blob: 6194d7dac1a753f26783a90dc3d8c4f8f56eae15 [file] [log] [blame]
/*
* Copyright (C) 2019, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "aidl_language.h"
#include "aidl_typenames.h"
#include "logging.h"
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include <android-base/parsedouble.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
using android::base::ConsumeSuffix;
using android::base::Join;
using std::string;
using std::unique_ptr;
using std::vector;
#define SHOULD_NOT_REACH() CHECK(false) << LOG(FATAL) << ": should not reach here: "
#define OPEQ(__y__) (string(op_) == string(__y__))
#define COMPUTE_UNARY(__op__) \
if (op == string(#__op__)) return __op__ val;
#define COMPUTE_BINARY(__op__) \
if (op == string(#__op__)) return lval __op__ rval;
#define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%"))
#define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&"))
#define OP_IS_BIN_COMP \
(OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!="))
#define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<"))
#define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&"))
// NOLINT to suppress missing parentheses warnings about __def__.
#define SWITCH_KIND(__cond__, __action__, __def__) \
switch (__cond__) { \
case Type::BOOLEAN: \
__action__(bool); \
case Type::INT8: \
__action__(int8_t); \
case Type::INT32: \
__action__(int32_t); \
case Type::INT64: \
__action__(int64_t); \
default: \
__def__; /* NOLINT */ \
}
template <class T>
T handleUnary(const string& op, T val) {
COMPUTE_UNARY(+)
COMPUTE_UNARY(-)
COMPUTE_UNARY(!)
COMPUTE_UNARY(~)
// Should not reach here.
SHOULD_NOT_REACH() << "Could not handleUnary for " << op << " " << val;
return static_cast<T>(0xdeadbeef);
}
template <class T>
T handleBinaryCommon(T lval, const string& op, T rval) {
COMPUTE_BINARY(+)
COMPUTE_BINARY(-)
COMPUTE_BINARY(*)
COMPUTE_BINARY(/)
COMPUTE_BINARY(%)
COMPUTE_BINARY(|)
COMPUTE_BINARY(^)
COMPUTE_BINARY(&)
// comparison operators: return 0 or 1 by nature.
COMPUTE_BINARY(==)
COMPUTE_BINARY(!=)
COMPUTE_BINARY(<)
COMPUTE_BINARY(>)
COMPUTE_BINARY(<=)
COMPUTE_BINARY(>=)
// Should not reach here.
SHOULD_NOT_REACH() << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval;
return static_cast<T>(0xdeadbeef);
}
template <class T>
T handleShift(T lval, const string& op, int64_t rval) {
// just cast rval to int64_t and it should fit.
COMPUTE_BINARY(>>)
COMPUTE_BINARY(<<)
// Should not reach here.
SHOULD_NOT_REACH() << "Could not handleShift for " << lval << " " << op << " " << rval;
return static_cast<T>(0xdeadbeef);
}
bool handleLogical(bool lval, const string& op, bool rval) {
COMPUTE_BINARY(||);
COMPUTE_BINARY(&&);
// Should not reach here.
SHOULD_NOT_REACH() << "Could not handleLogical for " << lval << " " << op << " " << rval;
return false;
}
static bool isValidLiteralChar(char c) {
return !(c <= 0x1f || // control characters are < 0x20
c >= 0x7f || // DEL is 0x7f
c == '\\'); // Disallow backslashes for future proofing.
}
bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) {
// Verify the unary type here
switch (type) {
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
return true;
case Type::FLOATING:
return (op == "+" || op == "-");
default:
return false;
}
}
bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) {
switch (t1) {
case Type::STRING:
if (t2 == Type::STRING) {
return true;
}
break;
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
switch (t2) {
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
return true;
break;
default:
break;
}
break;
default:
break;
}
return false;
}
// Returns the promoted kind for both operands
AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left,
Type right) {
// These are handled as special cases
CHECK(left != Type::STRING && right != Type::STRING);
CHECK(left != Type::FLOATING && right != Type::FLOATING);
// Kinds in concern: bool, (u)int[8|32|64]
if (left == right) return left; // easy case
if (left == Type::BOOLEAN) return right;
if (right == Type::BOOLEAN) return left;
return left < right ? right : left;
}
// Returns the promoted integral type where INT32 is the smallest type
AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) {
return (Type::INT32 < in) ? in : Type::INT32;
}
template <typename T>
T AidlConstantValue::cast() const {
CHECK(is_evaluated_ == true);
#define CASE_CAST_T(__type__) return static_cast<T>(static_cast<__type__>(final_value_));
SWITCH_KIND(final_type_, CASE_CAST_T, SHOULD_NOT_REACH(); return 0;);
}
AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) {
return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false");
}
AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location, char value) {
const std::string explicit_value = string("'") + value + "'";
if (!isValidLiteralChar(value)) {
AIDL_ERROR(location) << "Invalid character literal " << value;
return new AidlConstantValue(location, Type::ERROR, explicit_value);
}
return new AidlConstantValue(location, Type::CHARACTER, explicit_value);
}
AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location,
const std::string& value) {
return new AidlConstantValue(location, Type::FLOATING, value);
}
bool AidlConstantValue::IsHex(const string& value) {
if (value.length() > (sizeof("0x") - 1)) {
if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
return true;
}
}
return false;
}
bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value,
Type* parsed_type) {
bool isLong = false;
if (parsed_value == nullptr || parsed_type == nullptr) {
return false;
}
if (IsHex(value)) {
bool parseOK = false;
uint32_t rawValue32;
// AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to
// handle that when computing constant expressions, then we need to
// represent 0xffffffff as a uint32_t. However, AIDL only has signed types;
// so we parse as an unsigned int when possible and then cast to a signed
// int. One example of this is in ICameraService.aidl where a constant int
// is used for bit manipulations which ideally should be handled with an
// unsigned int.
parseOK = android::base::ParseUint<uint32_t>(value, &rawValue32);
if (parseOK) {
*parsed_value = static_cast<int32_t>(rawValue32);
*parsed_type = Type::INT32;
} else {
parseOK = android::base::ParseInt<int64_t>(value, parsed_value);
if (!parseOK) {
*parsed_type = Type::ERROR;
return false;
}
*parsed_type = Type::INT64;
}
return true;
}
if (value[value.size() - 1] == 'l' || value[value.size() - 1] == 'L') {
isLong = true;
*parsed_type = Type::INT64;
}
string value_substr = value.substr(0, isLong ? value.size() - 1 : value.size());
bool parseOK = android::base::ParseInt<int64_t>(value_substr, parsed_value);
if (!parseOK) {
*parsed_type = Type::ERROR;
return false;
}
if (!isLong) {
// guess literal type.
if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) {
*parsed_type = Type::INT8;
} else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) {
*parsed_type = Type::INT32;
} else {
*parsed_type = Type::INT64;
}
}
return true;
}
AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) {
CHECK(!value.empty());
Type parsed_type;
int64_t parsed_value = 0;
bool success = ParseIntegral(value, &parsed_value, &parsed_type);
if (!success) {
return nullptr;
}
return new AidlConstantValue(location, parsed_type, parsed_value, value);
}
AidlConstantValue* AidlConstantValue::Array(
const AidlLocation& location, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) {
return new AidlConstantValue(location, Type::ARRAY, std::move(values));
}
AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) {
for (size_t i = 0; i < value.length(); ++i) {
if (!isValidLiteralChar(value[i])) {
AIDL_ERROR(location) << "Found invalid character at index " << i << " in string constant '"
<< value << "'";
return new AidlConstantValue(location, Type::ERROR, value);
}
}
return new AidlConstantValue(location, Type::STRING, value);
}
AidlConstantValue* AidlConstantValue::ShallowIntegralCopy(const AidlConstantValue& other) {
// TODO(b/141313220) Perform a full copy instead of parsing+unparsing
AidlTypeSpecifier type = AidlTypeSpecifier(AIDL_LOCATION_HERE, "long", false, nullptr, "");
// TODO(b/142722772) CheckValid() should be called before ValueString()
if (!other.CheckValid() || !other.evaluate(type)) {
AIDL_ERROR(other) << "Failed to parse expression as integer: " << other.value_;
return nullptr;
}
const std::string& value = other.ValueString(type, AidlConstantValueDecorator);
if (value.empty()) {
return nullptr; // error already logged
}
AidlConstantValue* result = Integral(AIDL_LOCATION_HERE, value);
if (result == nullptr) {
AIDL_FATAL(other) << "Unable to perform ShallowIntegralCopy.";
}
return result;
}
string AidlConstantValue::ValueString(const AidlTypeSpecifier& type,
const ConstantValueDecorator& decorator) const {
if (type.IsGeneric()) {
AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal.";
return "";
}
if (!is_evaluated_) {
// TODO(b/142722772) CheckValid() should be called before ValueString()
bool success = CheckValid();
success &= evaluate(type);
if (!success) {
// the detailed error message shall be printed in evaluate
return "";
}
}
if (!is_valid_) {
AIDL_ERROR(this) << "Invalid constant value: " + value_;
return "";
}
const string& type_string = type.GetName();
int err = 0;
switch (final_type_) {
case Type::CHARACTER:
if (type_string == "char") {
return decorator(type, final_string_value_);
}
err = -1;
break;
case Type::STRING:
if (type_string == "String") {
return decorator(type, final_string_value_);
}
err = -1;
break;
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
if (type_string == "byte") {
if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) {
err = -1;
break;
}
return decorator(type, std::to_string(static_cast<int8_t>(final_value_)));
} else if (type_string == "int") {
if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) {
err = -1;
break;
}
return decorator(type, std::to_string(static_cast<int32_t>(final_value_)));
} else if (type_string == "long") {
return decorator(type, std::to_string(final_value_));
} else if (type_string == "boolean") {
return decorator(type, final_value_ ? "true" : "false");
}
err = -1;
break;
case Type::ARRAY: {
if (!type.IsArray()) {
err = -1;
break;
}
vector<string> value_strings;
value_strings.reserve(values_.size());
bool success = true;
for (const auto& value : values_) {
const AidlTypeSpecifier& array_base = type.ArrayBase();
const string value_string = value->ValueString(array_base, decorator);
if (value_string.empty()) {
success = false;
break;
}
value_strings.push_back(value_string);
}
if (!success) {
err = -1;
break;
}
return decorator(type, "{" + Join(value_strings, ", ") + "}");
}
case Type::FLOATING: {
std::string_view raw_view(value_.c_str());
bool is_float_literal = ConsumeSuffix(&raw_view, "f");
std::string stripped_value = std::string(raw_view);
if (type_string == "double") {
double parsed_value;
if (!android::base::ParseDouble(stripped_value, &parsed_value)) {
AIDL_ERROR(this) << "Could not parse " << value_;
err = -1;
break;
}
return decorator(type, std::to_string(parsed_value));
}
if (is_float_literal && type_string == "float") {
float parsed_value;
if (!android::base::ParseFloat(stripped_value, &parsed_value)) {
AIDL_ERROR(this) << "Could not parse " << value_;
err = -1;
break;
}
return decorator(type, std::to_string(parsed_value) + "f");
}
err = -1;
break;
}
default:
err = -1;
break;
}
CHECK(err != 0);
AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string;
return "";
}
bool AidlConstantValue::CheckValid() const {
// Nothing needs to be checked here. The constant value will be validated in
// the constructor or in the evaluate() function.
if (is_evaluated_) return is_valid_;
switch (type_) {
case Type::BOOLEAN: // fall-through
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64: // fall-through
case Type::ARRAY: // fall-through
case Type::CHARACTER: // fall-through
case Type::STRING: // fall-through
case Type::FLOATING: // fall-through
case Type::UNARY: // fall-through
case Type::BINARY:
is_valid_ = true;
break;
case Type::ERROR:
return false;
default:
AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
return false;
}
return true;
}
bool AidlConstantValue::evaluate(const AidlTypeSpecifier& type) const {
if (is_evaluated_) {
return is_valid_;
}
int err = 0;
is_evaluated_ = true;
switch (type_) {
case Type::ARRAY: {
if (!type.IsArray()) {
AIDL_ERROR(this) << "Invalid constant array type: " << type.GetName();
err = -1;
break;
}
Type array_type = Type::ERROR;
bool success = true;
for (const auto& value : values_) {
success = value->CheckValid();
if (success) {
success = value->evaluate(type.ArrayBase());
if (!success) {
AIDL_ERROR(this) << "Invalid array element: " << value->value_;
break;
}
if (array_type == Type::ERROR) {
array_type = value->final_type_;
} else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type,
value->final_type_)) {
AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_)
<< ". Expecting type compatible with " << ToString(array_type);
success = false;
break;
}
} else {
break;
}
}
if (!success) {
err = -1;
break;
}
final_type_ = type_;
break;
}
case Type::BOOLEAN:
if ((value_ != "true") && (value_ != "false")) {
AIDL_ERROR(this) << "Invalid constant boolean value: " << value_;
err = -1;
break;
}
final_value_ = (value_ == "true") ? 1 : 0;
final_type_ = type_;
break;
case Type::INT8: // fall-through
case Type::INT32: // fall-through
case Type::INT64:
// Parsing happens in the constructor
final_type_ = type_;
break;
case Type::CHARACTER: // fall-through
case Type::STRING:
final_string_value_ = value_;
final_type_ = type_;
break;
case Type::FLOATING:
// Just parse on the fly in ValueString
final_type_ = type_;
break;
default:
AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
err = -1;
}
return (err == 0) ? true : false;
}
string AidlConstantValue::ToString(Type type) {
switch (type) {
case Type::BOOLEAN:
return "a literal boolean";
case Type::INT8:
return "an int8 literal";
case Type::INT32:
return "an int32 literal";
case Type::INT64:
return "an int64 literal";
case Type::ARRAY:
return "a literal array";
case Type::CHARACTER:
return "a literal char";
case Type::STRING:
return "a literal string";
case Type::FLOATING:
return "a literal float";
case Type::UNARY:
return "a unary expression";
case Type::BINARY:
return "a binary expression";
case Type::ERROR:
LOG(FATAL) << "aidl internal error: error type failed to halt program";
return "";
default:
LOG(FATAL) << "aidl internal error: unknown constant type: " << static_cast<int>(type);
return ""; // not reached
}
}
bool AidlUnaryConstExpression::CheckValid() const {
if (is_evaluated_) return is_valid_;
CHECK(unary_ != nullptr);
is_valid_ = unary_->CheckValid();
if (!is_valid_) {
final_type_ = Type::ERROR;
return false;
}
return AidlConstantValue::CheckValid();
}
bool AidlUnaryConstExpression::evaluate(const AidlTypeSpecifier& type) const {
if (is_evaluated_) {
return is_valid_;
}
is_evaluated_ = true;
// Recursively evaluate the expression tree
if (!unary_->is_evaluated_) {
// TODO(b/142722772) CheckValid() should be called before ValueString()
bool success = CheckValid();
success &= unary_->evaluate(type);
if (!success) {
is_valid_ = false;
return false;
}
}
if (!unary_->is_valid_ || !IsCompatibleType(unary_->final_type_, op_)) {
AIDL_ERROR(type) << "Invalid constant unary expression: " + value_;
is_valid_ = false;
return false;
}
final_type_ = unary_->final_type_;
if (final_type_ == Type::FLOATING) {
// don't do anything here. ValueString() will handle everything.
is_valid_ = true;
return true;
}
#define CASE_UNARY(__type__) \
final_value_ = handleUnary(op_, static_cast<__type__>(unary_->final_value_)); \
return true;
SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
is_valid_ = false; return false;)
}
bool AidlBinaryConstExpression::CheckValid() const {
bool success = false;
if (is_evaluated_) return is_valid_;
CHECK(left_val_ != nullptr);
CHECK(right_val_ != nullptr);
success = left_val_->CheckValid();
if (!success) {
final_type_ = Type::ERROR;
AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_;
}
success = right_val_->CheckValid();
if (!success) {
AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_;
final_type_ = Type::ERROR;
}
if (final_type_ == Type::ERROR) {
is_valid_ = false;
return false;
}
is_valid_ = true;
return AidlConstantValue::CheckValid();
}
bool AidlBinaryConstExpression::evaluate(const AidlTypeSpecifier& type) const {
if (is_evaluated_) {
return is_valid_;
}
is_evaluated_ = true;
CHECK(left_val_ != nullptr);
CHECK(right_val_ != nullptr);
// Recursively evaluate the binary expression tree
if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) {
// TODO(b/142722772) CheckValid() should be called before ValueString()
bool success = CheckValid();
success &= left_val_->evaluate(type);
success &= right_val_->evaluate(type);
if (!success) {
is_valid_ = false;
return false;
}
}
if (!left_val_->is_valid_ || !right_val_->is_valid_) {
is_valid_ = false;
return false;
}
is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_);
if (!is_valid_) {
return false;
}
bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP;
// Handle String case first
if (left_val_->final_type_ == Type::STRING) {
if (!OPEQ("+")) {
// invalid operation on strings
final_type_ = Type::ERROR;
is_valid_ = false;
return false;
}
// Remove trailing " from lhs
const string& lhs = left_val_->final_string_value_;
if (lhs.back() != '"') {
AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote.";
final_type_ = Type::ERROR;
is_valid_ = false;
return false;
}
const string& rhs = right_val_->final_string_value_;
// Remove starting " from rhs
if (rhs.front() != '"') {
AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote.";
final_type_ = Type::ERROR;
is_valid_ = false;
return false;
}
final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end());
final_type_ = Type::STRING;
return true;
}
// TODO(b/139877950) Add support for handling overflows
// CASE: + - * / % | ^ & < > <= >= == !=
if (isArithmeticOrBitflip || OP_IS_BIN_COMP) {
if ((op_ == "/" || op_ == "%") && right_val_->final_value_ == 0) {
final_type_ = Type::ERROR;
is_valid_ = false;
AIDL_ERROR(this) << "Cannot do division operation with zero for expression: " + value_;
return false;
}
// promoted kind for both operands.
Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
IntegralPromotion(right_val_->final_type_));
// result kind.
final_type_ = isArithmeticOrBitflip
? promoted // arithmetic or bitflip operators generates promoted type
: Type::BOOLEAN; // comparison operators generates bool
#define CASE_BINARY_COMMON(__type__) \
final_value_ = handleBinaryCommon(static_cast<__type__>(left_val_->final_value_), op_, \
static_cast<__type__>(right_val_->final_value_)); \
return true;
SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
is_valid_ = false; return false;)
}
// CASE: << >>
string newOp = op_;
if (OP_IS_BIN_SHIFT) {
final_type_ = IntegralPromotion(left_val_->final_type_);
// instead of promoting rval, simply casting it to int64 should also be good.
int64_t numBits = right_val_->cast<int64_t>();
if (numBits < 0) {
// shifting with negative number of bits is undefined in C. In AIDL it
// is defined as shifting into the other direction.
newOp = OPEQ("<<") ? ">>" : "<<";
numBits = -numBits;
}
#define CASE_SHIFT(__type__) \
final_value_ = handleShift(static_cast<__type__>(left_val_->final_value_), newOp, numBits); \
return true;
SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
is_valid_ = false; return false;)
}
// CASE: && ||
if (OP_IS_BIN_LOGICAL) {
final_type_ = Type::BOOLEAN;
// easy; everything is bool.
final_value_ = handleLogical(left_val_->final_value_, op_, right_val_->final_value_);
return true;
}
SHOULD_NOT_REACH();
is_valid_ = false;
return false;
}
AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type,
int64_t parsed_value, const string& checked_value)
: AidlNode(location),
type_(parsed_type),
value_(checked_value),
final_type_(parsed_type),
final_value_(parsed_value) {
CHECK(!value_.empty() || type_ == Type::ERROR);
CHECK(type_ == Type::INT8 || type_ == Type::INT32 || type_ == Type::INT64);
}
AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
const string& checked_value)
: AidlNode(location),
type_(type),
value_(checked_value),
final_type_(type) {
CHECK(!value_.empty() || type_ == Type::ERROR);
switch (type_) {
case Type::INT8:
case Type::INT32:
case Type::INT64:
case Type::ARRAY:
AIDL_FATAL(this) << "Invalid type: " << ToString(type_);
break;
default:
break;
}
}
AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values)
: AidlNode(location),
type_(type),
values_(std::move(*values)),
is_valid_(false),
is_evaluated_(false),
final_type_(type) {
CHECK(type_ == Type::ARRAY);
}
AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op,
std::unique_ptr<AidlConstantValue> rval)
: AidlConstantValue(location, Type::UNARY, op + rval->value_),
unary_(std::move(rval)),
op_(op) {
final_type_ = Type::UNARY;
}
AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location,
std::unique_ptr<AidlConstantValue> lval,
const string& op,
std::unique_ptr<AidlConstantValue> rval)
: AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_),
left_val_(std::move(lval)),
right_val_(std::move(rval)),
op_(op) {
final_type_ = Type::BINARY;
}