blob: 1de9502ace28968340f6e0b245b43773105ad18f [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "chre/platform/slpi/see/see_helper.h"
#include "pb_decode.h"
#include "pb_encode.h"
#include "sns_cal.pb.h"
#include "sns_client.pb.h"
#include "sns_client_api_v01.h"
#include "sns_proximity.pb.h"
#include "sns_rc.h"
#include "sns_remote_proc_state.pb.h"
#include "sns_resampler.pb.h"
#include "sns_std.pb.h"
#include "sns_std_sensor.pb.h"
#include "stringl.h"
#include "timer.h"
#ifdef CHRE_SLPI_DEFAULT_BUILD
#include "sns_amd.pb.h"
#endif
#ifdef CHRE_SLPI_UIMG_ENABLED
#include "sns_qmi_client.h"
#endif
#include <algorithm>
#include <cfloat>
#include <cinttypes>
#include <cmath>
#include "chre/core/sensor_type_helpers.h"
#include "chre/platform/assert.h"
#include "chre/platform/log.h"
#include "chre/platform/slpi/system_time_util.h"
#include "chre/util/lock_guard.h"
#include "chre/util/macros.h"
#ifdef CHREX_SENSOR_SUPPORT
#include "chre/extensions/platform/vendor_sensor_types.h"
#endif // CHREX_SENSOR_SUPPORT
#define LOG_NANOPB_ERROR(stream) \
LOGE("Nanopb error: %s:%d", PB_GET_ERROR(stream), __LINE__)
#define LOG_UNHANDLED_MSG(message) \
LOGW("Unhandled msg ID %" PRIu32 ": line %d", message, __LINE__)
namespace chre {
namespace {
//! Operating mode indicating sensor is disabled.
const char *kOpModeOff = "OFF";
//! The SUID of the look up sensor.
const sns_std_suid kSuidLookup = sns_suid_sensor_init_default;
//! A struct to facilitate SEE response handling
struct SeeRespCbData {
SeeHelper *seeHelper;
uint32_t txnId;
};
//! A struct to facilitate pb encode/decode
struct SeeBufArg {
const void *buf;
size_t bufLen;
};
//! A struct to facilitate pb decode of sync calls.
struct SeeSyncArg {
sns_std_suid syncSuid;
void *syncData;
const char *syncDataType;
bool syncIndFound;
};
//! SeeFloatArg can be used to decode a vectorized 3x3 array.
constexpr size_t kSeeFloatArgValLen = 9;
//! A struct to facilitate decoding a float array.
struct SeeFloatArg {
size_t index;
float val[kSeeFloatArgValLen];
};
//! A struct to facilitate pb decode of sensor data event.
struct SeeDataArg {
uint64_t prevTimeNs;
uint64_t timeNs;
size_t sampleIndex;
size_t totalSamples;
UniquePtr<uint8_t> event;
UniquePtr<SeeHelperCallbackInterface::SamplingStatusData> status;
UniquePtr<struct chreSensorThreeAxisData> bias;
uint8_t sensorType;
bool isHostWakeSuspendEvent;
bool isHostAwake;
};
//! A struct to facilitate pb decode
struct SeeInfoArg {
sns_client *client;
sns_std_suid suid;
uint32_t msgId;
SeeSyncArg *sync;
SeeDataArg *data;
bool decodeMsgIdOnly;
Optional<sns_std_suid> *remoteProcSuid;
SeeCalHelper *calHelper;
};
//! A struct to facilitate decoding sensor attributes.
struct SeeAttrArg {
union {
char strVal[kSeeAttrStrValLen];
bool boolVal;
struct {
float fltMin;
float fltMax;
};
int64_t int64;
};
bool initialized;
};
/**
* Copy an encoded pb message to a wrapper proto's field.
*/
bool copyPayload(pb_ostream_t *stream, const pb_field_t *field,
void *const *arg) {
bool success = false;
auto *data = static_cast<const SeeBufArg *>(*arg);
if (!pb_encode_tag_for_field(stream, field)) {
LOG_NANOPB_ERROR(stream);
} else if (!pb_encode_string(stream,
static_cast<const pb_byte_t *>(data->buf),
data->bufLen)) {
LOG_NANOPB_ERROR(stream);
} else {
success = true;
}
return success;
}
/**
* Encodes sns_std_attr_req pb message.
*
* @param msg A non-null pointer to the pb message unique pointer whose object
* will be assigned here.
* @param msgLen A non-null pointer to the size of the encoded pb message.
*
* @return true if the pb message and length were obtained.
*/
bool encodeSnsStdAttrReq(UniquePtr<pb_byte_t> *msg, size_t *msgLen) {
CHRE_ASSERT(msg);
CHRE_ASSERT(msgLen);
// Initialize the pb message
sns_std_attr_req req = {};
bool success = pb_get_encoded_size(msgLen, sns_std_attr_req_fields, &req);
if (!success) {
LOGE("pb_get_encoded_size failed for sns_str_attr_req");
} else {
UniquePtr<pb_byte_t> buf(static_cast<pb_byte_t *>(memoryAlloc(*msgLen)));
*msg = std::move(buf);
// The encoded size can be 0 as there's only one optional field.
if (msg->isNull() && *msgLen > 0) {
LOG_OOM();
} else {
pb_ostream_t stream = pb_ostream_from_buffer(msg->get(), *msgLen);
success = pb_encode(&stream, sns_std_attr_req_fields, &req);
if (!success) {
LOG_NANOPB_ERROR(&stream);
}
}
}
return success;
}
/**
* Encodes sns_suid_req pb message.
*
* @param dataType Sensor data type, "accel" for example.
* @param msg A non-null pointer to the pb message unique pointer whose object
* will be assigned here.
* @param msgLen A non-null pointer to the size of the encoded pb message.
*
* @return true if the pb message and length were obtained.
*/
bool encodeSnsSuidReq(const char *dataType, UniquePtr<pb_byte_t> *msg,
size_t *msgLen) {
CHRE_ASSERT(msg);
CHRE_ASSERT(msgLen);
bool success = false;
// Initialize the pb message
SeeBufArg data = {
.buf = dataType,
.bufLen = strlen(dataType),
};
sns_suid_req req = {
.data_type.funcs.encode = copyPayload,
.data_type.arg = &data,
};
if (!pb_get_encoded_size(msgLen, sns_suid_req_fields, &req)) {
LOGE("pb_get_encoded_size failed for sns_suid_req: %s", dataType);
} else if (*msgLen == 0) {
LOGE("Invalid pb encoded size for sns_suid_req");
} else {
UniquePtr<pb_byte_t> buf(static_cast<pb_byte_t *>(memoryAlloc(*msgLen)));
*msg = std::move(buf);
if (msg->isNull()) {
LOG_OOM();
} else {
pb_ostream_t stream = pb_ostream_from_buffer(msg->get(), *msgLen);
success = pb_encode(&stream, sns_suid_req_fields, &req);
if (!success) {
LOG_NANOPB_ERROR(&stream);
}
}
}
return success;
}
/**
* Encodes sns_resampler_config pb message.
*
* @param request The request to be encoded.
* @param suid The SUID of the physical sensor to be resampled.
* @param msg A non-null pointer to the pb message unique pointer whose object
* will be assigned here.
* @param msgLen A non-null pointer to the size of the encoded pb message.
*
* @return true if the pb message and length were obtained.
*/
bool encodeSnsResamplerConfig(const SeeSensorRequest &request,
const sns_std_suid &suid,
UniquePtr<pb_byte_t> *msg, size_t *msgLen) {
CHRE_ASSERT(msg);
CHRE_ASSERT(msgLen);
bool success = false;
// Initialize the pb message
sns_resampler_config req = {
.sensor_uid = suid,
.resampled_rate = request.samplingRateHz,
.rate_type = SNS_RESAMPLER_RATE_FIXED,
.filter = true,
.has_axis_cnt = true,
.axis_cnt = 3, // TODO: set this properly.
};
if (!pb_get_encoded_size(msgLen, sns_resampler_config_fields, &req)) {
LOGE("pb_get_encoded_size failed for sns_resampler_config");
} else if (*msgLen == 0) {
LOGE("Invalid pb encoded size for sns_resampler_config");
} else {
UniquePtr<pb_byte_t> buf(static_cast<pb_byte_t *>(memoryAlloc(*msgLen)));
*msg = std::move(buf);
if (msg->isNull()) {
LOG_OOM();
} else {
pb_ostream_t stream = pb_ostream_from_buffer(msg->get(), *msgLen);
success = pb_encode(&stream, sns_resampler_config_fields, &req);
if (!success) {
LOG_NANOPB_ERROR(&stream);
}
}
}
return success;
}
/**
* Encodes sns_std_sensor_config pb message.
*
* @param request The request to be encoded.
* @param msg A non-null pointer to the pb message unique pointer whose object
* will be assigned here.
* @param msgLen A non-null pointer to the size of the encoded pb message.
*
* @return true if the pb message and length were obtained.
*/
bool encodeSnsStdSensorConfig(const SeeSensorRequest &request,
UniquePtr<pb_byte_t> *msg, size_t *msgLen) {
CHRE_ASSERT(msg);
CHRE_ASSERT(msgLen);
bool success = false;
// Initialize the pb message
sns_std_sensor_config req = {
.sample_rate = request.samplingRateHz,
};
if (!pb_get_encoded_size(msgLen, sns_std_sensor_config_fields, &req)) {
LOGE("pb_get_encoded_size failed for sns_std_sensor_config");
} else if (*msgLen == 0) {
LOGE("Invalid pb encoded size for sns_std_sensor_config");
} else {
UniquePtr<pb_byte_t> buf(static_cast<pb_byte_t *>(memoryAlloc(*msgLen)));
*msg = std::move(buf);
if (msg->isNull()) {
LOG_OOM();
} else {
pb_ostream_t stream = pb_ostream_from_buffer(msg->get(), *msgLen);
success = pb_encode(&stream, sns_std_sensor_config_fields, &req);
if (!success) {
LOG_NANOPB_ERROR(&stream);
}
}
}
return success;
}
bool encodeSnsRemoteProcSensorConfig(pb_byte_t *msgBuffer, size_t msgBufferSize,
size_t *msgLen,
sns_std_client_processor processorType) {
CHRE_ASSERT(msgBuffer);
CHRE_ASSERT(msgLen);
sns_remote_proc_state_config request = {
.proc_type = processorType,
};
pb_ostream_t stream = pb_ostream_from_buffer(msgBuffer, msgBufferSize);
bool success =
pb_encode(&stream, sns_remote_proc_state_config_fields, &request);
if (!success) {
LOG_NANOPB_ERROR(&stream);
} else {
*msgLen = stream.bytes_written;
}
return success;
}
/**
* Prepares a sns_client_req message with provided payload.
*/
bool prepSnsClientReq(sns_std_suid suid, uint32_t msgId, void *payload,
size_t payloadLen, bool batchValid,
uint32_t batchPeriodUs, bool passive,
UniquePtr<sns_client_request_msg> *msg, SeeBufArg *data) {
CHRE_ASSERT(payload || payloadLen == 0);
CHRE_ASSERT(msg);
CHRE_ASSERT(data);
bool success = false;
auto req = MakeUniqueZeroFill<sns_client_request_msg>();
if (req.isNull()) {
LOG_OOM();
} else {
success = true;
// Initialize sns_client_request_msg to be sent
data->buf = payload, data->bufLen = payloadLen,
req->suid = suid;
req->msg_id = msgId;
req->susp_config.client_proc_type = SNS_STD_CLIENT_PROCESSOR_SSC;
req->susp_config.delivery_type = SNS_CLIENT_DELIVERY_WAKEUP;
req->request.has_batching = batchValid;
req->request.batching.batch_period = batchPeriodUs;
// TODO: remove flush_period setting after resolving b/110823194.
req->request.batching.has_flush_period = true;
req->request.batching.flush_period = batchPeriodUs + 3000000;
req->request.payload.funcs.encode = copyPayload;
req->request.payload.arg = data;
req->request.has_is_passive = true;
req->request.is_passive = passive;
*msg = std::move(req);
}
return success;
}
/**
* Helps decode a pb string field and passes the string to the calling function.
*/
bool decodeStringField(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
auto *data = static_cast<SeeBufArg *>(*arg);
data->bufLen = stream->bytes_left;
data->buf = stream->state;
bool success = pb_read(stream, nullptr /* buf */, stream->bytes_left);
if (!success) {
LOG_NANOPB_ERROR(stream);
}
return success;
}
/**
* Decodes each SUID.
*/
bool decodeSnsSuidEventSuid(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
sns_std_suid suid = {};
bool success = pb_decode(stream, sns_std_suid_fields, &suid);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto *suids = static_cast<DynamicVector<sns_std_suid> *>(*arg);
suids->push_back(suid);
}
return success;
}
bool decodeSnsSuidEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
auto *info = static_cast<SeeInfoArg *>(*arg);
if (!suidsMatch(info->suid, kSuidLookup)) {
LOGE("SNS_SUID_MSGID_SNS_SUID_EVENT with incorrect SUID: 0x%" PRIx64
" %" PRIx64,
info->suid.suid_high, info->suid.suid_low);
}
SeeBufArg data;
DynamicVector<sns_std_suid> suids;
sns_suid_event event = {
.data_type.funcs.decode = decodeStringField,
.data_type.arg = &data,
.suid.funcs.decode = decodeSnsSuidEventSuid,
.suid.arg = &suids,
};
bool success = pb_decode(stream, sns_suid_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
// If syncData == nullptr, this indication is received outside of a sync
// call. If the decoded data type doesn't match the one we are waiting
// for, this indication is from a previous call (may be findSuidSync)
// and happens to arrive between another sync req/ind pair.
// Note that req/ind misalignment can still happen if findSuidSync is
// called again with the same data type.
// Note that there's no need to compare the SUIDs as no other calls
// but findSuidSync populate mWaitingDataType and can lead to a data
// type match.
if (info->sync->syncData == nullptr ||
strncmp(info->sync->syncDataType, static_cast<const char *>(data.buf),
std::min(data.bufLen, kSeeAttrStrValLen)) != 0) {
LOGW("Received late SNS_SUID_MSGID_SNS_SUID_EVENT indication");
} else {
info->sync->syncIndFound = true;
auto *outputSuids =
static_cast<DynamicVector<sns_std_suid> *>(info->sync->syncData);
for (const auto &suid : suids) {
outputSuids->push_back(suid);
}
}
}
return success;
}
/**
* Decode messages defined in sns_suid.proto
*/
bool decodeSnsSuidProtoEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
auto *info = static_cast<SeeInfoArg *>(*arg);
switch (info->msgId) {
case SNS_SUID_MSGID_SNS_SUID_EVENT:
success = decodeSnsSuidEvent(stream, field, arg);
break;
default:
LOG_UNHANDLED_MSG(info->msgId);
break;
}
return success;
}
/**
* Defined in sns_std_sensor.pb.h
*/
const char *getAttrNameFromAttrId(int32_t id) {
switch (id) {
case SNS_STD_SENSOR_ATTRID_NAME:
return "NAME";
case SNS_STD_SENSOR_ATTRID_VENDOR:
return "VENDOR";
case SNS_STD_SENSOR_ATTRID_TYPE:
return "TYPE";
case SNS_STD_SENSOR_ATTRID_AVAILABLE:
return "AVAILABLE";
case SNS_STD_SENSOR_ATTRID_VERSION:
return "VERSION";
case SNS_STD_SENSOR_ATTRID_API:
return "API";
case SNS_STD_SENSOR_ATTRID_RATES:
return "RATES";
case SNS_STD_SENSOR_ATTRID_RESOLUTIONS:
return "RESOLUTIONS";
case SNS_STD_SENSOR_ATTRID_FIFO_SIZE:
return "FIFO_SIZE";
case SNS_STD_SENSOR_ATTRID_ACTIVE_CURRENT:
return "ACTIVE_CURRENT";
case SNS_STD_SENSOR_ATTRID_SLEEP_CURRENT:
return "SLEEP_CURRENT";
case SNS_STD_SENSOR_ATTRID_RANGES:
return "RANGES";
case SNS_STD_SENSOR_ATTRID_OP_MODES:
return "OP_MODES";
case SNS_STD_SENSOR_ATTRID_DRI:
return "DRI";
case SNS_STD_SENSOR_ATTRID_STREAM_SYNC:
return "STREAM_SYNC";
case SNS_STD_SENSOR_ATTRID_EVENT_SIZE:
return "EVENT_SIZE";
case SNS_STD_SENSOR_ATTRID_STREAM_TYPE:
return "STREAM_TYPE";
case SNS_STD_SENSOR_ATTRID_DYNAMIC:
return "DYNAMIC";
case SNS_STD_SENSOR_ATTRID_HW_ID:
return "HW_ID";
case SNS_STD_SENSOR_ATTRID_RIGID_BODY:
return "RIGID_BODY";
case SNS_STD_SENSOR_ATTRID_PLACEMENT:
return "PLACEMENT";
case SNS_STD_SENSOR_ATTRID_PHYSICAL_SENSOR:
return "PHYSICAL_SENSOR";
case SNS_STD_SENSOR_ATTRID_PHYSICAL_SENSOR_TESTS:
return "PHYSICAL_SENSOR_TESTS";
case SNS_STD_SENSOR_ATTRID_SELECTED_RESOLUTION:
return "SELECTED_RESOLUTION";
case SNS_STD_SENSOR_ATTRID_SELECTED_RANGE:
return "SELECTED_RANGE";
case SNS_STD_SENSOR_ATTRID_ADDITIONAL_LOW_LATENCY_RATES:
return "LOW_LATENCY_RATES";
case SNS_STD_SENSOR_ATTRID_PASSIVE_REQUEST:
return "PASSIVE_REQUEST";
default:
return "UNKNOWN ATTRIBUTE";
}
}
/**
* Decodes each attribute field and passes the value to the calling function.
* For repeated fields of float or integers, only store the maximum and
* minimum values for the calling function.
*/
bool decodeSnsStdAttrValue(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
struct DecodeData {
SeeBufArg strData;
SeeAttrArg subtypeAttrArg;
sns_std_attr_value_data value;
};
auto data = MakeUniqueZeroFill<DecodeData>();
if (data.isNull()) {
LOG_OOM();
} else {
data->value.str.funcs.decode = decodeStringField;
data->value.str.arg = &data->strData;
data->value.subtype.values.funcs.decode = decodeSnsStdAttrValue;
data->value.subtype.values.arg = &data->subtypeAttrArg;
success = pb_decode(stream, sns_std_attr_value_data_fields, &data->value);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto *attrVal = static_cast<SeeAttrArg *>(*arg);
if (data->value.has_flt) {
// If this is a float (repeated) field, initialize the union as floats
// to store the maximum and minmum values of the repeated fields.
if (!attrVal->initialized) {
attrVal->initialized = true;
attrVal->fltMin = FLT_MAX;
attrVal->fltMax = FLT_MIN;
}
if (data->value.flt < attrVal->fltMin) {
attrVal->fltMin = data->value.flt;
}
if (data->value.flt > attrVal->fltMax) {
attrVal->fltMax = data->value.flt;
}
} else if (data->value.has_sint) {
attrVal->int64 = data->value.sint;
} else if (data->value.has_boolean) {
attrVal->boolVal = data->value.boolean;
} else if (data->strData.buf != nullptr) {
strlcpy(attrVal->strVal, static_cast<const char *>(data->strData.buf),
sizeof(attrVal->strVal));
} else if (!data->value.has_subtype) {
LOGW("Unknown attr type");
}
}
}
return success;
}
bool decodeSnsStrAttr(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
struct Decodedata {
SeeAttrArg attrArg;
sns_std_attr attr;
};
auto data = MakeUniqueZeroFill<Decodedata>();
if (data.isNull()) {
LOG_OOM();
} else {
data->attr.value.values.funcs.decode = decodeSnsStdAttrValue;
data->attr.value.values.arg = &data->attrArg;
success = pb_decode(stream, sns_std_attr_fields, &data->attr);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto *attrData = static_cast<SeeAttributes *>(*arg);
switch (data->attr.attr_id) {
case SNS_STD_SENSOR_ATTRID_NAME:
strlcpy(attrData->name, data->attrArg.strVal, sizeof(attrData->name));
break;
case SNS_STD_SENSOR_ATTRID_VENDOR:
strlcpy(attrData->vendor, data->attrArg.strVal,
sizeof(attrData->vendor));
break;
case SNS_STD_SENSOR_ATTRID_AVAILABLE:
if (!data->attrArg.boolVal) {
LOGW("%s: %d", getAttrNameFromAttrId(data->attr.attr_id),
data->attrArg.boolVal);
}
break;
case SNS_STD_SENSOR_ATTRID_RATES:
attrData->maxSampleRate = data->attrArg.fltMax;
break;
case SNS_STD_SENSOR_ATTRID_STREAM_TYPE:
attrData->streamType = data->attrArg.int64;
break;
case SNS_STD_SENSOR_ATTRID_HW_ID:
attrData->hwId = data->attrArg.int64;
break;
case SNS_STD_SENSOR_ATTRID_PASSIVE_REQUEST:
attrData->passiveRequest = data->attrArg.boolVal;
break;
default:
break;
}
}
}
return success;
}
bool decodeSnsStdAttrEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
struct DecodeData {
SeeAttributes attr;
sns_std_attr_event event;
};
auto data = MakeUniqueZeroFill<DecodeData>();
if (data.isNull()) {
LOG_OOM();
} else {
data->event.attributes.funcs.decode = decodeSnsStrAttr;
data->event.attributes.arg = &data->attr;
success = pb_decode(stream, sns_std_attr_event_fields, &data->event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto *info = static_cast<SeeInfoArg *>(*arg);
// If syncData == nullptr, this indication is received outside of a sync
// call. If the decoded SUID doesn't match the one we are waiting for,
// this indication is from a previous getAttributes call and happens to
// arrive between a later findAttributesSync req/ind pair.
// Note that req/ind misalignment can still happen if getAttributesSync is
// called again with the same SUID.
if (info->sync->syncData == nullptr ||
!suidsMatch(info->suid, info->sync->syncSuid)) {
LOGW("Received late SNS_STD_MSGID_SNS_STD_ATTR_EVENT indication");
} else {
info->sync->syncIndFound = true;
memcpy(info->sync->syncData, &data->attr, sizeof(data->attr));
}
}
}
return success;
}
/**
* Decode messages defined in sns_std.proto
*/
bool decodeSnsStdProtoEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
auto *info = static_cast<SeeInfoArg *>(*arg);
switch (info->msgId) {
case SNS_STD_MSGID_SNS_STD_ATTR_EVENT:
success = decodeSnsStdAttrEvent(stream, field, arg);
break;
case SNS_STD_MSGID_SNS_STD_FLUSH_EVENT:
// An empty message.
success = true;
break;
case SNS_STD_MSGID_SNS_STD_ERROR_EVENT: {
sns_std_error_event event = {};
success = pb_decode(stream, sns_std_error_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
LOGW("SNS_STD_MSGID_SNS_STD_ERROR_EVENT: %d", event.error);
}
break;
}
default:
LOG_UNHANDLED_MSG(info->msgId);
}
return success;
}
void populateEventSample(SeeInfoArg *info, const float *val) {
SeeDataArg *data = info->data;
size_t index = data->sampleIndex;
if (!data->event.isNull() && index < data->totalSamples) {
SensorSampleType sampleType =
PlatformSensorTypeHelpers::getSensorSampleTypeFromSensorType(
data->sensorType);
uint32_t *timestampDelta = nullptr;
switch (sampleType) {
case SensorSampleType::ThreeAxis: {
auto *event =
reinterpret_cast<chreSensorThreeAxisData *>(data->event.get());
info->calHelper->applyCalibration(data->sensorType, val,
event->readings[index].values);
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Float: {
auto *event =
reinterpret_cast<chreSensorFloatData *>(data->event.get());
event->readings[index].value = val[0];
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Byte: {
auto *event = reinterpret_cast<chreSensorByteData *>(data->event.get());
event->readings[index].value = 0;
event->readings[index].isNear = (val[0] > 0.5f);
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Occurrence: {
auto *event =
reinterpret_cast<chreSensorOccurrenceData *>(data->event.get());
timestampDelta = &event->readings[index].timestampDelta;
break;
}
#ifdef CHREX_SENSOR_SUPPORT
case SensorSampleType::Vendor0: {
auto *event =
reinterpret_cast<chrexSensorVendor0Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor1: {
auto *event =
reinterpret_cast<chrexSensorVendor1Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor2: {
auto *event =
reinterpret_cast<chrexSensorVendor2Data *>(data->event.get());
event->readings[index].value = *val;
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor3: {
auto *event =
reinterpret_cast<chrexSensorVendor3Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor4: {
auto *event =
reinterpret_cast<chrexSensorVendor4Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor5: {
auto *event =
reinterpret_cast<chrexSensorVendor5Data *>(data->event.get());
event->readings[index].value = *val;
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor6: {
auto *event =
reinterpret_cast<chrexSensorVendor6Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor7: {
auto *event =
reinterpret_cast<chrexSensorVendor7Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor8: {
auto *event =
reinterpret_cast<chrexSensorVendor8Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor9: {
auto *event =
reinterpret_cast<chrexSensorVendor9Data *>(data->event.get());
event->readings[index].value = *val;
timestampDelta = &event->readings[index].timestampDelta;
break;
}
case SensorSampleType::Vendor10: {
auto *event =
reinterpret_cast<chrexSensorVendor10Data *>(data->event.get());
memcpy(event->readings[index].values, val,
sizeof(event->readings[index].values));
timestampDelta = &event->readings[index].timestampDelta;
break;
}
#endif // CHREX_SENSOR_SUPPORT
default:
LOGE("Invalid sample type %" PRIu8, static_cast<uint8_t>(sampleType));
}
if (data->sampleIndex == 0) {
auto *header =
reinterpret_cast<chreSensorDataHeader *>(data->event.get());
header->baseTimestamp = data->timeNs;
*timestampDelta = 0;
} else {
uint64_t delta = data->timeNs - data->prevTimeNs;
if (delta > UINT32_MAX) {
LOGE("Sensor %" PRIu8 " timestampDelta overflow: prev %" PRIu64
" curr %" PRIu64,
static_cast<uint8_t>(data->sensorType), data->prevTimeNs,
data->timeNs);
delta = UINT32_MAX;
}
*timestampDelta = static_cast<uint32_t>(delta);
}
data->prevTimeNs = data->timeNs;
}
}
/**
* Decodes a float array and ensures that the data doesn't go out of bound.
*/
bool decodeFloatData(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
auto *data = static_cast<SeeFloatArg *>(*arg);
float value;
float *fltPtr = &value;
if (data->index >= ARRAY_SIZE(data->val)) {
LOGE("Float array length exceeds %zu", ARRAY_SIZE(data->val));
} else {
// Decode to the provided array only if it doesn't go out of bound.
fltPtr = &(data->val[data->index]);
}
// Increment index whether it's gone out of bounds or not.
(data->index)++;
bool success = pb_decode_fixed32(stream, fltPtr);
if (!success) {
LOG_NANOPB_ERROR(stream);
}
return success;
}
bool decodeSnsStdSensorPhysicalConfigEvent(pb_istream_t *stream,
const pb_field_t *field,
void **arg) {
SeeBufArg data = {};
sns_std_sensor_physical_config_event event = {
.operation_mode.funcs.decode = decodeStringField,
.operation_mode.arg = &data,
};
bool success =
pb_decode(stream, sns_std_sensor_physical_config_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto statusData =
MakeUniqueZeroFill<SeeHelperCallbackInterface::SamplingStatusData>();
if (statusData.isNull()) {
LOG_OOM();
} else {
struct chreSensorSamplingStatus *status = &statusData->status;
if (event.has_sample_rate) {
statusData->intervalValid = true;
status->interval = static_cast<uint64_t>(
ceilf(Seconds(1).toRawNanoseconds() / event.sample_rate));
}
// If operation_mode is populated, decoded string length will be > 0.
if (data.bufLen > 0) {
statusData->enabledValid = true;
status->enabled =
(strncmp(static_cast<const char *>(data.buf), kOpModeOff,
std::min(data.bufLen, sizeof(kOpModeOff))) != 0);
}
if (event.has_sample_rate || data.bufLen > 0) {
auto *info = static_cast<SeeInfoArg *>(*arg);
statusData->sensorType = info->data->sensorType;
info->data->status = std::move(statusData);
}
}
}
return success;
}
bool decodeSnsStdSensorEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
SeeFloatArg sample = {};
sns_std_sensor_event event = {
.data.funcs.decode = decodeFloatData,
.data.arg = &sample,
};
bool success = pb_decode(stream, sns_std_sensor_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto *info = static_cast<SeeInfoArg *>(*arg);
populateEventSample(info, sample.val);
}
return success;
}
/**
* Decode messages defined in sns_std_sensor.proto
*/
bool decodeSnsStdSensorProtoEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
auto *info = static_cast<SeeInfoArg *>(*arg);
switch (info->msgId) {
case SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_PHYSICAL_CONFIG_EVENT:
success = decodeSnsStdSensorPhysicalConfigEvent(stream, field, arg);
break;
case SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_EVENT:
success = decodeSnsStdSensorEvent(stream, field, arg);
break;
default:
LOG_UNHANDLED_MSG(info->msgId);
}
return success;
}
/**
* Helper function to convert sns_std_sensor_sample_status to
* CHRE_SENSOR_ACCURACY_* values.
*
* @param status the SEE sensor sample status
*
* @return the corresponding CHRE_SENSOR_ACCURACY_* value,
* CHRE_SENSOR_ACCURACY_UNKNOWN if invalid
*/
uint8_t getChreSensorAccuracyFromSeeSampleStatus(
sns_std_sensor_sample_status status) {
switch (status) {
case SNS_STD_SENSOR_SAMPLE_STATUS_UNRELIABLE:
return CHRE_SENSOR_ACCURACY_UNRELIABLE;
case SNS_STD_SENSOR_SAMPLE_STATUS_ACCURACY_LOW:
return CHRE_SENSOR_ACCURACY_LOW;
case SNS_STD_SENSOR_SAMPLE_STATUS_ACCURACY_MEDIUM:
return CHRE_SENSOR_ACCURACY_MEDIUM;
case SNS_STD_SENSOR_SAMPLE_STATUS_ACCURACY_HIGH:
return CHRE_SENSOR_ACCURACY_HIGH;
default:
return CHRE_SENSOR_ACCURACY_UNKNOWN;
}
}
bool decodeSnsCalEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
SeeFloatArg offset = {};
SeeFloatArg scale = {};
SeeFloatArg matrix = {};
sns_cal_event event = {
.bias.funcs.decode = decodeFloatData,
.bias.arg = &offset,
.scale_factor.funcs.decode = decodeFloatData,
.scale_factor.arg = &scale,
.comp_matrix.funcs.decode = decodeFloatData,
.comp_matrix.arg = &matrix,
};
bool success = pb_decode(stream, sns_cal_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto *info = static_cast<SeeInfoArg *>(*arg);
SeeCalHelper *calHelper = info->calHelper;
bool hasBias = (offset.index == 3);
bool hasScale = (scale.index == 3);
bool hasMatrix = (matrix.index == 9);
uint8_t accuracy = getChreSensorAccuracyFromSeeSampleStatus(event.status);
calHelper->updateCalibration(info->suid, hasBias, offset.val, hasScale,
scale.val, hasMatrix, matrix.val, accuracy,
info->data->timeNs);
uint8_t sensorType;
auto biasData = MakeUniqueZeroFill<struct chreSensorThreeAxisData>();
if (biasData.isNull()) {
LOG_OOM();
} else if (calHelper->getSensorTypeFromSuid(info->suid, &sensorType) &&
calHelper->getBias(sensorType, biasData.get())) {
info->data->bias = std::move(biasData);
info->data->sensorType = sensorType;
}
}
return success;
}
/**
* Decode messages defined in sns_cal.proto
*/
bool decodeSnsCalProtoEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
auto *info = static_cast<SeeInfoArg *>(*arg);
switch (info->msgId) {
case SNS_CAL_MSGID_SNS_CAL_EVENT:
success = decodeSnsCalEvent(stream, field, arg);
break;
default:
LOG_UNHANDLED_MSG(info->msgId);
}
return success;
}
bool decodeSnsProximityEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
sns_proximity_event event = {};
bool success = pb_decode(stream, sns_proximity_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
float value = static_cast<float>(event.proximity_event_type);
auto *info = static_cast<SeeInfoArg *>(*arg);
populateEventSample(info, &value);
}
return success;
}
/**
* Decode messages defined in sns_proximity.proto
*/
bool decodeSnsProximityProtoEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
auto *info = static_cast<SeeInfoArg *>(*arg);
switch (info->msgId) {
case SNS_PROXIMITY_MSGID_SNS_PROXIMITY_EVENT:
success = decodeSnsProximityEvent(stream, field, arg);
break;
default:
LOG_UNHANDLED_MSG(info->msgId);
}
return success;
}
bool decodeSnsResamplerConfigEvent(pb_istream_t *stream,
const pb_field_t *field, void **arg) {
sns_resampler_config_event event = {};
bool success = pb_decode(stream, sns_resampler_config_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
auto *info = static_cast<SeeInfoArg *>(*arg);
LOGD("SensorType %" PRIu8 " resampler quality %" PRIu8,
static_cast<uint8_t>(info->data->sensorType),
static_cast<uint8_t>(event.quality));
}
return success;
}
/**
* Decode messages defined in sns_resampler.proto
*/
bool decodeSnsResamplerProtoEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
auto *info = static_cast<SeeInfoArg *>(*arg);
switch (info->msgId) {
case SNS_RESAMPLER_MSGID_SNS_RESAMPLER_CONFIG_EVENT:
success = decodeSnsResamplerConfigEvent(stream, field, arg);
break;
default:
LOG_UNHANDLED_MSG(info->msgId);
}
return success;
}
bool decodeSnsRemoteProcStateEvent(pb_istream_t *stream,
const pb_field_t *field, void **arg) {
sns_remote_proc_state_event event = sns_remote_proc_state_event_init_default;
bool success = pb_decode(stream, sns_remote_proc_state_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else if (event.proc_type == SNS_STD_CLIENT_PROCESSOR_APSS) {
auto *info = static_cast<SeeInfoArg *>(*arg);
info->data->isHostWakeSuspendEvent = true;
info->data->isHostAwake = (event.event_type == SNS_REMOTE_PROC_STATE_AWAKE);
}
return success;
}
/**
* Decode messages defined in sns_remote_proc_state.proto
*/
bool decodeSnsRemoteProcProtoEvent(pb_istream_t *stream,
const pb_field_t *field, void **arg) {
bool success = false;
auto *info = static_cast<SeeInfoArg *>(*arg);
switch (info->msgId) {
case SNS_REMOTE_PROC_STATE_MSGID_SNS_REMOTE_PROC_STATE_EVENT:
success = decodeSnsRemoteProcStateEvent(stream, field, arg);
break;
default:
LOG_UNHANDLED_MSG(info->msgId);
}
return success;
}
#ifdef CHRE_SLPI_DEFAULT_BUILD
bool decodeSnsAmdProtoEvent(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
bool success = false;
sns_amd_event event = sns_amd_event_init_default;
auto *info = static_cast<SeeInfoArg *>(*arg);
if (!pb_decode(stream, sns_amd_event_fields, &event)) {
LOG_NANOPB_ERROR(stream);
} else {
// Stationary / instant motion share the same suid so modify the sensorType
// to be the correct type depending on the event.
if (SNS_AMD_EVENT_TYPE_STATIONARY == event.state) {
info->data->sensorType = CHRE_SENSOR_TYPE_STATIONARY_DETECT;
} else if (SNS_AMD_EVENT_TYPE_MOTION == event.state) {
info->data->sensorType = CHRE_SENSOR_TYPE_INSTANT_MOTION_DETECT;
} else {
CHRE_ASSERT(false);
}
float val = 0;
populateEventSample(info, &val);
success = true;
}
return success;
}
#endif
bool assignPayloadCallback(const SeeInfoArg *info, pb_callback_t *payload) {
bool success = true;
payload->arg = const_cast<SeeInfoArg *>(info);
if (info->remoteProcSuid->has_value() &&
suidsMatch(info->suid, info->remoteProcSuid->value())) {
payload->funcs.decode = decodeSnsRemoteProcProtoEvent;
} else if (suidsMatch(info->suid, kSuidLookup)) {
payload->funcs.decode = decodeSnsSuidProtoEvent;
} else {
// Assumed: "real" sensors SUIDs
switch (info->msgId) {
case SNS_STD_MSGID_SNS_STD_ATTR_EVENT:
case SNS_STD_MSGID_SNS_STD_FLUSH_EVENT:
case SNS_STD_MSGID_SNS_STD_ERROR_EVENT:
payload->funcs.decode = decodeSnsStdProtoEvent;
break;
case SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_PHYSICAL_CONFIG_EVENT:
case SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_EVENT:
payload->funcs.decode = decodeSnsStdSensorProtoEvent;
break;
case SNS_CAL_MSGID_SNS_CAL_EVENT:
payload->funcs.decode = decodeSnsCalProtoEvent;
break;
case SNS_PROXIMITY_MSGID_SNS_PROXIMITY_EVENT:
payload->funcs.decode = decodeSnsProximityProtoEvent;
break;
case SNS_RESAMPLER_MSGID_SNS_RESAMPLER_CONFIG_EVENT:
payload->funcs.decode = decodeSnsResamplerProtoEvent;
break;
#ifdef CHRE_SLPI_DEFAULT_BUILD
case SNS_AMD_MSGID_SNS_AMD_EVENT:
payload->funcs.decode = decodeSnsAmdProtoEvent;
break;
#endif
default:
success = false;
LOG_UNHANDLED_MSG(info->msgId);
}
}
return success;
}
/**
* Decodes only msg_id and timestamp defined in sns_client_event and converts
* the timestamp to nanoseconds.
*/
bool decodeMsgIdAndTime(pb_istream_t *stream, uint32_t *msgId,
uint64_t *timeNs) {
sns_client_event_msg_sns_client_event event = {};
bool success =
pb_decode(stream, sns_client_event_msg_sns_client_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(stream);
} else {
*msgId = event.msg_id;
*timeNs = getNanosecondsFromQTimerTicks(event.timestamp);
}
return success;
}
/**
* Decodes pb-encoded message
*/
bool decodeSnsClientEventMsg(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
// Make a copy for data decoding.
pb_istream_t streamCpy = *stream;
auto *info = static_cast<SeeInfoArg *>(*arg);
bool success = decodeMsgIdAndTime(stream, &info->msgId, &info->data->timeNs);
if (success && !info->decodeMsgIdOnly) {
sns_client_event_msg_sns_client_event event = {};
// Payload callback must be assigned if and only if we want to decode beyond
// msg ID.
success = assignPayloadCallback(info, &event.payload);
if (!success) {
LOGE("No pb callback assigned");
} else {
success = pb_decode(&streamCpy,
sns_client_event_msg_sns_client_event_fields, &event);
if (!success) {
LOG_NANOPB_ERROR(&streamCpy);
}
}
}
// Increment sample count only after sensor event decoding.
if (success && (info->msgId == SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_EVENT ||
info->msgId == SNS_PROXIMITY_MSGID_SNS_PROXIMITY_EVENT
#ifdef CHRE_SLPI_DEFAULT_BUILD
|| info->msgId == SNS_AMD_MSGID_SNS_AMD_EVENT
#endif
)) {
info->data->sampleIndex++;
}
return success;
}
/**
* Obtain the SensorType from the list of registered SensorInfos.
*/
uint8_t getSensorTypeFromSensorInfo(
sns_client *client, const sns_std_suid &suid,
const DynamicVector<SeeHelper::SensorInfo> &sensorInfos) {
bool suidFound = false;
uint8_t otherType;
for (const auto &sensorInfo : sensorInfos) {
if (suidsMatch(sensorInfo.suid, suid)) {
suidFound = true;
if (sensorInfo.client == client) {
return sensorInfo.sensorType;
}
otherType = sensorInfo.sensorType;
}
}
if (suidFound) {
LOGE("Unmatched client: %p, SUID 0x%016" PRIx64 " %016" PRIx64, client,
suid.suid_high, suid.suid_low);
// Return SensorType in the other sns_client that matches the SUID as a
// backup plan.
return otherType;
}
return CHRE_SENSOR_TYPE_INVALID;
}
/**
* Allocate event memory according to SensorType and the number of samples.
*/
void *allocateEvent(uint8_t sensorType, size_t numSamples) {
SensorSampleType sampleType =
PlatformSensorTypeHelpers::getSensorSampleTypeFromSensorType(sensorType);
size_t sampleSize = 0;
switch (sampleType) {
case SensorSampleType::ThreeAxis:
sampleSize =
sizeof(chreSensorThreeAxisData::chreSensorThreeAxisSampleData);
break;
case SensorSampleType::Float:
sampleSize = sizeof(chreSensorFloatData::chreSensorFloatSampleData);
break;
case SensorSampleType::Byte:
sampleSize = sizeof(chreSensorByteData::chreSensorByteSampleData);
break;
case SensorSampleType::Occurrence:
sampleSize =
sizeof(chreSensorOccurrenceData::chreSensorOccurrenceSampleData);
break;
#ifdef CHREX_SENSOR_SUPPORT
case SensorSampleType::Vendor0:
sampleSize = sizeof(chrexSensorVendor0SampleData);
break;
case SensorSampleType::Vendor1:
sampleSize = sizeof(chrexSensorVendor1SampleData);
break;
case SensorSampleType::Vendor2:
sampleSize = sizeof(chrexSensorVendor2SampleData);
break;
case SensorSampleType::Vendor3:
sampleSize = sizeof(chrexSensorVendor3SampleData);
break;
case SensorSampleType::Vendor4:
sampleSize = sizeof(chrexSensorVendor4SampleData);
break;
case SensorSampleType::Vendor5:
sampleSize = sizeof(chrexSensorVendor5SampleData);
break;
case SensorSampleType::Vendor6:
sampleSize = sizeof(chrexSensorVendor6SampleData);
break;
case SensorSampleType::Vendor7:
sampleSize = sizeof(chrexSensorVendor7SampleData);
break;
case SensorSampleType::Vendor8:
sampleSize = sizeof(chrexSensorVendor8SampleData);
break;
case SensorSampleType::Vendor9:
sampleSize = sizeof(chrexSensorVendor9SampleData);
break;
case SensorSampleType::Vendor10:
sampleSize = sizeof(chrexSensorVendor10SampleData);
break;
#endif // CHREX_SENSOR_SUPPORT
default:
LOGE("Unhandled SensorSampleType for SensorType %" PRIu8,
static_cast<uint8_t>(sensorType));
}
size_t memorySize =
(sampleType == SensorSampleType::Unknown)
? 0
: (sizeof(chreSensorDataHeader) + numSamples * sampleSize);
void *event = (memorySize == 0) ? nullptr : memoryAlloc(memorySize);
if (event == nullptr && memorySize != 0) {
LOG_OOM();
}
return event;
}
// Allocates the sensor event memory and partially populates the header.
bool prepareSensorEvent(SeeInfoArg &info) {
bool success = false;
UniquePtr<uint8_t> buf(static_cast<uint8 *>(
allocateEvent(info.data->sensorType, info.data->sampleIndex)));
info.data->event = std::move(buf);
if (!info.data->event.isNull()) {
success = true;
info.data->prevTimeNs = 0;
auto *header =
reinterpret_cast<chreSensorDataHeader *>(info.data->event.get());
header->reserved = 0;
header->readingCount = info.data->sampleIndex;
header->accuracy = CHRE_SENSOR_ACCURACY_UNKNOWN;
// Protect against out of bounds access in data decoding.
info.data->totalSamples = info.data->sampleIndex;
// Reset sampleIndex only after memory has been allocated and header
// populated.
info.data->sampleIndex = 0;
}
return success;
}
} // anonymous namespace
const SeeHelper::SnsClientApi SeeHelper::kDefaultApi = {
.sns_client_init = sns_client_init,
.sns_client_deinit = sns_client_deinit,
.sns_client_send = sns_client_send,
};
#ifdef CHRE_SLPI_UIMG_ENABLED
const SeeHelper::SnsClientApi BigImageSeeHelper::kQmiApi = {
.sns_client_init = sns_qmi_client_init,
.sns_client_deinit = sns_qmi_client_deinit,
.sns_client_send = sns_qmi_client_send,
};
#endif // CHRE_SLPI_UIMG_ENABLED
SeeHelper::SeeHelper() {
mCalHelper = memoryAlloc<SeeCalHelper>();
if (mCalHelper == nullptr) {
FATAL_ERROR("Failed to allocate SeeCalHelper");
}
mOwnsCalHelper = true;
}
SeeHelper::SeeHelper(SeeCalHelper *calHelper)
: mCalHelper(calHelper), mOwnsCalHelper(false) {}
SeeHelper::~SeeHelper() {
for (auto *client : mSeeClients) {
int status = mSnsClientApi->sns_client_deinit(client);
if (status != 0) {
LOGE("Failed to release sensor client: %d", status);
}
}
if (mOwnsCalHelper) {
mCalHelper->~SeeCalHelper();
memoryFree(mCalHelper);
}
}
void SeeHelper::handleSnsClientEventMsg(sns_client *client, const void *payload,
size_t payloadLen) {
CHRE_ASSERT(payload);
pb_istream_t stream = pb_istream_from_buffer(
static_cast<const pb_byte_t *>(payload), payloadLen);
// Make a copy of the stream for sensor data decoding.
pb_istream_t streamCpy = stream;
struct DecodeData {
SeeSyncArg syncArg = {};
SeeDataArg dataArg = {};
SeeInfoArg info = {};
sns_client_event_msg event = {};
};
auto data = MakeUnique<DecodeData>();
if (data.isNull()) {
LOG_OOM();
} else {
// Only initialize fields that are not accessed in the main CHRE thread.
data->info.client = client;
data->info.sync = &data->syncArg;
data->info.data = &data->dataArg;
data->info.decodeMsgIdOnly = true;
data->info.remoteProcSuid = &mRemoteProcSuid;
data->info.calHelper = mCalHelper;
data->event.events.funcs.decode = decodeSnsClientEventMsg;
data->event.events.arg = &data->info;
// Decode only SUID and MSG ID to help further decode.
if (!pb_decode(&stream, sns_client_event_msg_fields, &data->event)) {
LOG_NANOPB_ERROR(&stream);
} else {
data->info.suid = data->event.suid;
data->info.decodeMsgIdOnly = false;
data->info.data->sensorType = getSensorTypeFromSensorInfo(
data->info.client, data->info.suid, mSensorInfos);
mMutex.lock();
bool synchronizedDecode = mWaitingOnInd;
if (!synchronizedDecode) {
// Early unlock, we're not going to use anything from the main thread.
mMutex.unlock();
} else {
// Populate fields set by the main thread.
data->info.sync->syncData = mSyncData;
data->info.sync->syncDataType = mSyncDataType;
data->info.sync->syncSuid = mSyncSuid;
}
if (data->info.data->sampleIndex > 0) {
if (data->info.data->sensorType == CHRE_SENSOR_TYPE_INVALID) {
LOGE("Unhandled sensor data SUID 0x%016" PRIx64 " %016" PRIx64,
data->info.suid.suid_high, data->info.suid.suid_low);
} else if (!prepareSensorEvent(data->info)) {
LOGE("Failed to prepare sensor event");
}
}
if (!pb_decode(&streamCpy, sns_client_event_msg_fields, &data->event)) {
LOG_NANOPB_ERROR(&streamCpy);
} else if (synchronizedDecode && data->info.sync->syncIndFound) {
mWaitingOnInd = false;
mCond.notify_one();
} else {
if (data->info.msgId == SNS_STD_MSGID_SNS_STD_FLUSH_EVENT) {
mCbIf->onFlushCompleteEvent(data->info.data->sensorType);
}
if (data->info.data->isHostWakeSuspendEvent) {
mCbIf->onHostWakeSuspendEvent(data->info.data->isHostAwake);
}
if (!data->info.data->event.isNull()) {
mCbIf->onSensorDataEvent(data->info.data->sensorType,
std::move(data->info.data->event));
}
if (!data->info.data->bias.isNull()) {
mCbIf->onSensorBiasEvent(data->info.data->sensorType,
std::move(data->info.data->bias));
}
if (!data->info.data->status.isNull()) {
if (data->info.data->sensorType == CHRE_SENSOR_TYPE_INVALID) {
LOGE("Unhandled sensor status SUID 0x%016" PRIx64 " %016" PRIx64,
data->info.suid.suid_high, data->info.suid.suid_low);
} else {
mCbIf->onSamplingStatusUpdate(std::move(data->info.data->status));
}
}
}
if (synchronizedDecode) {
mMutex.unlock();
}
}
}
}
void SeeHelper::handleSeeResp(uint32_t txnId, sns_std_error error) {
LockGuard<Mutex> lock(mMutex);
if (mWaitingOnResp && txnId == mCurrentTxnId) {
mRespError = error;
mWaitingOnResp = false;
mCond.notify_one();
}
}
bool SeeHelper::findSuidSync(const char *dataType,
DynamicVector<sns_std_suid> *suids,
uint8_t minNumSuids, uint32_t maxRetries,
Milliseconds retryDelay) {
CHRE_ASSERT(suids != nullptr);
CHRE_ASSERT(minNumSuids > 0);
bool success = false;
if (mSeeClients.empty()) {
LOGE("Sensor client wasn't initialized");
} else {
UniquePtr<pb_byte_t> msg;
size_t msgLen;
if (encodeSnsSuidReq(dataType, &msg, &msgLen)) {
// Sensor client service may come up before SEE sensors are enumerated. A
// max dwell time is set and retries are performed as currently there's no
// message indicating that SEE intialization is complete.
uint32_t trialCount = 0;
do {
suids->clear();
if (++trialCount > 1) {
timer_sleep(retryDelay.getMilliseconds(), T_MSEC,
true /* non_deferrable */);
}
// Ignore failures from sendReq, we'll retry anyways (up to maxRetries)
sendReq(sns_suid_sensor_init_default, suids, dataType,
SNS_SUID_MSGID_SNS_SUID_REQ, msg.get(), msgLen,
false /* batchValid */, 0 /* batchPeriodUs */,
false /* passive */, true /* waitForIndication */);
} while (suids->size() < minNumSuids && trialCount < maxRetries);
success = (suids->size() >= minNumSuids);
if (!success) {
mHaveTimedOutOnSuidLookup = true;
}
if (trialCount > 1) {
LOGD("Waited %" PRIu32 " ms for %s (found %zu, required %" PRIu8 ")",
static_cast<uint32_t>(trialCount * retryDelay.getMilliseconds()),
dataType, suids->size(), minNumSuids);
}
}
}
return success;
}
bool SeeHelper::getAttributesSync(const sns_std_suid &suid,
SeeAttributes *attr) {
CHRE_ASSERT(attr);
bool success = false;
if (mSeeClients.empty()) {
LOGE("Sensor client wasn't initialized");
} else {
UniquePtr<pb_byte_t> msg;
size_t msgLen;
success = encodeSnsStdAttrReq(&msg, &msgLen);
if (success) {
success = sendReq(suid, attr, nullptr /* syncDataType */,
SNS_STD_MSGID_SNS_STD_ATTR_REQ, msg.get(), msgLen,
false /* batchValid */, 0 /* batchPeriodUs */,
false /* passive */, true /* waitForIndication */);
}
}
return success;
}
bool SeeHelper::init(SeeHelperCallbackInterface *cbIf, Microseconds timeout,
bool skipDefaultSensorInit) {
CHRE_ASSERT(cbIf);
mCbIf = cbIf;
sns_client *client;
// Initialize cal/remote_proc_state sensors before making sensor data request.
bool success = waitForService(&client, timeout) &&
mSeeClients.push_back(client) && initResamplerSensor();
if (success && !skipDefaultSensorInit) {
if (!mCalHelper->findCalibrationSensors(*this)) {
#ifdef CHRE_LOG_ONLY_NO_CAL_SENSOR
LOGW("Bypassing failure to find calibrated sensor");
#else // CHRE_LOG_ONLY_NO_CAL_SENSOR
success = false;
#endif // CHRE_LOG_ONLY_NO_CAL_SENSOR
}
if (success) {
success = initRemoteProcSensor();
}
}
return success;
}
bool SeeHelper::makeRequest(const SeeSensorRequest &request) {
bool success = false;
const SensorInfo *sensorInfo = getSensorInfo(request.sensorType);
if (sensorInfo == nullptr) {
LOGE("SensorType %" PRIu8 " hasn't been registered",
static_cast<uint8_t>(request.sensorType));
} else {
uint32_t msgId;
UniquePtr<pb_byte_t> msg;
size_t msgLen = 0;
bool encodeSuccess = true;
if (!request.enable) {
// An empty message
msgId = SNS_CLIENT_MSGID_SNS_CLIENT_DISABLE_REQ;
} else if (SensorTypeHelpers::isContinuous(request.sensorType)) {
if (suidsMatch(sensorInfo->suid, mResamplerSuid.value())) {
msgId = SNS_RESAMPLER_MSGID_SNS_RESAMPLER_CONFIG;
encodeSuccess = encodeSnsResamplerConfig(
request, sensorInfo->physicalSuid, &msg, &msgLen);
} else {
msgId = SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_CONFIG;
encodeSuccess = encodeSnsStdSensorConfig(request, &msg, &msgLen);
}
} else {
msgId = SNS_STD_SENSOR_MSGID_SNS_STD_ON_CHANGE_CONFIG;
// No sample rate needed to configure on-change or one-shot sensors.
}
if (encodeSuccess) {
success =
sendReq(sensorInfo->client, sensorInfo->suid, nullptr /* syncData */,
nullptr /* syncDataType */, msgId, msg.get(), msgLen,
true /* batchValid */, request.batchPeriodUs, request.passive,
false /* waitForIndication */);
}
}
return success;
}
bool SeeHelper::flush(uint8_t sensorType) {
bool success = false;
const SensorInfo *sensorInfo = getSensorInfo(sensorType);
if (sensorInfo == nullptr) {
LOGE("SensorType %" PRIu8 " hasn't been registered",
static_cast<uint8_t>(sensorType));
} else {
uint32_t msgId = SNS_STD_MSGID_SNS_STD_FLUSH_REQ;
success =
sendReq(sensorInfo->client, sensorInfo->suid, nullptr /* syncData */,
nullptr /* syncDataType */, msgId, nullptr /* msg */,
0 /* msgLen */, false /* batchValid */, 0 /* batchPeriodUs */,
false /* passive */, false /* waitForIndication */);
}
return success;
}
bool SeeHelper::configureOnChangeSensor(const sns_std_suid &suid, bool enable) {
uint32_t msgId = (enable) ? SNS_STD_SENSOR_MSGID_SNS_STD_ON_CHANGE_CONFIG
: SNS_CLIENT_MSGID_SNS_CLIENT_DISABLE_REQ;
return sendReq(suid, nullptr /* syncData */, nullptr /* syncDataType */,
msgId, nullptr /* msg */, 0 /* msgLen */,
false /* batchValid */, 0 /* batchPeriodUs */,
false /* passive */, false /* waitForIndication */);
}
/**
* Sends a request to SEE and waits for the response.
*/
bool SeeHelper::sendSeeReqSync(sns_client *client, sns_client_request_msg *req,
Nanoseconds timeoutResp) {
CHRE_ASSERT(client);
CHRE_ASSERT(req);
bool success = false;
auto *cbData = memoryAlloc<SeeRespCbData>();
if (cbData == nullptr) {
LOG_OOM();
} else {
cbData->seeHelper = this;
{
LockGuard<Mutex> lock(mMutex);
CHRE_ASSERT(!mWaitingOnResp);
mWaitingOnResp = true;
cbData->txnId = ++mCurrentTxnId;
}
int status = mSnsClientApi->sns_client_send(client, req,
SeeHelper::seeRespCb, cbData);
if (status != 0) {
LOGE("Error sending SEE request %d", status);
memoryFree(cbData);
}
{
LockGuard<Mutex> lock(mMutex);
if (status == 0) {
bool waitSuccess = true;
while (mWaitingOnResp && waitSuccess) {
waitSuccess = mCond.wait_for(mMutex, timeoutResp);
}
if (!waitSuccess) {
LOGE("SEE resp timed out after %" PRIu64 " ms",
Milliseconds(timeoutResp).getMilliseconds());
if (++mNumMissingResp >= kSeeNumMissingResp) {
FATAL_ERROR("%" PRIu32 " consecutive missing responses",
mNumMissingResp);
}
} else {
mNumMissingResp = 0;
if (mRespError != SNS_STD_ERROR_NO_ERROR) {
LOGE("SEE txn ID %" PRIu32 " failed with error %d", mCurrentTxnId,
mRespError);
} else {
success = true;
}
}
}
mWaitingOnResp = false;
}
}
return success;
}
bool SeeHelper::sendReq(sns_client *client, const sns_std_suid &suid,
void *syncData, const char *syncDataType,
uint32_t msgId, void *payload, size_t payloadLen,
bool batchValid, uint32_t batchPeriodUs, bool passive,
bool waitForIndication, Nanoseconds timeoutResp,
Nanoseconds timeoutInd) {
UniquePtr<sns_client_request_msg> msg;
SeeBufArg data;
bool success = false;
if (prepSnsClientReq(suid, msgId, payload, payloadLen, batchValid,
batchPeriodUs, passive, &msg, &data)) {
if (waitForIndication) {
prepareWaitForInd(suid, syncData, syncDataType);
}
success = sendSeeReqSync(client, msg.get(), timeoutResp);
if (waitForIndication) {
success = waitForInd(success, timeoutInd);
}
}
return success;
}
void SeeHelper::prepareWaitForInd(const sns_std_suid &suid, void *syncData,
const char *syncDataType) {
LockGuard<Mutex> lock(mMutex);
CHRE_ASSERT(!mWaitingOnInd);
mWaitingOnInd = true;
// Specify members needed for a sync call.
mSyncSuid = suid;
mSyncData = syncData;
mSyncDataType = syncDataType;
}
bool SeeHelper::waitForInd(bool reqSent, Nanoseconds timeoutInd) {
bool success = reqSent;
LockGuard<Mutex> lock(mMutex);
CHRE_ASSERT(!mWaitingOnResp);
if (reqSent) {
bool waitSuccess = true;
while (mWaitingOnInd && waitSuccess) {
waitSuccess = mCond.wait_for(mMutex, timeoutInd);
}
if (!waitSuccess) {
LOGE("SEE indication timed out after %" PRIu64 " ms",
Milliseconds(timeoutInd).getMilliseconds());
success = false;
}
}
mWaitingOnInd = false;
// Reset members needed for a sync call.
mSyncSuid = sns_suid_sensor_init_zero;
mSyncData = nullptr;
mSyncDataType = nullptr;
return success;
}
void SeeHelper::seeIndCb(sns_client *client, void *msg, uint32_t msgLen,
void *cbData) {
auto *obj = static_cast<SeeHelper *>(cbData);
obj->handleSnsClientEventMsg(client, msg, msgLen);
}
void SeeHelper::seeRespCb(sns_client *client, sns_std_error error,
void *cbData) {
auto *respCbData = static_cast<SeeRespCbData *>(cbData);
respCbData->seeHelper->handleSeeResp(respCbData->txnId, error);
memoryFree(cbData);
}
bool SeeHelper::registerSensor(uint8_t sensorType, const sns_std_suid &suid,
bool resample, bool *prevRegistered) {
CHRE_ASSERT(sensorType != CHRE_SENSOR_TYPE_INVALID);
CHRE_ASSERT(prevRegistered != nullptr);
bool success = false;
bool doResample = resample && SensorTypeHelpers::isContinuous(sensorType);
if (doResample && !mResamplerSuid.has_value()) {
LOGE("Unable to use resampler without its SUID");
} else {
// The SUID to make request to.
const sns_std_suid &reqSuid = doResample ? mResamplerSuid.value() : suid;
// Check whether the SUID/SensorType pair has been previously registered.
// Also count how many other SensorTypes the SUID has been registered with.
*prevRegistered = false;
size_t suidRegCount = 0;
for (const auto &sensorInfo : mSensorInfos) {
if (suidsMatch(reqSuid, sensorInfo.suid)) {
suidRegCount++;
if (sensorInfo.sensorType == sensorType) {
*prevRegistered = true;
}
}
}
// Initialize another SEE client if the SUID has been previously
// registered with more SensorTypes than the number of SEE clients can
// disambiguate.
bool clientAvailable = true;
if (mSeeClients.size() <= suidRegCount) {
sns_client *client;
clientAvailable = waitForService(&client);
if (clientAvailable) {
clientAvailable = mSeeClients.push_back(client);
}
}
// Add a new entry only if this SUID/SensorType pair hasn't been registered.
if (!*prevRegistered && clientAvailable) {
SensorInfo sensorInfo = {
.suid = reqSuid,
.sensorType = sensorType,
.client = mSeeClients[suidRegCount],
.physicalSuid = suid,
};
success = mSensorInfos.push_back(sensorInfo);
}
}
return success;
}
bool SeeHelper::sensorIsRegistered(uint8_t sensorType) const {
return (getSensorInfo(sensorType) != nullptr);
}
bool SeeHelper::waitForService(sns_client **client, Microseconds timeout) {
CHRE_ASSERT(client);
// TODO: add error_cb and error_cb_data.
int status = mSnsClientApi->sns_client_init(
client, timeout.getMilliseconds(), SeeHelper::seeIndCb,
this /* ind_cb_data */, nullptr /* error_cb */,
nullptr /* error_cb_data */);
bool success = (status == 0);
if (!success) {
LOGE("Failed to initialize the sensor client: %d", status);
}
return success;
}
bool SeeHelper::initRemoteProcSensor() {
bool success = false;
const char *kRemoteProcType = "remote_proc_state";
DynamicVector<sns_std_suid> suids;
if (!findSuidSync(kRemoteProcType, &suids)) {
LOGE("Failed to find sensor '%s'", kRemoteProcType);
} else {
mRemoteProcSuid = suids[0];
uint32_t msgId = SNS_REMOTE_PROC_STATE_MSGID_SNS_REMOTE_PROC_STATE_CONFIG;
constexpr size_t kBufferSize = sns_remote_proc_state_config_size;
pb_byte_t msgBuffer[kBufferSize];
size_t msgLen;
if (encodeSnsRemoteProcSensorConfig(msgBuffer, kBufferSize, &msgLen,
SNS_STD_CLIENT_PROCESSOR_APSS)) {
success = sendReq(mRemoteProcSuid.value(), nullptr /* syncData */,
nullptr /* syncDataType */, msgId, msgBuffer, msgLen,
false /* batchValid */, 0 /* batchPeriodUs */,
false /* passive */, false /* waitForIndication */);
if (!success) {
LOGE("Failed to request '%s' config", kRemoteProcType);
}
}
}
return success;
}
bool SeeHelper::initResamplerSensor() {
bool success = false;
const char *kResamplerType = "resampler";
DynamicVector<sns_std_suid> suids;
if (!findSuidSync(kResamplerType, &suids)) {
LOGE("Failed to find sensor '%s'", kResamplerType);
} else {
mResamplerSuid = suids[0];
success = true;
}
return success;
}
const SeeHelper::SensorInfo *SeeHelper::getSensorInfo(
uint8_t sensorType) const {
for (const auto &sensorInfo : mSensorInfos) {
if (sensorInfo.sensorType == sensorType) {
return &sensorInfo;
}
}
return nullptr;
}
} // namespace chre