blob: d8ea214899b8d3586d961156f375b8d8efd8b910 [file] [log] [blame]
/*
* ArithmeticDec.cpp
*
* Copyright 2021 HIMSA II K/S - www.himsa.com. Represented by EHIMA -
* www.ehima.com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ArithmeticDec.hpp"
#include <algorithm> // std::min
#include <cmath>
#include <cstring>
#include "BitReader.hpp"
#include "SpectralDataTables.hpp"
#include "TemporalNoiseShapingTables.hpp"
namespace Lc3Dec {
ArithmeticDec::ArithmeticDec(uint16_t NF_, uint16_t NE_, uint16_t rateFlag_,
uint8_t tns_lpc_weighting_)
: NF(NF_),
NE(NE_),
rateFlag(rateFlag_),
tns_lpc_weighting(tns_lpc_weighting_),
X_hat_q_ari(nullptr),
save_lev(nullptr),
nf_seed(0),
nbits_residual(0) {
X_hat_q_ari = new int16_t[NE];
save_lev = new uint8_t[NE];
}
ArithmeticDec::~ArithmeticDec() {
delete[] X_hat_q_ari;
delete[] save_lev;
}
void ac_dec_init(const uint8_t bytes[], uint16_t* bp, struct ac_dec_state* st) {
st->low = 0;
st->range = 0x00ffffff;
for (uint8_t i = 0; i < 3; i++) {
st->low <<= 8;
st->low += bytes[(*bp)++];
}
}
uint8_t ac_decode(const uint8_t bytes[], uint16_t* bp, struct ac_dec_state* st,
int16_t cum_freq[], int16_t sym_freq[], uint8_t numsym,
uint8_t& BEC_detect) {
uint32_t tmp = st->range >> 10;
if (st->low >= (tmp << 10)) {
BEC_detect = 1;
return 0;
}
uint8_t val = numsym - 1;
while (st->low < tmp * cum_freq[val]) {
val--;
}
st->low -= tmp * cum_freq[val];
st->range = tmp * sym_freq[val];
while (st->range < 0x10000) {
st->low <<= 8;
st->low &= 0x00ffffff;
st->low += bytes[(*bp)++];
st->range <<= 8;
}
return val;
}
double ArithmeticDec::rc_q(uint8_t k, uint8_t f) {
// with Δ =π/17
const double pi = std::acos(-1);
double quantizer_stepsize = pi / 17.0;
return sin(quantizer_stepsize * (rc_i[k + 8 * f] - 8));
}
void ArithmeticDec::run(const uint8_t* bytes, uint16_t& bp, uint16_t& bp_side,
uint8_t& mask_side, int16_t& num_tns_filters,
int16_t rc_order[], const uint8_t& lsbMode,
const int16_t& lastnz, uint16_t nbits,
uint8_t& BEC_detect) {
int16_t c = 0;
// make local copy of rc_order (is this really what we want)
rc_order_ari[0] = rc_order[0];
rc_order_ari[1] = rc_order[1];
/* Arithmetic Decoder Initialization */
ac_dec_init(bytes, &bp, &st);
/* TNS data */
// Note: some initialization code like that below can be found in d09r02,
// but there has been none in d09r01. However, the complete
// initialization has been added here, in order to get a proper match to
// the reference output data
for (uint8_t f = 0; f < 2; f++) {
for (uint8_t k = 0; k < 8; k++) {
rc_i[k + 8 * f] = 8;
}
}
for (uint8_t f = 0; f < num_tns_filters; f++) {
// if (𝑟𝑐𝑜𝑟𝑑𝑒𝑟(𝑓) > 0)
if (rc_order[f] > 0) {
//𝑟𝑐𝑜𝑟𝑑𝑒𝑟(𝑓) = ac_decode(bytes, &bp, &st,
rc_order_ari[f] =
ac_decode(bytes, &bp, &st, ac_tns_order_cumfreq[tns_lpc_weighting],
ac_tns_order_freq[tns_lpc_weighting], 8, BEC_detect);
if (BEC_detect) {
// early exit to avoid unpredictable side-effects
return;
}
rc_order_ari[f] = rc_order_ari[f] + 1;
// specification (d09r02_F2F) proposes initialization
// of rc_i at this place; here implemented above in order
// to be performed independet from num_tns_filters
for (uint8_t k = 0; k < rc_order_ari[f]; k++) {
//𝑟𝑐𝑖(𝑘,𝑓) = ac_decode(bytes, &bp, &st, ac_tns_coef_cumfreq[k],
// rc_i[k][f] = ac_decode(bytes, &bp, &st, ac_tns_coef_cumfreq[k],
rc_i[k + 8 * f] = ac_decode(bytes, &bp, &st, ac_tns_coef_cumfreq[k],
ac_tns_coef_freq[k], 17, BEC_detect);
if (BEC_detect) {
// early exit to avoid unpredictable side-effects
return;
}
}
}
}
/* Spectral data */
for (uint16_t k = 0; k < lastnz; k += 2) {
uint16_t t = c + rateFlag;
// if (k > 𝑁𝐸/2)
if (k > NE / 2) {
t += 256;
}
//𝑋𝑞̂[k] = 𝑋𝑞̂[k+1] = 0;
X_hat_q_ari[k] = X_hat_q_ari[k + 1] = 0;
uint8_t lev;
uint8_t sym;
for (lev = 0; lev < 14; lev++) {
uint8_t pki =
ac_spec_lookup[t + std::min(lev, static_cast<uint8_t>(3U)) * 1024];
sym = ac_decode(bytes, &bp, &st, ac_spec_cumfreq[pki], ac_spec_freq[pki],
17, BEC_detect);
if (BEC_detect) {
// early exit to avoid unpredictable side-effects
return;
}
if (sym < 16) {
break;
}
if (lsbMode == 0 || lev > 0) {
uint8_t bit = read_bit(bytes, &bp_side, &mask_side);
//𝑋𝑞̂[k] += bit << lev;
X_hat_q_ari[k] += bit << lev;
bit = read_bit(bytes, &bp_side, &mask_side);
//𝑋𝑞̂[k+1] += bit << lev;
X_hat_q_ari[k + 1] += bit << lev;
}
}
if (lev == 14) {
BEC_detect = 1;
return;
}
if (lsbMode == 1) {
save_lev[k] = lev;
}
uint8_t a = sym & 0x3;
uint8_t b = sym >> 2;
//𝑋𝑞̂[k] += a << lev;
//𝑋𝑞̂[k+1] += b << lev;
// if (𝑋𝑞̂[k] > 0)
X_hat_q_ari[k] += a << lev;
X_hat_q_ari[k + 1] += b << lev;
if (X_hat_q_ari[k] > 0) {
uint8_t bit = read_bit(bytes, &bp_side, &mask_side);
if (bit == 1) {
//𝑋𝑞̂[k] = -𝑋𝑞̂[k];
X_hat_q_ari[k] = -X_hat_q_ari[k];
}
}
// if (𝑋𝑞̂[k+1] > 0)
if (X_hat_q_ari[k + 1] > 0) {
uint8_t bit = read_bit(bytes, &bp_side, &mask_side);
if (bit == 1) {
//𝑋𝑞̂[k+1] = -𝑋𝑞̂[k+1];
X_hat_q_ari[k + 1] = -X_hat_q_ari[k + 1];
}
}
lev = std::min(lev, static_cast<uint8_t>(3));
if (lev <= 1) {
t = 1 + (a + b) * (lev + 1);
} else {
t = 12 + lev;
}
c = (c & 15) * 16 + t;
// Note: specification of the following line hase been changed from d09r01
// to d09r02_F2F
if (bp - bp_side > 3) {
BEC_detect = 1;
return;
}
}
// reset remaining fields in array X_hat_q_ari to simplify testing
for (int16_t k = lastnz; k < NE; k++) {
X_hat_q_ari[k] = 0;
}
// 3.4.2.6 Residual data and finalization (d09r02_F2F)
/* Number of residual bits */
int16_t nbits_side = nbits - (8 * bp_side + 8 - log2(mask_side));
int16_t nbits_ari = (bp - 3) * 8;
nbits_ari += 25 - floor(log2(st.range));
int16_t nbits_residual_tmp = nbits - (nbits_side + nbits_ari);
if (nbits_residual_tmp < 0) {
BEC_detect = 1;
return;
}
nbits_residual = nbits_residual_tmp;
}
void ArithmeticDec::registerDatapoints(DatapointContainer* datapoints) {
if (nullptr != datapoints) {
datapoints->addDatapoint("rateFlag", &rateFlag, sizeof(rateFlag));
datapoints->addDatapoint("tns_lpc_weighting", &tns_lpc_weighting,
sizeof(tns_lpc_weighting));
datapoints->addDatapoint("rc_order_ari", &rc_order_ari[0],
sizeof(rc_order_ari));
datapoints->addDatapoint("rc_i", &rc_i[0], sizeof(rc_i));
datapoints->addDatapoint("X_hat_q_ari", &X_hat_q_ari[0],
sizeof(int16_t) * NE);
datapoints->addDatapoint("nbits_residual", &nbits_residual,
sizeof(nbits_residual));
}
}
} // namespace Lc3Dec