) {
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
return true;
break;
default:
break;
}
break;
default:
break;
}
return false;
}
// Returns the promoted kind for both operands
AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left,
Type right) {
// These are handled as special cases
AIDL_FATAL_IF(left == Type::STRING || right == Type::STRING, AIDL_LOCATION_HERE);
AIDL_FATAL_IF(left == Type::FLOATING || right == Type::FLOATING, AIDL_LOCATION_HERE);
// Kinds in concern: bool, (u)int[8|32|64]
if (left == right) return left; // easy case
if (left == Type::BOOLEAN) return right;
if (right == Type::BOOLEAN) return left;
return left < right ? right : left;
}
// Returns the promoted integral type where INT32 is the smallest type
AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) {
return (Type::INT32 < in) ? in : Type::INT32;
}
AidlConstantValue* AidlConstantValue::Default(const AidlTypeSpecifier& specifier) {
AidlLocation location = specifier.GetLocation();
// allocation of int[0] is a bit wasteful in Java
if (specifier.IsArray()) {
return nullptr;
}
const std::string name = specifier.GetName();
if (name == "boolean") {
return Boolean(location, false);
}
if (name == "char") {
return Character(location, "'\\0'"); // literal to be used in backends
}
if (name == "byte" || name == "int" || name == "long") {
return Integral(location, "0");
}
if (name == "float") {
return Floating(location, "0.0f");
}
if (name == "double") {
return Floating(location, "0.0");
}
return nullptr;
}
AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) {
return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false");
}
AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location,
const std::string& value) {
static const char* kZeroString = "'\\0'";
// We should have better supports for escapes in the future, but for now
// allow only what is needed for defaults.
if (value != kZeroString) {
AIDL_FATAL_IF(value.size() != 3 || value[0] != '\'' || value[2] != '\'', location) << value;
if (!isValidLiteralChar(value[1])) {
AIDL_ERROR(location) << "Invalid character literal " << PrintCharLiteral(value[1]);
return new AidlConstantValue(location, Type::ERROR, value);
}
}
return new AidlConstantValue(location, Type::CHARACTER, value);
}
AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location,
const std::string& value) {
return new AidlConstantValue(location, Type::FLOATING, value);
}
bool AidlConstantValue::IsHex(const string& value) {
return StartsWith(value, "0x") || StartsWith(value, "0X");
}
bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value,
Type* parsed_type) {
if (parsed_value == nullptr || parsed_type == nullptr) {
return false;
}
std::string_view value_view = value;
const bool is_byte = ConsumeSuffix(&value_view, "u8");
const bool is_long = ConsumeSuffix(&value_view, "l") || ConsumeSuffix(&value_view, "L");
const std::string value_substr = std::string(value_view);
*parsed_value = 0;
*parsed_type = Type::ERROR;
if (is_byte && is_long) return false;
if (IsHex(value)) {
// AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to
// handle that when computing constant expressions, then we need to
// represent 0xffffffff as a uint32_t. However, AIDL only has signed types;
// so we parse as an unsigned int when possible and then cast to a signed
// int. One example of this is in ICameraService.aidl where a constant int
// is used for bit manipulations which ideally should be handled with an
// unsigned int.
//
// Note, for historical consistency, we need to consider small hex values
// as an integral type. Recognizing them as INT8 could break some files,
// even though it would simplify this code.
if (is_byte) {
uint8_t raw_value8;
if (!android::base::ParseUint<uint8_t>(value_substr, &raw_value8)) {
return false;
}
*parsed_value = static_cast<int8_t>(raw_value8);
*parsed_type = Type::INT8;
} else if (uint32_t raw_value32;
!is_long && android::base::ParseUint<uint32_t>(value_substr, &raw_value32)) {
*parsed_value = static_cast<int32_t>(raw_value32);
*parsed_type = Type::INT32;
} else if (uint64_t raw_value64;
android::base::ParseUint<uint64_t>(value_substr, &raw_value64)) {
*parsed_value = static_cast<int64_t>(raw_value64);
*parsed_type = Type::INT64;
} else {
return false;
}
return true;
}
if (!android::base::ParseInt<int64_t>(value_substr, parsed_value)) {
return false;
}
if (is_byte) {
if (*parsed_value > UINT8_MAX || *parsed_value < 0) {
return false;
}
*parsed_value = static_cast<int8_t>(*parsed_value);
*parsed_type = Type::INT8;
} else if (is_long) {
*parsed_type = Type::INT64;
} else {
// guess literal type.
if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) {
*parsed_type = Type::INT8;
} else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) {
*parsed_type = Type::INT32;
} else {
*parsed_type = Type::INT64;
}
}
return true;
}
AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) {
AIDL_FATAL_IF(value.empty(), location);
Type parsed_type;
int64_t parsed_value = 0;
bool success = ParseIntegral(value, &parsed_value, &parsed_type);
if (!success) {
return nullptr;
}
return new AidlConstantValue(location, parsed_type, parsed_value, value);
}
AidlConstantValue* AidlConstantValue::Array(
const AidlLocation& location, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) {
AIDL_FATAL_IF(values == nullptr, location);
// Reconstruct literal value
std::vector<std::string> str_values;
for (const auto& v : *values) {
str_values.push_back(v->value_);
}
return new AidlConstantValue(location, Type::ARRAY, std::move(values),
"{" + Join(str_values, ", ") + "}");
}
AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) {
AIDL_FATAL_IF(value.size() == 0, "If this is unquoted, we need to update the index log");
AIDL_FATAL_IF(value[0] != '\"', "If this is unquoted, we need to update the index log");
for (size_t i = 0; i < value.length(); ++i) {
if (!isValidLiteralChar(value[i])) {
AIDL_ERROR(location) << "Found invalid character '" << value[i] << "' at index " << i - 1
<< " in string constant '" << value << "'";
return new AidlConstantValue(location, Type::ERROR, value);
}
}
return new AidlConstantValue(location, Type::STRING, value);
}
string AidlConstantValue::ValueString(const AidlTypeSpecifier& type,
const ConstantValueDecorator& decorator) const {
if (type.IsGeneric()) {
AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal.";
return "";
}
if (!is_evaluated_) {
// TODO(b/142722772) CheckValid() should be called before ValueString()
bool success = CheckValid();
success &= evaluate();
if (!success) {
// the detailed error message shall be printed in evaluate
return "";
}
}
if (!is_valid_) {
AIDL_ERROR(this) << "Invalid constant value: " + value_;
return "";
}
const AidlDefinedType* defined_type = type.GetDefinedType();
if (defined_type && final_type_ != Type::ARRAY) {
const AidlEnumDeclaration* enum_type = defined_type->AsEnumDeclaration();
if (!enum_type) {
AIDL_ERROR(this) << "Invalid type (" << defined_type->GetCanonicalName()
<< ") for a const value (" << value_ << ")";
return "";
}
if (type_ != Type::REF) {
AIDL_ERROR(this) << "Invalid value (" << value_ << ") for enum "
<< enum_type->GetCanonicalName();
return "";
}
return decorator(type, value_);
}
const string& type_string = type.Signature();
int err = 0;
switch (final_type_) {
case Type::CHARACTER:
if (type_string == "char") {
return decorator(type, final_string_value_);
}
err = -1;
break;
case Type::STRING:
if (type_string == "String") {
return decorator(type, final_string_value_);
}
err = -1;
break;
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
if (type_string == "byte") {
if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) {
err = -1;
break;
}
return decorator(type, std::to_string(static_cast<int8_t>(final_value_)));
} else if (type_string == "int") {
if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) {
err = -1;
break;
}
return decorator(type, std::to_string(static_cast<int32_t>(final_value_)));
} else if (type_string == "long") {
return decorator(type, std::to_string(final_value_));
} else if (type_string == "boolean") {
return decorator(type, final_value_ ? "true" : "false");
}
err = -1;
break;
case Type::ARRAY: {
if (!type.IsArray()) {
err = -1;
break;
}
vector<string> value_strings;
value_strings.reserve(values_.size());
bool success = true;
for (const auto& value : values_) {
string value_string;
type.ViewAsArrayBase([&](const auto& base_type) {
value_string = value->ValueString(base_type, decorator);
});
if (value_string.empty()) {
success = false;
break;
}
value_strings.push_back(value_string);
}
if (!success) {
err = -1;
break;
}
if (type.IsFixedSizeArray()) {
auto size =
std::get<FixedSizeArray>(type.GetArray()).dimensions.front()->EvaluatedValue<int32_t>();
if (values_.size() != static_cast<size_t>(size)) {
AIDL_ERROR(this) << "Expected an array of " << size << " elements, but found one with "
<< values_.size() << " elements";
err = -1;
break;
}
}
return decorator(type, value_strings);
}
case Type::FLOATING: {
if (type_string == "double") {
double parsed_value;
if (!ParseFloating(value_, &parsed_value)) {
AIDL_ERROR(this) << "Could not parse " << value_;
err = -1;
break;
}
return decorator(type, std::to_string(parsed_value));
}
if (type_string == "float") {
float parsed_value;
if (!ParseFloating(value_, &parsed_value)) {
AIDL_ERROR(this) << "Could not parse " << value_;
err = -1;
break;
}
return decorator(type, std::to_string(parsed_value) + "f");
}
err = -1;
break;
}
default:
err = -1;
break;
}
AIDL_FATAL_IF(err == 0, this);
AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string
<< " (" << value_ << ")";
return "";
}
bool AidlConstantValue::CheckValid() const {
// Nothing needs to be checked here. The constant value will be validated in
// the constructor or in the evaluate() function.
if (is_evaluated_) return is_valid_;
switch (type_) {
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64: // fall-through
case Type::CHARACTER: // fall-through
case Type::STRING: // fall-through
case Type::REF: // fall-through
case Type::FLOATING: // fall-through
case Type::UNARY: // fall-through
case Type::BINARY:
is_valid_ = true;
break;
case Type::ARRAY:
is_valid_ = true;
for (const auto& v : values_) is_valid_ &= v->CheckValid();
break;
case Type::ERROR:
return false;
default:
AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
return false;
}
return true;
}
bool AidlConstantValue::Evaluate() const {
if (CheckValid()) {
return evaluate();
} else {
return false;
}
}
bool AidlConstantValue::evaluate() const {
if (is_evaluated_) {
return is_valid_;
}
int err = 0;
is_evaluated_ = true;
switch (type_) {
case Type::ARRAY: {
Type array_type = Type::ERROR;
bool success = true;
for (const auto& value : values_) {
success = value->CheckValid();
if (success) {
success = value->evaluate();
if (!success) {
AIDL_ERROR(this) << "Invalid array element: " << value->value_;
break;
}
if (array_type == Type::ERROR) {
array_type = value->final_type_;
} else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type,
value->final_type_)) {
AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_)
<< ". Expecting type compatible with " << ToString(array_type);
success = false;
break;
}
} else {
break;
}
}
if (!success) {
err = -1;
break;
}
final_type_ = type_;
break;
}
case Type::BOOLEAN:
if ((value_ != "true") && (value_ != "false")) {
AIDL_ERROR(this) << "Invalid constant boolean value: " << value_;
err = -1;
break;
}
final_value_ = (value_ == "true") ? 1 : 0;
final_type_ = type_;
break;
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
// Parsing happens in the constructor
final_type_ = type_;
break;
case Type::CHARACTER: // fall-through
case Type::STRING:
final_string_value_ = value_;
final_type_ = type_;
break;
case Type::FLOATING:
// Just parse on the fly in ValueString
final_type_ = type_;
break;
default:
AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
err = -1;
}
return (err == 0) ? true : false;
}
string AidlConstantValue::ToString(Type type) {
switch (type) {
case Type::BOOLEAN:
return "a literal boolean";
case Type::INT8:
return "an int8 literal";
case Type::INT32:
return "an int32 literal";
case Type::INT64:
return "an int64 literal";
case Type::ARRAY:
return "a literal array";
case Type::CHARACTER:
return "a literal char";
case Type::STRING:
return "a literal string";
case Type::REF:
return "a reference";
case Type::FLOATING:
return "a literal float";
case Type::UNARY:
return "a unary expression";
case Type::BINARY:
return "a binary expression";
case Type::ERROR:
AIDL_FATAL(AIDL_LOCATION_HERE) << "aidl internal error: error type failed to halt program";
return "";
default:
AIDL_FATAL(AIDL_LOCATION_HERE)
<< "aidl internal error: unknown constant type: " << static_cast<int>(type);
return ""; // not reached
}
}
AidlConstantReference::AidlConstantReference(const AidlLocation& location, const std::string& value)
: AidlConstantValue(location, Type::REF, value) {
const auto pos = value.find_last_of('.');
if (pos == string::npos) {
field_name_ = value;
} else {
ref_type_ = std::make_unique<AidlTypeSpecifier>(location, value.substr(0, pos),
/*array=*/std::nullopt, /*type_params=*/nullptr,
Comments{});
field_name_ = value.substr(pos + 1);
}
}
const AidlConstantValue* AidlConstantReference::Resolve(const AidlDefinedType* scope) const {
if (resolved_) return resolved_;
const AidlDefinedType* defined_type;
if (ref_type_) {
defined_type = ref_type_->GetDefinedType();
} else {
defined_type = scope;
}
if (!defined_type) {
// This can happen when "const reference" is used in an unsupported way,
// but missed in checks there. It works as a safety net.
AIDL_ERROR(*this) << "Can't resolve the reference (" << value_ << ")";
return nullptr;
}
if (auto enum_decl = defined_type->AsEnumDeclaration(); enum_decl) {
for (const auto& e : enum_decl->GetEnumerators()) {
if (e->GetName() == field_name_) {
return resolved_ = e->GetValue();
}
}
} else {
for (const auto& c : defined_type->GetConstantDeclarations()) {
if (c->GetName() == field_name_) {
return resolved_ = &c->GetValue();
}
}
}
AIDL_ERROR(*this) << "Can't find " << field_name_ << " in " << defined_type->GetName();
return nullptr;
}
bool AidlConstantReference::CheckValid() const {
if (is_evaluated_) return is_valid_;
AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
is_valid_ = resolved_->CheckValid();
return is_valid_;
}
bool AidlConstantReference::evaluate() const {
if (is_evaluated_) return is_valid_;
AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
is_evaluated_ = true;
resolved_->evaluate();
is_valid_ = resolved_->is_valid_;
final_type_ = resolved_->final_type_;
if (is_valid_) {
if (final_type_ == Type::STRING) {
final_string_value_ = resolved_->final_string_value_;
} else {
final_value_ = resolved_->final_value_;
}
}
return is_valid_;
}
bool AidlUnaryConstExpression::CheckValid() const {
if (is_evaluated_) return is_valid_;
AIDL_FATAL_IF(unary_ == nullptr, this);
is_valid_ = unary_->CheckValid();
if (!is_valid_) {
final_type_ = Type::ERROR;
return false;
}
return AidlConstantValue::CheckValid();
}
bool AidlUnaryConstExpression::evaluate() const {
if (is_evaluated_) {
return is_valid_;
}
is_evaluated_ = true;
// Recursively evaluate the expression tree
if (!unary_->is_evaluated_) {
// TODO(b/142722772) CheckValid() should be called before ValueString()
bool success = CheckValid();
success &= unary_->evaluate();
if (!success) {
is_valid_ = false;
return false;
}
}
if (!IsCompatibleType(unary_->final_type_, op_)) {
AIDL_ERROR(unary_) << "'" << op_ << "'"
<< " is not compatible with " << ToString(unary_->final_type_)
<< ": " + value_;
is_valid_ = false;
return false;
}
if (!unary_->is_valid_) {
AIDL_ERROR(unary_) << "Invalid constant unary expression: " + value_;
is_valid_ = false;
return false;
}
final_type_ = unary_->final_type_;
if (final_type_ == Type::FLOATING) {
// don't do anything here. ValueString() will handle everything.
is_valid_ = true;
return true;
}
#define CASE_UNARY(__type__) \
return is_valid_ = \
handleUnary(*this, op_, static_cast<__type__>(unary_->final_value_), &final_value_);
SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
is_valid_ = false; return false;)
}
bool AidlBinaryConstExpression::CheckValid() const {
bool success = false;
if (is_evaluated_) return is_valid_;
AIDL_FATAL_IF(left_val_ == nullptr, this);
AIDL_FATAL_IF(right_val_ == nullptr, this);
success = left_val_->CheckValid();
if (!success) {
final_type_ = Type::ERROR;
AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_;
}
success = right_val_->CheckValid();
if (!success) {
AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_;
final_type_ = Type::ERROR;
}
if (final_type_ == Type::ERROR) {
is_valid_ = false;
return false;
}
is_valid_ = true;
return AidlConstantValue::CheckValid();
}
bool AidlBinaryConstExpression::evaluate() const {
if (is_evaluated_) {
return is_valid_;
}
is_evaluated_ = true;
AIDL_FATAL_IF(left_val_ == nullptr, this);
AIDL_FATAL_IF(right_val_ == nullptr, this);
// Recursively evaluate the binary expression tree
if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) {
// TODO(b/142722772) CheckValid() should be called before ValueString()
bool success = CheckValid();
success &= left_val_->evaluate();
success &= right_val_->evaluate();
if (!success) {
is_valid_ = false;
return false;
}
}
if (!left_val_->is_valid_ || !right_val_->is_valid_) {
is_valid_ = false;
return false;
}
is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_);
if (!is_valid_) {
AIDL_ERROR(this) << "Cannot perform operation '" << op_ << "' on "
<< ToString(right_val_->GetType()) << " and " << ToString(left_val_->GetType())
<< ".";
return false;
}
bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP;
// Handle String case first
if (left_val_->final_type_ == Type::STRING) {
AIDL_FATAL_IF(right_val_->final_type_ != Type::STRING, this);
if (!OPEQ("+")) {
AIDL_ERROR(this) << "Only '+' is supported for strings, not '" << op_ << "'.";
final_type_ = Type::ERROR;
is_valid_ = false;
return false;
}
// Remove trailing " from lhs
const string& lhs = left_val_->final_string_value_;
if (lhs.back() != '"') {
AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote.";
final_type_ = Type::ERROR;
is_valid_ = false;
return false;
}
const string& rhs = right_val_->final_string_value_;
// Remove starting " from rhs
if (rhs.front() != '"') {
AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote.";
final_type_ = Type::ERROR;
is_valid_ = false;
return false;
}
final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end());
final_type_ = Type::STRING;
return true;
}
// CASE: + - * / % | ^ & < > <= >= == !=
if (isArithmeticOrBitflip || OP_IS_BIN_COMP) {
// promoted kind for both operands.
Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
IntegralPromotion(right_val_->final_type_));
// result kind.
final_type_ = isArithmeticOrBitflip
? promoted // arithmetic or bitflip operators generates promoted type
: Type::BOOLEAN; // comparison operators generates bool
#define CASE_BINARY_COMMON(__type__) \
return is_valid_ = \
handleBinaryCommon(*this, static_cast<__type__>(left_val_->final_value_), op_, \
static_cast<__type__>(right_val_->final_value_), &final_value_);
SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
is_valid_ = false; return false;)
}
// CASE: << >>
string newOp = op_;
if (OP_IS_BIN_SHIFT) {
// promoted kind for both operands.
final_type_ = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
IntegralPromotion(right_val_->final_type_));
auto numBits = right_val_->final_value_;
if (numBits < 0) {
// shifting with negative number of bits is undefined in C. In AIDL it
// is defined as shifting into the other direction.
newOp = OPEQ("<<") ? ">>" : "<<";
numBits = -numBits;
}
#define CASE_SHIFT(__type__) \
return is_valid_ = handleShift(*this, static_cast<__type__>(left_val_->final_value_), newOp, \
static_cast<__type__>(numBits), &final_value_);
SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
is_valid_ = false; return false;)
}
// CASE: && ||
if (OP_IS_BIN_LOGICAL) {
final_type_ = Type::BOOLEAN;
// easy; everything is bool.
return handleLogical(*this, left_val_->final_value_, op_, right_val_->final_value_,
&final_value_);
}
SHOULD_NOT_REACH();
is_valid_ = false;
return false;
}
// Constructor for integer(byte, int, long)
// Keep parsed integer & literal
AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type,
int64_t parsed_value, const string& checked_value)
: AidlNode(location),
type_(parsed_type),
value_(checked_value),
final_type_(parsed_type),
final_value_(parsed_value) {
AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
AIDL_FATAL_IF(type_ != Type::INT8 && type_ != Type::INT32 && type_ != Type::INT64, location);
}
// Constructor for non-integer(String, char, boolean, float, double)
// Keep literal as it is. (e.g. String literal has double quotes at both ends)
AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
const string& checked_value)
: AidlNode(location),
type_(type),
value_(checked_value),
final_type_(type) {
AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
switch (type_) {
case Type::INT8:
case Type::INT32:
case Type::INT64:
case Type::ARRAY:
AIDL_FATAL(this) << "Invalid type: " << ToString(type_);
break;
default:
break;
}
}
// Constructor for array
AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values,
const std::string& value)
: AidlNode(location),
type_(type),
values_(std::move(*values)),
value_(value),
is_valid_(false),
is_evaluated_(false),
final_type_(type) {
AIDL_FATAL_IF(type_ != Type::ARRAY, location);
}
AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op,
std::unique_ptr<AidlConstantValue> rval)
: AidlConstantValue(location, Type::UNARY, op + rval->value_),
unary_(std::move(rval)),
op_(op) {
final_type_ = Type::UNARY;
}
AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location,
std::unique_ptr<AidlConstantValue> lval,
const string& op,
std::unique_ptr<AidlConstantValue> rval)
: AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_),
left_val_(std::move(lval)),
right_val_(std::move(rval)),
op_(op) {
final_type_ = Type::BINARY;
}