blob: ac00b1fc4a5bb5b6a223749f7e956579c81ad1d3 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstddef>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#include <audio_utils/primitives.h>
static void BM_MemcpyToFloatFromFloatWithClamping(benchmark::State& state) {
const size_t count = state.range(0);
const float srcMax = state.range(1);
const float absMax = 1.413;
std::vector<float> src(count);
std::vector<float> dst(count);
std::vector<float> expected(count);
// Initialize src buffer with deterministic pseudo-random values
std::minstd_rand gen(count);
std::uniform_real_distribution<> dis(-srcMax, srcMax);
for (size_t i = 0; i < count; i++) {
src[i] = dis(gen);
expected[i] = fmin(absMax, fmax(-absMax, src[i]));
}
// Run the test
while (state.KeepRunning()) {
benchmark::DoNotOptimize(src.data());
benchmark::DoNotOptimize(dst.data());
memcpy_to_float_from_float_with_clamping(dst.data(), src.data(), count, 1.413);
benchmark::ClobberMemory();
}
if (expected != dst) {
state.SkipWithError("Incorrect clamping!");
}
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_MemcpyToFloatFromFloatWithClamping)->RangeMultiplier(2)->Ranges({{10, 8<<12}, {1, 2}});
static void BM_MemcpyFloat(benchmark::State& state) {
const size_t count = state.range(0);
std::vector<float> src(count);
std::vector<float> dst(count);
// Initialize src buffer with deterministic pseudo-random values
std::minstd_rand gen(count);
std::uniform_real_distribution<> dis;
for (size_t i = 0; i < count; i++) {
src[i] = dis(gen);
}
// Run the test
while (state.KeepRunning()) {
benchmark::DoNotOptimize(src.data());
benchmark::DoNotOptimize(dst.data());
memcpy(dst.data(), src.data(), count * sizeof(float));
benchmark::ClobberMemory();
}
if (src != dst) {
state.SkipWithError("Incorrect memcpy!");
}
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_MemcpyFloat)->RangeMultiplier(2)->Ranges({{10, 8<<12}});
static void BM_MemcpyToFloatFromI16(benchmark::State& state) {
const size_t count = state.range(0);
std::vector<int16_t> src(count);
std::vector<float> dst(count);
// Initialize src buffer with deterministic pseudo-random values
std::minstd_rand gen(count);
std::uniform_int_distribution<> dis(INT16_MIN, INT16_MAX);
for (size_t i = 0; i < count; i++) {
src[i] = dis(gen);
}
// Run the test
while (state.KeepRunning()) {
benchmark::DoNotOptimize(src.data());
benchmark::DoNotOptimize(dst.data());
memcpy_to_float_from_i16(dst.data(), src.data(), count);
benchmark::ClobberMemory();
}
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_MemcpyToFloatFromI16)->RangeMultiplier(2)->Ranges({{10, 8<<12}});
static void BM_MemcpyToI16FromFloat(benchmark::State& state) {
const size_t count = state.range(0);
std::vector<float> src(count);
std::vector<int16_t> dst(count);
// Initialize src buffer with deterministic pseudo-random values
std::minstd_rand gen(count);
std::uniform_real_distribution<> dis;
for (size_t i = 0; i < count; i++) {
src[i] = dis(gen);
}
// Run the test
while (state.KeepRunning()) {
benchmark::DoNotOptimize(src.data());
benchmark::DoNotOptimize(dst.data());
memcpy_to_i16_from_float(dst.data(), src.data(), count);
benchmark::ClobberMemory();
}
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_MemcpyToI16FromFloat)->RangeMultiplier(2)->Ranges({{10, 8<<12}});
BENCHMARK_MAIN();