blob: f557f113c1a9a02b4014b169770d2f392ac5dbe9 [file] [log] [blame]
/*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "async_manager.h"
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <vector>
#include "fcntl.h"
#include "os/log.h"
#include "sys/select.h"
#include "unistd.h"
namespace test_vendor_lib {
// Implementation of AsyncManager is divided between two classes, three if
// AsyncManager itself is taken into account, but its only responsability
// besides being a proxy for the other two classes is to provide a global
// synchronization mechanism for callbacks and client code to use.
// The watching of file descriptors is done through AsyncFdWatcher. Several
// objects of this class may coexist simultaneosly as they share no state.
// After construction of this objects nothing happens beyond some very simple
// member initialization. When the first FD is set up for watching the object
// starts a new thread which watches the given (and later provided) FDs using
// select() inside a loop. A special FD (a pipe) is also watched which is
// used to notify the thread of internal changes on the object state (like
// the addition of new FDs to watch on). Every access to internal state is
// synchronized using a single internal mutex. The thread is only stopped on
// destruction of the object, by modifying a flag, which is the only member
// variable accessed without acquiring the lock (because the notification to
// the thread is done later by writing to a pipe which means the thread will
// be notified regardless of what phase of the loop it is in that moment)
// The scheduling of asynchronous tasks, periodic or not, is handled by the
// AsyncTaskManager class. Like the one for FDs, this class shares no internal
// state between different instances so it is safe to use several objects of
// this class, also nothing interesting happens upon construction, but only
// after a Task has been scheduled and access to internal state is synchronized
// using a single internal mutex. When the first task is scheduled a thread
// is started which monitors a queue of tasks. The queue is peeked to see
// when the next task should be carried out and then the thread performs a
// (absolute) timed wait on a condition variable. The wait ends because of a
// time out or a notify on the cond var, the former means a task is due
// for execution while the later means there has been a change in internal
// state, like a task has been scheduled/canceled or the flag to stop has
// been set. Setting and querying the stop flag or modifying the task queue
// and subsequent notification on the cond var is done atomically (e.g while
// holding the lock on the internal mutex) to ensure that the thread never
// misses the notification, since notifying a cond var is not persistent as
// writing on a pipe (if not done this way, the thread could query the
// stopping flag and be put aside by the OS scheduler right after, then the
// 'stop thread' procedure could run, setting the flag, notifying a cond
// var that no one is waiting on and joining the thread, the thread then
// resumes execution believing that it needs to continue and waits on the
// cond var possibly forever if there are no tasks scheduled, efectively
// causing a deadlock).
// This number also states the maximum number of scheduled tasks we can handle
// at a given time
static const uint16_t kMaxTaskId = -1; /* 2^16 - 1, permisible ids are {1..2^16-1}*/
static inline AsyncTaskId NextAsyncTaskId(const AsyncTaskId id) {
return (id == kMaxTaskId) ? 1 : id + 1;
}
// The buffer is only 10 bytes because the expected number of bytes
// written on this socket is 1. It is possible that the thread is notified
// more than once but highly unlikely, so a buffer of size 10 seems enough
// and the reads are performed inside a while just in case it isn't. From
// the thread routine's point of view it is the same to have been notified
// just once or 100 times so it just tries to consume the entire buffer.
// In the cases where an interrupt would cause read to return without
// having read everything that was available a new iteration of the thread
// loop will bring execution to this point almost immediately, so there is
// no need to treat that case.
static const int kNotificationBufferSize = 10;
// Async File Descriptor Watcher Implementation:
class AsyncManager::AsyncFdWatcher {
public:
int WatchFdForNonBlockingReads(int file_descriptor, const ReadCallback& on_read_fd_ready_callback) {
// add file descriptor and callback
{
std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
watched_shared_fds_[file_descriptor] = on_read_fd_ready_callback;
}
// start the thread if not started yet
int started = tryStartThread();
if (started != 0) {
LOG_ERROR("%s: Unable to start thread", __func__);
return started;
}
// notify the thread so that it knows of the new FD
notifyThread();
return 0;
}
void StopWatchingFileDescriptor(int file_descriptor) {
std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
watched_shared_fds_.erase(file_descriptor);
}
AsyncFdWatcher() = default;
AsyncFdWatcher(const AsyncFdWatcher&) = delete;
AsyncFdWatcher& operator=(const AsyncFdWatcher&) = delete;
~AsyncFdWatcher() = default;
int stopThread() {
if (!std::atomic_exchange(&running_, false)) {
return 0; // if not running already
}
notifyThread();
if (std::this_thread::get_id() != thread_.get_id()) {
thread_.join();
} else {
LOG_WARN("%s: Starting thread stop from inside the reading thread itself", __func__);
}
{
std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
watched_shared_fds_.clear();
}
return 0;
}
private:
// Make sure to call this with at least one file descriptor ready to be
// watched upon or the thread routine will return immediately
int tryStartThread() {
if (std::atomic_exchange(&running_, true)) {
return 0; // if already running
}
// set up the communication channel
int pipe_fds[2];
if (pipe2(pipe_fds, O_NONBLOCK)) {
LOG_ERROR(
"%s:Unable to establish a communication channel to the reading "
"thread",
__func__);
return -1;
}
notification_listen_fd_ = pipe_fds[0];
notification_write_fd_ = pipe_fds[1];
thread_ = std::thread([this]() { ThreadRoutine(); });
if (!thread_.joinable()) {
LOG_ERROR("%s: Unable to start reading thread", __func__);
return -1;
}
return 0;
}
int notifyThread() {
char buffer = '0';
if (TEMP_FAILURE_RETRY(write(notification_write_fd_, &buffer, 1)) < 0) {
LOG_ERROR("%s: Unable to send message to reading thread", __func__);
return -1;
}
return 0;
}
int setUpFileDescriptorSet(fd_set& read_fds) {
// add comm channel to the set
FD_SET(notification_listen_fd_, &read_fds);
int nfds = notification_listen_fd_;
// add watched FDs to the set
{
std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
for (auto& fdp : watched_shared_fds_) {
FD_SET(fdp.first, &read_fds);
nfds = std::max(fdp.first, nfds);
}
}
return nfds;
}
// check the comm channel and read everything there
bool consumeThreadNotifications(fd_set& read_fds) {
if (FD_ISSET(notification_listen_fd_, &read_fds)) {
char buffer[kNotificationBufferSize];
while (TEMP_FAILURE_RETRY(read(notification_listen_fd_, buffer, kNotificationBufferSize)) ==
kNotificationBufferSize) {
}
return true;
}
return false;
}
// check all file descriptors and call callbacks if necesary
void runAppropriateCallbacks(fd_set& read_fds) {
std::vector<decltype(watched_shared_fds_)::value_type> fds;
std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
for (auto& fdc : watched_shared_fds_) {
if (FD_ISSET(fdc.first, &read_fds)) {
fds.push_back(fdc);
}
}
for (auto& p : fds) {
p.second(p.first);
}
}
void ThreadRoutine() {
while (running_) {
fd_set read_fds;
FD_ZERO(&read_fds);
int nfds = setUpFileDescriptorSet(read_fds);
// wait until there is data available to read on some FD
int retval = select(nfds + 1, &read_fds, NULL, NULL, NULL);
if (retval <= 0) { // there was some error or a timeout
LOG_ERROR(
"%s: There was an error while waiting for data on the file "
"descriptors: %s",
__func__, strerror(errno));
continue;
}
consumeThreadNotifications(read_fds);
// Do not read if there was a call to stop running
if (!running_) {
break;
}
runAppropriateCallbacks(read_fds);
}
}
std::atomic_bool running_{false};
std::thread thread_;
std::recursive_mutex internal_mutex_;
std::map<int, ReadCallback> watched_shared_fds_;
// A pair of FD to send information to the reading thread
int notification_listen_fd_{};
int notification_write_fd_{};
};
// Async task manager implementation
class AsyncManager::AsyncTaskManager {
public:
AsyncUserId GetNextUserId() { return lastUserId_++; }
AsyncTaskId ExecAsync(AsyncUserId user_id, std::chrono::milliseconds delay,
const TaskCallback& callback) {
return scheduleTask(std::make_shared<Task>(
std::chrono::steady_clock::now() + delay, callback, user_id));
}
AsyncTaskId ExecAsyncPeriodically(AsyncUserId user_id,
std::chrono::milliseconds delay,
std::chrono::milliseconds period,
const TaskCallback& callback) {
return scheduleTask(std::make_shared<Task>(
std::chrono::steady_clock::now() + delay, period, callback, user_id));
}
bool CancelAsyncTask(AsyncTaskId async_task_id) {
// remove task from queue (and task id association) while holding lock
std::unique_lock<std::mutex> guard(internal_mutex_);
return cancel_task_with_lock_held(async_task_id);
}
bool CancelAsyncTasksFromUser(AsyncUserId user_id) {
// remove task from queue (and task id association) while holding lock
std::unique_lock<std::mutex> guard(internal_mutex_);
if (tasks_by_user_id_.count(user_id) == 0) {
return false;
}
for (auto task : tasks_by_user_id_[user_id]) {
cancel_task_with_lock_held(task);
}
tasks_by_user_id_.erase(user_id);
return true;
}
AsyncTaskManager() = default;
AsyncTaskManager(const AsyncTaskManager&) = delete;
AsyncTaskManager& operator=(const AsyncTaskManager&) = delete;
~AsyncTaskManager() = default;
int stopThread() {
{
std::unique_lock<std::mutex> guard(internal_mutex_);
tasks_by_id_.clear();
task_queue_.clear();
if (!running_) {
return 0;
}
running_ = false;
// notify the thread
internal_cond_var_.notify_one();
} // release the lock before joining a thread that is likely waiting for it
if (std::this_thread::get_id() != thread_.get_id()) {
thread_.join();
} else {
LOG_WARN("%s: Starting thread stop from inside the task thread itself", __func__);
}
return 0;
}
private:
// Holds the data for each task
class Task {
public:
Task(std::chrono::steady_clock::time_point time,
std::chrono::milliseconds period, const TaskCallback& callback,
AsyncUserId user)
: time(time),
periodic(true),
period(period),
callback(callback),
task_id(kInvalidTaskId),
user_id(user) {}
Task(std::chrono::steady_clock::time_point time,
const TaskCallback& callback, AsyncUserId user)
: time(time),
periodic(false),
callback(callback),
task_id(kInvalidTaskId),
user_id(user) {}
// Operators needed to be in a collection
bool operator<(const Task& another) const {
return std::make_pair(time, task_id) < std::make_pair(another.time, another.task_id);
}
bool isPeriodic() const {
return periodic;
}
// These fields should no longer be public if the class ever becomes
// public or gets more complex
std::chrono::steady_clock::time_point time;
bool periodic;
std::chrono::milliseconds period{};
TaskCallback callback;
AsyncTaskId task_id;
AsyncUserId user_id;
};
// A comparator class to put shared pointers to tasks in an ordered set
struct task_p_comparator {
bool operator()(const std::shared_ptr<Task>& t1, const std::shared_ptr<Task>& t2) const {
return *t1 < *t2;
}
};
bool cancel_task_with_lock_held(AsyncTaskId async_task_id) {
if (tasks_by_id_.count(async_task_id) == 0) {
return false;
}
task_queue_.erase(tasks_by_id_[async_task_id]);
tasks_by_id_.erase(async_task_id);
return true;
}
AsyncTaskId scheduleTask(const std::shared_ptr<Task>& task) {
{
std::unique_lock<std::mutex> guard(internal_mutex_);
// no more room for new tasks, we need a larger type for IDs
if (tasks_by_id_.size() == kMaxTaskId) // TODO potentially type unsafe
return kInvalidTaskId;
do {
lastTaskId_ = NextAsyncTaskId(lastTaskId_);
} while (isTaskIdInUse(lastTaskId_));
task->task_id = lastTaskId_;
// add task to the queue and map
tasks_by_id_[lastTaskId_] = task;
tasks_by_user_id_[task->user_id].insert(task->task_id);
task_queue_.insert(task);
}
// start thread if necessary
int started = tryStartThread();
if (started != 0) {
LOG_ERROR("%s: Unable to start thread", __func__);
return kInvalidTaskId;
}
// notify the thread so that it knows of the new task
internal_cond_var_.notify_one();
// return task id
return task->task_id;
}
bool isTaskIdInUse(const AsyncTaskId& task_id) const {
return tasks_by_id_.count(task_id) != 0;
}
int tryStartThread() {
// need the lock because of the running flag and the cond var
std::unique_lock<std::mutex> guard(internal_mutex_);
// check that the thread is not yet running
if (running_) {
return 0;
}
// start the thread
running_ = true;
thread_ = std::thread([this]() { ThreadRoutine(); });
if (!thread_.joinable()) {
LOG_ERROR("%s: Unable to start task thread", __func__);
return -1;
}
return 0;
}
void ThreadRoutine() {
while (running_) {
TaskCallback callback;
bool run_it = false;
{
std::unique_lock<std::mutex> guard(internal_mutex_);
if (!task_queue_.empty()) {
std::shared_ptr<Task> task_p = *(task_queue_.begin());
if (task_p->time < std::chrono::steady_clock::now()) {
run_it = true;
callback = task_p->callback;
task_queue_.erase(task_p); // need to remove and add again if
// periodic to update order
if (task_p->isPeriodic()) {
task_p->time += task_p->period;
task_queue_.insert(task_p);
} else {
tasks_by_user_id_[task_p->user_id].erase(task_p->task_id);
tasks_by_id_.erase(task_p->task_id);
}
}
}
}
if (run_it) {
callback();
}
{
std::unique_lock<std::mutex> guard(internal_mutex_);
// check for termination right before waiting
if (!running_) break;
// wait until time for the next task (if any)
if (task_queue_.size() > 0) {
// Make a copy of the time_point because wait_until takes a reference
// to it and may read it after waiting, by which time the task may
// have been freed (e.g. via CancelAsyncTask).
std::chrono::steady_clock::time_point time =
(*task_queue_.begin())->time;
internal_cond_var_.wait_until(guard, time);
} else {
internal_cond_var_.wait(guard);
}
}
}
}
bool running_ = false;
std::thread thread_;
std::mutex internal_mutex_;
std::condition_variable internal_cond_var_;
AsyncTaskId lastTaskId_ = kInvalidTaskId;
AsyncUserId lastUserId_{1};
std::map<AsyncTaskId, std::shared_ptr<Task> > tasks_by_id_;
std::map<AsyncUserId, std::set<AsyncTaskId>> tasks_by_user_id_;
std::set<std::shared_ptr<Task>, task_p_comparator> task_queue_;
};
// Async Manager Implementation:
AsyncManager::AsyncManager() : fdWatcher_p_(new AsyncFdWatcher()), taskManager_p_(new AsyncTaskManager()) {}
AsyncManager::~AsyncManager() {
// Make sure the threads are stopped before destroying the object.
// The threads need to be stopped here and not in each internal class'
// destructor because unique_ptr's reset() first assigns nullptr to the
// pointer and only then calls the destructor, so any callback running
// on these threads would dereference a null pointer if they called a member
// function of this class.
fdWatcher_p_->stopThread();
taskManager_p_->stopThread();
}
int AsyncManager::WatchFdForNonBlockingReads(int file_descriptor, const ReadCallback& on_read_fd_ready_callback) {
return fdWatcher_p_->WatchFdForNonBlockingReads(file_descriptor, on_read_fd_ready_callback);
}
void AsyncManager::StopWatchingFileDescriptor(int file_descriptor) {
fdWatcher_p_->StopWatchingFileDescriptor(file_descriptor);
}
AsyncUserId AsyncManager::GetNextUserId() {
return taskManager_p_->GetNextUserId();
}
AsyncTaskId AsyncManager::ExecAsync(AsyncUserId user_id,
std::chrono::milliseconds delay,
const TaskCallback& callback) {
return taskManager_p_->ExecAsync(user_id, delay, callback);
}
AsyncTaskId AsyncManager::ExecAsyncPeriodically(
AsyncUserId user_id, std::chrono::milliseconds delay,
std::chrono::milliseconds period, const TaskCallback& callback) {
return taskManager_p_->ExecAsyncPeriodically(user_id, delay, period,
callback);
}
bool AsyncManager::CancelAsyncTask(AsyncTaskId async_task_id) {
return taskManager_p_->CancelAsyncTask(async_task_id);
}
bool AsyncManager::CancelAsyncTasksFromUser(
test_vendor_lib::AsyncUserId user_id) {
return taskManager_p_->CancelAsyncTasksFromUser(user_id);
}
void AsyncManager::Synchronize(const CriticalCallback& critical) {
std::unique_lock<std::mutex> guard(synchronization_mutex_);
critical();
}
} // namespace test_vendor_lib