blob: 6230ccbe665877c5f633d1d310b3284b4921fe4b [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "chre/core/sensor_request_manager.h"
#include "chre/core/event_loop_manager.h"
#include "chre/util/macros.h"
#include "chre/util/nested_data_ptr.h"
#include "chre/util/system/debug_dump.h"
#include "chre/util/system/event_callbacks.h"
#include "chre/util/time.h"
#include "chre_api/chre/version.h"
#define LOG_INVALID_HANDLE(x) \
LOGE("Invalid sensor handle %" PRIu32 ": line %d", x, __LINE__)
namespace chre {
namespace {
bool isSensorRequestValid(const Sensor &sensor,
const SensorRequest &sensorRequest) {
bool isRequestOneShot = sensorModeIsOneShot(sensorRequest.getMode());
bool isRequestOff = sensorRequest.getMode() == SensorMode::Off;
uint64_t requestedInterval = sensorRequest.getInterval().toRawNanoseconds();
bool isRequestPassive = sensorModeIsPassive(sensorRequest.getMode());
bool success = false;
if (!isRequestOff && requestedInterval < sensor.getMinInterval()) {
LOGE("Requested interval %" PRIu64 " < sensor's minInterval %" PRIu64,
requestedInterval, sensor.getMinInterval());
} else if (!isRequestOff && isRequestOneShot != sensor.isOneShot()) {
LOGE("Invalid request type for sensor reporting mode");
} else if (isRequestPassive && !sensor.supportsPassiveMode()) {
LOGE("Passive mode not supported");
} else {
success = true;
}
return success;
}
/**
* A helper function that updates the last event of a sensor in the main thread.
*
* @param eventData A non-null pointer to the sensor's CHRE event data.
*/
void updateLastEvent(void *eventData) {
CHRE_ASSERT(eventData);
auto callback = [](uint16_t /*type*/, void *data, void * /*extraData*/) {
auto *sensorData = static_cast<ChreSensorData *>(data);
Sensor *sensor =
EventLoopManagerSingleton::get()->getSensorRequestManager().getSensor(
sensorData->header.sensorHandle);
// Mark last event as valid only if the sensor is enabled. Event data may
// arrive after sensor is disabled.
if (sensor != nullptr &&
sensor->getMaximalRequest().getMode() != SensorMode::Off) {
sensor->setLastEvent(sensorData);
}
};
// Schedule a deferred callback.
EventLoopManagerSingleton::get()->deferCallback(
SystemCallbackType::SensorLastEventUpdate, eventData, callback);
}
void sensorDataEventFree(uint16_t eventType, void *eventData) {
EventLoopManagerSingleton::get()
->getSensorRequestManager()
.releaseSensorDataEvent(eventType, eventData);
}
/**
* Posts a CHRE_EVENT_SENSOR_SAMPLING_CHANGE event to the specified Nanoapp.
*
* @param instanceId The instance ID of the nanoapp with an open request.
* @param sensorHandle The handle of the sensor.
* @param status A reference of the sampling status to be posted.
*/
void postSamplingStatusEvent(uint16_t instanceId, uint32_t sensorHandle,
const struct chreSensorSamplingStatus &status) {
auto *event = memoryAlloc<struct chreSensorSamplingStatusEvent>();
if (event == nullptr) {
LOG_OOM();
} else {
event->sensorHandle = sensorHandle;
event->status = status;
EventLoopManagerSingleton::get()->getEventLoop().postEventOrDie(
CHRE_EVENT_SENSOR_SAMPLING_CHANGE, event, freeEventDataCallback,
instanceId);
}
}
/**
* Notifies all listening nanoapps of the latest sampling status update.
*
* @param sensorHandle The handle of the sensor.
* @param status A reference of the sampling status to be posted.
*/
void postSamplingStatus(uint32_t sensorHandle,
struct chreSensorSamplingStatus &status) {
// Only post to Nanoapps with an open request.
const DynamicVector<SensorRequest> &requests =
EventLoopManagerSingleton::get()->getSensorRequestManager().getRequests(
sensorHandle);
for (const auto &req : requests) {
postSamplingStatusEvent(req.getInstanceId(), sensorHandle, status);
}
}
} // namespace
SensorRequestManager::~SensorRequestManager() {
for (size_t i = 0; i < mSensors.size(); i++) {
// Disable sensors that have been enabled previously.
removeAllRequests(mSensors[i]);
}
}
void SensorRequestManager::init() {
// The Platform sensor must be initialized prior to interacting with any
// sensors.
mPlatformSensorManager.init();
mSensors = mPlatformSensorManager.getSensors();
}
bool SensorRequestManager::getSensorHandle(uint8_t sensorType,
uint8_t sensorIndex,
uint16_t targetGroupId,
uint32_t *sensorHandle) const {
CHRE_ASSERT(sensorHandle);
bool sensorHandleIsValid = false;
for (uint32_t i = 0; i < mSensors.size(); i++) {
if ((mSensors[i].getSensorType() == sensorType) &&
(mSensors[i].getSensorIndex() == sensorIndex) &&
(BITMASK_HAS_VALUE(mSensors[i].getTargetGroupMask(), targetGroupId))) {
sensorHandleIsValid = true;
*sensorHandle = i;
break;
}
}
return sensorHandleIsValid;
}
bool SensorRequestManager::setSensorRequest(
Nanoapp *nanoapp, uint32_t sensorHandle,
const SensorRequest &sensorRequest) {
CHRE_ASSERT(nanoapp);
bool success = false;
bool requestChanged = false;
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
} else {
Sensor &sensor = mSensors[sensorHandle];
if (isSensorRequestValid(sensor, sensorRequest)) {
// Copy the request so it can be modified below.
SensorRequest request = sensorRequest;
if (sensor.isOneShot()) {
// Always use a latency value of ASAP for one-shot sensors since
// one-shot data is always expected to be delivered immediately.
request.setLatency(Nanoseconds(CHRE_SENSOR_LATENCY_ASAP));
}
size_t requestIndex;
uint8_t sensorType = sensor.getSensorType();
uint16_t eventType = getSampleEventTypeForSensorType(sensorType);
bool nanoappHasRequest =
sensor.getRequestMultiplexer().findRequest(nanoapp->getInstanceId(),
&requestIndex) != nullptr;
if (request.getMode() == SensorMode::Off) {
if (nanoappHasRequest) {
// The request changes the mode to off and there was an existing
// request. The existing request is removed from the multiplexer. The
// nanoapp is unregistered from events of this type if this request
// was successful.
success = removeRequest(sensor, requestIndex, &requestChanged);
if (success) {
cancelFlushRequests(sensorHandle, nanoapp->getInstanceId());
// Only unregister if nanoapp no longer has an outstanding request
// for a sensor + target group mask.
uint16_t activeMask =
getActiveTargetGroupMask(nanoapp->getInstanceId(), sensorType);
uint16_t inactiveMask = sensor.getTargetGroupMask() & ~activeMask;
if (inactiveMask != 0) {
nanoapp->unregisterForBroadcastEvent(eventType, inactiveMask);
uint16_t biasEventType;
if (sensor.getBiasEventType(&biasEventType)) {
// Per API requirements, turn off bias reporting when
// unsubscribing from the sensor.
nanoapp->unregisterForBroadcastEvent(biasEventType,
inactiveMask);
}
}
}
} else {
// The sensor is being configured to Off, but is already Off (there is
// no existing request). We assign to success to be true and no other
// operation is required.
success = true;
}
} else if (!nanoappHasRequest) {
// The request changes the mode to the enabled state and there was no
// existing request. The request is newly created and added to the
// multiplexer. The nanoapp is registered for events if this request was
// successful.
uint16_t biasEventType;
if (sensor.getBiasEventType(&biasEventType) && sensor.isCalibrated()) {
// Per API requirements, turn on bias reporting for calibrated sensors
// by default when subscribed.
request.setBiasUpdatesRequested(true);
}
success = addRequest(sensor, request, &requestChanged);
if (success) {
nanoapp->registerForBroadcastEvent(eventType,
sensor.getTargetGroupMask());
if (request.getBiasUpdatesRequested()) {
nanoapp->registerForBroadcastEvent(biasEventType,
sensor.getTargetGroupMask());
}
// Deliver last valid event to new clients of on-change sensors
if (sensor.getLastEvent() != nullptr) {
EventLoopManagerSingleton::get()->getEventLoop().postEventOrDie(
eventType, sensor.getLastEvent(), nullptr /* freeCallback */,
nanoapp->getInstanceId());
}
}
} else {
// Ensure bias events stay requested if they were previously enabled.
const SensorRequest &previousRequest =
sensor.getRequestMultiplexer().getRequests()[requestIndex];
if (previousRequest.getBiasUpdatesRequested()) {
request.setBiasUpdatesRequested(true);
}
// The request changes the mode to the enabled state and there was an
// existing request. The existing request is updated.
success = updateRequest(sensor, requestIndex, request, &requestChanged);
}
// TODO: Allow translating the sensor request
if (requestChanged) {
// TODO: Send an event to nanoapps to indicate the rate change.
}
if (success) {
addSensorRequestLog(nanoapp->getInstanceId(), sensorHandle, request);
}
}
}
return success;
}
bool SensorRequestManager::getSensorInfo(uint32_t sensorHandle,
const Nanoapp &nanoapp,
struct chreSensorInfo *info) const {
CHRE_ASSERT(info);
bool success = false;
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
} else {
mSensors[sensorHandle].populateSensorInfo(info,
nanoapp.getTargetApiVersion());
success = true;
}
return success;
}
bool SensorRequestManager::removeAllRequests(uint32_t sensorHandle) {
bool success = false;
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
} else {
Sensor &sensor = mSensors[sensorHandle];
uint8_t sensorType = sensor.getSensorType();
uint16_t eventType = getSampleEventTypeForSensorType(sensorType);
for (const SensorRequest &request : sensor.getRequests()) {
Nanoapp *nanoapp = EventLoopManagerSingleton::get()
->getEventLoop()
.findNanoappByInstanceId(request.getInstanceId());
if (nanoapp != nullptr) {
nanoapp->unregisterForBroadcastEvent(eventType,
sensor.getTargetGroupMask());
}
}
cancelFlushRequests(sensorHandle);
success = removeAllRequests(sensor);
}
return success;
}
Sensor *SensorRequestManager::getSensor(uint32_t sensorHandle) {
Sensor *sensorPtr = nullptr;
if (sensorHandle < mSensors.size()) {
sensorPtr = &mSensors[sensorHandle];
}
return sensorPtr;
}
bool SensorRequestManager::getSensorSamplingStatus(
uint32_t sensorHandle, struct chreSensorSamplingStatus *status) const {
CHRE_ASSERT(status);
bool success = false;
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
} else {
success = mSensors[sensorHandle].getSamplingStatus(status);
}
return success;
}
const DynamicVector<SensorRequest> &SensorRequestManager::getRequests(
uint32_t sensorHandle) const {
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
sensorHandle = 0;
}
return mSensors[sensorHandle].getRequests();
}
bool SensorRequestManager::configureBiasEvents(Nanoapp *nanoapp,
uint32_t sensorHandle,
bool enable) {
bool success = false;
uint16_t eventType;
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
} else if (enable && !mSensors[sensorHandle].isSensorEnabled()) {
LOGE("Bias events can't be configured for a disabled sensor!");
} else if (mSensors[sensorHandle].getBiasEventType(&eventType)) {
Sensor &sensor = mSensors[sensorHandle];
size_t requestIndex;
bool nanoappHasRequest =
sensor.getRequestMultiplexer().findRequest(nanoapp->getInstanceId(),
&requestIndex) != nullptr;
if (enable && !nanoappHasRequest) {
LOGE("0x%" PRIx64
" configuring bias events without an existing sensor request",
nanoapp->getAppId());
} else if (!enable && !nanoappHasRequest) {
// Treat configuration request as a success since the nanoapp's request
// already has been removed which would result in disabling bias event
// updates
success = true;
} else {
SensorRequest previousRequest =
sensor.getRequestMultiplexer().getRequests()[requestIndex];
previousRequest.setBiasUpdatesRequested(enable);
bool requestChanged;
success =
updateRequest(sensor, requestIndex, previousRequest, &requestChanged);
if (success) {
if (enable) {
nanoapp->registerForBroadcastEvent(eventType,
sensor.getTargetGroupMask());
} else {
nanoapp->unregisterForBroadcastEvent(eventType,
sensor.getTargetGroupMask());
}
}
}
}
return success;
}
bool SensorRequestManager::getThreeAxisBias(
uint32_t sensorHandle, struct chreSensorThreeAxisData *bias) const {
CHRE_ASSERT(bias != nullptr);
bool success = false;
if (bias != nullptr) {
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
} else {
success =
mPlatformSensorManager.getThreeAxisBias(mSensors[sensorHandle], bias);
}
}
return success;
}
bool SensorRequestManager::flushAsync(Nanoapp *nanoapp, uint32_t sensorHandle,
const void *cookie) {
bool success = false;
uint16_t nanoappInstanceId = nanoapp->getInstanceId();
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
} else if (mSensors[sensorHandle].isOneShot()) {
LOGE("Cannot flush a one-shot sensor of type %" PRIu8,
mSensors[sensorHandle].getSensorType());
} else if (mFlushRequestQueue.full()) {
LOG_OOM();
} else {
mFlushRequestQueue.emplace_back(sensorHandle, nanoappInstanceId, cookie);
success = makeFlushRequest(mFlushRequestQueue.back()) == CHRE_ERROR_NONE;
if (!success) {
mFlushRequestQueue.pop_back();
}
}
return success;
}
void SensorRequestManager::releaseSensorDataEvent(uint16_t eventType,
void *eventData) {
// Remove all requests if it's a one-shot sensor and only after data has been
// delivered to all clients.
mPlatformSensorManager.releaseSensorDataEvent(eventData);
uint8_t sensorType = getSensorTypeForSampleEventType(eventType);
uint32_t sensorHandle;
if (getDefaultSensorHandle(sensorType, &sensorHandle) &&
mSensors[sensorHandle].isOneShot()) {
removeAllRequests(sensorHandle);
}
}
void SensorRequestManager::handleFlushCompleteEvent(uint32_t sensorHandle,
uint32_t flushRequestId,
uint8_t errorCode) {
UNUSED_VAR(flushRequestId);
if (sensorHandle < mSensors.size() &&
mSensors[sensorHandle].isFlushRequestPending()) {
// Cancel flush request timer before posting to the event queue to ensure
// a timeout event isn't processed by CHRE now that the complete event
// has been received.
mSensors[sensorHandle].cancelPendingFlushRequestTimer();
auto callback = [](uint16_t /*type*/, void *data, void *extraData) {
uint8_t cbErrorCode = NestedDataPtr<uint8_t>(data);
uint32_t cbSensorHandle = NestedDataPtr<uint32_t>(extraData);
EventLoopManagerSingleton::get()
->getSensorRequestManager()
.handleFlushCompleteEventSync(cbErrorCode, cbSensorHandle);
};
EventLoopManagerSingleton::get()->deferCallback(
SystemCallbackType::SensorFlushComplete,
NestedDataPtr<uint8_t>(errorCode), callback,
NestedDataPtr<uint32_t>(sensorHandle));
}
}
void SensorRequestManager::handleSensorDataEvent(uint32_t sensorHandle,
void *event) {
if (sensorHandle >= mSensors.size()) {
LOG_INVALID_HANDLE(sensorHandle);
mPlatformSensorManager.releaseSensorDataEvent(event);
} else {
Sensor &sensor = mSensors[sensorHandle];
if (sensor.isOnChange()) {
updateLastEvent(event);
}
uint16_t eventType =
getSampleEventTypeForSensorType(sensor.getSensorType());
// Only allow dropping continuous sensor events since losing one-shot or
// on-change events could result in nanoapps stuck in a bad state.
if (sensor.isContinuous()) {
EventLoopManagerSingleton::get()
->getEventLoop()
.postLowPriorityEventOrFree(eventType, event, sensorDataEventFree,
kSystemInstanceId, kBroadcastInstanceId,
sensor.getTargetGroupMask());
} else {
EventLoopManagerSingleton::get()->getEventLoop().postEventOrDie(
eventType, event, sensorDataEventFree, kBroadcastInstanceId,
sensor.getTargetGroupMask());
}
}
}
void SensorRequestManager::handleSamplingStatusUpdate(
uint32_t sensorHandle, struct chreSensorSamplingStatus *status) {
Sensor *sensor =
EventLoopManagerSingleton::get()->getSensorRequestManager().getSensor(
sensorHandle);
if (sensor == nullptr || sensor->isOneShot()) {
releaseSamplingStatusUpdate(status);
} else {
sensor->setSamplingStatus(*status);
auto callback = [](uint16_t /*type*/, void *data, void *extraData) {
uint32_t cbSensorHandle = NestedDataPtr<uint32_t>(data);
auto *cbStatus =
static_cast<struct chreSensorSamplingStatus *>(extraData);
postSamplingStatus(cbSensorHandle, *cbStatus);
EventLoopManagerSingleton::get()
->getSensorRequestManager()
.releaseSamplingStatusUpdate(cbStatus);
};
// Schedule a deferred callback to handle sensor status change in the main
// thread.
EventLoopManagerSingleton::get()->deferCallback(
SystemCallbackType::SensorStatusUpdate,
NestedDataPtr<uint32_t>(sensorHandle), callback, status);
}
}
void SensorRequestManager::handleBiasEvent(uint32_t sensorHandle,
void *biasData) {
Sensor *sensor =
EventLoopManagerSingleton::get()->getSensorRequestManager().getSensor(
sensorHandle);
CHRE_ASSERT(sensor != nullptr);
if (sensor == nullptr) {
releaseBiasData(biasData);
} else {
uint16_t eventType;
if (!sensor->reportsBiasEvents() || !sensor->getBiasEventType(&eventType)) {
LOGE("Received bias event for unsupported sensor type %s",
sensor->getSensorName());
} else {
auto freeCallback = [](uint16_t /* type */, void *data) {
EventLoopManagerSingleton::get()
->getSensorRequestManager()
.releaseBiasData(data);
};
EventLoopManagerSingleton::get()->getEventLoop().postEventOrDie(
eventType, biasData, freeCallback, kBroadcastInstanceId,
sensor->getTargetGroupMask());
}
}
}
void SensorRequestManager::logStateToBuffer(DebugDumpWrapper &debugDump) const {
debugDump.print("\nSensors:\n");
for (uint8_t i = 0; i < mSensors.size(); i++) {
for (const auto &request : mSensors[i].getRequests()) {
// TODO: Rearrange these prints to be similar to sensor request logs
// below
debugDump.print(
" %s: mode=%d int=%" PRIu64 " lat=%" PRIu64 " nappId=%" PRIu16 "\n",
mSensors[i].getSensorTypeName(), static_cast<int>(request.getMode()),
request.getInterval().toRawNanoseconds(),
request.getLatency().toRawNanoseconds(), request.getInstanceId());
}
}
debugDump.print("\n Last %zu Sensor Requests:\n", mSensorRequestLogs.size());
static_assert(kMaxSensorRequestLogs <= INT8_MAX,
"kMaxSensorRequestLogs must be <= INT8_MAX");
for (int8_t i = static_cast<int8_t>(mSensorRequestLogs.size()) - 1; i >= 0;
i--) {
const auto &log = mSensorRequestLogs[static_cast<size_t>(i)];
const Sensor &sensor = mSensors[log.sensorHandle];
debugDump.print(" ts=%" PRIu64 " nappId=%" PRIu16 " type=%s idx=%" PRIu8
" mask=%" PRIx16 " mode=%s",
log.timestamp.toRawNanoseconds(), log.instanceId,
sensor.getSensorTypeName(), sensor.getSensorIndex(),
sensor.getTargetGroupMask(), getSensorModeName(log.mode));
if (sensorModeIsContinuous(log.mode)) {
debugDump.print(" int=%" PRIu64 " lat=%" PRIu64,
log.interval.toRawNanoseconds(),
log.latency.toRawNanoseconds());
}
debugDump.print("\n");
}
}
uint32_t SensorRequestManager::disableAllSubscriptions(Nanoapp *nanoapp) {
uint32_t numDisabledSubscriptions = 0;
const uint32_t numSensors = static_cast<uint32_t>(mSensors.size());
for (uint32_t handle = 0; handle < numSensors; handle++) {
Sensor &sensor = mSensors[handle];
bool nanoappHasRequest =
sensor.getRequestMultiplexer().findRequest(
nanoapp->getInstanceId(), nullptr /*index*/) != nullptr;
if (nanoappHasRequest) {
numDisabledSubscriptions++;
SensorRequest request(SensorMode::Off, Nanoseconds() /*interval*/,
Nanoseconds() /*latency*/);
setSensorRequest(nanoapp, handle, request);
}
}
return numDisabledSubscriptions;
}
void SensorRequestManager::postFlushCompleteEvent(uint32_t sensorHandle,
uint8_t errorCode,
const FlushRequest &request) {
auto *event = memoryAlloc<chreSensorFlushCompleteEvent>();
if (event == nullptr) {
LOG_OOM();
} else {
event->sensorHandle = sensorHandle;
event->errorCode = errorCode;
event->cookie = request.cookie;
memset(event->reserved, 0, sizeof(event->reserved));
EventLoopManagerSingleton::get()->getEventLoop().postEventOrDie(
CHRE_EVENT_SENSOR_FLUSH_COMPLETE, event, freeEventDataCallback,
request.nanoappInstanceId);
}
}
void SensorRequestManager::completeFlushRequestAtIndex(size_t index,
uint8_t errorCode) {
if (index < mFlushRequestQueue.size()) {
const FlushRequest &request = mFlushRequestQueue[index];
uint32_t sensorHandle = request.sensorHandle;
if (request.isActive) {
mSensors[sensorHandle].clearPendingFlushRequest();
}
postFlushCompleteEvent(sensorHandle, errorCode, request);
mFlushRequestQueue.erase(index);
}
}
void SensorRequestManager::dispatchNextFlushRequest(uint32_t sensorHandle) {
for (size_t i = 0; i < mFlushRequestQueue.size(); i++) {
FlushRequest &request = mFlushRequestQueue[i];
if (request.sensorHandle == sensorHandle) {
uint8_t newRequestErrorCode = makeFlushRequest(request);
if (newRequestErrorCode == CHRE_ERROR_NONE) {
break;
} else {
completeFlushRequestAtIndex(i, newRequestErrorCode);
i--;
}
}
}
}
void SensorRequestManager::onFlushTimeout(uint32_t sensorHandle) {
if (sensorHandle < mSensors.size()) {
Sensor &sensor = mSensors[sensorHandle];
sensor.setFlushRequestTimerHandle(CHRE_TIMER_INVALID);
}
}
void SensorRequestManager::handleFlushCompleteEventSync(uint8_t errorCode,
uint32_t sensorHandle) {
for (size_t i = 0; i < mFlushRequestQueue.size(); i++) {
if (mFlushRequestQueue[i].sensorHandle == sensorHandle) {
completeFlushRequestAtIndex(i, errorCode);
dispatchNextFlushRequest(sensorHandle);
break;
}
}
}
void SensorRequestManager::cancelFlushRequests(uint32_t sensorHandle,
uint32_t nanoappInstanceId) {
bool removeAll = (nanoappInstanceId == kSystemInstanceId);
for (size_t i = 0; i < mFlushRequestQueue.size(); i++) {
const FlushRequest &request = mFlushRequestQueue[i];
if (request.sensorHandle == sensorHandle &&
(request.nanoappInstanceId == nanoappInstanceId || removeAll)) {
completeFlushRequestAtIndex(i,
CHRE_ERROR_FUNCTION_DISABLED /* errorCode */);
i--;
}
}
if (!mSensors[sensorHandle].isFlushRequestPending()) {
dispatchNextFlushRequest(sensorHandle);
}
}
void SensorRequestManager::addSensorRequestLog(
uint16_t nanoappInstanceId, uint32_t sensorHandle,
const SensorRequest &sensorRequest) {
mSensorRequestLogs.kick_push(SensorRequestLog(
SystemTime::getMonotonicTime(), nanoappInstanceId, sensorHandle,
sensorRequest.getMode(), sensorRequest.getInterval(),
sensorRequest.getLatency()));
}
bool SensorRequestManager::addRequest(Sensor &sensor,
const SensorRequest &request,
bool *requestChanged) {
CHRE_ASSERT(requestChanged != nullptr);
size_t addIndex;
bool success = true;
SensorRequestMultiplexer &multiplexer = sensor.getRequestMultiplexer();
SensorRequest prevRequest = sensor.getMaximalRequest();
if (!multiplexer.addRequest(request, &addIndex, requestChanged)) {
*requestChanged = false;
success = false;
LOG_OOM();
} else if (*requestChanged) {
success = configurePlatformSensor(sensor, prevRequest);
if (!success) {
// Remove the newly added request since the platform failed to handle
// it. The sensor is expected to maintain the existing request so there is
// no need to reset the platform to the last maximal request.
multiplexer.removeRequest(addIndex, requestChanged);
// This is a roll-back operation so the maximal change in the
// multiplexer must not have changed. The request changed state is forced
// to false.
*requestChanged = false;
}
}
return success;
}
bool SensorRequestManager::updateRequest(Sensor &sensor, size_t updateIndex,
const SensorRequest &request,
bool *requestChanged) {
CHRE_ASSERT(requestChanged != nullptr);
bool success = true;
SensorRequestMultiplexer &multiplexer = sensor.getRequestMultiplexer();
SensorRequest previousRequest = multiplexer.getRequests()[updateIndex];
SensorRequest prevMaxRequest = sensor.getMaximalRequest();
multiplexer.updateRequest(updateIndex, request, requestChanged);
if (*requestChanged) {
success = configurePlatformSensor(sensor, prevMaxRequest);
if (!success) {
// Roll back the request since sending it to the sensor failed. The
// request will roll back to the previous maximal. The sensor is
// expected to maintain the existing request if a request fails so there
// is no need to reset the platform to the last maximal request.
multiplexer.updateRequest(updateIndex, previousRequest, requestChanged);
// This is a roll-back operation so the maximal change in the multiplexer
// must not have changed. The request changed state is forced to false.
*requestChanged = false;
}
}
return success;
}
bool SensorRequestManager::removeRequest(Sensor &sensor, size_t removeIndex,
bool *requestChanged) {
CHRE_ASSERT(requestChanged != nullptr);
bool success = true;
const SensorRequest prevRequest = sensor.getMaximalRequest();
sensor.getRequestMultiplexer().removeRequest(removeIndex, requestChanged);
if (*requestChanged) {
success = configurePlatformSensor(sensor, prevRequest);
if (!success) {
LOGE("SensorRequestManager failed to remove a request");
// If the platform fails to handle this request in a debug build there is
// likely an error in the platform. This is not strictly a programming
// error but it does make sense to use assert semantics when a platform
// fails to handle a request that it had been sent previously.
CHRE_ASSERT(false);
// The request to the platform to set a request when removing has failed
// so the request has not changed.
*requestChanged = false;
}
}
return success;
}
bool SensorRequestManager::removeAllRequests(Sensor &sensor) {
bool requestChanged;
SensorRequest prevRequest = sensor.getMaximalRequest();
sensor.getRequestMultiplexer().removeAllRequests(&requestChanged);
bool success = true;
if (requestChanged) {
success = configurePlatformSensor(sensor, prevRequest);
if (!success) {
LOGE("SensorRequestManager failed to remove all requests");
// If the platform fails to handle this request in a debug build there
// is likely an error in the platform. This is not strictly a programming
// error but it does make sense to use assert semantics when a platform
// fails to handle a request that it had been sent previously.
CHRE_ASSERT(false);
}
}
return success;
}
uint8_t SensorRequestManager::makeFlushRequest(FlushRequest &request) {
uint8_t errorCode = CHRE_ERROR;
Sensor &sensor = mSensors[request.sensorHandle];
if (!sensor.isSensorEnabled()) {
LOGE("Cannot flush on disabled sensor");
} else if (!sensor.isFlushRequestPending()) {
Nanoseconds now = SystemTime::getMonotonicTime();
Nanoseconds deadline = request.deadlineTimestamp;
if (now >= deadline) {
LOGE("Flush sensor %s failed for nanoapp ID %" PRIu16
": deadline exceeded",
sensor.getSensorName(), request.nanoappInstanceId);
errorCode = CHRE_ERROR_TIMEOUT;
} else if (doMakeFlushRequest(sensor)) {
errorCode = CHRE_ERROR_NONE;
Nanoseconds delay = deadline - now;
request.isActive = true;
auto callback = [](uint16_t /*type*/, void *data, void * /*extraData*/) {
LOGE("Flush request timed out");
NestedDataPtr<uint32_t> sensorHandle(data);
EventLoopManagerSingleton::get()
->getSensorRequestManager()
.onFlushTimeout(sensorHandle);
// Send a complete event, thus closing out this flush request. If the
// request that has just timed out receives a response later, this may
// inadvertently close out a new request before it has actually
// completed.
// TODO: Attach an ID to all flush requests / responses so stale
// responses can be properly dropped.
EventLoopManagerSingleton::get()
->getSensorRequestManager()
.handleFlushCompleteEventSync(CHRE_ERROR_TIMEOUT, sensorHandle);
};
sensor.setFlushRequestTimerHandle(
EventLoopManagerSingleton::get()->setDelayedCallback(
SystemCallbackType::SensorFlushTimeout,
NestedDataPtr<uint32_t>(request.sensorHandle), callback, delay));
}
} else {
// Flush request will be made once the pending request is completed.
// Return true so that the nanoapp can wait for a result through the
// CHRE_EVENT_SENSOR_FLUSH_COMPLETE event.
errorCode = CHRE_ERROR_NONE;
}
return errorCode;
}
bool SensorRequestManager::doMakeFlushRequest(Sensor &sensor) {
// Set to true before making the request since the request may be a
// synchronous request and we may get the complete event before it returns.
sensor.setFlushRequestPending(true);
// TODO: Refactor code to take the request ID into account so multiple flush
// requests can be issued.
uint32_t flushRequestId;
bool success = mPlatformSensorManager.flush(sensor, &flushRequestId);
sensor.setFlushRequestPending(success);
return success;
}
bool SensorRequestManager::configurePlatformSensor(
Sensor &sensor, const SensorRequest &prevSensorRequest) {
bool success = false;
const SensorRequest &request = sensor.getMaximalRequest();
// Ensures that only configureBiasEvents is invoked if that's the only value
// that has changed since the previous request since CHRE shouldn't configure
// the platform for data events if the sensor data request hasn't changed.
bool biasChanged = (request.getBiasUpdatesRequested() !=
prevSensorRequest.getBiasUpdatesRequested());
bool onlyBiasChanged = request.onlyBiasRequestUpdated(prevSensorRequest);
uint64_t currentLatency = 0;
bool enable = (request.getMode() != SensorMode::Off);
if (enable) {
currentLatency = request.getLatency().toRawNanoseconds();
}
// Per platform API requirements, an active sensor subscription must exist
// before any bias configuration can be done.
if (!onlyBiasChanged &&
!mPlatformSensorManager.configureSensor(sensor, request)) {
LOGE("Failed to make platform sensor data request");
} else if (biasChanged &&
!mPlatformSensorManager.configureBiasEvents(
sensor, request.getBiasUpdatesRequested(), currentLatency)) {
LOGE("Failed to make platform sensor bias request");
if (!onlyBiasChanged) {
mPlatformSensorManager.configureSensor(sensor, prevSensorRequest);
}
} else {
success = true;
// Reset last event if an on-change sensor is turned off.
if (request.getMode() == SensorMode::Off) {
sensor.clearLastEvent();
}
}
return success;
}
uint16_t SensorRequestManager::getActiveTargetGroupMask(
uint16_t nanoappInstanceId, uint8_t sensorType) {
uint16_t mask = 0;
for (Sensor &sensor : mSensors) {
if (sensor.getSensorType() == sensorType) {
size_t index;
if (sensor.getRequestMultiplexer().findRequest(nanoappInstanceId,
&index) != nullptr) {
mask |= sensor.getTargetGroupMask();
break;
}
}
}
return mask;
}
} // namespace chre