blob: 8aaaf02078fb02ffc3ebe5a8971439efef43f51b [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <base/bind.h>
#include <base/run_loop.h>
#include <base/threading/thread.h>
#include <benchmark/benchmark.h>
#include <future>
#include "common/message_loop_thread.h"
#include "common/once_timer.h"
#include "common/repeating_timer.h"
#include "common/time_util.h"
#include "osi/include/alarm.h"
using ::benchmark::State;
using bluetooth::common::MessageLoopThread;
using bluetooth::common::OnceTimer;
using bluetooth::common::RepeatingTimer;
using bluetooth::common::time_get_os_boottime_us;
bluetooth::common::MessageLoopThread* get_main_thread() { return nullptr; }
namespace {
std::unordered_map<int, int> g_map;
std::shared_ptr<std::promise<void>> g_promise;
uint64_t g_start_time;
int g_scheduled_tasks;
int g_task_length;
int g_task_interval;
int g_task_counter;
void TimerFire(void*) { g_promise->set_value(); }
void AlarmSleepAndCountDelayedTime(void*) {
auto end_time_us = time_get_os_boottime_us();
auto time_after_start_ms = (end_time_us - g_start_time) / 1000;
g_task_counter++;
g_map[time_after_start_ms - g_task_counter * g_task_interval]++;
std::this_thread::sleep_for(std::chrono::milliseconds(g_task_length));
if (g_task_counter >= g_scheduled_tasks) {
g_promise->set_value();
}
}
} // namespace
class BM_OsiAlarmTimer : public ::benchmark::Fixture {
protected:
void SetUp(State& st) override {
::benchmark::Fixture::SetUp(st);
alarm_ = alarm_new("osi_alarm_timer_test");
g_promise = std::make_shared<std::promise<void>>();
}
void TearDown(State& st) override {
g_promise = nullptr;
alarm_free(alarm_);
::benchmark::Fixture::TearDown(st);
}
alarm_t* alarm_ = nullptr;
};
BENCHMARK_DEFINE_F(BM_OsiAlarmTimer, timer_performance_ms)(State& state) {
auto milliseconds = static_cast<int>(state.range(0));
for (auto _ : state) {
auto start_time_point = time_get_os_boottime_us();
alarm_set(alarm_, milliseconds, &TimerFire, nullptr);
g_promise->get_future().get();
auto end_time_point = time_get_os_boottime_us();
auto duration = end_time_point - start_time_point;
state.SetIterationTime(duration * 1e-6);
}
};
BENCHMARK_REGISTER_F(BM_OsiAlarmTimer, timer_performance_ms)
->Arg(1)
->Arg(5)
->Arg(10)
->Arg(20)
->Arg(100)
->Arg(1000)
->Arg(2000)
->Iterations(1)
->UseManualTime();
class BM_AlarmTaskTimer : public ::benchmark::Fixture {
protected:
void SetUp(State& st) override {
::benchmark::Fixture::SetUp(st);
message_loop_thread_ = new MessageLoopThread("timer_benchmark");
message_loop_thread_->StartUp();
message_loop_thread_->EnableRealTimeScheduling();
once_timer_ = new OnceTimer();
repeating_timer_ = new RepeatingTimer();
g_promise = std::make_shared<std::promise<void>>();
}
void TearDown(State& st) override {
g_promise = nullptr;
delete once_timer_;
once_timer_ = nullptr;
delete repeating_timer_;
repeating_timer_ = nullptr;
message_loop_thread_->ShutDown();
delete message_loop_thread_;
message_loop_thread_ = nullptr;
::benchmark::Fixture::TearDown(st);
}
MessageLoopThread* message_loop_thread_;
OnceTimer* once_timer_;
RepeatingTimer* repeating_timer_;
};
BENCHMARK_DEFINE_F(BM_AlarmTaskTimer, timer_performance_ms)(State& state) {
auto milliseconds = static_cast<int>(state.range(0));
for (auto _ : state) {
auto start_time_point = time_get_os_boottime_us();
once_timer_->Schedule(message_loop_thread_->GetWeakPtr(), FROM_HERE,
base::BindOnce(&TimerFire, nullptr),
base::TimeDelta::FromMilliseconds(milliseconds));
g_promise->get_future().get();
once_timer_->Cancel();
auto end_time_point = time_get_os_boottime_us();
auto duration = end_time_point - start_time_point;
state.SetIterationTime(duration * 1e-6);
}
};
BENCHMARK_REGISTER_F(BM_AlarmTaskTimer, timer_performance_ms)
->Arg(1)
->Arg(5)
->Arg(10)
->Arg(20)
->Arg(100)
->Arg(1000)
->Arg(2000)
->Iterations(1)
->UseManualTime();
class BM_OsiPeriodicAlarmTimer : public ::benchmark::Fixture {
protected:
void SetUp(State& st) override {
::benchmark::Fixture::SetUp(st);
alarm_ = alarm_new_periodic("osi_alarm_timer_test");
g_map.clear();
g_promise = std::make_shared<std::promise<void>>();
g_scheduled_tasks = 0;
g_task_length = 0;
g_task_interval = 0;
g_task_counter = 0;
}
void TearDown(State& st) override {
g_promise = nullptr;
alarm_free(alarm_);
::benchmark::Fixture::TearDown(st);
}
alarm_t* alarm_ = nullptr;
};
BENCHMARK_DEFINE_F(BM_OsiPeriodicAlarmTimer, periodic_accuracy)(State& state) {
for (auto _ : state) {
g_scheduled_tasks = state.range(0);
g_task_length = state.range(1);
g_task_interval = state.range(2);
g_start_time = time_get_os_boottime_us();
alarm_set(alarm_, g_task_interval, &AlarmSleepAndCountDelayedTime, nullptr);
g_promise->get_future().get();
alarm_cancel(alarm_);
}
for (const auto& delay : g_map) {
state.counters[std::to_string(delay.first)] = delay.second;
}
};
BENCHMARK_REGISTER_F(BM_OsiPeriodicAlarmTimer, periodic_accuracy)
->Args({2000, 1, 5})
->Args({2000, 3, 5})
->Args({2000, 1, 7})
->Args({2000, 3, 7})
->Args({2000, 1, 20})
->Args({2000, 5, 20})
->Args({2000, 10, 20})
->Args({2000, 15, 20})
->Iterations(1)
->UseRealTime();
class BM_AlarmTaskPeriodicTimer : public ::benchmark::Fixture {
protected:
void SetUp(State& st) override {
::benchmark::Fixture::SetUp(st);
message_loop_thread_ = new MessageLoopThread("timer_benchmark");
message_loop_thread_->StartUp();
message_loop_thread_->EnableRealTimeScheduling();
once_timer_ = new OnceTimer();
repeating_timer_ = new RepeatingTimer();
g_map.clear();
g_promise = std::make_shared<std::promise<void>>();
g_scheduled_tasks = 0;
g_task_length = 0;
g_task_interval = 0;
g_task_counter = 0;
}
void TearDown(State& st) override {
g_promise = nullptr;
delete once_timer_;
once_timer_ = nullptr;
delete repeating_timer_;
repeating_timer_ = nullptr;
message_loop_thread_->ShutDown();
delete message_loop_thread_;
message_loop_thread_ = nullptr;
::benchmark::Fixture::TearDown(st);
}
MessageLoopThread* message_loop_thread_;
OnceTimer* once_timer_;
RepeatingTimer* repeating_timer_;
};
BENCHMARK_DEFINE_F(BM_AlarmTaskPeriodicTimer, periodic_accuracy)
(State& state) {
for (auto _ : state) {
g_scheduled_tasks = state.range(0);
g_task_length = state.range(1);
g_task_interval = state.range(2);
g_start_time = time_get_os_boottime_us();
repeating_timer_->SchedulePeriodic(
message_loop_thread_->GetWeakPtr(), FROM_HERE,
base::BindRepeating(&AlarmSleepAndCountDelayedTime, nullptr),
base::TimeDelta::FromMilliseconds(g_task_interval));
g_promise->get_future().get();
repeating_timer_->Cancel();
}
for (const auto& delay : g_map) {
state.counters[std::to_string(delay.first)] = delay.second;
}
};
BENCHMARK_REGISTER_F(BM_AlarmTaskPeriodicTimer, periodic_accuracy)
->Args({2000, 1, 5})
->Args({2000, 3, 5})
->Args({2000, 1, 7})
->Args({2000, 3, 7})
->Args({2000, 1, 20})
->Args({2000, 5, 20})
->Args({2000, 10, 20})
->Args({2000, 15, 20})
->Iterations(1)
->UseRealTime();
int main(int argc, char** argv) {
// Disable LOG() output from libchrome
logging::LoggingSettings log_settings;
log_settings.logging_dest = logging::LoggingDestination::LOG_NONE;
CHECK(logging::InitLogging(log_settings)) << "Failed to set up logging";
::benchmark::Initialize(&argc, argv);
if (::benchmark::ReportUnrecognizedArguments(argc, argv)) {
return 1;
}
::benchmark::RunSpecifiedBenchmarks();
}