blob: cae8956d6c618e052b0c49977db1300ab40fda24 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <gtest/gtest.h>
#include <filesystem>
#include <string>
#include <vector>
#include <meminfo/pageacct.h>
#include <meminfo/procmeminfo.h>
#include <meminfo/sysmeminfo.h>
#include <vintf/VintfObject.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
using namespace std;
using namespace android::meminfo;
using android::vintf::KernelVersion;
using android::vintf::RuntimeInfo;
using android::vintf::VintfObject;
namespace fs = std::filesystem;
pid_t pid = -1;
TEST(ProcMemInfo, TestWorkingTestReset) {
// Expect reset to succeed
EXPECT_TRUE(ProcMemInfo::ResetWorkingSet(pid));
}
TEST(ProcMemInfo, UsageEmpty) {
// If we created the object for getting working set,
// the usage must be empty
ProcMemInfo proc_mem(pid, true);
const MemUsage& usage = proc_mem.Usage();
EXPECT_EQ(usage.rss, 0);
EXPECT_EQ(usage.vss, 0);
EXPECT_EQ(usage.pss, 0);
EXPECT_EQ(usage.uss, 0);
EXPECT_EQ(usage.swap, 0);
}
TEST(ProcMemInfo, MapsNotEmpty) {
// Make sure the process maps are never empty
ProcMemInfo proc_mem(pid);
const std::vector<Vma>& maps = proc_mem.Maps();
EXPECT_FALSE(maps.empty());
}
TEST(ProcMemInfo, MapsUsageNotEmpty) {
ProcMemInfo proc_mem(pid);
const std::vector<Vma>& maps = proc_mem.Maps();
EXPECT_FALSE(maps.empty());
uint64_t total_pss = 0;
uint64_t total_rss = 0;
uint64_t total_uss = 0;
for (auto& map : maps) {
ASSERT_NE(0, map.usage.vss);
total_rss += map.usage.rss;
total_pss += map.usage.pss;
total_uss += map.usage.uss;
}
// Crude check that stats are actually being read.
EXPECT_NE(0, total_rss) << "RSS zero for all maps, that is not possible.";
EXPECT_NE(0, total_pss) << "PSS zero for all maps, that is not possible.";
EXPECT_NE(0, total_uss) << "USS zero for all maps, that is not possible.";
}
TEST(ProcMemInfo, MapsUsageEmpty) {
ProcMemInfo proc_mem(pid);
const std::vector<Vma>& maps = proc_mem.MapsWithoutUsageStats();
EXPECT_FALSE(maps.empty());
// Verify that all usage stats are zero in every map.
for (auto& map : maps) {
ASSERT_EQ(0, map.usage.vss);
ASSERT_EQ(0, map.usage.rss);
ASSERT_EQ(0, map.usage.pss);
ASSERT_EQ(0, map.usage.uss);
ASSERT_EQ(0, map.usage.swap);
ASSERT_EQ(0, map.usage.swap_pss);
ASSERT_EQ(0, map.usage.private_clean);
ASSERT_EQ(0, map.usage.private_dirty);
ASSERT_EQ(0, map.usage.shared_clean);
ASSERT_EQ(0, map.usage.shared_dirty);
}
}
TEST(ProcMemInfo, MapsUsageFillInLater) {
ProcMemInfo proc_mem(pid);
const std::vector<Vma>& maps = proc_mem.MapsWithoutUsageStats();
EXPECT_FALSE(maps.empty());
for (auto& map : maps) {
Vma update_map(map);
ASSERT_EQ(map.start, update_map.start);
ASSERT_EQ(map.end, update_map.end);
ASSERT_EQ(map.offset, update_map.offset);
ASSERT_EQ(map.flags, update_map.flags);
ASSERT_EQ(map.name, update_map.name);
ASSERT_EQ(0, update_map.usage.vss);
ASSERT_EQ(0, update_map.usage.rss);
ASSERT_EQ(0, update_map.usage.pss);
ASSERT_EQ(0, update_map.usage.uss);
ASSERT_EQ(0, update_map.usage.swap);
ASSERT_EQ(0, update_map.usage.swap_pss);
ASSERT_EQ(0, update_map.usage.private_clean);
ASSERT_EQ(0, update_map.usage.private_dirty);
ASSERT_EQ(0, update_map.usage.shared_clean);
ASSERT_EQ(0, update_map.usage.shared_dirty);
ASSERT_TRUE(proc_mem.FillInVmaStats(update_map));
// Check that at least one usage stat was updated.
ASSERT_NE(0, update_map.usage.vss);
}
}
TEST(ProcMemInfo, MapsUsageFillInAll) {
ProcMemInfo proc_mem(pid);
const std::vector<Vma>& maps = proc_mem.MapsWithoutUsageStats();
EXPECT_FALSE(maps.empty());
for (auto& map : maps) {
ASSERT_EQ(0, map.usage.vss);
ASSERT_EQ(0, map.usage.rss);
ASSERT_EQ(0, map.usage.pss);
ASSERT_EQ(0, map.usage.uss);
ASSERT_EQ(0, map.usage.swap);
ASSERT_EQ(0, map.usage.swap_pss);
ASSERT_EQ(0, map.usage.private_clean);
ASSERT_EQ(0, map.usage.private_dirty);
ASSERT_EQ(0, map.usage.shared_clean);
ASSERT_EQ(0, map.usage.shared_dirty);
}
// GetUsageStats' non-default parameter get_wss is false by default in
// ProcMemInfo's constructor.
ASSERT_TRUE(proc_mem.GetUsageStats(false));
for (auto& map : maps) {
// Check that at least one usage stat was updated.
ASSERT_NE(0, map.usage.vss);
}
}
TEST(ProcMemInfo, PageMapPresent) {
static constexpr size_t kNumPages = 20;
size_t pagesize = getpagesize();
void* ptr = mmap(nullptr, pagesize * (kNumPages + 2), PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
ASSERT_NE(MAP_FAILED, ptr);
// Unmap the first page and the last page so that we guarantee this
// map is in a map by itself.
ASSERT_EQ(0, munmap(ptr, pagesize));
uintptr_t addr = reinterpret_cast<uintptr_t>(ptr) + pagesize;
ASSERT_EQ(0, munmap(reinterpret_cast<void*>(addr + kNumPages * pagesize), pagesize));
ProcMemInfo proc_mem(getpid());
const std::vector<Vma>& maps = proc_mem.MapsWithoutUsageStats();
ASSERT_FALSE(maps.empty());
// Find the vma associated with our previously created map.
const Vma* test_vma = nullptr;
for (const Vma& vma : maps) {
if (vma.start == addr) {
test_vma = &vma;
break;
}
}
ASSERT_TRUE(test_vma != nullptr) << "Cannot find test map.";
// Verify that none of the pages are listed as present.
std::vector<uint64_t> pagemap;
ASSERT_TRUE(proc_mem.PageMap(*test_vma, &pagemap));
ASSERT_EQ(kNumPages, pagemap.size());
for (size_t i = 0; i < pagemap.size(); i++) {
EXPECT_FALSE(android::meminfo::page_present(pagemap[i]))
<< "Page " << i << " is present and it should not be.";
}
// Make some of the pages present and verify that we see them
// as present.
uint8_t* data = reinterpret_cast<uint8_t*>(addr);
data[0] = 1;
data[pagesize * 5] = 1;
data[pagesize * 11] = 1;
ASSERT_TRUE(proc_mem.PageMap(*test_vma, &pagemap));
ASSERT_EQ(kNumPages, pagemap.size());
for (size_t i = 0; i < pagemap.size(); i++) {
if (i == 0 || i == 5 || i == 11) {
EXPECT_TRUE(android::meminfo::page_present(pagemap[i]))
<< "Page " << i << " is not present and it should be.";
} else {
EXPECT_FALSE(android::meminfo::page_present(pagemap[i]))
<< "Page " << i << " is present and it should not be.";
}
}
ASSERT_EQ(0, munmap(reinterpret_cast<void*>(addr), kNumPages * pagesize));
}
TEST(ProcMemInfo, WssEmpty) {
// If we created the object for getting usage,
// the working set must be empty
ProcMemInfo proc_mem(pid, false);
const MemUsage& wss = proc_mem.Wss();
EXPECT_EQ(wss.rss, 0);
EXPECT_EQ(wss.vss, 0);
EXPECT_EQ(wss.pss, 0);
EXPECT_EQ(wss.uss, 0);
EXPECT_EQ(wss.swap, 0);
}
TEST(ProcMemInfo, SwapOffsetsEmpty) {
// If we created the object for getting working set,
// the swap offsets must be empty
ProcMemInfo proc_mem(pid, true);
const std::vector<uint64_t>& swap_offsets = proc_mem.SwapOffsets();
EXPECT_EQ(swap_offsets.size(), 0);
}
TEST(ProcMemInfo, IsSmapsSupportedTest) {
// Check if /proc/self/smaps_rollup exists using the API.
bool supported = IsSmapsRollupSupported();
EXPECT_EQ(!access("/proc/self/smaps_rollup", F_OK | R_OK), supported);
}
TEST(ProcMemInfo, SmapsOrRollupTest) {
// Make sure we can parse 'smaps_rollup' correctly
std::string rollup =
R"rollup(12c00000-7fe859e000 ---p 00000000 00:00 0 [rollup]
Rss: 331908 kB
Pss: 202052 kB
Shared_Clean: 158492 kB
Shared_Dirty: 18928 kB
Private_Clean: 90472 kB
Private_Dirty: 64016 kB
Referenced: 318700 kB
Anonymous: 81984 kB
AnonHugePages: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 5344 kB
SwapPss: 442 kB
Locked: 1523537 kB)rollup";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(rollup, tf.fd));
MemUsage stats;
ASSERT_EQ(SmapsOrRollupFromFile(tf.path, &stats), true);
EXPECT_EQ(stats.rss, 331908);
EXPECT_EQ(stats.pss, 202052);
EXPECT_EQ(stats.uss, 154488);
EXPECT_EQ(stats.private_clean, 90472);
EXPECT_EQ(stats.private_dirty, 64016);
EXPECT_EQ(stats.swap_pss, 442);
}
TEST(ProcMemInfo, SmapsOrRollupSmapsTest) {
// Make sure /proc/<pid>/smaps is parsed correctly
std::string smaps =
R"smaps(12c00000-13440000 rw-p 00000000 00:00 0 [anon:dalvik-main space (region space)]
Name: [anon:dalvik-main space (region space)]
Size: 8448 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Rss: 2652 kB
Pss: 2652 kB
Shared_Clean: 840 kB
Shared_Dirty: 40 kB
Private_Clean: 84 kB
Private_Dirty: 2652 kB
Referenced: 2652 kB
Anonymous: 2652 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 102 kB
SwapPss: 70 kB
Locked: 2652 kB
VmFlags: rd wr mr mw me ac
)smaps";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(smaps, tf.fd));
MemUsage stats;
ASSERT_EQ(SmapsOrRollupFromFile(tf.path, &stats), true);
EXPECT_EQ(stats.rss, 2652);
EXPECT_EQ(stats.pss, 2652);
EXPECT_EQ(stats.uss, 2736);
EXPECT_EQ(stats.private_clean, 84);
EXPECT_EQ(stats.private_dirty, 2652);
EXPECT_EQ(stats.swap_pss, 70);
}
TEST(ProcMemInfo, SmapsOrRollupPssRollupTest) {
// Make sure /proc/<pid>/smaps is parsed correctly
// to get the PSS
std::string smaps =
R"smaps(12c00000-13440000 rw-p 00000000 00:00 0 [anon:dalvik-main space (region space)]
Name: [anon:dalvik-main space (region space)]
Size: 8448 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Rss: 2652 kB
Pss: 2652 kB
Shared_Clean: 840 kB
Shared_Dirty: 40 kB
Private_Clean: 84 kB
Private_Dirty: 2652 kB
Referenced: 2652 kB
Anonymous: 2652 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 102 kB
SwapPss: 70 kB
Locked: 2652 kB
VmFlags: rd wr mr mw me ac
)smaps";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(smaps, tf.fd));
uint64_t pss;
ASSERT_EQ(SmapsOrRollupPssFromFile(tf.path, &pss), true);
EXPECT_EQ(pss, 2652);
}
TEST(ProcMemInfo, SmapsOrRollupPssSmapsTest) {
// Correctly parse smaps file to gather pss
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str());
uint64_t pss;
ASSERT_EQ(SmapsOrRollupPssFromFile(path, &pss), true);
EXPECT_EQ(pss, 19119);
}
TEST(ProcMemInfo, StatusVmRSSTest) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/status", exec_dir.c_str());
uint64_t rss;
ASSERT_EQ(StatusVmRSSFromFile(path, &rss), true);
EXPECT_EQ(rss, 730764);
}
TEST(ProcMemInfo, StatusVmRSSBogusFileTest) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/smaps", exec_dir.c_str());
uint64_t rss;
ASSERT_EQ(StatusVmRSSFromFile(path, &rss), false);
}
TEST(ProcMemInfo, ForEachExistingVmaTest) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str());
ProcMemInfo proc_mem(pid);
// Populate maps_.
proc_mem.Smaps(path);
std::vector<Vma> vmas;
auto collect_vmas = [&](const Vma& v) { vmas.push_back(v); };
EXPECT_TRUE(proc_mem.ForEachExistingVma(collect_vmas));
// The size of vmas is not checked because Smaps() will return 5 vmas on x86
// and 6 vmas otherwise, as [vsyscall] is not processed on x86.
// Expect values to be equal to what we have in testdata1/smaps_short
// Check for names
EXPECT_EQ(vmas[0].name, "[anon:dalvik-zygote-jit-code-cache]");
EXPECT_EQ(vmas[1].name, "/system/framework/x86_64/boot-framework.art");
EXPECT_TRUE(vmas[2].name == "[anon:libc_malloc]" ||
android::base::StartsWith(vmas[2].name, "[anon:scudo:"))
<< "Unknown map name " << vmas[2].name;
EXPECT_EQ(vmas[3].name, "/system/priv-app/SettingsProvider/oat/x86_64/SettingsProvider.odex");
EXPECT_EQ(vmas[4].name, "/system/lib64/libhwui.so");
// Check start address
EXPECT_EQ(vmas[0].start, 0x54c00000);
EXPECT_EQ(vmas[1].start, 0x701ea000);
EXPECT_EQ(vmas[2].start, 0x70074dd8d000);
EXPECT_EQ(vmas[3].start, 0x700755a2d000);
EXPECT_EQ(vmas[4].start, 0x7007f85b0000);
// Check end address
EXPECT_EQ(vmas[0].end, 0x56c00000);
EXPECT_EQ(vmas[1].end, 0x70cdb000);
EXPECT_EQ(vmas[2].end, 0x70074ee0d000);
EXPECT_EQ(vmas[3].end, 0x700755a6e000);
EXPECT_EQ(vmas[4].end, 0x7007f8b9b000);
// Check Flags
EXPECT_EQ(vmas[0].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[1].flags, PROT_READ | PROT_WRITE);
EXPECT_EQ(vmas[2].flags, PROT_READ | PROT_WRITE);
EXPECT_EQ(vmas[3].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[4].flags, PROT_READ | PROT_EXEC);
// Check Shared
EXPECT_FALSE(vmas[0].is_shared);
EXPECT_FALSE(vmas[1].is_shared);
EXPECT_FALSE(vmas[2].is_shared);
EXPECT_FALSE(vmas[3].is_shared);
EXPECT_FALSE(vmas[4].is_shared);
// Check Offset
EXPECT_EQ(vmas[0].offset, 0x0);
EXPECT_EQ(vmas[1].offset, 0x0);
EXPECT_EQ(vmas[2].offset, 0x0);
EXPECT_EQ(vmas[3].offset, 0x00016000);
EXPECT_EQ(vmas[4].offset, 0x001ee000);
// Check Inode
EXPECT_EQ(vmas[0].inode, 0);
EXPECT_EQ(vmas[1].inode, 3165);
EXPECT_EQ(vmas[2].inode, 0);
EXPECT_EQ(vmas[3].inode, 1947);
EXPECT_EQ(vmas[4].inode, 1537);
// Check smaps specific fields
ASSERT_EQ(vmas[0].usage.vss, 32768);
EXPECT_EQ(vmas[1].usage.vss, 11204);
EXPECT_EQ(vmas[2].usage.vss, 16896);
EXPECT_EQ(vmas[3].usage.vss, 260);
EXPECT_EQ(vmas[4].usage.vss, 6060);
EXPECT_EQ(vmas[0].usage.rss, 2048);
EXPECT_EQ(vmas[1].usage.rss, 11188);
EXPECT_EQ(vmas[2].usage.rss, 15272);
EXPECT_EQ(vmas[3].usage.rss, 260);
EXPECT_EQ(vmas[4].usage.rss, 4132);
EXPECT_EQ(vmas[0].usage.pss, 113);
EXPECT_EQ(vmas[1].usage.pss, 2200);
EXPECT_EQ(vmas[2].usage.pss, 15272);
EXPECT_EQ(vmas[3].usage.pss, 260);
EXPECT_EQ(vmas[4].usage.pss, 1274);
EXPECT_EQ(vmas[0].usage.uss, 0);
EXPECT_EQ(vmas[1].usage.uss, 1660);
EXPECT_EQ(vmas[2].usage.uss, 15272);
EXPECT_EQ(vmas[3].usage.uss, 260);
EXPECT_EQ(vmas[4].usage.uss, 0);
EXPECT_EQ(vmas[0].usage.private_clean, 0);
EXPECT_EQ(vmas[1].usage.private_clean, 0);
EXPECT_EQ(vmas[2].usage.private_clean, 0);
EXPECT_EQ(vmas[3].usage.private_clean, 260);
EXPECT_EQ(vmas[4].usage.private_clean, 0);
EXPECT_EQ(vmas[0].usage.private_dirty, 0);
EXPECT_EQ(vmas[1].usage.private_dirty, 1660);
EXPECT_EQ(vmas[2].usage.private_dirty, 15272);
EXPECT_EQ(vmas[3].usage.private_dirty, 0);
EXPECT_EQ(vmas[4].usage.private_dirty, 0);
EXPECT_EQ(vmas[0].usage.shared_clean, 0);
EXPECT_EQ(vmas[1].usage.shared_clean, 80);
EXPECT_EQ(vmas[2].usage.shared_clean, 0);
EXPECT_EQ(vmas[3].usage.shared_clean, 0);
EXPECT_EQ(vmas[4].usage.shared_clean, 4132);
EXPECT_EQ(vmas[0].usage.shared_dirty, 2048);
EXPECT_EQ(vmas[1].usage.shared_dirty, 9448);
EXPECT_EQ(vmas[2].usage.shared_dirty, 0);
EXPECT_EQ(vmas[3].usage.shared_dirty, 0);
EXPECT_EQ(vmas[4].usage.shared_dirty, 0);
EXPECT_EQ(vmas[0].usage.swap, 0);
EXPECT_EQ(vmas[1].usage.swap, 0);
EXPECT_EQ(vmas[2].usage.swap, 0);
EXPECT_EQ(vmas[3].usage.swap, 0);
EXPECT_EQ(vmas[4].usage.swap, 0);
EXPECT_EQ(vmas[0].usage.swap_pss, 0);
EXPECT_EQ(vmas[1].usage.swap_pss, 0);
EXPECT_EQ(vmas[2].usage.swap_pss, 0);
EXPECT_EQ(vmas[3].usage.swap_pss, 0);
EXPECT_EQ(vmas[4].usage.swap_pss, 0);
#ifndef __x86_64__
// vmas[5] will not exist on x86, as [vsyscall] would not be processed.
EXPECT_EQ(vmas[5].name, "[vsyscall]");
EXPECT_EQ(vmas[5].start, 0xffffffffff600000);
EXPECT_EQ(vmas[5].end, 0xffffffffff601000);
EXPECT_EQ(vmas[5].flags, PROT_READ | PROT_EXEC);
EXPECT_FALSE(vmas[5].is_shared);
EXPECT_EQ(vmas[5].offset, 0x0);
EXPECT_EQ(vmas[5].inode, 0);
EXPECT_EQ(vmas[5].usage.vss, 4);
EXPECT_EQ(vmas[5].usage.rss, 0);
EXPECT_EQ(vmas[5].usage.pss, 0);
EXPECT_EQ(vmas[5].usage.uss, 0);
EXPECT_EQ(vmas[5].usage.private_clean, 0);
EXPECT_EQ(vmas[5].usage.private_dirty, 0);
EXPECT_EQ(vmas[5].usage.shared_clean, 0);
EXPECT_EQ(vmas[5].usage.shared_dirty, 0);
EXPECT_EQ(vmas[5].usage.swap, 0);
EXPECT_EQ(vmas[5].usage.swap_pss, 0);
#endif
}
TEST(ProcMemInfo, ForEachVmaFromFile_SmapsTest) {
// Parse smaps file correctly to make callbacks for each virtual memory area (vma)
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str());
ProcMemInfo proc_mem(pid);
std::vector<Vma> vmas;
auto collect_vmas = [&](const Vma& v) { vmas.push_back(v); };
ASSERT_TRUE(ForEachVmaFromFile(path, collect_vmas));
// We should get a total of 6 vmas
ASSERT_EQ(vmas.size(), 6);
// Expect values to be equal to what we have in testdata1/smaps_short
// Check for names
EXPECT_EQ(vmas[0].name, "[anon:dalvik-zygote-jit-code-cache]");
EXPECT_EQ(vmas[1].name, "/system/framework/x86_64/boot-framework.art");
EXPECT_TRUE(vmas[2].name == "[anon:libc_malloc]" ||
android::base::StartsWith(vmas[2].name, "[anon:scudo:"))
<< "Unknown map name " << vmas[2].name;
EXPECT_EQ(vmas[3].name, "/system/priv-app/SettingsProvider/oat/x86_64/SettingsProvider.odex");
EXPECT_EQ(vmas[4].name, "/system/lib64/libhwui.so");
EXPECT_EQ(vmas[5].name, "[vsyscall]");
// Check start address
EXPECT_EQ(vmas[0].start, 0x54c00000);
EXPECT_EQ(vmas[1].start, 0x701ea000);
EXPECT_EQ(vmas[2].start, 0x70074dd8d000);
EXPECT_EQ(vmas[3].start, 0x700755a2d000);
EXPECT_EQ(vmas[4].start, 0x7007f85b0000);
EXPECT_EQ(vmas[5].start, 0xffffffffff600000);
// Check end address
EXPECT_EQ(vmas[0].end, 0x56c00000);
EXPECT_EQ(vmas[1].end, 0x70cdb000);
EXPECT_EQ(vmas[2].end, 0x70074ee0d000);
EXPECT_EQ(vmas[3].end, 0x700755a6e000);
EXPECT_EQ(vmas[4].end, 0x7007f8b9b000);
EXPECT_EQ(vmas[5].end, 0xffffffffff601000);
// Check Flags
EXPECT_EQ(vmas[0].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[1].flags, PROT_READ | PROT_WRITE);
EXPECT_EQ(vmas[2].flags, PROT_READ | PROT_WRITE);
EXPECT_EQ(vmas[3].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[4].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[5].flags, PROT_READ | PROT_EXEC);
// Check Shared
EXPECT_FALSE(vmas[0].is_shared);
EXPECT_FALSE(vmas[1].is_shared);
EXPECT_FALSE(vmas[2].is_shared);
EXPECT_FALSE(vmas[3].is_shared);
EXPECT_FALSE(vmas[4].is_shared);
EXPECT_FALSE(vmas[5].is_shared);
// Check Offset
EXPECT_EQ(vmas[0].offset, 0x0);
EXPECT_EQ(vmas[1].offset, 0x0);
EXPECT_EQ(vmas[2].offset, 0x0);
EXPECT_EQ(vmas[3].offset, 0x00016000);
EXPECT_EQ(vmas[4].offset, 0x001ee000);
EXPECT_EQ(vmas[5].offset, 0x0);
// Check Inode
EXPECT_EQ(vmas[0].inode, 0);
EXPECT_EQ(vmas[1].inode, 3165);
EXPECT_EQ(vmas[2].inode, 0);
EXPECT_EQ(vmas[3].inode, 1947);
EXPECT_EQ(vmas[4].inode, 1537);
EXPECT_EQ(vmas[5].inode, 0);
// Check smaps specific fields
ASSERT_EQ(vmas[0].usage.vss, 32768);
EXPECT_EQ(vmas[1].usage.vss, 11204);
EXPECT_EQ(vmas[2].usage.vss, 16896);
EXPECT_EQ(vmas[3].usage.vss, 260);
EXPECT_EQ(vmas[4].usage.vss, 6060);
EXPECT_EQ(vmas[5].usage.vss, 4);
EXPECT_EQ(vmas[0].usage.rss, 2048);
EXPECT_EQ(vmas[1].usage.rss, 11188);
EXPECT_EQ(vmas[2].usage.rss, 15272);
EXPECT_EQ(vmas[3].usage.rss, 260);
EXPECT_EQ(vmas[4].usage.rss, 4132);
EXPECT_EQ(vmas[5].usage.rss, 0);
EXPECT_EQ(vmas[0].usage.pss, 113);
EXPECT_EQ(vmas[1].usage.pss, 2200);
EXPECT_EQ(vmas[2].usage.pss, 15272);
EXPECT_EQ(vmas[3].usage.pss, 260);
EXPECT_EQ(vmas[4].usage.pss, 1274);
EXPECT_EQ(vmas[5].usage.pss, 0);
EXPECT_EQ(vmas[0].usage.uss, 0);
EXPECT_EQ(vmas[1].usage.uss, 1660);
EXPECT_EQ(vmas[2].usage.uss, 15272);
EXPECT_EQ(vmas[3].usage.uss, 260);
EXPECT_EQ(vmas[4].usage.uss, 0);
EXPECT_EQ(vmas[5].usage.uss, 0);
EXPECT_EQ(vmas[0].usage.private_clean, 0);
EXPECT_EQ(vmas[1].usage.private_clean, 0);
EXPECT_EQ(vmas[2].usage.private_clean, 0);
EXPECT_EQ(vmas[3].usage.private_clean, 260);
EXPECT_EQ(vmas[4].usage.private_clean, 0);
EXPECT_EQ(vmas[5].usage.private_clean, 0);
EXPECT_EQ(vmas[0].usage.private_dirty, 0);
EXPECT_EQ(vmas[1].usage.private_dirty, 1660);
EXPECT_EQ(vmas[2].usage.private_dirty, 15272);
EXPECT_EQ(vmas[3].usage.private_dirty, 0);
EXPECT_EQ(vmas[4].usage.private_dirty, 0);
EXPECT_EQ(vmas[5].usage.private_dirty, 0);
EXPECT_EQ(vmas[0].usage.shared_clean, 0);
EXPECT_EQ(vmas[1].usage.shared_clean, 80);
EXPECT_EQ(vmas[2].usage.shared_clean, 0);
EXPECT_EQ(vmas[3].usage.shared_clean, 0);
EXPECT_EQ(vmas[4].usage.shared_clean, 4132);
EXPECT_EQ(vmas[5].usage.shared_clean, 0);
EXPECT_EQ(vmas[0].usage.shared_dirty, 2048);
EXPECT_EQ(vmas[1].usage.shared_dirty, 9448);
EXPECT_EQ(vmas[2].usage.shared_dirty, 0);
EXPECT_EQ(vmas[3].usage.shared_dirty, 0);
EXPECT_EQ(vmas[4].usage.shared_dirty, 0);
EXPECT_EQ(vmas[5].usage.shared_dirty, 0);
EXPECT_EQ(vmas[0].usage.swap, 0);
EXPECT_EQ(vmas[1].usage.swap, 0);
EXPECT_EQ(vmas[2].usage.swap, 0);
EXPECT_EQ(vmas[3].usage.swap, 0);
EXPECT_EQ(vmas[4].usage.swap, 0);
EXPECT_EQ(vmas[5].usage.swap, 0);
EXPECT_EQ(vmas[0].usage.swap_pss, 0);
EXPECT_EQ(vmas[1].usage.swap_pss, 0);
EXPECT_EQ(vmas[2].usage.swap_pss, 0);
EXPECT_EQ(vmas[3].usage.swap_pss, 0);
EXPECT_EQ(vmas[4].usage.swap_pss, 0);
EXPECT_EQ(vmas[5].usage.swap_pss, 0);
}
TEST(ProcMemInfo, ForEachVmaFromFile_MapsTest) {
// Parse maps file correctly to make callbacks for each virtual memory area (vma)
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/maps_short", exec_dir.c_str());
ProcMemInfo proc_mem(pid);
std::vector<Vma> vmas;
auto collect_vmas = [&](const Vma& v) { vmas.push_back(v); };
ASSERT_TRUE(ForEachVmaFromFile(path, collect_vmas, false));
// We should get a total of 6 vmas
ASSERT_EQ(vmas.size(), 6);
// Expect values to be equal to what we have in testdata1/maps_short
// Check for names
EXPECT_EQ(vmas[0].name, "[anon:dalvik-zygote-jit-code-cache]");
EXPECT_EQ(vmas[1].name, "/system/framework/x86_64/boot-framework.art");
EXPECT_TRUE(vmas[2].name == "[anon:libc_malloc]" ||
android::base::StartsWith(vmas[2].name, "[anon:scudo:"))
<< "Unknown map name " << vmas[2].name;
EXPECT_EQ(vmas[3].name, "/system/priv-app/SettingsProvider/oat/x86_64/SettingsProvider.odex");
EXPECT_EQ(vmas[4].name, "/system/lib64/libhwui.so");
EXPECT_EQ(vmas[5].name, "[vsyscall]");
// Check start address
EXPECT_EQ(vmas[0].start, 0x54c00000);
EXPECT_EQ(vmas[1].start, 0x701ea000);
EXPECT_EQ(vmas[2].start, 0x70074dd8d000);
EXPECT_EQ(vmas[3].start, 0x700755a2d000);
EXPECT_EQ(vmas[4].start, 0x7007f85b0000);
EXPECT_EQ(vmas[5].start, 0xffffffffff600000);
// Check end address
EXPECT_EQ(vmas[0].end, 0x56c00000);
EXPECT_EQ(vmas[1].end, 0x70cdb000);
EXPECT_EQ(vmas[2].end, 0x70074ee0d000);
EXPECT_EQ(vmas[3].end, 0x700755a6e000);
EXPECT_EQ(vmas[4].end, 0x7007f8b9b000);
EXPECT_EQ(vmas[5].end, 0xffffffffff601000);
// Check Flags
EXPECT_EQ(vmas[0].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[1].flags, PROT_READ | PROT_WRITE);
EXPECT_EQ(vmas[2].flags, PROT_READ | PROT_WRITE);
EXPECT_EQ(vmas[3].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[4].flags, PROT_READ | PROT_EXEC);
EXPECT_EQ(vmas[5].flags, PROT_READ | PROT_EXEC);
// Check Shared
EXPECT_FALSE(vmas[0].is_shared);
EXPECT_FALSE(vmas[1].is_shared);
EXPECT_FALSE(vmas[2].is_shared);
EXPECT_FALSE(vmas[3].is_shared);
EXPECT_FALSE(vmas[4].is_shared);
EXPECT_FALSE(vmas[5].is_shared);
// Check Offset
EXPECT_EQ(vmas[0].offset, 0x0);
EXPECT_EQ(vmas[1].offset, 0x0);
EXPECT_EQ(vmas[2].offset, 0x0);
EXPECT_EQ(vmas[3].offset, 0x00016000);
EXPECT_EQ(vmas[4].offset, 0x001ee000);
EXPECT_EQ(vmas[5].offset, 0x0);
// Check Inode
EXPECT_EQ(vmas[0].inode, 0);
EXPECT_EQ(vmas[1].inode, 3165);
EXPECT_EQ(vmas[2].inode, 0);
EXPECT_EQ(vmas[3].inode, 1947);
EXPECT_EQ(vmas[4].inode, 1537);
EXPECT_EQ(vmas[5].inode, 0);
}
TEST(ProcMemInfo, SmapsReturnTest) {
// Make sure Smaps() is never empty for any process
ProcMemInfo proc_mem(pid);
auto vmas = proc_mem.Smaps();
EXPECT_FALSE(vmas.empty());
}
TEST(ProcMemInfo, SmapsTest) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str());
ProcMemInfo proc_mem(pid);
auto vmas = proc_mem.Smaps(path);
ASSERT_FALSE(vmas.empty());
#ifndef __x86_64__
// We should get a total of 6 vmas
ASSERT_EQ(vmas.size(), 6);
#else
// We should get a total of 5 vmas ([vsyscall] is excluded)
ASSERT_EQ(vmas.size(), 5);
#endif
// Expect values to be equal to what we have in testdata1/smaps_short
// Check for sizes first
ASSERT_EQ(vmas[0].usage.vss, 32768);
EXPECT_EQ(vmas[1].usage.vss, 11204);
EXPECT_EQ(vmas[2].usage.vss, 16896);
EXPECT_EQ(vmas[3].usage.vss, 260);
EXPECT_EQ(vmas[4].usage.vss, 6060);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.vss, 4);
#endif
// Check for names
EXPECT_EQ(vmas[0].name, "[anon:dalvik-zygote-jit-code-cache]");
EXPECT_EQ(vmas[1].name, "/system/framework/x86_64/boot-framework.art");
EXPECT_TRUE(vmas[2].name == "[anon:libc_malloc]" ||
android::base::StartsWith(vmas[2].name, "[anon:scudo:"))
<< "Unknown map name " << vmas[2].name;
EXPECT_EQ(vmas[3].name, "/system/priv-app/SettingsProvider/oat/x86_64/SettingsProvider.odex");
EXPECT_EQ(vmas[4].name, "/system/lib64/libhwui.so");
#ifndef __x86_64__
EXPECT_EQ(vmas[5].name, "[vsyscall]");
#endif
EXPECT_EQ(vmas[0].usage.rss, 2048);
EXPECT_EQ(vmas[1].usage.rss, 11188);
EXPECT_EQ(vmas[2].usage.rss, 15272);
EXPECT_EQ(vmas[3].usage.rss, 260);
EXPECT_EQ(vmas[4].usage.rss, 4132);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.rss, 0);
#endif
EXPECT_EQ(vmas[0].usage.pss, 113);
EXPECT_EQ(vmas[1].usage.pss, 2200);
EXPECT_EQ(vmas[2].usage.pss, 15272);
EXPECT_EQ(vmas[3].usage.pss, 260);
EXPECT_EQ(vmas[4].usage.pss, 1274);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.pss, 0);
#endif
EXPECT_EQ(vmas[0].usage.uss, 0);
EXPECT_EQ(vmas[1].usage.uss, 1660);
EXPECT_EQ(vmas[2].usage.uss, 15272);
EXPECT_EQ(vmas[3].usage.uss, 260);
EXPECT_EQ(vmas[4].usage.uss, 0);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.uss, 0);
#endif
EXPECT_EQ(vmas[0].usage.private_clean, 0);
EXPECT_EQ(vmas[1].usage.private_clean, 0);
EXPECT_EQ(vmas[2].usage.private_clean, 0);
EXPECT_EQ(vmas[3].usage.private_clean, 260);
EXPECT_EQ(vmas[4].usage.private_clean, 0);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.private_clean, 0);
#endif
EXPECT_EQ(vmas[0].usage.private_dirty, 0);
EXPECT_EQ(vmas[1].usage.private_dirty, 1660);
EXPECT_EQ(vmas[2].usage.private_dirty, 15272);
EXPECT_EQ(vmas[3].usage.private_dirty, 0);
EXPECT_EQ(vmas[4].usage.private_dirty, 0);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.private_dirty, 0);
#endif
EXPECT_EQ(vmas[0].usage.shared_clean, 0);
EXPECT_EQ(vmas[1].usage.shared_clean, 80);
EXPECT_EQ(vmas[2].usage.shared_clean, 0);
EXPECT_EQ(vmas[3].usage.shared_clean, 0);
EXPECT_EQ(vmas[4].usage.shared_clean, 4132);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.shared_clean, 0);
#endif
EXPECT_EQ(vmas[0].usage.shared_dirty, 2048);
EXPECT_EQ(vmas[1].usage.shared_dirty, 9448);
EXPECT_EQ(vmas[2].usage.shared_dirty, 0);
EXPECT_EQ(vmas[3].usage.shared_dirty, 0);
EXPECT_EQ(vmas[4].usage.shared_dirty, 0);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.shared_dirty, 0);
#endif
EXPECT_EQ(vmas[0].usage.swap, 0);
EXPECT_EQ(vmas[1].usage.swap, 0);
EXPECT_EQ(vmas[2].usage.swap, 0);
EXPECT_EQ(vmas[3].usage.swap, 0);
EXPECT_EQ(vmas[4].usage.swap, 0);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.swap, 0);
#endif
EXPECT_EQ(vmas[0].usage.swap_pss, 0);
EXPECT_EQ(vmas[1].usage.swap_pss, 0);
EXPECT_EQ(vmas[2].usage.swap_pss, 0);
EXPECT_EQ(vmas[3].usage.swap_pss, 0);
EXPECT_EQ(vmas[4].usage.swap_pss, 0);
#ifndef __x86_64__
EXPECT_EQ(vmas[5].usage.swap_pss, 0);
#endif
}
TEST(ProcMemInfo, SmapsPopulatesUsageTest) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str());
ProcMemInfo proc_mem(pid);
auto vmas = proc_mem.Smaps(path, true);
// Expect values to be equal to sums of usage in testdata1/smaps_short. For
// this data, only vss differs on x86.
#ifndef __x86_64__
EXPECT_EQ(proc_mem.Usage().vss, 67192);
#else
EXPECT_EQ(proc_mem.Usage().vss, 67188);
#endif
EXPECT_EQ(proc_mem.Usage().rss, 32900);
EXPECT_EQ(proc_mem.Usage().pss, 19119);
EXPECT_EQ(proc_mem.Usage().uss, 17192);
EXPECT_EQ(proc_mem.Usage().private_clean, 260);
EXPECT_EQ(proc_mem.Usage().private_dirty, 16932);
EXPECT_EQ(proc_mem.Usage().shared_clean, 4212);
EXPECT_EQ(proc_mem.Usage().shared_dirty, 11496);
EXPECT_EQ(proc_mem.Usage().swap, 0);
EXPECT_EQ(proc_mem.Usage().swap_pss, 0);
}
TEST(SysMemInfo, TestSysMemInfoFile) {
std::string meminfo = R"meminfo(MemTotal: 3019740 kB
MemFree: 1809728 kB
MemAvailable: 2546560 kB
Buffers: 54736 kB
Cached: 776052 kB
SwapCached: 0 kB
Active: 445856 kB
Inactive: 459092 kB
Active(anon): 78492 kB
Inactive(anon): 2240 kB
Active(file): 367364 kB
Inactive(file): 456852 kB
Unevictable: 3096 kB
Mlocked: 3096 kB
SwapTotal: 32768 kB
SwapFree: 4096 kB
Dirty: 32 kB
Writeback: 0 kB
AnonPages: 74988 kB
Mapped: 62624 kB
Shmem: 4020 kB
KReclaimable: 87324 kB
Slab: 86464 kB
SReclaimable: 44432 kB
SUnreclaim: 42032 kB
KernelStack: 4880 kB
PageTables: 2900 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 1509868 kB
Committed_AS: 80296 kB
VmallocTotal: 263061440 kB
VmallocUsed: 65536 kB
VmallocChunk: 0 kB
AnonHugePages: 6144 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 131072 kB
CmaFree: 130380 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB)meminfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(meminfo, tf.fd));
SysMemInfo mi;
ASSERT_TRUE(mi.ReadMemInfo(tf.path));
EXPECT_EQ(mi.mem_total_kb(), 3019740);
EXPECT_EQ(mi.mem_free_kb(), 1809728);
EXPECT_EQ(mi.mem_buffers_kb(), 54736);
EXPECT_EQ(mi.mem_cached_kb(), 776052);
EXPECT_EQ(mi.mem_shmem_kb(), 4020);
EXPECT_EQ(mi.mem_slab_kb(), 86464);
EXPECT_EQ(mi.mem_slab_reclaimable_kb(), 44432);
EXPECT_EQ(mi.mem_slab_unreclaimable_kb(), 42032);
EXPECT_EQ(mi.mem_swap_kb(), 32768);
EXPECT_EQ(mi.mem_swap_free_kb(), 4096);
EXPECT_EQ(mi.mem_mapped_kb(), 62624);
EXPECT_EQ(mi.mem_vmalloc_used_kb(), 65536);
EXPECT_EQ(mi.mem_page_tables_kb(), 2900);
EXPECT_EQ(mi.mem_kernel_stack_kb(), 4880);
EXPECT_EQ(mi.mem_kreclaimable_kb(), 87324);
EXPECT_EQ(mi.mem_active_kb(), 445856);
EXPECT_EQ(mi.mem_inactive_kb(), 459092);
EXPECT_EQ(mi.mem_unevictable_kb(), 3096);
EXPECT_EQ(mi.mem_available_kb(), 2546560);
EXPECT_EQ(mi.mem_active_anon_kb(), 78492);
EXPECT_EQ(mi.mem_inactive_anon_kb(), 2240);
EXPECT_EQ(mi.mem_active_file_kb(), 367364);
EXPECT_EQ(mi.mem_inactive_file_kb(), 456852);
EXPECT_EQ(mi.mem_cma_total_kb(), 131072);
EXPECT_EQ(mi.mem_cma_free_kb(), 130380);
}
TEST(SysMemInfo, TestEmptyFile) {
TemporaryFile tf;
std::string empty_string = "";
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(empty_string, tf.fd));
SysMemInfo mi;
EXPECT_TRUE(mi.ReadMemInfo(tf.path));
EXPECT_EQ(mi.mem_total_kb(), 0);
}
TEST(SysMemInfo, TestZramTotal) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
SysMemInfo mi;
std::string zram_mmstat_dir = exec_dir + "/testdata1/";
EXPECT_EQ(mi.mem_zram_kb(zram_mmstat_dir.c_str()), 30504);
std::string zram_memused_dir = exec_dir + "/testdata2/";
EXPECT_EQ(mi.mem_zram_kb(zram_memused_dir.c_str()), 30504);
}
enum {
MEMINFO_TOTAL,
MEMINFO_FREE,
MEMINFO_BUFFERS,
MEMINFO_CACHED,
MEMINFO_SHMEM,
MEMINFO_SLAB,
MEMINFO_SLAB_RECLAIMABLE,
MEMINFO_SLAB_UNRECLAIMABLE,
MEMINFO_SWAP_TOTAL,
MEMINFO_SWAP_FREE,
MEMINFO_ZRAM_TOTAL,
MEMINFO_MAPPED,
MEMINFO_VMALLOC_USED,
MEMINFO_PAGE_TABLES,
MEMINFO_KERNEL_STACK,
MEMINFO_KRECLAIMABLE,
MEMINFO_ACTIVE,
MEMINFO_INACTIVE,
MEMINFO_UNEVICTABLE,
MEMINFO_AVAILABLE,
MEMINFO_ACTIVE_ANON,
MEMINFO_INACTIVE_ANON,
MEMINFO_ACTIVE_FILE,
MEMINFO_INACTIVE_FILE,
MEMINFO_CMA_TOTAL,
MEMINFO_CMA_FREE,
MEMINFO_COUNT
};
TEST(SysMemInfo, TestZramWithTags) {
std::string meminfo = R"meminfo(MemTotal: 3019740 kB
MemFree: 1809728 kB
MemAvailable: 2546560 kB
Buffers: 54736 kB
Cached: 776052 kB
SwapCached: 0 kB
Active: 445856 kB
Inactive: 459092 kB
Active(anon): 78492 kB
Inactive(anon): 2240 kB
Active(file): 367364 kB
Inactive(file): 456852 kB
Unevictable: 3096 kB
Mlocked: 3096 kB
SwapTotal: 32768 kB
SwapFree: 4096 kB
Dirty: 32 kB
Writeback: 0 kB
AnonPages: 74988 kB
Mapped: 62624 kB
Shmem: 4020 kB
KReclaimable: 87324 kB
Slab: 86464 kB
SReclaimable: 44432 kB
SUnreclaim: 42032 kB
KernelStack: 4880 kB
PageTables: 2900 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 1509868 kB
Committed_AS: 80296 kB
VmallocTotal: 263061440 kB
VmallocUsed: 65536 kB
VmallocChunk: 0 kB
AnonHugePages: 6144 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 131072 kB
CmaFree: 130380 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB)meminfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(meminfo, tf.fd));
std::string file = std::string(tf.path);
std::vector<uint64_t> mem;
std::vector<std::string_view> tags(SysMemInfo::kDefaultSysMemInfoTags.begin(),
SysMemInfo::kDefaultSysMemInfoTags.end());
auto it = tags.begin();
tags.insert(it + MEMINFO_ZRAM_TOTAL, "Zram:");
SysMemInfo mi;
// Read system memory info
mem.resize(tags.size());
EXPECT_TRUE(mi.ReadMemInfo(tags.size(), tags.data(), mem.data(), file.c_str()));
EXPECT_EQ(mem[MEMINFO_TOTAL], 3019740);
EXPECT_EQ(mem[MEMINFO_FREE], 1809728);
EXPECT_EQ(mem[MEMINFO_BUFFERS], 54736);
EXPECT_EQ(mem[MEMINFO_CACHED], 776052);
EXPECT_EQ(mem[MEMINFO_SHMEM], 4020);
EXPECT_EQ(mem[MEMINFO_SLAB], 86464);
EXPECT_EQ(mem[MEMINFO_SLAB_RECLAIMABLE], 44432);
EXPECT_EQ(mem[MEMINFO_SLAB_UNRECLAIMABLE], 42032);
EXPECT_EQ(mem[MEMINFO_SWAP_TOTAL], 32768);
EXPECT_EQ(mem[MEMINFO_SWAP_FREE], 4096);
EXPECT_EQ(mem[MEMINFO_MAPPED], 62624);
EXPECT_EQ(mem[MEMINFO_VMALLOC_USED], 65536);
EXPECT_EQ(mem[MEMINFO_PAGE_TABLES], 2900);
EXPECT_EQ(mem[MEMINFO_KERNEL_STACK], 4880);
EXPECT_EQ(mem[MEMINFO_KRECLAIMABLE], 87324);
EXPECT_EQ(mem[MEMINFO_ACTIVE], 445856);
EXPECT_EQ(mem[MEMINFO_INACTIVE], 459092);
EXPECT_EQ(mem[MEMINFO_UNEVICTABLE], 3096);
EXPECT_EQ(mem[MEMINFO_AVAILABLE], 2546560);
EXPECT_EQ(mem[MEMINFO_ACTIVE_ANON], 78492);
EXPECT_EQ(mem[MEMINFO_INACTIVE_ANON], 2240);
EXPECT_EQ(mem[MEMINFO_ACTIVE_FILE], 367364);
EXPECT_EQ(mem[MEMINFO_INACTIVE_FILE], 456852);
EXPECT_EQ(mem[MEMINFO_CMA_TOTAL], 131072);
EXPECT_EQ(mem[MEMINFO_CMA_FREE], 130380);
}
TEST(SysMemInfo, TestVmallocInfoNoMemory) {
std::string vmallocinfo =
R"vmallocinfo(0x0000000000000000-0x0000000000000000 69632 of_iomap+0x78/0xb0 phys=17a00000 ioremap
0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=b220000 ioremap
0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17c90000 ioremap
0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17ca0000 ioremap)vmallocinfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd));
std::string file = std::string(tf.path);
EXPECT_EQ(ReadVmallocInfo(file.c_str()), 0);
}
TEST(SysMemInfo, TestVmallocInfoKernel) {
std::string vmallocinfo =
R"vmallocinfo(0x0000000000000000-0x0000000000000000 8192 drm_property_create_blob+0x44/0xec pages=1 vmalloc)vmallocinfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd));
std::string file = std::string(tf.path);
EXPECT_EQ(ReadVmallocInfo(file.c_str()), getpagesize());
}
TEST(SysMemInfo, TestVmallocInfoModule) {
std::string vmallocinfo =
R"vmallocinfo(0x0000000000000000-0x0000000000000000 28672 pktlog_alloc_buf+0xc4/0x15c [wlan] pages=6 vmalloc)vmallocinfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd));
std::string file = std::string(tf.path);
EXPECT_EQ(ReadVmallocInfo(file.c_str()), 6 * getpagesize());
}
TEST(SysMemInfo, TestVmallocInfoAll) {
std::string vmallocinfo =
R"vmallocinfo(0x0000000000000000-0x0000000000000000 69632 of_iomap+0x78/0xb0 phys=17a00000 ioremap
0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=b220000 ioremap
0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17c90000 ioremap
0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17ca0000 ioremap
0x0000000000000000-0x0000000000000000 8192 drm_property_create_blob+0x44/0xec pages=1 vmalloc
0x0000000000000000-0x0000000000000000 28672 pktlog_alloc_buf+0xc4/0x15c [wlan] pages=6 vmalloc)vmallocinfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd));
std::string file = std::string(tf.path);
EXPECT_EQ(ReadVmallocInfo(file.c_str()), 7 * getpagesize());
}
TEST(SysMemInfo, TestReadIonHeapsSizeKb) {
std::string total_heaps_kb = R"total_heaps_kb(98480)total_heaps_kb";
uint64_t size;
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(total_heaps_kb, tf.fd));
std::string file = std::string(tf.path);
ASSERT_TRUE(ReadIonHeapsSizeKb(&size, file));
EXPECT_EQ(size, 98480);
}
TEST(SysMemInfo, TestReadIonPoolsSizeKb) {
std::string total_pools_kb = R"total_pools_kb(416)total_pools_kb";
uint64_t size;
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(total_pools_kb, tf.fd));
std::string file = std::string(tf.path);
ASSERT_TRUE(ReadIonPoolsSizeKb(&size, file));
EXPECT_EQ(size, 416);
}
TEST(SysMemInfo, TestReadGpuTotalUsageKb) {
uint64_t size;
if (android::base::GetIntProperty("ro.vendor.api_level", 0) < __ANDROID_API_S__) {
GTEST_SKIP();
}
KernelVersion min_kernel_version = KernelVersion(5, 4, 0);
KernelVersion kernel_version = VintfObject::GetInstance()
->getRuntimeInfo(RuntimeInfo::FetchFlag::CPU_VERSION)
->kernelVersion();
if (kernel_version < min_kernel_version) {
GTEST_SKIP();
}
ASSERT_TRUE(ReadGpuTotalUsageKb(&size));
EXPECT_TRUE(size >= 0);
}
class DmabufHeapStats : public ::testing::Test {
public:
virtual void SetUp() {
fs::current_path(fs::temp_directory_path());
buffer_stats_path = fs::current_path() / "buffers";
ASSERT_TRUE(fs::create_directory(buffer_stats_path));
heap_root_path = fs::current_path() / "dma_heap";
ASSERT_TRUE(fs::create_directory(heap_root_path));
}
virtual void TearDown() {
fs::remove_all(buffer_stats_path);
fs::remove_all(heap_root_path);
}
fs::path buffer_stats_path;
fs::path heap_root_path;
};
TEST_F(DmabufHeapStats, TestDmabufHeapTotalExportedKb) {
using android::base::StringPrintf;
uint64_t size;
auto system_heap_path = heap_root_path / "system";
ASSERT_TRUE(android::base::WriteStringToFile("test", system_heap_path));
for (unsigned int inode_number = 74831; inode_number < 74841; inode_number++) {
auto buffer_path = buffer_stats_path / StringPrintf("%u", inode_number);
ASSERT_TRUE(fs::create_directories(buffer_path));
auto buffer_size_path = buffer_path / "size";
const std::string buffer_size = "4096";
ASSERT_TRUE(android::base::WriteStringToFile(buffer_size, buffer_size_path));
auto exp_name_path = buffer_path / "exporter_name";
const std::string exp_name = inode_number % 2 ? "system" : "other";
ASSERT_TRUE(android::base::WriteStringToFile(exp_name, exp_name_path));
}
ASSERT_TRUE(ReadDmabufHeapTotalExportedKb(&size, heap_root_path, buffer_stats_path));
ASSERT_EQ(size, 20);
}
TEST(SysMemInfo, TestReadDmaBufHeapPoolsSizeKb) {
std::string total_pools_kb = R"total_pools_kb(416)total_pools_kb";
uint64_t size;
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(total_pools_kb, tf.fd));
std::string file = std::string(tf.path);
ASSERT_TRUE(ReadDmabufHeapPoolsSizeKb(&size, file));
EXPECT_EQ(size, 416);
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
::android::base::InitLogging(argv, android::base::StderrLogger);
pid = getpid();
return RUN_ALL_TESTS();
}