blob: 1bb38e85f3dded51486f114597bb03337f049cb1 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HIDL_SUPPORT_H
#define ANDROID_HIDL_SUPPORT_H
#include <algorithm>
#include <array>
#include <iterator>
#include <hidl/HidlInternal.h>
#include <map>
#include <sstream>
#include <stddef.h>
#include <tuple>
#include <type_traits>
#include <vector>
// no requirements on types not used in scatter/gather
// no requirements on other libraries
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
#include <cutils/native_handle.h>
#include <hidl/Status.h>
#include <utils/Errors.h>
#include <utils/RefBase.h>
#include <utils/StrongPointer.h>
#pragma clang diagnostic pop
namespace android {
// this file is included by all hidl interface, so we must forward declare the
// IMemory and IBase types.
namespace hidl {
namespace memory {
namespace V1_0 {
struct IMemory;
} // namespace V1_0
} // namespace memory
} // namespace hidl
namespace hidl {
namespace base {
namespace V1_0 {
struct IBase;
} // namespace V1_0
} // namespace base
} // namespace hidl
namespace hardware {
namespace details {
// Return true on userdebug / eng builds and false on user builds.
bool debuggable();
} // namespace details
// hidl_death_recipient is a callback interfaced that can be used with
// linkToDeath() / unlinkToDeath()
struct hidl_death_recipient : public virtual RefBase {
virtual void serviceDied(uint64_t cookie,
const ::android::wp<::android::hidl::base::V1_0::IBase>& who) = 0;
};
// hidl_handle wraps a pointer to a native_handle_t in a hidl_pointer,
// so that it can safely be transferred between 32-bit and 64-bit processes.
// The ownership semantics for this are:
// 1) The conversion constructor and assignment operator taking a const native_handle_t*
// do not take ownership of the handle; this is because these operations are usually
// just done for IPC, and cloning by default is a waste of resources. If you want
// a hidl_handle to take ownership, call setTo(handle, true /*shouldOwn*/);
// 2) The copy constructor/assignment operator taking a hidl_handle *DO* take ownership;
// that is because it's not intuitive that this class encapsulates a native_handle_t
// which needs cloning to be valid; in particular, this allows constructs like this:
// hidl_handle copy;
// foo->someHidlCall([&](auto incoming_handle) {
// copy = incoming_handle;
// });
// // copy and its enclosed file descriptors will remain valid here.
// 3) The move constructor does what you would expect; it only owns the handle if the
// original did.
struct hidl_handle {
hidl_handle();
~hidl_handle();
hidl_handle(const native_handle_t *handle);
// copy constructor.
hidl_handle(const hidl_handle &other);
// move constructor.
hidl_handle(hidl_handle &&other) noexcept;
// assignment operators
hidl_handle &operator=(const hidl_handle &other);
hidl_handle &operator=(const native_handle_t *native_handle);
hidl_handle &operator=(hidl_handle &&other) noexcept;
void setTo(native_handle_t* handle, bool shouldOwn = false);
const native_handle_t* operator->() const;
// implicit conversion to const native_handle_t*
operator const native_handle_t *() const;
// explicit conversion
const native_handle_t *getNativeHandle() const;
// offsetof(hidl_handle, mHandle) exposed since mHandle is private.
static const size_t kOffsetOfNativeHandle;
private:
void freeHandle();
details::hidl_pointer<const native_handle_t> mHandle;
bool mOwnsHandle;
uint8_t mPad[7];
};
struct hidl_string {
hidl_string();
~hidl_string();
// copy constructor.
hidl_string(const hidl_string &);
// copy from a C-style string. nullptr will create an empty string
hidl_string(const char *);
// copy the first length characters from a C-style string.
hidl_string(const char *, size_t length);
// copy from an std::string.
hidl_string(const std::string &);
// move constructor.
hidl_string(hidl_string &&) noexcept;
const char *c_str() const;
size_t size() const;
bool empty() const;
// copy assignment operator.
hidl_string &operator=(const hidl_string &);
// copy from a C-style string.
hidl_string &operator=(const char *s);
// copy from an std::string.
hidl_string &operator=(const std::string &);
// move assignment operator.
hidl_string &operator=(hidl_string &&other) noexcept;
// cast to std::string.
operator std::string() const;
void clear();
// Reference an external char array. Ownership is _not_ transferred.
// Caller is responsible for ensuring that underlying memory is valid
// for the lifetime of this hidl_string.
//
// size == strlen(data)
void setToExternal(const char *data, size_t size);
// offsetof(hidl_string, mBuffer) exposed since mBuffer is private.
static const size_t kOffsetOfBuffer;
private:
details::hidl_pointer<const char> mBuffer;
uint32_t mSize; // NOT including the terminating '\0'.
bool mOwnsBuffer; // if true then mBuffer is a mutable char *
uint8_t mPad[3];
// copy from data with size. Assume that my memory is freed
// (through clear(), for example)
void copyFrom(const char *data, size_t size);
// move from another hidl_string
void moveFrom(hidl_string &&);
};
// Use NOLINT to suppress missing parentheses warnings around OP.
#define HIDL_STRING_OPERATOR(OP) \
inline bool operator OP(const hidl_string& hs1, const hidl_string& hs2) { \
return strcmp(hs1.c_str(), hs2.c_str()) OP 0; /* NOLINT */ \
} \
inline bool operator OP(const hidl_string& hs, const char* s) { \
return strcmp(hs.c_str(), s) OP 0; /* NOLINT */ \
} \
inline bool operator OP(const char* s, const hidl_string& hs) { \
return strcmp(s, hs.c_str()) OP 0; /* NOLINT */ \
}
HIDL_STRING_OPERATOR(==)
HIDL_STRING_OPERATOR(!=)
HIDL_STRING_OPERATOR(<)
HIDL_STRING_OPERATOR(<=)
HIDL_STRING_OPERATOR(>)
HIDL_STRING_OPERATOR(>=)
#undef HIDL_STRING_OPERATOR
// Send our content to the output stream
std::ostream& operator<<(std::ostream& os, const hidl_string& str);
// hidl_memory is a structure that can be used to transfer
// pieces of shared memory between processes. The assumption
// of this object is that the memory remains accessible as
// long as the file descriptors in the enclosed mHandle
// - as well as all of its cross-process dups() - remain opened.
struct hidl_memory {
hidl_memory() : mHandle(nullptr), mSize(0), mName("") {
}
/**
* Creates a hidl_memory object whose handle has the same lifetime
* as the handle moved into it.
*/
hidl_memory(const hidl_string& name, hidl_handle&& handle, size_t size)
: mHandle(std::move(handle)), mSize(size), mName(name) {}
/**
* Creates a hidl_memory object, but doesn't take ownership of
* the passed in native_handle_t; callers are responsible for
* making sure the handle remains valid while this object is
* used.
*/
hidl_memory(const hidl_string &name, const native_handle_t *handle, size_t size)
: mHandle(handle),
mSize(size),
mName(name)
{}
// copy constructor
hidl_memory(const hidl_memory& other) {
*this = other;
}
// copy assignment
hidl_memory &operator=(const hidl_memory &other) {
if (this != &other) {
mHandle = other.mHandle;
mSize = other.mSize;
mName = other.mName;
}
return *this;
}
// move constructor
hidl_memory(hidl_memory&& other) noexcept {
*this = std::move(other);
}
// move assignment
hidl_memory &operator=(hidl_memory &&other) noexcept {
if (this != &other) {
mHandle = std::move(other.mHandle);
mSize = other.mSize;
mName = std::move(other.mName);
other.mSize = 0;
}
return *this;
}
~hidl_memory() {
}
const native_handle_t* handle() const {
return mHandle;
}
const hidl_string &name() const {
return mName;
}
uint64_t size() const {
return mSize;
}
// @return true if it's valid
inline bool valid() const { return handle() != nullptr; }
// offsetof(hidl_memory, mHandle) exposed since mHandle is private.
static const size_t kOffsetOfHandle;
// offsetof(hidl_memory, mName) exposed since mHandle is private.
static const size_t kOffsetOfName;
private:
hidl_handle mHandle;
uint64_t mSize;
hidl_string mName;
};
// HidlMemory is a wrapper class to support sp<> for hidl_memory. It also
// provides factory methods to create an instance from hidl_memory or
// from a opened file descriptor. The number of factory methods can be increase
// to support other type of hidl_memory without break the ABI.
class HidlMemory : public virtual hidl_memory, public virtual ::android::RefBase {
public:
static sp<HidlMemory> getInstance(const hidl_memory& mem);
static sp<HidlMemory> getInstance(hidl_memory&& mem);
static sp<HidlMemory> getInstance(const hidl_string& name, hidl_handle&& handle, uint64_t size);
// @param fd, shall be opened and points to the resource.
// @note this method takes the ownership of the fd and will close it in
// destructor
// @return nullptr in failure with the fd closed
static sp<HidlMemory> getInstance(const hidl_string& name, int fd, uint64_t size);
virtual ~HidlMemory();
protected:
HidlMemory();
HidlMemory(const hidl_string& name, hidl_handle&& handle, size_t size);
};
////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct hidl_vec {
using value_type = T;
hidl_vec() : mBuffer(nullptr), mSize(0), mOwnsBuffer(false) {
static_assert(hidl_vec<T>::kOffsetOfBuffer == 0, "wrong offset");
memset(mPad, 0, sizeof(mPad));
}
hidl_vec(size_t size) : hidl_vec() { resize(size); }
hidl_vec(const hidl_vec<T> &other) : hidl_vec() {
*this = other;
}
hidl_vec(hidl_vec<T> &&other) noexcept : hidl_vec() {
*this = std::move(other);
}
hidl_vec(const std::initializer_list<T> list) : hidl_vec() { *this = list; }
hidl_vec(const std::vector<T> &other) : hidl_vec() {
*this = other;
}
template <typename InputIterator,
typename = typename std::enable_if<std::is_convertible<
typename std::iterator_traits<InputIterator>::iterator_category,
std::input_iterator_tag>::value>::type>
hidl_vec(InputIterator first, InputIterator last) : hidl_vec() {
auto size = std::distance(first, last);
if (size > static_cast<int64_t>(UINT32_MAX)) {
details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements.");
}
if (size < 0) {
details::logAlwaysFatal("size can't be negative.");
}
mSize = static_cast<uint32_t>(size);
mBuffer = new T[mSize]();
mOwnsBuffer = true;
size_t idx = 0;
for (; first != last; ++first) {
mBuffer[idx++] = static_cast<T>(*first);
}
}
~hidl_vec() {
if (mOwnsBuffer) {
delete[] mBuffer;
}
mBuffer = nullptr;
}
// Reference an existing array, optionally taking ownership. It is the
// caller's responsibility to ensure that the underlying memory stays
// valid for the lifetime of this hidl_vec.
void setToExternal(T *data, size_t size, bool shouldOwn = false) {
if (mOwnsBuffer) {
delete [] mBuffer;
}
mBuffer = data;
if (size > UINT32_MAX) {
details::logAlwaysFatal("external vector size exceeds 2^32 elements.");
}
mSize = static_cast<uint32_t>(size);
mOwnsBuffer = shouldOwn;
}
T *data() {
return mBuffer;
}
const T *data() const {
return mBuffer;
}
T *releaseData() {
if (!mOwnsBuffer && mBuffer != nullptr) {
resize(mSize);
}
mOwnsBuffer = false;
return mBuffer;
}
hidl_vec &operator=(hidl_vec &&other) noexcept {
if (mOwnsBuffer) {
delete[] mBuffer;
}
mBuffer = other.mBuffer;
mSize = other.mSize;
mOwnsBuffer = other.mOwnsBuffer;
other.mOwnsBuffer = false;
return *this;
}
hidl_vec &operator=(const hidl_vec &other) {
if (this != &other) {
if (mOwnsBuffer) {
delete[] mBuffer;
}
copyFrom(other, other.mSize);
}
return *this;
}
// copy from an std::vector.
hidl_vec &operator=(const std::vector<T> &other) {
if (mOwnsBuffer) {
delete[] mBuffer;
}
copyFrom(other, other.size());
return *this;
}
hidl_vec& operator=(const std::initializer_list<T> list) {
if (list.size() > UINT32_MAX) {
details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements.");
}
if (mOwnsBuffer) {
delete[] mBuffer;
}
mSize = static_cast<uint32_t>(list.size());
mBuffer = new T[mSize]();
mOwnsBuffer = true;
size_t idx = 0;
for (auto it = list.begin(); it != list.end(); ++it) {
mBuffer[idx++] = *it;
}
return *this;
}
// cast to an std::vector.
operator std::vector<T>() const {
std::vector<T> v(mSize);
for (size_t i = 0; i < mSize; ++i) {
v[i] = mBuffer[i];
}
return v;
}
// equality check, assuming that T::operator== is defined.
bool operator==(const hidl_vec &other) const {
if (mSize != other.size()) {
return false;
}
for (size_t i = 0; i < mSize; ++i) {
if (!(mBuffer[i] == other.mBuffer[i])) {
return false;
}
}
return true;
}
// inequality check, assuming that T::operator== is defined.
inline bool operator!=(const hidl_vec &other) const {
return !((*this) == other);
}
size_t size() const {
return mSize;
}
T &operator[](size_t index) {
return mBuffer[index];
}
const T &operator[](size_t index) const {
return mBuffer[index];
}
// Copies over old elements fitting in new size. Value initializes the rest.
void resize(size_t size) {
if (size > UINT32_MAX) {
details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements.");
}
T* newBuffer = new T[size]();
for (size_t i = 0; i < std::min(static_cast<uint32_t>(size), mSize); ++i) {
newBuffer[i] = std::move(mBuffer[i]);
}
if (mOwnsBuffer) {
delete[] mBuffer;
}
mBuffer = newBuffer;
mSize = static_cast<uint32_t>(size);
mOwnsBuffer = true;
}
// offsetof(hidl_string, mBuffer) exposed since mBuffer is private.
static const size_t kOffsetOfBuffer;
private:
// Define std interator interface for walking the array contents
template<bool is_const>
class iter : public std::iterator<
std::random_access_iterator_tag, /* Category */
T,
ptrdiff_t, /* Distance */
typename std::conditional<is_const, const T *, T *>::type /* Pointer */,
typename std::conditional<is_const, const T &, T &>::type /* Reference */>
{
using traits = std::iterator_traits<iter>;
using ptr_type = typename traits::pointer;
using ref_type = typename traits::reference;
using diff_type = typename traits::difference_type;
public:
iter(ptr_type ptr) : mPtr(ptr) { }
inline iter &operator++() { mPtr++; return *this; }
inline iter operator++(int) { iter i = *this; mPtr++; return i; }
inline iter &operator--() { mPtr--; return *this; }
inline iter operator--(int) { iter i = *this; mPtr--; return i; }
inline friend iter operator+(diff_type n, const iter &it) { return it.mPtr + n; }
inline iter operator+(diff_type n) const { return mPtr + n; }
inline iter operator-(diff_type n) const { return mPtr - n; }
inline diff_type operator-(const iter &other) const { return mPtr - other.mPtr; }
inline iter &operator+=(diff_type n) { mPtr += n; return *this; }
inline iter &operator-=(diff_type n) { mPtr -= n; return *this; }
inline ref_type operator*() const { return *mPtr; }
inline ptr_type operator->() const { return mPtr; }
inline bool operator==(const iter &rhs) const { return mPtr == rhs.mPtr; }
inline bool operator!=(const iter &rhs) const { return mPtr != rhs.mPtr; }
inline bool operator< (const iter &rhs) const { return mPtr < rhs.mPtr; }
inline bool operator> (const iter &rhs) const { return mPtr > rhs.mPtr; }
inline bool operator<=(const iter &rhs) const { return mPtr <= rhs.mPtr; }
inline bool operator>=(const iter &rhs) const { return mPtr >= rhs.mPtr; }
inline ref_type operator[](size_t n) const { return mPtr[n]; }
private:
ptr_type mPtr;
};
public:
using iterator = iter<false /* is_const */>;
using const_iterator = iter<true /* is_const */>;
iterator begin() { return data(); }
iterator end() { return data()+mSize; }
const_iterator begin() const { return data(); }
const_iterator end() const { return data()+mSize; }
iterator find(const T& v) { return std::find(begin(), end(), v); }
const_iterator find(const T& v) const { return std::find(begin(), end(), v); }
bool contains(const T& v) const { return find(v) != end(); }
private:
details::hidl_pointer<T> mBuffer;
uint32_t mSize;
bool mOwnsBuffer;
uint8_t mPad[3];
// copy from an array-like object, assuming my resources are freed.
template <typename Array>
void copyFrom(const Array &data, size_t size) {
mSize = static_cast<uint32_t>(size);
mOwnsBuffer = true;
if (mSize > 0) {
mBuffer = new T[size]();
for (size_t i = 0; i < size; ++i) {
mBuffer[i] = data[i];
}
} else {
mBuffer = nullptr;
}
}
};
template <typename T>
const size_t hidl_vec<T>::kOffsetOfBuffer = offsetof(hidl_vec<T>, mBuffer);
////////////////////////////////////////////////////////////////////////////////
namespace details {
template<size_t SIZE1, size_t... SIZES>
struct product {
static constexpr size_t value = SIZE1 * product<SIZES...>::value;
};
template<size_t SIZE1>
struct product<SIZE1> {
static constexpr size_t value = SIZE1;
};
template<typename T, size_t SIZE1, size_t... SIZES>
struct std_array {
using type = std::array<typename std_array<T, SIZES...>::type, SIZE1>;
};
template<typename T, size_t SIZE1>
struct std_array<T, SIZE1> {
using type = std::array<T, SIZE1>;
};
template<typename T, size_t SIZE1, size_t... SIZES>
struct accessor {
using std_array_type = typename std_array<T, SIZE1, SIZES...>::type;
explicit accessor(T *base)
: mBase(base) {
}
accessor<T, SIZES...> operator[](size_t index) {
return accessor<T, SIZES...>(
&mBase[index * product<SIZES...>::value]);
}
accessor &operator=(const std_array_type &other) {
for (size_t i = 0; i < SIZE1; ++i) {
(*this)[i] = other[i];
}
return *this;
}
private:
T *mBase;
};
template<typename T, size_t SIZE1>
struct accessor<T, SIZE1> {
using std_array_type = typename std_array<T, SIZE1>::type;
explicit accessor(T *base)
: mBase(base) {
}
T &operator[](size_t index) {
return mBase[index];
}
accessor &operator=(const std_array_type &other) {
for (size_t i = 0; i < SIZE1; ++i) {
(*this)[i] = other[i];
}
return *this;
}
private:
T *mBase;
};
template<typename T, size_t SIZE1, size_t... SIZES>
struct const_accessor {
using std_array_type = typename std_array<T, SIZE1, SIZES...>::type;
explicit const_accessor(const T *base)
: mBase(base) {
}
const_accessor<T, SIZES...> operator[](size_t index) const {
return const_accessor<T, SIZES...>(
&mBase[index * product<SIZES...>::value]);
}
operator std_array_type() {
std_array_type array;
for (size_t i = 0; i < SIZE1; ++i) {
array[i] = (*this)[i];
}
return array;
}
private:
const T *mBase;
};
template<typename T, size_t SIZE1>
struct const_accessor<T, SIZE1> {
using std_array_type = typename std_array<T, SIZE1>::type;
explicit const_accessor(const T *base)
: mBase(base) {
}
const T &operator[](size_t index) const {
return mBase[index];
}
operator std_array_type() {
std_array_type array;
for (size_t i = 0; i < SIZE1; ++i) {
array[i] = (*this)[i];
}
return array;
}
private:
const T *mBase;
};
} // namespace details
////////////////////////////////////////////////////////////////////////////////
// A multidimensional array of T's. Assumes that T::operator=(const T &) is defined.
template<typename T, size_t SIZE1, size_t... SIZES>
struct hidl_array {
using std_array_type = typename details::std_array<T, SIZE1, SIZES...>::type;
hidl_array() = default;
hidl_array(const hidl_array&) noexcept = default;
hidl_array(hidl_array&&) noexcept = default;
// Copies the data from source, using T::operator=(const T &).
hidl_array(const T *source) {
for (size_t i = 0; i < elementCount(); ++i) {
mBuffer[i] = source[i];
}
}
// Copies the data from the given std::array, using T::operator=(const T &).
hidl_array(const std_array_type &array) {
details::accessor<T, SIZE1, SIZES...> modifier(mBuffer);
modifier = array;
}
hidl_array& operator=(const hidl_array&) noexcept = default;
hidl_array& operator=(hidl_array&&) noexcept = default;
T *data() { return mBuffer; }
const T *data() const { return mBuffer; }
details::accessor<T, SIZES...> operator[](size_t index) {
return details::accessor<T, SIZES...>(
&mBuffer[index * details::product<SIZES...>::value]);
}
details::const_accessor<T, SIZES...> operator[](size_t index) const {
return details::const_accessor<T, SIZES...>(
&mBuffer[index * details::product<SIZES...>::value]);
}
// equality check, assuming that T::operator== is defined.
bool operator==(const hidl_array &other) const {
for (size_t i = 0; i < elementCount(); ++i) {
if (!(mBuffer[i] == other.mBuffer[i])) {
return false;
}
}
return true;
}
inline bool operator!=(const hidl_array &other) const {
return !((*this) == other);
}
using size_tuple_type = std::tuple<decltype(SIZE1), decltype(SIZES)...>;
static constexpr size_tuple_type size() {
return std::make_tuple(SIZE1, SIZES...);
}
static constexpr size_t elementCount() {
return details::product<SIZE1, SIZES...>::value;
}
operator std_array_type() const {
return details::const_accessor<T, SIZE1, SIZES...>(mBuffer);
}
private:
T mBuffer[elementCount()];
};
// An array of T's. Assumes that T::operator=(const T &) is defined.
template<typename T, size_t SIZE1>
struct hidl_array<T, SIZE1> {
using value_type = T;
using std_array_type = typename details::std_array<T, SIZE1>::type;
hidl_array() = default;
hidl_array(const hidl_array&) noexcept = default;
hidl_array(hidl_array&&) noexcept = default;
// Copies the data from source, using T::operator=(const T &).
hidl_array(const T *source) {
for (size_t i = 0; i < elementCount(); ++i) {
mBuffer[i] = source[i];
}
}
// Copies the data from the given std::array, using T::operator=(const T &).
hidl_array(const std_array_type &array) : hidl_array(array.data()) {}
hidl_array& operator=(const hidl_array&) noexcept = default;
hidl_array& operator=(hidl_array&&) noexcept = default;
T *data() { return mBuffer; }
const T *data() const { return mBuffer; }
T &operator[](size_t index) {
return mBuffer[index];
}
const T &operator[](size_t index) const {
return mBuffer[index];
}
// equality check, assuming that T::operator== is defined.
bool operator==(const hidl_array &other) const {
for (size_t i = 0; i < elementCount(); ++i) {
if (!(mBuffer[i] == other.mBuffer[i])) {
return false;
}
}
return true;
}
inline bool operator!=(const hidl_array &other) const {
return !((*this) == other);
}
static constexpr size_t size() { return SIZE1; }
static constexpr size_t elementCount() { return SIZE1; }
// Copies the data to an std::array, using T::operator=(T).
operator std_array_type() const {
std_array_type array;
for (size_t i = 0; i < SIZE1; ++i) {
array[i] = mBuffer[i];
}
return array;
}
private:
T mBuffer[SIZE1];
};
// ----------------------------------------------------------------------
// Version functions
struct hidl_version {
public:
constexpr hidl_version(uint16_t major, uint16_t minor) : mMajor(major), mMinor(minor) {
static_assert(sizeof(*this) == 4, "wrong size");
}
bool operator==(const hidl_version& other) const {
return (mMajor == other.get_major() && mMinor == other.get_minor());
}
bool operator!=(const hidl_version& other) const {
return !(*this == other);
}
bool operator<(const hidl_version& other) const {
return (mMajor < other.get_major() ||
(mMajor == other.get_major() && mMinor < other.get_minor()));
}
bool operator>(const hidl_version& other) const {
return other < *this;
}
bool operator<=(const hidl_version& other) const {
return !(*this > other);
}
bool operator>=(const hidl_version& other) const {
return !(*this < other);
}
constexpr uint16_t get_major() const { return mMajor; }
constexpr uint16_t get_minor() const { return mMinor; }
private:
uint16_t mMajor;
uint16_t mMinor;
};
inline android::hardware::hidl_version make_hidl_version(uint16_t major, uint16_t minor) {
return hidl_version(major,minor);
}
///////////////////// toString functions
std::string toString(const void *t);
// toString alias for numeric types
template<typename T, typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
inline std::string toString(T t) {
return std::to_string(t);
}
namespace details {
template<typename T, typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
inline std::string toHexString(T t, bool prefix = true) {
std::ostringstream os;
if (prefix) { os << std::showbase; }
os << std::hex << t;
return os.str();
}
template<>
inline std::string toHexString(uint8_t t, bool prefix) {
return toHexString(static_cast<int32_t>(t), prefix);
}
template<>
inline std::string toHexString(int8_t t, bool prefix) {
return toHexString(static_cast<int32_t>(t), prefix);
}
template<typename Array>
std::string arrayToString(const Array &a, size_t size);
template<size_t SIZE1>
std::string arraySizeToString() {
return std::string{"["} + toString(SIZE1) + "]";
}
template<size_t SIZE1, size_t SIZE2, size_t... SIZES>
std::string arraySizeToString() {
return std::string{"["} + toString(SIZE1) + "]" + arraySizeToString<SIZE2, SIZES...>();
}
template<typename T, size_t SIZE1>
std::string toString(details::const_accessor<T, SIZE1> a) {
return arrayToString(a, SIZE1);
}
template<typename Array>
std::string arrayToString(const Array &a, size_t size) {
using android::hardware::toString;
std::string os;
os += "{";
for (size_t i = 0; i < size; ++i) {
if (i > 0) {
os += ", ";
}
os += toString(a[i]);
}
os += "}";
return os;
}
template<typename T, size_t SIZE1, size_t SIZE2, size_t... SIZES>
std::string toString(details::const_accessor<T, SIZE1, SIZE2, SIZES...> a) {
return arrayToString(a, SIZE1);
}
} //namespace details
inline std::string toString(const void *t) {
return details::toHexString(reinterpret_cast<uintptr_t>(t));
}
// debug string dump. There will be quotes around the string!
inline std::string toString(const hidl_string &hs) {
return std::string{"\""} + hs.c_str() + "\"";
}
// debug string dump
inline std::string toString(const hidl_handle &hs) {
return toString(hs.getNativeHandle());
}
inline std::string toString(const hidl_memory &mem) {
return std::string{"memory {.name = "} + toString(mem.name()) + ", .size = "
+ toString(mem.size())
+ ", .handle = " + toString(mem.handle()) + "}";
}
inline std::string toString(const sp<hidl_death_recipient> &dr) {
return std::string{"death_recipient@"} + toString(dr.get());
}
// debug string dump, assuming that toString(T) is defined.
template<typename T>
std::string toString(const hidl_vec<T> &a) {
std::string os;
os += "[" + toString(a.size()) + "]";
os += details::arrayToString(a, a.size());
return os;
}
template<typename T, size_t SIZE1>
std::string toString(const hidl_array<T, SIZE1> &a) {
return details::arraySizeToString<SIZE1>()
+ details::toString(details::const_accessor<T, SIZE1>(a.data()));
}
template<typename T, size_t SIZE1, size_t SIZE2, size_t... SIZES>
std::string toString(const hidl_array<T, SIZE1, SIZE2, SIZES...> &a) {
return details::arraySizeToString<SIZE1, SIZE2, SIZES...>()
+ details::toString(details::const_accessor<T, SIZE1, SIZE2, SIZES...>(a.data()));
}
namespace details {
// Never instantiated. Used as a placeholder for template variables.
template <typename T>
struct hidl_invalid_type;
// HIDL generates specializations of this for enums. See hidl_enum_range.
template <typename T, typename = std::enable_if_t<std::is_enum<T>::value>>
constexpr hidl_invalid_type<T> hidl_enum_values;
} // namespace details
/**
* Every HIDL generated enum supports this function.
* E.x.: for(const auto v : hidl_enum_range<Enum>) { ... }
*/
template <typename T, typename = std::enable_if_t<std::is_enum<T>::value>>
struct hidl_enum_range {
// Container-like associated type.
using value_type = T;
constexpr auto begin() const { return std::begin(details::hidl_enum_values<T>); }
constexpr auto cbegin() const { return begin(); }
constexpr auto rbegin() const { return std::rbegin(details::hidl_enum_values<T>); }
constexpr auto crbegin() const { return rbegin(); }
constexpr auto end() const { return std::end(details::hidl_enum_values<T>); }
constexpr auto cend() const { return end(); }
constexpr auto rend() const { return std::rend(details::hidl_enum_values<T>); }
constexpr auto crend() const { return rend(); }
};
template <typename T, typename = std::enable_if_t<std::is_enum<T>::value>>
struct hidl_enum_iterator {
static_assert(!std::is_enum<T>::value,
"b/78573628: hidl_enum_iterator was renamed to hidl_enum_range because it is not "
"actually an iterator. Please use that type instead.");
};
/**
* Bitfields in HIDL are the underlying type of the enumeration.
*/
template <typename Enum>
using hidl_bitfield = typename std::underlying_type<Enum>::type;
} // namespace hardware
} // namespace android
#endif // ANDROID_HIDL_SUPPORT_H