blob: 8c47e500e09837329d31e25426b34f7e7820b421 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <array>
#include <climits>
#include <cmath>
#include <cstring>
#include <memory>
#include <vector>
#include <gtest/gtest.h>
#include <audio_utils/spdif/SPDIFDecoder.h>
#include <audio_utils/spdif/SPDIFEncoder.h>
using namespace android;
class MySPDIFEncoder : public SPDIFEncoder {
public:
explicit MySPDIFEncoder(audio_format_t format)
: SPDIFEncoder(format)
{
}
// Defaults to AC3 format. Was in original API.
MySPDIFEncoder() = default;
ssize_t writeOutput( const void* /* buffer */, size_t numBytes ) override {
mOutputSizeBytes = numBytes;
return numBytes;
}
FrameScanner *getFramer() const { return mFramer; }
size_t getByteCursor() const { return mByteCursor; }
size_t getPayloadBytesPending() const { return mPayloadBytesPending; }
size_t getBurstBufferSizeBytes() const { return mBurstBufferSizeBytes; }
size_t mOutputSizeBytes = 0;
};
class MySPDIFDecoder : public SPDIFDecoder {
public:
MySPDIFDecoder(audio_format_t format, const std::vector<uint8_t>&& inputData)
: SPDIFDecoder(format)
, mBurstGenerator(std::make_unique<BurstGenerator>(std::move(inputData),
mFramer->getSampleFramesPerSyncFrame() * kSpdifEncodedChannelCount * sizeof(int16_t))) {
}
// This constructor creates an instance that will return error on reading input.
explicit MySPDIFDecoder(audio_format_t format)
: SPDIFDecoder(format)
, mBurstGenerator(nullptr) {
}
ssize_t readInput(void* buffer, size_t numBytes) override {
return mBurstGenerator == nullptr ? -1
: mBurstGenerator->read(reinterpret_cast<uint8_t *>(buffer), numBytes);
}
FrameScanner &getFramer() const { return *mFramer; }
private:
// Generates data bursts of a given size with the provided input data.
// If there are remaining bytes in the data burst after input data, they are filled with
// incrementing values that wrap around.
class BurstGenerator {
public:
BurstGenerator(const std::vector<uint8_t> &&inputData, size_t burstSizeBytes)
: kBurstSizeBytes(burstSizeBytes)
, mBurstBytesRead(0)
, mInputData(inputData) {
}
ssize_t read(uint8_t* buffer, size_t numBytes) {
auto bytesLeft = numBytes;
while (bytesLeft > 0) {
if (mBurstBytesRead < mInputData.size()) {
const auto bytesToRead = std::min(bytesLeft,
mInputData.size() - mBurstBytesRead);
memcpy(buffer, &mInputData[mBurstBytesRead], bytesToRead);
mBurstBytesRead += bytesToRead;
bytesLeft -= bytesToRead;
buffer += bytesToRead;
} else if (mBurstBytesRead < kBurstSizeBytes) {
const auto bytesToRead = std::min(bytesLeft, kBurstSizeBytes - mBurstBytesRead);
// Pad remaining bytes with incrementing values that wrap around.
for (auto i = 0; i < bytesToRead; ++i) {
*buffer++ = (mBurstBytesRead++ - mInputData.size()) % 256;
}
bytesLeft -= bytesToRead;
buffer += bytesToRead;
} else {
mBurstBytesRead = 0;
}
}
return numBytes;
}
private:
const size_t kBurstSizeBytes;
size_t mBurstBytesRead;
const std::vector<uint8_t> mInputData;
};
const std::unique_ptr<BurstGenerator> mBurstGenerator;
};
// This is the beginning of the file voice1-48k-64kbps-15s.ac3
static const uint8_t sVoice1ch48k_AC3[] = {
0x0b, 0x77, 0x44, 0xcd, 0x08, 0x40, 0x2f, 0x84, 0x29, 0xca, 0x6e, 0x44, 0xa4, 0xfd, 0xce, 0xf7,
0xc9, 0x9f, 0x3e, 0x74, 0xfa, 0x01, 0x0a, 0xda, 0xb3, 0x3e, 0xb0, 0x95, 0xf2, 0x5a, 0xef, 0x9e
};
// This is the beginning of the file channelcheck_48k6ch.eac3
static const uint8_t sChannel6ch48k_EAC3[] = {
0x0b, 0x77, 0x01, 0xbf, 0x3f, 0x85, 0x7f, 0xe8, 0x1e, 0x40, 0x82, 0x10, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x03, 0xfc, 0x60, 0x80, 0x7e, 0x59, 0x00, 0xfc, 0xf3, 0xcf, 0x01, 0xf9, 0xe7
};
// Size of the first frame of channelcheck_48k6ch.eac3, in number of bytes
static constexpr auto sChannel6ch48k_EAC3_frameSize = 896u;
// This is the beginning of the file channelcheck_48k6ch.eac3 after encapulating in IEC61937.
static const uint8_t sSpdif_Channel6ch48k_EAC3[] = {
0x72, 0xf8, 0x1f, 0x4e, 0x15, 0x00, 0x80, 0x03, 0x77, 0x0b, 0xbf, 0x01, 0x85, 0x3f, 0xe8, 0x7f,
0x40, 0x1e, 0x10, 0x82, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x03, 0x00, 0x60, 0xfc, 0x7e, 0x80
};
static const uint8_t sZeros[32] = { 0 };
static constexpr int kBytesPerOutputFrame = 2 * sizeof(int16_t); // stereo
static constexpr auto kIEC61937HeaderSize = 4 * sizeof(uint16_t);
TEST(audio_utils_spdif, SupportedFormats)
{
ASSERT_FALSE(SPDIFEncoder::isFormatSupported(AUDIO_FORMAT_PCM_FLOAT));
ASSERT_FALSE(SPDIFEncoder::isFormatSupported(AUDIO_FORMAT_PCM_16_BIT));
ASSERT_FALSE(SPDIFEncoder::isFormatSupported(AUDIO_FORMAT_MP3));
ASSERT_TRUE(SPDIFEncoder::isFormatSupported(AUDIO_FORMAT_AC3));
ASSERT_TRUE(SPDIFEncoder::isFormatSupported(AUDIO_FORMAT_E_AC3));
ASSERT_TRUE(SPDIFEncoder::isFormatSupported(AUDIO_FORMAT_DTS));
ASSERT_TRUE(SPDIFEncoder::isFormatSupported(AUDIO_FORMAT_DTS_HD));
}
TEST(audio_utils_spdif, ScanAC3)
{
MySPDIFEncoder encoder(AUDIO_FORMAT_AC3);
FrameScanner *scanner = encoder.getFramer();
// It should recognize the valid AC3 header.
int i = 0;
while (i < 5) {
ASSERT_FALSE(scanner->scan(sVoice1ch48k_AC3[i++]));
}
ASSERT_TRUE(scanner->scan(sVoice1ch48k_AC3[i++]));
ASSERT_FALSE(scanner->scan(sVoice1ch48k_AC3[i++]));
}
TEST(audio_utils_spdif, WriteAC3)
{
MySPDIFEncoder encoder(AUDIO_FORMAT_AC3);
encoder.write(sVoice1ch48k_AC3, sizeof(sVoice1ch48k_AC3));
ASSERT_EQ(48000, encoder.getFramer()->getSampleRate());
ASSERT_EQ(kBytesPerOutputFrame, encoder.getBytesPerOutputFrame());
ASSERT_EQ(1, encoder.getRateMultiplier());
// Check to make sure that the pending bytes calculation did not overflow.
size_t burstBufferSizeBytes = encoder.getBurstBufferSizeBytes(); // allocated maximum size
size_t pendingBytes = encoder.getPayloadBytesPending();
ASSERT_GE(burstBufferSizeBytes, pendingBytes);
// Write some fake compressed audio to force an output data burst.
for (int i = 0; i < 7; i++) {
auto result = encoder.write(sZeros, sizeof(sZeros));
ASSERT_EQ(sizeof(sZeros), result);
}
// This value is calculated in SPDIFEncoder::sendZeroPad()
// size_t burstSize = mFramer->getSampleFramesPerSyncFrame() * sizeof(uint16_t)
// * kSpdifEncodedChannelCount;
// If it changes then there is probably a regression.
const int kExpectedBurstSize = 6144;
ASSERT_EQ(kExpectedBurstSize, encoder.mOutputSizeBytes);
}
TEST(audio_utils_spdif, ValidEAC3)
{
MySPDIFEncoder encoder(AUDIO_FORMAT_E_AC3);
auto result = encoder.write(sChannel6ch48k_EAC3, sizeof(sChannel6ch48k_EAC3));
ASSERT_EQ(sizeof(sChannel6ch48k_EAC3), result);
ASSERT_EQ(kSpdifRateMultiplierEac3, encoder.getRateMultiplier());
ASSERT_EQ(48000, encoder.getFramer()->getSampleRate());
ASSERT_EQ(kBytesPerOutputFrame, encoder.getBytesPerOutputFrame());
// Check to make sure that the pending bytes calculation did not overflow.
size_t bufferSize = encoder.getBurstBufferSizeBytes();
size_t pendingBytes = encoder.getPayloadBytesPending();
ASSERT_GE(bufferSize, pendingBytes);
}
TEST(audio_utils_spdif, InvalidLengthEAC3)
{
MySPDIFEncoder encoder(AUDIO_FORMAT_E_AC3);
// Mangle a valid header and try to force a numeric overflow.
uint8_t mangled[sizeof(sChannel6ch48k_EAC3)] = {0};
memcpy(mangled, sChannel6ch48k_EAC3, sizeof(sChannel6ch48k_EAC3));
// force frmsiz to zero!
mangled[2] = mangled[2] & 0xF8;
mangled[3] = 0;
auto result = encoder.write(mangled, sizeof(mangled));
ASSERT_EQ(sizeof(mangled), result);
// Check to make sure that the pending bytes calculation did not overflow.
size_t bufferSize = encoder.getBurstBufferSizeBytes();
size_t pendingBytes = encoder.getPayloadBytesPending();
ASSERT_GE(bufferSize, pendingBytes);
}
TEST(audio_utils_spdif, ScanSPDIF)
{
std::vector<uint8_t> tmp;
MySPDIFDecoder decoder(AUDIO_FORMAT_E_AC3, std::move(tmp));
FrameScanner &scanner = decoder.getFramer();
// It should recognize a valid IEC61937 header.
int i = 0;
while (i < kIEC61937HeaderSize - 1) {
ASSERT_FALSE(scanner.scan(sSpdif_Channel6ch48k_EAC3[i++]));
}
ASSERT_TRUE(scanner.scan(sSpdif_Channel6ch48k_EAC3[i++]));
ASSERT_FALSE(scanner.scan(sSpdif_Channel6ch48k_EAC3[i++]));
ASSERT_EQ(kIEC61937HeaderSize, scanner.getHeaderSizeBytes());
ASSERT_EQ(kSpdifDataTypeEac3, scanner.getDataType());
ASSERT_EQ(kSpdifRateMultiplierEac3, scanner.getRateMultiplier());
ASSERT_EQ(kSpdifRateMultiplierEac3 * 1536, scanner.getMaxSampleFramesPerSyncFrame());
ASSERT_EQ(kSpdifRateMultiplierEac3 * 1536, scanner.getSampleFramesPerSyncFrame());
ASSERT_EQ(sChannel6ch48k_EAC3_frameSize, scanner.getFrameSizeBytes());
}
TEST(audio_utils_spdif, ReadEAC3)
{
constexpr auto kNumFrames = 2; // Number of IEC61937 frames to read
const std::vector<uint8_t> inputData(sSpdif_Channel6ch48k_EAC3,
sSpdif_Channel6ch48k_EAC3 + sizeof(sSpdif_Channel6ch48k_EAC3));
MySPDIFDecoder decoder(AUDIO_FORMAT_E_AC3, std::move(inputData));
for (int n = 0; n < kNumFrames; ++n) {
std::vector<uint8_t> buffer(sChannel6ch48k_EAC3_frameSize, 0xff);
constexpr auto kChunkSize = 32u;
for (int i = 0; i < sChannel6ch48k_EAC3_frameSize / kChunkSize; ++i) {
ASSERT_EQ(kChunkSize, decoder.read(buffer.data() + i * kChunkSize, kChunkSize));
}
// Check the burst payload read from the decoder is correct
constexpr auto kNumExtractedEac3Bytes = sizeof(sSpdif_Channel6ch48k_EAC3)
- kIEC61937HeaderSize;
ASSERT_EQ(0, memcmp(sChannel6ch48k_EAC3, buffer.data(), kNumExtractedEac3Bytes));
uint16_t *p = reinterpret_cast<uint16_t *>(buffer.data());
for (auto i = 0; i < (sChannel6ch48k_EAC3_frameSize - kNumExtractedEac3Bytes) / 2; ++i) {
ASSERT_EQ(((i * 2) % 256) << 8 | ((i * 2 + 1) % 256),
p[kNumExtractedEac3Bytes / 2 + i]);
}
}
}
TEST(audio_utils_spdif, ReadErrorEAC3)
{
MySPDIFDecoder decoder(AUDIO_FORMAT_E_AC3);
std::vector<uint8_t> buffer(sChannel6ch48k_EAC3_frameSize, 0xff);
constexpr auto kChunkSize = 32u;
ASSERT_EQ(-1, decoder.read(buffer.data(), kChunkSize));
}
TEST(audio_utils_spdif, ReadAfterResetEAC3)
{
const std::vector<uint8_t> inputData(sSpdif_Channel6ch48k_EAC3,
sSpdif_Channel6ch48k_EAC3 + sizeof(sSpdif_Channel6ch48k_EAC3));
MySPDIFDecoder decoder(AUDIO_FORMAT_E_AC3, std::move(inputData));
constexpr auto kChunkSize = 32u;
std::vector<uint8_t> buffer(sChannel6ch48k_EAC3_frameSize, 0xff);
ASSERT_EQ(kChunkSize, decoder.read(buffer.data(), kChunkSize));
constexpr auto kNumExtractedEac3Bytes = sizeof(sSpdif_Channel6ch48k_EAC3)
- kIEC61937HeaderSize;
ASSERT_EQ(0, memcmp(sChannel6ch48k_EAC3, buffer.data(), kNumExtractedEac3Bytes));
// Reset after partial read and ensure decoder is able to resync to next data burst
decoder.reset();
for (int i = 0; i < sChannel6ch48k_EAC3_frameSize / kChunkSize; ++i) {
ASSERT_EQ(kChunkSize, decoder.read(buffer.data() + i * kChunkSize, kChunkSize));
}
// Check the burst payload read from the decoder is correct
ASSERT_EQ(0, memcmp(sChannel6ch48k_EAC3, buffer.data(), kNumExtractedEac3Bytes));
uint16_t *p = reinterpret_cast<uint16_t *>(buffer.data());
for (auto i = 0; i < (sChannel6ch48k_EAC3_frameSize - kNumExtractedEac3Bytes) / 2; ++i) {
ASSERT_EQ(((i * 2) % 256) << 8 | ((i * 2 + 1) % 256), p[kNumExtractedEac3Bytes / 2 + i]);
}
}