blob: 43a7c251b857a8661e579e8415ad23ff6ea5a352 [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <openssl/aes.h>
#include <openssl/sha.h>
#include <keymaster/android_keymaster_utils.h>
#include "ae.h"
#include "unencrypted_key_blob.h"
#include "ocb_utils.h"
#include "openssl_err.h"
namespace keymaster {
UnencryptedKeyBlob::UnencryptedKeyBlob(const AuthorizationSet& enforced,
const AuthorizationSet& unenforced,
const AuthorizationSet& hidden,
const uint8_t* unencrypted_key,
size_t unencrypted_key_length, const uint8_t* master_key,
size_t master_key_length, const uint8_t nonce[NONCE_LENGTH])
: KeyBlob(enforced, unenforced), hidden_(hidden) {
// Check that KeyBlob ctor succeeded.
if (error_ != KM_ERROR_OK)
return;
if (hidden_.is_valid() == AuthorizationSet::ALLOCATION_FAILURE) {
error_ = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return;
}
if (hidden_.is_valid() != AuthorizationSet::OK) {
error_ = KM_ERROR_UNKNOWN_ERROR;
return;
}
unencrypted_key_material_.reset(new uint8_t[unencrypted_key_length]);
if (!unencrypted_key_material_.get()) {
error_ = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return;
}
unencrypted_key_material_length_ = unencrypted_key_length;
memcpy(unencrypted_key_material_.get(), unencrypted_key, unencrypted_key_length);
EncryptKey(master_key, master_key_length, nonce);
}
UnencryptedKeyBlob::UnencryptedKeyBlob(const keymaster_key_blob_t& key,
const AuthorizationSet& hidden, const uint8_t* master_key,
size_t master_key_length)
: KeyBlob(key), hidden_(hidden) {
// Check that KeyBlob ctor succeeded.
if (error_ != KM_ERROR_OK)
return;
DecryptKey(master_key, master_key_length);
}
void UnencryptedKeyBlob::EncryptKey(const uint8_t* master_key, size_t master_key_length,
const uint8_t* nonce) {
UniquePtr<AeCtx> ctx(InitializeKeyWrappingContext(master_key, master_key_length));
if (error_ != KM_ERROR_OK)
return;
UniquePtr<uint8_t[]> encrypted_key_material(new uint8_t[unencrypted_key_material_length()]);
UniquePtr<uint8_t[]> tag(new uint8_t[TAG_LENGTH]);
UniquePtr<uint8_t[]> nonce_copy(new uint8_t[NONCE_LENGTH]);
if (!encrypted_key_material.get() || !tag.get() || !nonce_copy.get()) {
error_ = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return;
}
memcpy(nonce_copy.get(), nonce, NONCE_LENGTH);
int ae_err =
ae_encrypt(ctx->get(), nonce, unencrypted_key_material(), unencrypted_key_material_length(),
NULL /* additional data */, 0 /* additional data length */,
encrypted_key_material.get(), tag.get(), 1 /* final */);
if (ae_err < 0) {
LOG_E("Error %d while encrypting key", ae_err);
error_ = KM_ERROR_UNKNOWN_ERROR;
return;
}
assert(ae_err == static_cast<int>(unencrypted_key_material_length()));
SetEncryptedKey(encrypted_key_material.release(), unencrypted_key_material_length(),
nonce_copy.release(), tag.release());
}
void UnencryptedKeyBlob::DecryptKey(const uint8_t* master_key, size_t master_key_length) {
UniquePtr<AeCtx> ctx(InitializeKeyWrappingContext(master_key, master_key_length));
if (error_ != KM_ERROR_OK)
return;
unencrypted_key_material_length_ = key_material_length();
unencrypted_key_material_.reset(new uint8_t[unencrypted_key_material_length_]);
int ae_err = ae_decrypt(ctx->get(), nonce(), encrypted_key_material(), key_material_length(),
NULL /* additional data */, 0 /* additional data length */,
unencrypted_key_material_.get(), tag(), 1 /* final */);
if (ae_err == AE_INVALID) {
// Authentication failed! Decryption probably succeeded(ish), but we don't want to return
// any data when the authentication fails, so clear it.
memset_s(unencrypted_key_material_.get(), 0, unencrypted_key_material_length());
LOG_E("Failed to validate authentication tag during key decryption", 0);
error_ = KM_ERROR_INVALID_KEY_BLOB;
return;
} else if (ae_err < 0) {
LOG_E("Failed to decrypt key, error: %d", ae_err);
error_ = KM_ERROR_UNKNOWN_ERROR;
return;
}
assert(ae_err == static_cast<int>(unencrypted_key_material_length()));
error_ = KM_ERROR_OK;
}
AeCtx* UnencryptedKeyBlob::InitializeKeyWrappingContext(const uint8_t* master_key,
size_t master_key_length) {
size_t derivation_data_length;
UniquePtr<const uint8_t[]> derivation_data(BuildDerivationData(&derivation_data_length));
if (derivation_data.get() == NULL) {
error_ = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return NULL;
}
UniquePtr<AeCtx> ctx(new AeCtx);
SHA256_CTX sha256_ctx;
UniquePtr<uint8_t[]> hash_buf(new uint8_t[SHA256_DIGEST_LENGTH]);
Eraser hash_eraser(hash_buf.get(), SHA256_DIGEST_LENGTH);
UniquePtr<uint8_t[]> derived_key(new uint8_t[AES_BLOCK_SIZE]);
Eraser derived_key_eraser(derived_key.get(), AES_BLOCK_SIZE);
if (ctx.get() == NULL || hash_buf.get() == NULL || derived_key.get() == NULL) {
error_ = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return NULL;
}
Eraser sha256_ctx_eraser(sha256_ctx);
// Hash derivation data.
SHA256_Init(&sha256_ctx);
SHA256_Update(&sha256_ctx, derivation_data.get(), derivation_data_length);
SHA256_Final(hash_buf.get(), &sha256_ctx);
// Encrypt hash with master key to build derived key.
AES_KEY aes_key;
Eraser aes_key_eraser(AES_KEY);
if (AES_set_encrypt_key(master_key, master_key_length * 8, &aes_key) != 0) {
error_ = TranslateLastOpenSslError();
return NULL;
}
AES_encrypt(hash_buf.get(), derived_key.get(), &aes_key);
// Set up AES OCB context using derived key.
if (ae_init(ctx->get(), derived_key.get(), AES_BLOCK_SIZE /* key length */, NONCE_LENGTH,
TAG_LENGTH) == AE_SUCCESS)
return ctx.release();
else {
memset_s(ctx->get(), 0, ae_ctx_sizeof());
return NULL;
}
}
const uint8_t* UnencryptedKeyBlob::BuildDerivationData(size_t* derivation_data_length) const {
*derivation_data_length =
hidden_.SerializedSize() + enforced().SerializedSize() + unenforced().SerializedSize();
uint8_t* derivation_data = new uint8_t[*derivation_data_length];
if (derivation_data != NULL) {
uint8_t* buf = derivation_data;
uint8_t* end = derivation_data + *derivation_data_length;
buf = hidden_.Serialize(buf, end);
buf = enforced().Serialize(buf, end);
buf = unenforced().Serialize(buf, end);
}
return derivation_data;
}
} // namespace keymaster