blob: 3b9e9dba55d349b6f3f3f0e21c17bb15a081c7cc [file] [log] [blame]
// Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "metrics_daemon.h"
#include <fcntl.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <base/file_util.h>
#include <base/logging.h>
#include <base/string_number_conversions.h>
#include <base/string_util.h>
#include <base/stringprintf.h>
#include <chromeos/dbus/service_constants.h>
#include <dbus/dbus-glib-lowlevel.h>
#include "counter.h"
using base::Time;
using base::TimeDelta;
using base::TimeTicks;
using std::map;
using std::string;
using std::vector;
#define SAFE_MESSAGE(e) (e.message ? e.message : "unknown error")
static const char kCrashReporterInterface[] = "org.chromium.CrashReporter";
static const char kCrashReporterUserCrashSignal[] = "UserCrash";
static const int kSecondsPerMinute = 60;
static const int kMinutesPerHour = 60;
static const int kHoursPerDay = 24;
static const int kMinutesPerDay = kHoursPerDay * kMinutesPerHour;
static const int kSecondsPerDay = kSecondsPerMinute * kMinutesPerDay;
static const int kDaysPerWeek = 7;
static const int kSecondsPerWeek = kSecondsPerDay * kDaysPerWeek;
// The daily use monitor is scheduled to a 1-minute interval after
// initial user activity and then it's exponentially backed off to
// 10-minute intervals. Although not required, the back off is
// implemented because the histogram buckets are spaced exponentially
// anyway and to avoid too frequent metrics daemon process wake-ups
// and file I/O.
static const int kUseMonitorIntervalInit = 1 * kSecondsPerMinute;
static const int kUseMonitorIntervalMax = 10 * kSecondsPerMinute;
const char kKernelCrashDetectedFile[] = "/tmp/kernel-crash-detected";
static const char kUncleanShutdownDetectedFile[] =
"/tmp/unclean-shutdown-detected";
// static metrics parameters
const char MetricsDaemon::kMetricDailyUseTimeName[] =
"Logging.DailyUseTime";
const int MetricsDaemon::kMetricDailyUseTimeMin = 1;
const int MetricsDaemon::kMetricDailyUseTimeMax = kMinutesPerDay;
const int MetricsDaemon::kMetricDailyUseTimeBuckets = 50;
// crash interval metrics
const char MetricsDaemon::kMetricKernelCrashIntervalName[] =
"Logging.KernelCrashInterval";
const char MetricsDaemon::kMetricUncleanShutdownIntervalName[] =
"Logging.UncleanShutdownInterval";
const char MetricsDaemon::kMetricUserCrashIntervalName[] =
"Logging.UserCrashInterval";
const int MetricsDaemon::kMetricCrashIntervalMin = 1;
const int MetricsDaemon::kMetricCrashIntervalMax =
4 * kSecondsPerWeek;
const int MetricsDaemon::kMetricCrashIntervalBuckets = 50;
// crash frequency metrics
const char MetricsDaemon::kMetricAnyCrashesDailyName[] =
"Logging.AnyCrashesDaily";
const char MetricsDaemon::kMetricAnyCrashesWeeklyName[] =
"Logging.AnyCrashesWeekly";
const char MetricsDaemon::kMetricKernelCrashesDailyName[] =
"Logging.KernelCrashesDaily";
const char MetricsDaemon::kMetricKernelCrashesWeeklyName[] =
"Logging.KernelCrashesWeekly";
const char MetricsDaemon::kMetricUncleanShutdownsDailyName[] =
"Logging.UncleanShutdownsDaily";
const char MetricsDaemon::kMetricUncleanShutdownsWeeklyName[] =
"Logging.UncleanShutdownsWeekly";
const char MetricsDaemon::kMetricUserCrashesDailyName[] =
"Logging.UserCrashesDaily";
const char MetricsDaemon::kMetricUserCrashesWeeklyName[] =
"Logging.UserCrashesWeekly";
const char MetricsDaemon::kMetricCrashFrequencyMin = 1;
const char MetricsDaemon::kMetricCrashFrequencyMax = 100;
const char MetricsDaemon::kMetricCrashFrequencyBuckets = 50;
// disk stats metrics
// The {Read,Write}Sectors numbers are in sectors/second.
// A sector is usually 512 bytes.
const char MetricsDaemon::kMetricReadSectorsLongName[] =
"Platform.ReadSectorsLong";
const char MetricsDaemon::kMetricWriteSectorsLongName[] =
"Platform.WriteSectorsLong";
const char MetricsDaemon::kMetricReadSectorsShortName[] =
"Platform.ReadSectorsShort";
const char MetricsDaemon::kMetricWriteSectorsShortName[] =
"Platform.WriteSectorsShort";
const int MetricsDaemon::kMetricStatsShortInterval = 1; // seconds
const int MetricsDaemon::kMetricStatsLongInterval = 30; // seconds
const int MetricsDaemon::kMetricMeminfoInterval = 30; // seconds
// Assume a max rate of 250Mb/s for reads (worse for writes) and 512 byte
// sectors.
const int MetricsDaemon::kMetricSectorsIOMax = 500000; // sectors/second
const int MetricsDaemon::kMetricSectorsBuckets = 50; // buckets
// Page size is 4k, sector size is 0.5k. We're not interested in page fault
// rates that the disk cannot sustain.
const int MetricsDaemon::kMetricPageFaultsMax = kMetricSectorsIOMax / 8;
const int MetricsDaemon::kMetricPageFaultsBuckets = 50;
// Major page faults, i.e. the ones that require data to be read from disk.
const char MetricsDaemon::kMetricPageFaultsLongName[] =
"Platform.PageFaultsLong";
const char MetricsDaemon::kMetricPageFaultsShortName[] =
"Platform.PageFaultsShort";
// Thermal CPU throttling.
const char MetricsDaemon::kMetricScaledCpuFrequencyName[] =
"Platform.CpuFrequencyThermalScaling";
// persistent metrics path
const char MetricsDaemon::kMetricsPath[] = "/var/log/metrics";
// static
const char* MetricsDaemon::kPowerStates_[] = {
#define STATE(name, capname) #name,
#include "power_states.h"
};
// static
const char* MetricsDaemon::kSessionStates_[] = {
#define STATE(name, capname) #name,
#include "session_states.h"
};
// Memory use stats collection intervals. We collect some memory use interval
// at these intervals after boot, and we stop collecting after the last one,
// with the assumption that in most cases the memory use won't change much
// after that.
static const int kMemuseIntervals[] = {
1 * kSecondsPerMinute, // 1 minute mark
4 * kSecondsPerMinute, // 5 minute mark
25 * kSecondsPerMinute, // 0.5 hour mark
120 * kSecondsPerMinute, // 2.5 hour mark
600 * kSecondsPerMinute, // 12.5 hour mark
};
MetricsDaemon::MetricsDaemon()
: power_state_(kUnknownPowerState),
session_state_(kUnknownSessionState),
user_active_(false),
usemon_interval_(0),
usemon_source_(NULL),
memuse_initial_time_(0),
memuse_interval_index_(0),
read_sectors_(0),
write_sectors_(0),
page_faults_(0),
stats_state_(kStatsShort),
stats_initial_time_(0) {}
MetricsDaemon::~MetricsDaemon() {
DeleteFrequencyCounters();
}
double MetricsDaemon::GetActiveTime() {
struct timespec ts;
int r = clock_gettime(CLOCK_MONOTONIC, &ts);
if (r < 0) {
PLOG(WARNING) << "clock_gettime(CLOCK_MONOTONIC) failed";
return 0;
} else {
return ts.tv_sec + ((double) ts.tv_nsec) / (1000 * 1000 * 1000);
}
}
void MetricsDaemon::DeleteFrequencyCounters() {
for (FrequencyCounters::iterator i = frequency_counters_.begin();
i != frequency_counters_.end(); ++i) {
delete i->second;
i->second = NULL;
}
}
void MetricsDaemon::Run(bool run_as_daemon) {
if (run_as_daemon && daemon(0, 0) != 0)
return;
if (CheckSystemCrash(kKernelCrashDetectedFile)) {
ProcessKernelCrash();
}
if (CheckSystemCrash(kUncleanShutdownDetectedFile)) {
ProcessUncleanShutdown();
}
Loop();
}
FilePath MetricsDaemon::GetHistogramPath(const char* histogram_name) {
return FilePath(kMetricsPath).Append(histogram_name);
}
void MetricsDaemon::ConfigureCrashIntervalReporter(
const char* histogram_name,
scoped_ptr<chromeos_metrics::TaggedCounterReporter>* reporter) {
reporter->reset(new chromeos_metrics::TaggedCounterReporter());
FilePath file_path = GetHistogramPath(histogram_name);
(*reporter)->Init(file_path.value().c_str(),
histogram_name,
kMetricCrashIntervalMin,
kMetricCrashIntervalMax,
kMetricCrashIntervalBuckets);
}
void MetricsDaemon::ConfigureCrashFrequencyReporter(
const char* histogram_name) {
scoped_ptr<chromeos_metrics::TaggedCounterReporter> reporter(
new chromeos_metrics::TaggedCounterReporter());
FilePath file_path = GetHistogramPath(histogram_name);
reporter->Init(file_path.value().c_str(),
histogram_name,
kMetricCrashFrequencyMin,
kMetricCrashFrequencyMax,
kMetricCrashFrequencyBuckets);
scoped_ptr<chromeos_metrics::FrequencyCounter> new_counter(
new chromeos_metrics::FrequencyCounter());
time_t cycle_duration = strstr(histogram_name, "Weekly") != NULL ?
chromeos_metrics::kSecondsPerWeek :
chromeos_metrics::kSecondsPerDay;
new_counter->Init(
static_cast<chromeos_metrics::TaggedCounterInterface*>(
reporter.release()),
cycle_duration);
frequency_counters_[histogram_name] = new_counter.release();
}
void MetricsDaemon::Init(bool testing, MetricsLibraryInterface* metrics_lib,
const string& diskstats_path,
const string& vmstats_path,
const string& scaling_max_freq_path,
const string& cpuinfo_max_freq_path
) {
testing_ = testing;
DCHECK(metrics_lib != NULL);
metrics_lib_ = metrics_lib;
chromeos_metrics::TaggedCounterReporter::
SetMetricsLibraryInterface(metrics_lib);
static const char kDailyUseRecordFile[] = "/var/log/metrics/daily-usage";
daily_use_.reset(new chromeos_metrics::TaggedCounter());
daily_use_->Init(kDailyUseRecordFile, &ReportDailyUse, this);
ConfigureCrashIntervalReporter(kMetricKernelCrashIntervalName,
&kernel_crash_interval_);
ConfigureCrashIntervalReporter(kMetricUncleanShutdownIntervalName,
&unclean_shutdown_interval_);
ConfigureCrashIntervalReporter(kMetricUserCrashIntervalName,
&user_crash_interval_);
DeleteFrequencyCounters();
ConfigureCrashFrequencyReporter(kMetricAnyCrashesDailyName);
ConfigureCrashFrequencyReporter(kMetricAnyCrashesWeeklyName);
ConfigureCrashFrequencyReporter(kMetricKernelCrashesDailyName);
ConfigureCrashFrequencyReporter(kMetricKernelCrashesWeeklyName);
ConfigureCrashFrequencyReporter(kMetricUncleanShutdownsDailyName);
ConfigureCrashFrequencyReporter(kMetricUncleanShutdownsWeeklyName);
ConfigureCrashFrequencyReporter(kMetricUserCrashesDailyName);
ConfigureCrashFrequencyReporter(kMetricUserCrashesWeeklyName);
diskstats_path_ = diskstats_path;
vmstats_path_ = vmstats_path;
scaling_max_freq_path_ = scaling_max_freq_path;
cpuinfo_max_freq_path_ = cpuinfo_max_freq_path;
StatsReporterInit();
// Start collecting meminfo stats.
ScheduleMeminfoCallback(kMetricMeminfoInterval);
ScheduleMemuseCallback(true, 0);
// Don't setup D-Bus and GLib in test mode.
if (testing)
return;
g_thread_init(NULL);
g_type_init();
dbus_g_thread_init();
DBusError error;
dbus_error_init(&error);
DBusConnection* connection = dbus_bus_get(DBUS_BUS_SYSTEM, &error);
LOG_IF(FATAL, dbus_error_is_set(&error)) <<
"No D-Bus connection: " << SAFE_MESSAGE(error);
dbus_connection_setup_with_g_main(connection, NULL);
vector<string> matches;
matches.push_back(
StringPrintf("type='signal',interface='%s',path='/',member='%s'",
kCrashReporterInterface,
kCrashReporterUserCrashSignal));
matches.push_back(
StringPrintf("type='signal',interface='%s',path='%s',member='%s'",
power_manager::kPowerManagerInterface,
power_manager::kPowerManagerServicePath,
power_manager::kPowerStateChangedSignal));
matches.push_back(
StringPrintf("type='signal',sender='%s',interface='%s',path='%s'",
login_manager::kSessionManagerServiceName,
login_manager::kSessionManagerInterface,
login_manager::kSessionManagerServicePath));
// Registers D-Bus matches for the signals we would like to catch.
for (vector<string>::const_iterator it = matches.begin();
it != matches.end(); ++it) {
const char* match = it->c_str();
DLOG(INFO) << "adding dbus match: " << match;
dbus_bus_add_match(connection, match, &error);
LOG_IF(FATAL, dbus_error_is_set(&error)) <<
"unable to add a match: " << SAFE_MESSAGE(error);
}
// Adds the D-Bus filter routine to be called back whenever one of
// the registered D-Bus matches is successful. The daemon is not
// activated for D-Bus messages that don't match.
CHECK(dbus_connection_add_filter(connection, MessageFilter, this, NULL));
}
void MetricsDaemon::Loop() {
GMainLoop* loop = g_main_loop_new(NULL, false);
g_main_loop_run(loop);
}
// static
DBusHandlerResult MetricsDaemon::MessageFilter(DBusConnection* connection,
DBusMessage* message,
void* user_data) {
Time now = Time::Now();
DLOG(INFO) << "message intercepted @ " << now.ToInternalValue();
int message_type = dbus_message_get_type(message);
if (message_type != DBUS_MESSAGE_TYPE_SIGNAL) {
DLOG(WARNING) << "unexpected message type " << message_type;
return DBUS_HANDLER_RESULT_NOT_YET_HANDLED;
}
// Signal messages always have interfaces.
const char* interface = dbus_message_get_interface(message);
CHECK(interface != NULL);
MetricsDaemon* daemon = static_cast<MetricsDaemon*>(user_data);
DBusMessageIter iter;
dbus_message_iter_init(message, &iter);
if (strcmp(interface, kCrashReporterInterface) == 0) {
CHECK(strcmp(dbus_message_get_member(message),
kCrashReporterUserCrashSignal) == 0);
daemon->ProcessUserCrash();
} else if (strcmp(interface, power_manager::kPowerManagerInterface) == 0) {
CHECK(strcmp(dbus_message_get_member(message),
power_manager::kPowerStateChangedSignal) == 0);
char* state_name;
dbus_message_iter_get_basic(&iter, &state_name);
daemon->PowerStateChanged(state_name, now);
} else if (strcmp(interface, login_manager::kSessionManagerInterface) == 0) {
const char* member = dbus_message_get_member(message);
if (strcmp(member, login_manager::kScreenIsLockedSignal) == 0) {
daemon->SetUserActiveState(false, now);
} else if (strcmp(member, login_manager::kScreenIsUnlockedSignal) == 0) {
daemon->SetUserActiveState(true, now);
} else if (strcmp(member, login_manager::kSessionStateChangedSignal) == 0) {
char* state_name;
dbus_message_iter_get_basic(&iter, &state_name);
daemon->SessionStateChanged(state_name, now);
}
} else {
DLOG(WARNING) << "unexpected interface: " << interface;
return DBUS_HANDLER_RESULT_NOT_YET_HANDLED;
}
return DBUS_HANDLER_RESULT_HANDLED;
}
void MetricsDaemon::PowerStateChanged(const char* state_name, Time now) {
DLOG(INFO) << "power state: " << state_name;
power_state_ = LookupPowerState(state_name);
if (power_state_ != kPowerStateOn)
SetUserActiveState(false, now);
}
MetricsDaemon::PowerState
MetricsDaemon::LookupPowerState(const char* state_name) {
for (int i = 0; i < kNumberPowerStates; i++) {
if (strcmp(state_name, kPowerStates_[i]) == 0) {
return static_cast<PowerState>(i);
}
}
DLOG(WARNING) << "unknown power state: " << state_name;
return kUnknownPowerState;
}
void MetricsDaemon::SessionStateChanged(const char* state_name, Time now) {
DLOG(INFO) << "user session state: " << state_name;
session_state_ = LookupSessionState(state_name);
SetUserActiveState(session_state_ == kSessionStateStarted, now);
}
MetricsDaemon::SessionState
MetricsDaemon::LookupSessionState(const char* state_name) {
for (int i = 0; i < kNumberSessionStates; i++) {
if (strcmp(state_name, kSessionStates_[i]) == 0) {
return static_cast<SessionState>(i);
}
}
DLOG(WARNING) << "unknown user session state: " << state_name;
return kUnknownSessionState;
}
void MetricsDaemon::SetUserActiveState(bool active, Time now) {
DLOG(INFO) << "user: " << (active ? "active" : "inactive");
// Calculates the seconds of active use since the last update and
// the day since Epoch, and logs the usage data. Guards against the
// time jumping back and forth due to the user changing it by
// discarding the new use time.
int seconds = 0;
if (user_active_ && now > user_active_last_) {
TimeDelta since_active = now - user_active_last_;
if (since_active < TimeDelta::FromSeconds(
kUseMonitorIntervalMax + kSecondsPerMinute)) {
seconds = static_cast<int>(since_active.InSeconds());
}
}
TimeDelta since_epoch = now - Time();
int day = since_epoch.InDays();
daily_use_->Update(day, seconds);
user_crash_interval_->Update(0, seconds);
kernel_crash_interval_->Update(0, seconds);
// Flush finished cycles of all frequency counters.
for (FrequencyCounters::iterator i = frequency_counters_.begin();
i != frequency_counters_.end(); ++i) {
i->second->FlushFinishedCycles();
}
// Schedules a use monitor on inactive->active transitions and
// unschedules it on active->inactive transitions.
if (!user_active_ && active)
ScheduleUseMonitor(kUseMonitorIntervalInit, /* backoff */ false);
else if (user_active_ && !active)
UnscheduleUseMonitor();
// Remembers the current active state and the time of the last
// activity update.
user_active_ = active;
user_active_last_ = now;
}
void MetricsDaemon::ProcessUserCrash() {
// Counts the active use time up to now.
SetUserActiveState(user_active_, Time::Now());
// Reports the active use time since the last crash and resets it.
user_crash_interval_->Flush();
frequency_counters_[kMetricUserCrashesDailyName]->Update(1);
frequency_counters_[kMetricUserCrashesWeeklyName]->Update(1);
frequency_counters_[kMetricAnyCrashesDailyName]->Update(1);
frequency_counters_[kMetricAnyCrashesWeeklyName]->Update(1);
}
void MetricsDaemon::ProcessKernelCrash() {
// Counts the active use time up to now.
SetUserActiveState(user_active_, Time::Now());
// Reports the active use time since the last crash and resets it.
kernel_crash_interval_->Flush();
frequency_counters_[kMetricKernelCrashesDailyName]->Update(1);
frequency_counters_[kMetricKernelCrashesWeeklyName]->Update(1);
frequency_counters_[kMetricAnyCrashesDailyName]->Update(1);
frequency_counters_[kMetricAnyCrashesWeeklyName]->Update(1);
}
void MetricsDaemon::ProcessUncleanShutdown() {
// Counts the active use time up to now.
SetUserActiveState(user_active_, Time::Now());
// Reports the active use time since the last crash and resets it.
unclean_shutdown_interval_->Flush();
frequency_counters_[kMetricUncleanShutdownsDailyName]->Update(1);
frequency_counters_[kMetricUncleanShutdownsWeeklyName]->Update(1);
frequency_counters_[kMetricAnyCrashesDailyName]->Update(1);
frequency_counters_[kMetricAnyCrashesWeeklyName]->Update(1);
}
bool MetricsDaemon::CheckSystemCrash(const string& crash_file) {
FilePath crash_detected(crash_file);
if (!file_util::PathExists(crash_detected))
return false;
// Deletes the crash-detected file so that the daemon doesn't report
// another kernel crash in case it's restarted.
file_util::Delete(crash_detected,
false); // recursive
return true;
}
// static
gboolean MetricsDaemon::UseMonitorStatic(gpointer data) {
return static_cast<MetricsDaemon*>(data)->UseMonitor() ? TRUE : FALSE;
}
bool MetricsDaemon::UseMonitor() {
SetUserActiveState(user_active_, Time::Now());
// If a new monitor source/instance is scheduled, returns false to
// tell GLib to destroy this monitor source/instance. Returns true
// otherwise to keep calling back this monitor.
return !ScheduleUseMonitor(usemon_interval_ * 2, /* backoff */ true);
}
bool MetricsDaemon::ScheduleUseMonitor(int interval, bool backoff)
{
if (testing_)
return false;
// Caps the interval -- the bigger the interval, the more active use
// time will be potentially dropped on system shutdown.
if (interval > kUseMonitorIntervalMax)
interval = kUseMonitorIntervalMax;
if (backoff) {
// Back-off mode is used by the use monitor to reschedule itself
// with exponential back-off in time. This mode doesn't create a
// new timeout source if the new interval is the same as the old
// one. Also, if a new timeout source is created, the old one is
// not destroyed explicitly here -- it will be destroyed by GLib
// when the monitor returns FALSE (see UseMonitor and
// UseMonitorStatic).
if (interval == usemon_interval_)
return false;
} else {
UnscheduleUseMonitor();
}
// Schedules a new use monitor for |interval| seconds from now.
DLOG(INFO) << "scheduling use monitor in " << interval << " seconds";
usemon_source_ = g_timeout_source_new_seconds(interval);
g_source_set_callback(usemon_source_, UseMonitorStatic, this,
NULL); // No destroy notification.
g_source_attach(usemon_source_,
NULL); // Default context.
usemon_interval_ = interval;
return true;
}
void MetricsDaemon::UnscheduleUseMonitor() {
// If there's a use monitor scheduled already, destroys it.
if (usemon_source_ == NULL)
return;
DLOG(INFO) << "destroying use monitor";
g_source_destroy(usemon_source_);
usemon_source_ = NULL;
usemon_interval_ = 0;
}
void MetricsDaemon::StatsReporterInit() {
DiskStatsReadStats(&read_sectors_, &write_sectors_);
VmStatsReadStats(&page_faults_);
// The first time around just run the long stat, so we don't delay boot.
stats_state_ = kStatsLong;
stats_initial_time_ = GetActiveTime();
if (stats_initial_time_ < 0) {
LOG(WARNING) << "not collecting disk stats";
} else {
ScheduleStatsCallback(kMetricStatsLongInterval);
}
}
void MetricsDaemon::ScheduleStatsCallback(int wait) {
if (testing_) {
return;
}
g_timeout_add_seconds(wait, StatsCallbackStatic, this);
}
bool MetricsDaemon::DiskStatsReadStats(long int* read_sectors,
long int* write_sectors) {
int nchars;
int nitems;
bool success = false;
char line[200];
if (diskstats_path_.empty()) {
return false;
}
int file = HANDLE_EINTR(open(diskstats_path_.c_str(), O_RDONLY));
if (file < 0) {
PLOG(WARNING) << "cannot open " << diskstats_path_;
return false;
}
nchars = HANDLE_EINTR(read(file, line, sizeof(line)));
if (nchars < 0) {
PLOG(WARNING) << "cannot read from " << diskstats_path_;
return false;
} else {
LOG_IF(WARNING, nchars == sizeof(line))
<< "line too long in " << diskstats_path_;
line[nchars] = '\0';
nitems = sscanf(line, "%*d %*d %ld %*d %*d %*d %ld",
read_sectors, write_sectors);
if (nitems == 2) {
success = true;
} else {
LOG(WARNING) << "found " << nitems << " items in "
<< diskstats_path_ << ", expected 2";
}
}
HANDLE_EINTR(close(file));
return success;
}
bool MetricsDaemon::VmStatsParseStats(char* stats, long int* page_faults) {
static const char kPageFaultSearchString[] = "\npgmajfault ";
bool success = false;
// Each line in the file has the form
// <ID> <VALUE>
// for instance:
// nr_free_pages 213427
char* s = strstr(stats, kPageFaultSearchString);
if (s == NULL) {
LOG(WARNING) << "cannot find page fault entry in vmstats";
} else {
char* endp;
// Skip <ID> and space. Don't count the terminating null.
s += sizeof(kPageFaultSearchString) - 1;
*page_faults = strtol(s, &endp, 10);
if (*endp == '\n') {
success = true;
} else {
LOG(WARNING) << "error parsing vmstats";
}
}
return success;
}
bool MetricsDaemon::VmStatsReadStats(long int* page_faults) {
char buffer[4000];
int nchars;
int success = false;
if (testing_) {
return false;
}
int file = HANDLE_EINTR(open(vmstats_path_.c_str(), O_RDONLY));
if (file < 0) {
PLOG(WARNING) << "cannot open " << vmstats_path_;
return false;
}
nchars = HANDLE_EINTR(read(file, buffer, sizeof(buffer) - 1));
LOG_IF(WARNING, nchars == sizeof(buffer) - 1)
<< "file too large in " << vmstats_path_;
if (nchars < 0) {
PLOG(WARNING) << "cannot read from " << vmstats_path_;
} else if (nchars == 0) {
LOG(WARNING) << vmstats_path_ << " is empty";
} else {
buffer[nchars] = '\0';
success = VmStatsParseStats(buffer, page_faults);
}
HANDLE_EINTR(close(file));
return success;
}
bool MetricsDaemon::ReadFreqToInt(const string& sysfs_file_name, int* value) {
const string sysfs_dirpath(testing_ ?
"./" : "/sys/devices/system/cpu/cpu0/cpufreq/");
const FilePath sysfs_path(sysfs_dirpath + sysfs_file_name);
string value_string;
if (!file_util::ReadFileToString(sysfs_path, &value_string)) {
LOG(WARNING) << "cannot read " << sysfs_path.value().c_str();
return false;
}
if (!RemoveChars(value_string, "\n", &value_string)) {
LOG(WARNING) << "no newline in " << value_string;
// Continue even though the lack of newline is suspicious.
}
if (!base::StringToInt(value_string, value)) {
LOG(WARNING) << "cannot convert " << value_string << " to int";
return false;
}
return true;
}
void MetricsDaemon::SendCpuThrottleMetrics() {
// |max_freq| is 0 only the first time through.
static int max_freq = 0;
if (max_freq == -1)
// Give up, as sysfs did not report max_freq correctly.
return;
if (max_freq == 0 || testing_) {
// One-time initialization of max_freq. (Every time when testing.)
if (!ReadFreqToInt(cpuinfo_max_freq_path_, &max_freq)) {
max_freq = -1;
return;
}
if (max_freq == 0) {
LOG(WARNING) << "sysfs reports 0 max CPU frequency\n";
max_freq = -1;
return;
}
if (max_freq % 10000 == 1000) {
// Special case: system has turbo mode, and max non-turbo frequency is
// max_freq - 1000. This relies on "normal" (non-turbo) frequencies
// being multiples of (at least) 10 MHz. Although there is no guarantee
// of this, it seems a fairly reasonable assumption. Otherwise we should
// read scaling_available_frequencies, sort the frequencies, compare the
// two highest ones, and check if they differ by 1000 (kHz) (and that's a
// hack too, no telling when it will change).
max_freq -= 1000;
}
}
int scaled_freq = 0;
if (!ReadFreqToInt(scaling_max_freq_path_, &scaled_freq))
return;
// Frequencies are in kHz. If scaled_freq > max_freq, turbo is on, but
// scaled_freq is not the actual turbo frequency. We indicate this situation
// with a 101% value.
int percent = scaled_freq > max_freq ? 101 : scaled_freq / (max_freq / 100);
SendLinearMetric(kMetricScaledCpuFrequencyName, percent, 101, 102);
}
// static
gboolean MetricsDaemon::StatsCallbackStatic(void* handle) {
(static_cast<MetricsDaemon*>(handle))->StatsCallback();
return false; // one-time callback
}
// Collects disk and vm stats alternating over a short and a long interval.
void MetricsDaemon::StatsCallback() {
long int read_sectors_now, write_sectors_now, page_faults_now;
double time_now = GetActiveTime();
double delta_time = time_now - stats_initial_time_;
if (testing_) {
// Fake the time when testing.
delta_time = stats_state_ == kStatsShort ?
kMetricStatsShortInterval : kMetricStatsLongInterval;
}
bool diskstats_success = DiskStatsReadStats(&read_sectors_now,
&write_sectors_now);
int delta_read = read_sectors_now - read_sectors_;
int delta_write = write_sectors_now - write_sectors_;
int read_sectors_per_second = delta_read / delta_time;
int write_sectors_per_second = delta_write / delta_time;
bool vmstats_success = VmStatsReadStats(&page_faults_now);
int delta_faults = page_faults_now - page_faults_;
int page_faults_per_second = delta_faults / delta_time;
switch (stats_state_) {
case kStatsShort:
if (diskstats_success) {
SendMetric(kMetricReadSectorsShortName,
read_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
SendMetric(kMetricWriteSectorsShortName,
write_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
}
if (vmstats_success) {
SendMetric(kMetricPageFaultsShortName,
page_faults_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
}
// Schedule long callback.
stats_state_ = kStatsLong;
ScheduleStatsCallback(kMetricStatsLongInterval -
kMetricStatsShortInterval);
break;
case kStatsLong:
if (diskstats_success) {
SendMetric(kMetricReadSectorsLongName,
read_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
SendMetric(kMetricWriteSectorsLongName,
write_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
// Reset sector counters.
read_sectors_ = read_sectors_now;
write_sectors_ = write_sectors_now;
}
if (vmstats_success) {
SendMetric(kMetricPageFaultsLongName,
page_faults_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
page_faults_ = page_faults_now;
}
SendCpuThrottleMetrics();
// Set start time for new cycle.
stats_initial_time_ = time_now;
// Schedule short callback.
stats_state_ = kStatsShort;
ScheduleStatsCallback(kMetricStatsShortInterval);
break;
default:
LOG(FATAL) << "Invalid stats state";
}
}
void MetricsDaemon::ScheduleMeminfoCallback(int wait) {
if (testing_) {
return;
}
g_timeout_add_seconds(wait, MeminfoCallbackStatic, this);
}
// static
gboolean MetricsDaemon::MeminfoCallbackStatic(void* handle) {
return (static_cast<MetricsDaemon*>(handle))->MeminfoCallback();
}
bool MetricsDaemon::MeminfoCallback() {
string meminfo_raw;
const FilePath meminfo_path("/proc/meminfo");
if (!file_util::ReadFileToString(meminfo_path, &meminfo_raw)) {
LOG(WARNING) << "cannot read " << meminfo_path.value().c_str();
return false;
}
return ProcessMeminfo(meminfo_raw);
}
bool MetricsDaemon::ProcessMeminfo(const string& meminfo_raw) {
static const MeminfoRecord fields_array[] = {
{ "MemTotal", "MemTotal" }, // SPECIAL CASE: total system memory
{ "MemFree", "MemFree" },
{ "Buffers", "Buffers" },
{ "Cached", "Cached" },
// { "SwapCached", "SwapCached" },
{ "Active", "Active" },
{ "Inactive", "Inactive" },
{ "ActiveAnon", "Active(anon)" },
{ "InactiveAnon", "Inactive(anon)" },
{ "ActiveFile" , "Active(file)" },
{ "InactiveFile", "Inactive(file)" },
{ "Unevictable", "Unevictable", kMeminfoOp_HistLog },
// { "Mlocked", "Mlocked" },
{ "SwapTotal", "SwapTotal", kMeminfoOp_SwapTotal },
{ "SwapFree", "SwapFree", kMeminfoOp_SwapFree },
// { "Dirty", "Dirty" },
// { "Writeback", "Writeback" },
{ "AnonPages", "AnonPages" },
{ "Mapped", "Mapped" },
{ "Shmem", "Shmem", kMeminfoOp_HistLog },
{ "Slab", "Slab", kMeminfoOp_HistLog },
// { "SReclaimable", "SReclaimable" },
// { "SUnreclaim", "SUnreclaim" },
};
vector<MeminfoRecord> fields(fields_array,
fields_array + arraysize(fields_array));
if (!FillMeminfo(meminfo_raw, &fields)) {
return false;
}
int total_memory = fields[0].value;
if (total_memory == 0) {
// this "cannot happen"
LOG(WARNING) << "borked meminfo parser";
return false;
}
int swap_total = 0;
int swap_free = 0;
// Send all fields retrieved, except total memory.
for (unsigned int i = 1; i < fields.size(); i++) {
string metrics_name = StringPrintf("Platform.Meminfo%s", fields[i].name);
int percent;
switch (fields[i].op) {
case kMeminfoOp_HistPercent:
// report value as percent of total memory
percent = fields[i].value * 100 / total_memory;
SendLinearMetric(metrics_name, percent, 100, 101);
break;
case kMeminfoOp_HistLog:
// report value in kbytes, log scale, 4Gb max
SendMetric(metrics_name, fields[i].value, 1, 4 * 1000 * 1000, 100);
break;
case kMeminfoOp_SwapTotal:
swap_total = fields[i].value;
case kMeminfoOp_SwapFree:
swap_free = fields[i].value;
break;
}
}
if (swap_total > 0) {
int swap_used = swap_total - swap_free;
int swap_used_percent = swap_used * 100 / swap_total;
SendMetric("Platform.MeminfoSwapUsed", swap_used, 1, 8 * 1000 * 1000, 100);
SendLinearMetric("Platform.MeminfoSwapUsedPercent", swap_used_percent,
100, 101);
}
return true;
}
bool MetricsDaemon::FillMeminfo(const string& meminfo_raw,
vector<MeminfoRecord>* fields) {
vector<string> lines;
unsigned int nlines = Tokenize(meminfo_raw, "\n", &lines);
// Scan meminfo output and collect field values. Each field name has to
// match a meminfo entry (case insensitive) after removing non-alpha
// characters from the entry.
unsigned int ifield = 0;
for (unsigned int iline = 0;
iline < nlines && ifield < fields->size();
iline++) {
vector<string> tokens;
Tokenize(lines[iline], ": ", &tokens);
if (strcmp((*fields)[ifield].match, tokens[0].c_str()) == 0) {
// Name matches. Parse value and save.
char* rest;
(*fields)[ifield].value =
static_cast<int>(strtol(tokens[1].c_str(), &rest, 10));
if (*rest != '\0') {
LOG(WARNING) << "missing meminfo value";
return false;
}
ifield++;
}
}
if (ifield < fields->size()) {
// End of input reached while scanning.
LOG(WARNING) << "cannot find field " << (*fields)[ifield].match
<< " and following";
return false;
}
return true;
}
void MetricsDaemon::ScheduleMemuseCallback(bool new_callback,
double time_elapsed) {
if (testing_) {
return;
}
int interval = kMemuseIntervals[memuse_interval_index_];
int wait;
if (new_callback) {
memuse_initial_time_ = GetActiveTime();
wait = interval;
} else {
wait = ceil(interval - time_elapsed); // round up
}
g_timeout_add_seconds(wait, MemuseCallbackStatic, this);
}
// static
gboolean MetricsDaemon::MemuseCallbackStatic(void* handle) {
MetricsDaemon* daemon = static_cast<MetricsDaemon*>(handle);
daemon->MemuseCallback();
return false;
}
void MetricsDaemon::MemuseCallback() {
// Since we only care about active time (i.e. uptime minus sleep time) but
// the callbacks are driven by real time (uptime), we check if we should
// reschedule this callback due to intervening sleep periods.
double now = GetActiveTime();
double active_time = now - memuse_initial_time_;
if (active_time < kMemuseIntervals[memuse_interval_index_]) {
// Not enough active time has passed. Reschedule the callback.
ScheduleMemuseCallback(false, active_time);
} else {
// Enough active time has passed. Do the work, and (if we succeed) see if
// we need to do more.
if (MemuseCallbackWork() &&
memuse_interval_index_ < arraysize(kMemuseIntervals)) {
memuse_interval_index_++;
ScheduleMemuseCallback(true, 0);
}
}
}
bool MetricsDaemon::MemuseCallbackWork() {
string meminfo_raw;
const FilePath meminfo_path("/proc/meminfo");
if (!file_util::ReadFileToString(meminfo_path, &meminfo_raw)) {
LOG(WARNING) << "cannot read " << meminfo_path.value().c_str();
return false;
}
return ProcessMemuse(meminfo_raw);
}
bool MetricsDaemon::ProcessMemuse(const string& meminfo_raw) {
static const MeminfoRecord fields_array[] = {
{ "MemTotal", "MemTotal" }, // SPECIAL CASE: total system memory
{ "ActiveAnon", "Active(anon)" },
{ "InactiveAnon", "Inactive(anon)" },
};
vector<MeminfoRecord> fields(fields_array,
fields_array + arraysize(fields_array));
if (!FillMeminfo(meminfo_raw, &fields)) {
return false;
}
int total = fields[0].value;
int active_anon = fields[1].value;
int inactive_anon = fields[2].value;
if (total == 0) {
// this "cannot happen"
LOG(WARNING) << "borked meminfo parser";
return false;
}
string metrics_name = StringPrintf("Platform.MemuseAnon%d",
memuse_interval_index_);
SendLinearMetric(metrics_name, (active_anon + inactive_anon) * 100 / total,
100, 101);
return true;
}
// static
void MetricsDaemon::ReportDailyUse(void* handle, int tag, int count) {
if (count <= 0)
return;
MetricsDaemon* daemon = static_cast<MetricsDaemon*>(handle);
int minutes = (count + kSecondsPerMinute / 2) / kSecondsPerMinute;
daemon->SendMetric(kMetricDailyUseTimeName, minutes,
kMetricDailyUseTimeMin,
kMetricDailyUseTimeMax,
kMetricDailyUseTimeBuckets);
}
void MetricsDaemon::SendMetric(const string& name, int sample,
int min, int max, int nbuckets) {
DLOG(INFO) << "received metric: " << name << " " << sample << " "
<< min << " " << max << " " << nbuckets;
metrics_lib_->SendToUMA(name, sample, min, max, nbuckets);
}
void MetricsDaemon::SendLinearMetric(const string& name, int sample,
int max, int nbuckets) {
DLOG(INFO) << "received linear metric: " << name << " " << sample << " "
<< max << " " << nbuckets;
// TODO(semenzato): add a proper linear histogram to the Chrome external
// metrics API.
LOG_IF(FATAL, nbuckets != max + 1) << "unsupported histogram scale";
metrics_lib_->SendEnumToUMA(name, sample, max);
}