blob: aed3b9b40b4f16b0f025d0089e798157e2dd37c7 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <utils/StrongPointer.h>
#include <utils/RefBase.h>
#include <thread>
#include <atomic>
#include <sched.h>
#include <errno.h>
// Enhanced version of StrongPointer_test, but using RefBase underneath.
using namespace android;
static constexpr int NITERS = 1000000;
static constexpr int INITIAL_STRONG_VALUE = 1 << 28; // Mirroring RefBase definition.
class Foo : public RefBase {
public:
Foo(bool* deleted_check) : mDeleted(deleted_check) {
*mDeleted = false;
}
~Foo() {
*mDeleted = true;
}
private:
bool* mDeleted;
};
// A version of Foo that ensures that all objects are allocated at the same
// address. No more than one can be allocated at a time. Thread-hostile.
class FooFixedAlloc : public RefBase {
public:
static void* operator new(size_t size) {
if (mAllocCount != 0) {
abort();
}
mAllocCount = 1;
if (theMemory == nullptr) {
theMemory = malloc(size);
}
return theMemory;
}
static void operator delete(void *p) {
if (mAllocCount != 1 || p != theMemory) {
abort();
}
mAllocCount = 0;
}
FooFixedAlloc(bool* deleted_check) : mDeleted(deleted_check) {
*mDeleted = false;
}
~FooFixedAlloc() {
*mDeleted = true;
}
private:
bool* mDeleted;
static int mAllocCount;
static void* theMemory;
};
int FooFixedAlloc::mAllocCount(0);
void* FooFixedAlloc::theMemory(nullptr);
TEST(RefBase, StrongMoves) {
bool isDeleted;
Foo* foo = new Foo(&isDeleted);
ASSERT_EQ(INITIAL_STRONG_VALUE, foo->getStrongCount());
ASSERT_FALSE(isDeleted) << "Already deleted...?";
sp<Foo> sp1(foo);
wp<Foo> wp1(sp1);
ASSERT_EQ(1, foo->getStrongCount());
// Weak count includes both strong and weak references.
ASSERT_EQ(2, foo->getWeakRefs()->getWeakCount());
{
sp<Foo> sp2 = std::move(sp1);
ASSERT_EQ(1, foo->getStrongCount())
<< "std::move failed, incremented refcnt";
ASSERT_EQ(nullptr, sp1.get()) << "std::move failed, sp1 is still valid";
// The strong count isn't increasing, let's double check the old object
// is properly reset and doesn't early delete
sp1 = std::move(sp2);
}
ASSERT_FALSE(isDeleted) << "deleted too early! still has a reference!";
{
// Now let's double check it deletes on time
sp<Foo> sp2 = std::move(sp1);
}
ASSERT_TRUE(isDeleted) << "foo was leaked!";
ASSERT_TRUE(wp1.promote().get() == nullptr);
}
TEST(RefBase, WeakCopies) {
bool isDeleted;
Foo* foo = new Foo(&isDeleted);
EXPECT_EQ(0, foo->getWeakRefs()->getWeakCount());
ASSERT_FALSE(isDeleted) << "Foo (weak) already deleted...?";
wp<Foo> wp1(foo);
EXPECT_EQ(1, foo->getWeakRefs()->getWeakCount());
{
wp<Foo> wp2 = wp1;
ASSERT_EQ(2, foo->getWeakRefs()->getWeakCount());
}
EXPECT_EQ(1, foo->getWeakRefs()->getWeakCount());
ASSERT_FALSE(isDeleted) << "deleted too early! still has a reference!";
wp1 = nullptr;
ASSERT_FALSE(isDeleted) << "Deletion on wp destruction should no longer occur";
}
TEST(RefBase, Comparisons) {
bool isDeleted, isDeleted2, isDeleted3;
Foo* foo = new Foo(&isDeleted);
Foo* foo2 = new Foo(&isDeleted2);
sp<Foo> sp1(foo);
sp<Foo> sp2(foo2);
wp<Foo> wp1(sp1);
wp<Foo> wp2(sp1);
wp<Foo> wp3(sp2);
ASSERT_TRUE(wp1 == wp2);
ASSERT_TRUE(wp1 == sp1);
ASSERT_TRUE(wp3 == sp2);
ASSERT_TRUE(wp1 != sp2);
ASSERT_TRUE(wp1 <= wp2);
ASSERT_TRUE(wp1 >= wp2);
ASSERT_FALSE(wp1 != wp2);
ASSERT_FALSE(wp1 > wp2);
ASSERT_FALSE(wp1 < wp2);
ASSERT_FALSE(sp1 == sp2);
ASSERT_TRUE(sp1 != sp2);
bool sp1_smaller = sp1 < sp2;
wp<Foo>wp_smaller = sp1_smaller ? wp1 : wp3;
wp<Foo>wp_larger = sp1_smaller ? wp3 : wp1;
ASSERT_TRUE(wp_smaller < wp_larger);
ASSERT_TRUE(wp_smaller != wp_larger);
ASSERT_TRUE(wp_smaller <= wp_larger);
ASSERT_FALSE(wp_smaller == wp_larger);
ASSERT_FALSE(wp_smaller > wp_larger);
ASSERT_FALSE(wp_smaller >= wp_larger);
sp2 = nullptr;
ASSERT_TRUE(isDeleted2);
ASSERT_FALSE(isDeleted);
ASSERT_FALSE(wp3 == sp2);
// Comparison results on weak pointers should not be affected.
ASSERT_TRUE(wp_smaller < wp_larger);
ASSERT_TRUE(wp_smaller != wp_larger);
ASSERT_TRUE(wp_smaller <= wp_larger);
ASSERT_FALSE(wp_smaller == wp_larger);
ASSERT_FALSE(wp_smaller > wp_larger);
ASSERT_FALSE(wp_smaller >= wp_larger);
wp2 = nullptr;
ASSERT_FALSE(wp1 == wp2);
ASSERT_TRUE(wp1 != wp2);
wp1.clear();
ASSERT_TRUE(wp1 == wp2);
ASSERT_FALSE(wp1 != wp2);
wp3.clear();
ASSERT_TRUE(wp1 == wp3);
ASSERT_FALSE(wp1 != wp3);
ASSERT_FALSE(isDeleted);
sp1.clear();
ASSERT_TRUE(isDeleted);
ASSERT_TRUE(sp1 == sp2);
// Try to check that null pointers are properly initialized.
{
// Try once with non-null, to maximize chances of getting junk on the
// stack.
sp<Foo> sp3(new Foo(&isDeleted3));
wp<Foo> wp4(sp3);
wp<Foo> wp5;
ASSERT_FALSE(wp4 == wp5);
ASSERT_TRUE(wp4 != wp5);
ASSERT_FALSE(sp3 == wp5);
ASSERT_FALSE(wp5 == sp3);
ASSERT_TRUE(sp3 != wp5);
ASSERT_TRUE(wp5 != sp3);
ASSERT_TRUE(sp3 == wp4);
}
{
sp<Foo> sp3;
wp<Foo> wp4(sp3);
wp<Foo> wp5;
ASSERT_TRUE(wp4 == wp5);
ASSERT_FALSE(wp4 != wp5);
ASSERT_TRUE(sp3 == wp5);
ASSERT_TRUE(wp5 == sp3);
ASSERT_FALSE(sp3 != wp5);
ASSERT_FALSE(wp5 != sp3);
ASSERT_TRUE(sp3 == wp4);
}
}
// Check whether comparison against dead wp works, even if the object referenced
// by the new wp happens to be at the same address.
TEST(RefBase, ReplacedComparison) {
bool isDeleted, isDeleted2;
FooFixedAlloc* foo = new FooFixedAlloc(&isDeleted);
sp<FooFixedAlloc> sp1(foo);
wp<FooFixedAlloc> wp1(sp1);
ASSERT_TRUE(wp1 == sp1);
sp1.clear(); // Deallocates the object.
ASSERT_TRUE(isDeleted);
FooFixedAlloc* foo2 = new FooFixedAlloc(&isDeleted2);
ASSERT_FALSE(isDeleted2);
ASSERT_EQ(foo, foo2); // Not technically a legal comparison, but ...
sp<FooFixedAlloc> sp2(foo2);
wp<FooFixedAlloc> wp2(sp2);
ASSERT_TRUE(sp2 == wp2);
ASSERT_FALSE(sp2 != wp2);
ASSERT_TRUE(sp2 != wp1);
ASSERT_FALSE(sp2 == wp1);
ASSERT_FALSE(sp2 == sp1); // sp1 is null.
ASSERT_FALSE(wp1 == wp2); // wp1 refers to old object.
ASSERT_TRUE(wp1 != wp2);
ASSERT_TRUE(wp1 > wp2 || wp1 < wp2);
ASSERT_TRUE(wp1 >= wp2 || wp1 <= wp2);
ASSERT_FALSE(wp1 >= wp2 && wp1 <= wp2);
ASSERT_FALSE(wp1 == nullptr);
wp1 = sp2;
ASSERT_TRUE(wp1 == wp2);
ASSERT_FALSE(wp1 != wp2);
}
TEST(RefBase, AssertWeakRefExistsSuccess) {
bool isDeleted;
sp<Foo> foo = sp<Foo>::make(&isDeleted);
wp<Foo> weakFoo = foo;
EXPECT_EQ(weakFoo, wp<Foo>::fromExisting(foo.get()));
EXPECT_EQ(weakFoo.unsafe_get(), wp<Foo>::fromExisting(foo.get()).unsafe_get());
EXPECT_FALSE(isDeleted);
foo = nullptr;
EXPECT_TRUE(isDeleted);
}
TEST(RefBase, AssertWeakRefExistsDeath) {
// uses some other refcounting method, or none at all
bool isDeleted;
Foo* foo = new Foo(&isDeleted);
// can only get a valid wp<> object when you construct it from an sp<>
EXPECT_DEATH(wp<Foo>::fromExisting(foo), "");
delete foo;
}
TEST(RefBase, DoubleOwnershipDeath) {
bool isDeleted;
auto foo = sp<Foo>::make(&isDeleted);
// if something else thinks it owns foo, should die
EXPECT_DEATH(delete foo.get(), "");
EXPECT_FALSE(isDeleted);
}
TEST(RefBase, StackOwnershipDeath) {
bool isDeleted;
EXPECT_DEATH({ Foo foo(&isDeleted); foo.incStrong(nullptr); }, "");
}
// Set up a situation in which we race with visit2AndRremove() to delete
// 2 strong references. Bar destructor checks that there are no early
// deletions and prior updates are visible to destructor.
class Bar : public RefBase {
public:
Bar(std::atomic<int>* delete_count) : mVisited1(false), mVisited2(false),
mDeleteCount(delete_count) {
}
~Bar() {
EXPECT_TRUE(mVisited1);
EXPECT_TRUE(mVisited2);
(*mDeleteCount)++;
}
bool mVisited1;
bool mVisited2;
private:
std::atomic<int>* mDeleteCount;
};
static sp<Bar> buffer;
static std::atomic<bool> bufferFull(false);
// Wait until bufferFull has value val.
static inline void waitFor(bool val) {
while (bufferFull != val) {}
}
cpu_set_t otherCpus;
// Divide the cpus we're allowed to run on into myCpus and otherCpus.
// Set origCpus to the processors we were originally allowed to run on.
// Return false if origCpus doesn't include at least processors 0 and 1.
static bool setExclusiveCpus(cpu_set_t* origCpus /* out */,
cpu_set_t* myCpus /* out */, cpu_set_t* otherCpus) {
if (sched_getaffinity(0, sizeof(cpu_set_t), origCpus) != 0) {
return false;
}
if (!CPU_ISSET(0, origCpus) || !CPU_ISSET(1, origCpus)) {
return false;
}
CPU_ZERO(myCpus);
CPU_ZERO(otherCpus);
CPU_OR(myCpus, myCpus, origCpus);
CPU_OR(otherCpus, otherCpus, origCpus);
for (unsigned i = 0; i < CPU_SETSIZE; ++i) {
// I get the even cores, the other thread gets the odd ones.
if (i & 1) {
CPU_CLR(i, myCpus);
} else {
CPU_CLR(i, otherCpus);
}
}
return true;
}
static void visit2AndRemove() {
if (sched_setaffinity(0, sizeof(cpu_set_t), &otherCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
waitFor(true);
buffer->mVisited2 = true;
buffer = nullptr;
bufferFull = false;
}
}
TEST(RefBase, RacingDestructors) {
cpu_set_t origCpus;
cpu_set_t myCpus;
// Restrict us and the helper thread to disjoint cpu sets.
// This prevents us from getting scheduled against each other,
// which would be atrociously slow.
if (setExclusiveCpus(&origCpus, &myCpus, &otherCpus)) {
std::thread t(visit2AndRemove);
std::atomic<int> deleteCount(0);
if (sched_setaffinity(0, sizeof(cpu_set_t), &myCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
waitFor(false);
Bar* bar = new Bar(&deleteCount);
sp<Bar> sp3(bar);
buffer = sp3;
bufferFull = true;
ASSERT_TRUE(bar->getStrongCount() >= 1);
// Weak count includes strong count.
ASSERT_TRUE(bar->getWeakRefs()->getWeakCount() >= 1);
sp3->mVisited1 = true;
sp3 = nullptr;
}
t.join();
if (sched_setaffinity(0, sizeof(cpu_set_t), &origCpus) != 0) {
FAIL();
}
ASSERT_EQ(NITERS, deleteCount) << "Deletions missed!";
} // Otherwise this is slow and probably pointless on a uniprocessor.
}
static wp<Bar> wpBuffer;
static std::atomic<bool> wpBufferFull(false);
// Wait until wpBufferFull has value val.
static inline void wpWaitFor(bool val) {
while (wpBufferFull != val) {}
}
static void visit3AndRemove() {
if (sched_setaffinity(0, sizeof(cpu_set_t), &otherCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
wpWaitFor(true);
{
sp<Bar> sp1 = wpBuffer.promote();
// We implicitly check that sp1 != NULL
sp1->mVisited2 = true;
}
wpBuffer = nullptr;
wpBufferFull = false;
}
}
TEST(RefBase, RacingPromotions) {
cpu_set_t origCpus;
cpu_set_t myCpus;
// Restrict us and the helper thread to disjoint cpu sets.
// This prevents us from getting scheduled against each other,
// which would be atrociously slow.
if (setExclusiveCpus(&origCpus, &myCpus, &otherCpus)) {
std::thread t(visit3AndRemove);
std::atomic<int> deleteCount(0);
if (sched_setaffinity(0, sizeof(cpu_set_t), &myCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
Bar* bar = new Bar(&deleteCount);
wp<Bar> wp1(bar);
bar->mVisited1 = true;
if (i % (NITERS / 10) == 0) {
// Do this rarely, since it generates a log message.
wp1 = nullptr; // No longer destroys the object.
wp1 = bar;
}
wpBuffer = wp1;
ASSERT_EQ(bar->getWeakRefs()->getWeakCount(), 2);
wpBufferFull = true;
// Promotion races with that in visit3AndRemove.
// This may or may not succeed, but it shouldn't interfere with
// the concurrent one.
sp<Bar> sp1 = wp1.promote();
wpWaitFor(false); // Waits for other thread to drop strong pointer.
sp1 = nullptr;
// No strong pointers here.
sp1 = wp1.promote();
ASSERT_EQ(sp1.get(), nullptr) << "Dead wp promotion succeeded!";
}
t.join();
if (sched_setaffinity(0, sizeof(cpu_set_t), &origCpus) != 0) {
FAIL();
}
ASSERT_EQ(NITERS, deleteCount) << "Deletions missed!";
} // Otherwise this is slow and probably pointless on a uniprocessor.
}