blob: e5be3026ddb36d929567afbf4798003ed3f80929 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "environment.h"
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <limits>
#include <set>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <android-base/stringprintf.h>
#include <procinfo/process.h>
#include <procinfo/process_map.h>
#if defined(__ANDROID__)
#include <android-base/properties.h>
#endif
#include "event_type.h"
#include "IOEventLoop.h"
#include "read_elf.h"
#include "thread_tree.h"
#include "utils.h"
#include "workload.h"
class LineReader {
public:
explicit LineReader(FILE* fp) : fp_(fp), buf_(nullptr), bufsize_(0) {
}
~LineReader() {
free(buf_);
fclose(fp_);
}
char* ReadLine() {
if (getline(&buf_, &bufsize_, fp_) != -1) {
return buf_;
}
return nullptr;
}
size_t MaxLineSize() {
return bufsize_;
}
private:
FILE* fp_;
char* buf_;
size_t bufsize_;
};
std::vector<int> GetOnlineCpus() {
std::vector<int> result;
FILE* fp = fopen("/sys/devices/system/cpu/online", "re");
if (fp == nullptr) {
PLOG(ERROR) << "can't open online cpu information";
return result;
}
LineReader reader(fp);
char* line;
if ((line = reader.ReadLine()) != nullptr) {
result = GetCpusFromString(line);
}
CHECK(!result.empty()) << "can't get online cpu information";
return result;
}
static std::vector<KernelMmap> GetLoadedModules() {
std::vector<KernelMmap> result;
FILE* fp = fopen("/proc/modules", "re");
if (fp == nullptr) {
// There is no /proc/modules on Android devices, so we don't print error if failed to open it.
PLOG(DEBUG) << "failed to open file /proc/modules";
return result;
}
LineReader reader(fp);
char* line;
while ((line = reader.ReadLine()) != nullptr) {
// Parse line like: nf_defrag_ipv6 34768 1 nf_conntrack_ipv6, Live 0xffffffffa0fe5000
char name[reader.MaxLineSize()];
uint64_t addr;
uint64_t len;
if (sscanf(line, "%s%" PRIu64 "%*u%*s%*s 0x%" PRIx64, name, &len, &addr) == 3) {
KernelMmap map;
map.name = name;
map.start_addr = addr;
map.len = len;
result.push_back(map);
}
}
bool all_zero = true;
for (const auto& map : result) {
if (map.start_addr != 0) {
all_zero = false;
}
}
if (all_zero) {
LOG(DEBUG) << "addresses in /proc/modules are all zero, so ignore kernel modules";
return std::vector<KernelMmap>();
}
return result;
}
static void GetAllModuleFiles(const std::string& path,
std::unordered_map<std::string, std::string>* module_file_map) {
for (const auto& name : GetEntriesInDir(path)) {
std::string entry_path = path + "/" + name;
if (IsRegularFile(entry_path) && android::base::EndsWith(name, ".ko")) {
std::string module_name = name.substr(0, name.size() - 3);
std::replace(module_name.begin(), module_name.end(), '-', '_');
module_file_map->insert(std::make_pair(module_name, entry_path));
} else if (IsDir(entry_path)) {
GetAllModuleFiles(entry_path, module_file_map);
}
}
}
static std::vector<KernelMmap> GetModulesInUse() {
std::vector<KernelMmap> module_mmaps = GetLoadedModules();
if (module_mmaps.empty()) {
return std::vector<KernelMmap>();
}
std::unordered_map<std::string, std::string> module_file_map;
#if defined(__ANDROID__)
// Search directories listed in "File locations" section in
// https://source.android.com/devices/architecture/kernel/modular-kernels.
for (const auto& path : {"/vendor/lib/modules", "/odm/lib/modules", "/lib/modules"}) {
GetAllModuleFiles(path, &module_file_map);
}
#else
utsname uname_buf;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
PLOG(ERROR) << "uname() failed";
return std::vector<KernelMmap>();
}
std::string linux_version = uname_buf.release;
std::string module_dirpath = "/lib/modules/" + linux_version + "/kernel";
GetAllModuleFiles(module_dirpath, &module_file_map);
#endif
for (auto& module : module_mmaps) {
auto it = module_file_map.find(module.name);
if (it != module_file_map.end()) {
module.filepath = it->second;
}
}
return module_mmaps;
}
void GetKernelAndModuleMmaps(KernelMmap* kernel_mmap, std::vector<KernelMmap>* module_mmaps) {
kernel_mmap->name = DEFAULT_KERNEL_MMAP_NAME;
kernel_mmap->start_addr = 0;
kernel_mmap->len = std::numeric_limits<uint64_t>::max();
kernel_mmap->filepath = kernel_mmap->name;
*module_mmaps = GetModulesInUse();
for (auto& map : *module_mmaps) {
if (map.filepath.empty()) {
map.filepath = "[" + map.name + "]";
}
}
}
bool ReadThreadNameAndPid(pid_t tid, std::string* comm, pid_t* pid) {
android::procinfo::ProcessInfo procinfo;
if (!android::procinfo::GetProcessInfo(tid, &procinfo)) {
return false;
}
if (comm != nullptr) {
*comm = procinfo.name;
}
if (pid != nullptr) {
*pid = procinfo.pid;
}
return true;
}
std::vector<pid_t> GetThreadsInProcess(pid_t pid) {
std::vector<pid_t> result;
android::procinfo::GetProcessTids(pid, &result);
return result;
}
bool IsThreadAlive(pid_t tid) {
return IsDir(android::base::StringPrintf("/proc/%d", tid));
}
bool GetProcessForThread(pid_t tid, pid_t* pid) {
return ReadThreadNameAndPid(tid, nullptr, pid);
}
bool GetThreadName(pid_t tid, std::string* name) {
return ReadThreadNameAndPid(tid, name, nullptr);
}
std::vector<pid_t> GetAllProcesses() {
std::vector<pid_t> result;
std::vector<std::string> entries = GetEntriesInDir("/proc");
for (const auto& entry : entries) {
pid_t pid;
if (!android::base::ParseInt(entry.c_str(), &pid, 0)) {
continue;
}
result.push_back(pid);
}
return result;
}
bool GetThreadMmapsInProcess(pid_t pid, std::vector<ThreadMmap>* thread_mmaps) {
thread_mmaps->clear();
return android::procinfo::ReadProcessMaps(
pid, [&](uint64_t start, uint64_t end, uint16_t flags, uint64_t pgoff,
ino_t, const char* name) {
thread_mmaps->emplace_back(start, end - start, pgoff, name, flags);
});
}
bool GetKernelBuildId(BuildId* build_id) {
ElfStatus result = GetBuildIdFromNoteFile("/sys/kernel/notes", build_id);
if (result != ElfStatus::NO_ERROR) {
LOG(DEBUG) << "failed to read /sys/kernel/notes: " << result;
}
return result == ElfStatus::NO_ERROR;
}
bool GetModuleBuildId(const std::string& module_name, BuildId* build_id) {
std::string notefile = "/sys/module/" + module_name + "/notes/.note.gnu.build-id";
return GetBuildIdFromNoteFile(notefile, build_id);
}
bool GetValidThreadsFromThreadString(const std::string& tid_str, std::set<pid_t>* tid_set) {
std::vector<std::string> strs = android::base::Split(tid_str, ",");
for (const auto& s : strs) {
int tid;
if (!android::base::ParseInt(s.c_str(), &tid, 0)) {
LOG(ERROR) << "Invalid tid '" << s << "'";
return false;
}
if (!IsDir(android::base::StringPrintf("/proc/%d", tid))) {
LOG(ERROR) << "Non existing thread '" << tid << "'";
return false;
}
tid_set->insert(tid);
}
return true;
}
/*
* perf event paranoia level:
* -1 - not paranoid at all
* 0 - disallow raw tracepoint access for unpriv
* 1 - disallow cpu events for unpriv
* 2 - disallow kernel profiling for unpriv
* 3 - disallow user profiling for unpriv
*/
static bool ReadPerfEventParanoid(int* value) {
std::string s;
if (!android::base::ReadFileToString("/proc/sys/kernel/perf_event_paranoid", &s)) {
PLOG(DEBUG) << "failed to read /proc/sys/kernel/perf_event_paranoid";
return false;
}
s = android::base::Trim(s);
if (!android::base::ParseInt(s.c_str(), value)) {
PLOG(ERROR) << "failed to parse /proc/sys/kernel/perf_event_paranoid: " << s;
return false;
}
return true;
}
bool CanRecordRawData() {
if (GetAndroidVersion() >= 11) {
// On Android R, tracepoint raw data is disabled by selinux.
return IsRoot();
}
int value;
return ReadPerfEventParanoid(&value) && value == -1;
}
static const char* GetLimitLevelDescription(int limit_level) {
switch (limit_level) {
case -1: return "unlimited";
case 0: return "disallowing raw tracepoint access for unpriv";
case 1: return "disallowing cpu events for unpriv";
case 2: return "disallowing kernel profiling for unpriv";
case 3: return "disallowing user profiling for unpriv";
default: return "unknown level";
}
}
bool CheckPerfEventLimit() {
// Root is not limited by /proc/sys/kernel/perf_event_paranoid. However, the monitored threads
// may create child processes not running as root. To make sure the child processes have
// enough permission to create inherited tracepoint events, write -1 to perf_event_paranoid.
// See http://b/62230699.
if (IsRoot()) {
return android::base::WriteStringToFile("-1", "/proc/sys/kernel/perf_event_paranoid");
}
int limit_level;
bool can_read_paranoid = ReadPerfEventParanoid(&limit_level);
if (can_read_paranoid && limit_level <= 1) {
return true;
}
#if defined(__ANDROID__)
const std::string prop_name = "security.perf_harden";
std::string prop_value = android::base::GetProperty(prop_name, "");
if (prop_value.empty()) {
// can't do anything if there is no such property.
return true;
}
if (prop_value == "0") {
return true;
}
// Try to enable perf_event_paranoid by setprop security.perf_harden=0.
if (android::base::SetProperty(prop_name, "0")) {
sleep(1);
if (can_read_paranoid && ReadPerfEventParanoid(&limit_level) && limit_level <= 1) {
return true;
}
if (android::base::GetProperty(prop_name, "") == "0") {
return true;
}
}
if (can_read_paranoid) {
LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level
<< ", " << GetLimitLevelDescription(limit_level) << ".";
}
LOG(WARNING) << "Try using `adb shell setprop security.perf_harden 0` to allow profiling.";
return false;
#else
if (can_read_paranoid) {
LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level
<< ", " << GetLimitLevelDescription(limit_level) << ".";
return false;
}
#endif
return true;
}
#if defined(__ANDROID__)
static bool SetProperty(const char* prop_name, uint64_t value) {
if (!android::base::SetProperty(prop_name, std::to_string(value))) {
LOG(ERROR) << "Failed to SetProperty " << prop_name << " to " << value;
return false;
}
return true;
}
bool SetPerfEventLimits(uint64_t sample_freq, size_t cpu_percent, uint64_t mlock_kb) {
if (!SetProperty("debug.perf_event_max_sample_rate", sample_freq) ||
!SetProperty("debug.perf_cpu_time_max_percent", cpu_percent) ||
!SetProperty("debug.perf_event_mlock_kb", mlock_kb) ||
!SetProperty("security.perf_harden", 0)) {
return false;
}
// Wait for init process to change perf event limits based on properties.
const size_t max_wait_us = 3 * 1000000;
int finish_mask = 0;
for (size_t i = 0; i < max_wait_us && finish_mask != 7; ++i) {
usleep(1); // Wait 1us to avoid busy loop.
if ((finish_mask & 1) == 0) {
uint64_t freq;
if (!GetMaxSampleFrequency(&freq) || freq == sample_freq) {
finish_mask |= 1;
}
}
if ((finish_mask & 2) == 0) {
size_t percent;
if (!GetCpuTimeMaxPercent(&percent) || percent == cpu_percent) {
finish_mask |= 2;
}
}
if ((finish_mask & 4) == 0) {
uint64_t kb;
if (!GetPerfEventMlockKb(&kb) || kb == mlock_kb) {
finish_mask |= 4;
}
}
}
if (finish_mask != 7) {
LOG(WARNING) << "Wait setting perf event limits timeout";
}
return true;
}
#else // !defined(__ANDROID__)
bool SetPerfEventLimits(uint64_t, size_t, uint64_t) {
return true;
}
#endif
template <typename T>
static bool ReadUintFromProcFile(const std::string& path, T* value) {
std::string s;
if (!android::base::ReadFileToString(path, &s)) {
PLOG(DEBUG) << "failed to read " << path;
return false;
}
s = android::base::Trim(s);
if (!android::base::ParseUint(s.c_str(), value)) {
LOG(ERROR) << "failed to parse " << path << ": " << s;
return false;
}
return true;
}
template <typename T>
static bool WriteUintToProcFile(const std::string& path, T value) {
if (IsRoot()) {
return android::base::WriteStringToFile(std::to_string(value), path);
}
return false;
}
bool GetMaxSampleFrequency(uint64_t* max_sample_freq) {
return ReadUintFromProcFile("/proc/sys/kernel/perf_event_max_sample_rate", max_sample_freq);
}
bool SetMaxSampleFrequency(uint64_t max_sample_freq) {
return WriteUintToProcFile("/proc/sys/kernel/perf_event_max_sample_rate", max_sample_freq);
}
bool GetCpuTimeMaxPercent(size_t* percent) {
return ReadUintFromProcFile("/proc/sys/kernel/perf_cpu_time_max_percent", percent);
}
bool SetCpuTimeMaxPercent(size_t percent) {
return WriteUintToProcFile("/proc/sys/kernel/perf_cpu_time_max_percent", percent);
}
bool GetPerfEventMlockKb(uint64_t* mlock_kb) {
return ReadUintFromProcFile("/proc/sys/kernel/perf_event_mlock_kb", mlock_kb);
}
bool SetPerfEventMlockKb(uint64_t mlock_kb) {
return WriteUintToProcFile("/proc/sys/kernel/perf_event_mlock_kb", mlock_kb);
}
bool CheckKernelSymbolAddresses() {
const std::string kptr_restrict_file = "/proc/sys/kernel/kptr_restrict";
std::string s;
if (!android::base::ReadFileToString(kptr_restrict_file, &s)) {
PLOG(DEBUG) << "failed to read " << kptr_restrict_file;
return false;
}
s = android::base::Trim(s);
int value;
if (!android::base::ParseInt(s.c_str(), &value)) {
LOG(ERROR) << "failed to parse " << kptr_restrict_file << ": " << s;
return false;
}
// Accessible to everyone?
if (value == 0) {
return true;
}
// Accessible to root?
if (value == 1 && IsRoot()) {
return true;
}
// Can we make it accessible to us?
if (IsRoot() && android::base::WriteStringToFile("1", kptr_restrict_file)) {
return true;
}
LOG(WARNING) << "Access to kernel symbol addresses is restricted. If "
<< "possible, please do `echo 0 >/proc/sys/kernel/kptr_restrict` "
<< "to fix this.";
return false;
}
ArchType GetMachineArch() {
utsname uname_buf;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
PLOG(WARNING) << "uname() failed";
return GetBuildArch();
}
ArchType arch = GetArchType(uname_buf.machine);
if (arch != ARCH_UNSUPPORTED) {
return arch;
}
return GetBuildArch();
}
void PrepareVdsoFile() {
// vdso is an elf file in memory loaded in each process's user space by the kernel. To read
// symbols from it and unwind through it, we need to dump it into a file in storage.
// It doesn't affect much when failed to prepare vdso file, so there is no need to return values.
std::vector<ThreadMmap> thread_mmaps;
if (!GetThreadMmapsInProcess(getpid(), &thread_mmaps)) {
return;
}
const ThreadMmap* vdso_map = nullptr;
for (const auto& map : thread_mmaps) {
if (map.name == "[vdso]") {
vdso_map = &map;
break;
}
}
if (vdso_map == nullptr) {
return;
}
std::string s(vdso_map->len, '\0');
memcpy(&s[0], reinterpret_cast<void*>(static_cast<uintptr_t>(vdso_map->start_addr)),
vdso_map->len);
std::unique_ptr<TemporaryFile> tmpfile = ScopedTempFiles::CreateTempFile();
if (!android::base::WriteStringToFd(s, tmpfile->fd)) {
return;
}
Dso::SetVdsoFile(tmpfile->path, sizeof(size_t) == sizeof(uint64_t));
}
static bool HasOpenedAppApkFile(int pid) {
std::string fd_path = "/proc/" + std::to_string(pid) + "/fd/";
std::vector<std::string> files = GetEntriesInDir(fd_path);
for (const auto& file : files) {
std::string real_path;
if (!android::base::Readlink(fd_path + file, &real_path)) {
continue;
}
if (real_path.find("app") != std::string::npos && real_path.find(".apk") != std::string::npos) {
return true;
}
}
return false;
}
std::set<pid_t> WaitForAppProcesses(const std::string& package_name) {
std::set<pid_t> result;
size_t loop_count = 0;
while (true) {
std::vector<pid_t> pids = GetAllProcesses();
for (pid_t pid : pids) {
std::string cmdline;
if (!android::base::ReadFileToString("/proc/" + std::to_string(pid) + "/cmdline", &cmdline)) {
// Maybe we don't have permission to read it.
continue;
}
std::string process_name = android::base::Basename(cmdline);
// The app may have multiple processes, with process name like
// com.google.android.googlequicksearchbox:search.
size_t split_pos = process_name.find(':');
if (split_pos != std::string::npos) {
process_name = process_name.substr(0, split_pos);
}
if (process_name != package_name) {
continue;
}
// If a debuggable app with wrap.sh runs on Android O, the app will be started with
// logwrapper as below:
// 1. Zygote forks a child process, rename it to package_name.
// 2. The child process execute sh, which starts a child process running
// /system/bin/logwrapper.
// 3. logwrapper starts a child process running sh, which interprets wrap.sh.
// 4. wrap.sh starts a child process running the app.
// The problem here is we want to profile the process started in step 4, but sometimes we
// run into the process started in step 1. To solve it, we can check if the process has
// opened an apk file in some app dirs.
if (!HasOpenedAppApkFile(pid)) {
continue;
}
if (loop_count > 0u) {
LOG(INFO) << "Got process " << pid << " for package " << package_name;
}
result.insert(pid);
}
if (!result.empty()) {
return result;
}
if (++loop_count == 1u) {
LOG(INFO) << "Waiting for process of app " << package_name;
}
usleep(1000);
}
}
bool IsAppDebuggable(const std::string& package_name) {
return Workload::RunCmd({"run-as", package_name, "echo", ">/dev/null", "2>/dev/null"}, false);
}
namespace {
class InAppRunner {
public:
InAppRunner(const std::string& package_name) : package_name_(package_name) {}
virtual ~InAppRunner() {
if (!tracepoint_file_.empty()) {
unlink(tracepoint_file_.c_str());
}
}
virtual bool Prepare() = 0;
bool RunCmdInApp(const std::string& cmd, const std::vector<std::string>& args,
size_t workload_args_size, const std::string& output_filepath,
bool need_tracepoint_events);
protected:
virtual std::vector<std::string> GetPrefixArgs(const std::string& cmd) = 0;
const std::string package_name_;
std::string tracepoint_file_;
};
bool InAppRunner::RunCmdInApp(const std::string& cmd, const std::vector<std::string>& cmd_args,
size_t workload_args_size, const std::string& output_filepath,
bool need_tracepoint_events) {
// 1. Build cmd args running in app's context.
std::vector<std::string> args = GetPrefixArgs(cmd);
args.insert(args.end(), {"--in-app", "--log", GetLogSeverityName()});
if (need_tracepoint_events) {
// Since we can't read tracepoint events from tracefs in app's context, we need to prepare
// them in tracepoint_file in shell's context, and pass the path of tracepoint_file to the
// child process using --tracepoint-events option.
const std::string tracepoint_file = "/data/local/tmp/tracepoint_events";
if (!android::base::WriteStringToFile(GetTracepointEvents(), tracepoint_file)) {
PLOG(ERROR) << "Failed to store tracepoint events";
return false;
}
tracepoint_file_ = tracepoint_file;
args.insert(args.end(), {"--tracepoint-events", tracepoint_file_});
}
android::base::unique_fd out_fd;
if (!output_filepath.empty()) {
// A process running in app's context can't open a file outside it's data directory to write.
// So pass it a file descriptor to write.
out_fd = FileHelper::OpenWriteOnly(output_filepath);
if (out_fd == -1) {
PLOG(ERROR) << "Failed to open " << output_filepath;
return false;
}
args.insert(args.end(), {"--out-fd", std::to_string(int(out_fd))});
}
// We can't send signal to a process running in app's context. So use a pipe file to send stop
// signal.
android::base::unique_fd stop_signal_rfd;
android::base::unique_fd stop_signal_wfd;
if (!android::base::Pipe(&stop_signal_rfd, &stop_signal_wfd, 0)) {
PLOG(ERROR) << "pipe";
return false;
}
args.insert(args.end(), {"--stop-signal-fd", std::to_string(int(stop_signal_rfd))});
for (size_t i = 0; i < cmd_args.size(); ++i) {
if (i < cmd_args.size() - workload_args_size) {
// Omit "-o output_file". It is replaced by "--out-fd fd".
if (cmd_args[i] == "-o" || cmd_args[i] == "--app") {
i++;
continue;
}
}
args.push_back(cmd_args[i]);
}
char* argv[args.size() + 1];
for (size_t i = 0; i < args.size(); ++i) {
argv[i] = &args[i][0];
}
argv[args.size()] = nullptr;
// 2. Run child process in app's context.
auto ChildProcFn = [&]() {
stop_signal_wfd.reset();
execvp(argv[0], argv);
exit(1);
};
std::unique_ptr<Workload> workload = Workload::CreateWorkload(ChildProcFn);
if (!workload) {
return false;
}
stop_signal_rfd.reset();
// Wait on signals.
IOEventLoop loop;
bool need_to_stop_child = false;
std::vector<int> stop_signals = {SIGINT, SIGTERM};
if (!SignalIsIgnored(SIGHUP)) {
stop_signals.push_back(SIGHUP);
}
if (!loop.AddSignalEvents(stop_signals,
[&]() { need_to_stop_child = true; return loop.ExitLoop(); })) {
return false;
}
if (!loop.AddSignalEvent(SIGCHLD, [&]() { return loop.ExitLoop(); })) {
return false;
}
if (!workload->Start()) {
return false;
}
if (!loop.RunLoop()) {
return false;
}
if (need_to_stop_child) {
stop_signal_wfd.reset();
}
int exit_code;
if (!workload->WaitChildProcess(&exit_code) || exit_code != 0) {
return false;
}
return true;
}
class RunAs : public InAppRunner {
public:
RunAs(const std::string& package_name) : InAppRunner(package_name) {}
virtual ~RunAs() {
if (simpleperf_copied_in_app_) {
Workload::RunCmd({"run-as", package_name_, "rm", "-rf", "simpleperf"});
}
}
bool Prepare() override;
protected:
std::vector<std::string> GetPrefixArgs(const std::string& cmd) {
return {"run-as", package_name_,
simpleperf_copied_in_app_ ? "./simpleperf" : simpleperf_path_, cmd,
"--app", package_name_};
}
bool simpleperf_copied_in_app_ = false;
std::string simpleperf_path_;
};
bool RunAs::Prepare() {
// Test if run-as can access the package.
if (!IsAppDebuggable(package_name_)) {
return false;
}
// run-as can't run /data/local/tmp/simpleperf directly. So copy simpleperf binary if needed.
if (!android::base::Readlink("/proc/self/exe", &simpleperf_path_)) {
PLOG(ERROR) << "ReadLink failed";
return false;
}
if (simpleperf_path_.find("CtsSimpleperfTest") != std::string::npos) {
simpleperf_path_ = "/system/bin/simpleperf";
return true;
}
if (android::base::StartsWith(simpleperf_path_, "/system")) {
return true;
}
if (!Workload::RunCmd({"run-as", package_name_, "cp", simpleperf_path_, "simpleperf"})) {
return false;
}
simpleperf_copied_in_app_ = true;
return true;
}
class SimpleperfAppRunner : public InAppRunner {
public:
SimpleperfAppRunner(const std::string& package_name) : InAppRunner(package_name) {}
bool Prepare() override {
return GetAndroidVersion() >= kAndroidVersionP + 1;
}
protected:
std::vector<std::string> GetPrefixArgs(const std::string& cmd) {
return {"simpleperf_app_runner", package_name_, cmd};
}
};
} // namespace
bool RunInAppContext(const std::string& app_package_name, const std::string& cmd,
const std::vector<std::string>& args, size_t workload_args_size,
const std::string& output_filepath, bool need_tracepoint_events) {
std::unique_ptr<InAppRunner> in_app_runner(new RunAs(app_package_name));
if (!in_app_runner->Prepare()) {
in_app_runner.reset(new SimpleperfAppRunner(app_package_name));
if (!in_app_runner->Prepare()) {
LOG(ERROR) << "Package " << app_package_name
<< " doesn't exist or isn't debuggable/profileable.";
return false;
}
}
return in_app_runner->RunCmdInApp(cmd, args, workload_args_size, output_filepath,
need_tracepoint_events);
}
void AllowMoreOpenedFiles() {
// On Android <= O, the hard limit is 4096, and the soft limit is 1024.
// On Android >= P, both the hard and soft limit are 32768.
rlimit limit;
if (getrlimit(RLIMIT_NOFILE, &limit) == 0) {
limit.rlim_cur = limit.rlim_max;
setrlimit(RLIMIT_NOFILE, &limit);
}
}
std::string ScopedTempFiles::tmp_dir_;
std::vector<std::string> ScopedTempFiles::files_to_delete_;
ScopedTempFiles::ScopedTempFiles(const std::string& tmp_dir) {
CHECK(tmp_dir_.empty()); // No other ScopedTempFiles.
tmp_dir_ = tmp_dir;
}
ScopedTempFiles::~ScopedTempFiles() {
tmp_dir_.clear();
for (auto& file : files_to_delete_) {
unlink(file.c_str());
}
files_to_delete_.clear();
}
std::unique_ptr<TemporaryFile> ScopedTempFiles::CreateTempFile(bool delete_in_destructor) {
CHECK(!tmp_dir_.empty());
std::unique_ptr<TemporaryFile> tmp_file(new TemporaryFile(tmp_dir_));
CHECK_NE(tmp_file->fd, -1);
if (delete_in_destructor) {
tmp_file->DoNotRemove();
files_to_delete_.push_back(tmp_file->path);
}
return tmp_file;
}
bool SignalIsIgnored(int signo) {
struct sigaction act;
if (sigaction(signo, nullptr, &act) != 0) {
PLOG(FATAL) << "failed to query signal handler for signal " << signo;
}
if ((act.sa_flags & SA_SIGINFO)) {
return false;
}
return act.sa_handler == SIG_IGN;
}
int GetAndroidVersion() {
#if defined(__ANDROID__)
static int android_version = -1;
if (android_version == -1) {
android_version = 0;
std::string s = android::base::GetProperty("ro.build.version.release", "");
// The release string can be a list of numbers (like 8.1.0), a character (like Q)
// or many characters (like OMR1).
if (!s.empty()) {
// Each Android version has a version number: L is 5, M is 6, N is 7, O is 8, etc.
if (s[0] >= 'A' && s[0] <= 'Z') {
android_version = s[0] - 'P' + kAndroidVersionP;
} else if (isdigit(s[0])) {
sscanf(s.c_str(), "%d", &android_version);
}
}
}
return android_version;
#else // defined(__ANDROID__)
return 0;
#endif
}
std::string GetHardwareFromCpuInfo(const std::string& cpu_info) {
for (auto& line : android::base::Split(cpu_info, "\n")) {
size_t pos = line.find(':');
if (pos != std::string::npos) {
std::string key = android::base::Trim(line.substr(0, pos));
if (key == "Hardware") {
return android::base::Trim(line.substr(pos + 1));
}
}
}
return "";
}
bool MappedFileOnlyExistInMemory(const char* filename) {
// Mapped files only existing in memory:
// empty name
// [anon:???]
// [stack]
// /dev/*
// //anon: generated by kernel/events/core.c.
// /memfd: created by memfd_create.
return filename[0] == '\0' ||
(filename[0] == '[' && strcmp(filename, "[vdso]") != 0) ||
strncmp(filename, "//", 2) == 0 ||
strncmp(filename, "/dev/", 5) == 0 ||
strncmp(filename, "/memfd:", 7) == 0;
}
std::string GetCompleteProcessName(pid_t pid) {
std::string s;
if (!android::base::ReadFileToString(android::base::StringPrintf("/proc/%d/cmdline", pid), &s)) {
s.clear();
}
for (size_t i = 0; i < s.size(); ++i) {
// /proc/pid/cmdline uses 0 to separate arguments.
if (isspace(s[i]) || s[i] == 0) {
s.resize(i);
break;
}
}
return s;
}
const char* GetTraceFsDir() {
static const char* tracefs_dirs[] = {
"/sys/kernel/debug/tracing", "/sys/kernel/tracing"
};
for (const char* path : tracefs_dirs) {
if (IsDir(path)) {
return path;
}
}
return nullptr;
}