blob: e822a2fe8664068fd3e52af4624da9f41483fbab [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
*
* Utility functions to help build and parse the LDAC Codec Information
* Element and Media Payload.
*
******************************************************************************/
#define LOG_TAG "a2dp_vendor_ldac"
#include "bt_target.h"
#include "a2dp_vendor_ldac.h"
#include <string.h>
#include <base/logging.h>
#include "a2dp_vendor.h"
#include "a2dp_vendor_ldac_encoder.h"
#include "bt_utils.h"
#include "osi/include/log.h"
#include "osi/include/osi.h"
// data type for the LDAC Codec Information Element */
// NOTE: bits_per_sample is needed only for LDAC encoder initialization.
typedef struct {
uint32_t vendorId;
uint16_t codecId; /* Codec ID for LDAC */
uint8_t sampleRate; /* Sampling Frequency */
uint8_t channelMode; /* STEREO/DUAL/MONO */
btav_a2dp_codec_bits_per_sample_t bits_per_sample;
} tA2DP_LDAC_CIE;
/* LDAC Source codec capabilities */
static const tA2DP_LDAC_CIE a2dp_ldac_caps = {
A2DP_LDAC_VENDOR_ID, // vendorId
A2DP_LDAC_CODEC_ID, // codecId
// sampleRate
(A2DP_LDAC_SAMPLING_FREQ_44100 | A2DP_LDAC_SAMPLING_FREQ_48000 |
A2DP_LDAC_SAMPLING_FREQ_88200 | A2DP_LDAC_SAMPLING_FREQ_96000),
// channelMode
(A2DP_LDAC_CHANNEL_MODE_DUAL | A2DP_LDAC_CHANNEL_MODE_STEREO),
// bits_per_sample
(BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16 | BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24 |
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32)};
/* Default LDAC codec configuration */
static const tA2DP_LDAC_CIE a2dp_ldac_default_config = {
A2DP_LDAC_VENDOR_ID, // vendorId
A2DP_LDAC_CODEC_ID, // codecId
A2DP_LDAC_SAMPLING_FREQ_96000, // sampleRate
A2DP_LDAC_CHANNEL_MODE_STEREO, // channelMode
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32 // bits_per_sample
};
static const tA2DP_ENCODER_INTERFACE a2dp_encoder_interface_ldac = {
a2dp_vendor_ldac_encoder_init,
a2dp_vendor_ldac_encoder_cleanup,
a2dp_vendor_ldac_feeding_reset,
a2dp_vendor_ldac_feeding_flush,
a2dp_vendor_ldac_get_encoder_interval_ms,
a2dp_vendor_ldac_send_frames,
a2dp_vendor_ldac_set_transmit_queue_length};
UNUSED_ATTR static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityLdac(
const tA2DP_LDAC_CIE* p_cap, const uint8_t* p_codec_info,
bool is_peer_codec_info);
// Builds the LDAC Media Codec Capabilities byte sequence beginning from the
// LOSC octet. |media_type| is the media type |AVDT_MEDIA_TYPE_*|.
// |p_ie| is a pointer to the LDAC Codec Information Element information.
// The result is stored in |p_result|. Returns A2DP_SUCCESS on success,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_BuildInfoLdac(uint8_t media_type,
const tA2DP_LDAC_CIE* p_ie,
uint8_t* p_result) {
if (p_ie == NULL || p_result == NULL) {
return A2DP_INVALID_PARAMS;
}
*p_result++ = A2DP_LDAC_CODEC_LEN;
*p_result++ = (media_type << 4);
*p_result++ = A2DP_MEDIA_CT_NON_A2DP;
// Vendor ID and Codec ID
*p_result++ = (uint8_t)(p_ie->vendorId & 0x000000FF);
*p_result++ = (uint8_t)((p_ie->vendorId & 0x0000FF00) >> 8);
*p_result++ = (uint8_t)((p_ie->vendorId & 0x00FF0000) >> 16);
*p_result++ = (uint8_t)((p_ie->vendorId & 0xFF000000) >> 24);
*p_result++ = (uint8_t)(p_ie->codecId & 0x00FF);
*p_result++ = (uint8_t)((p_ie->codecId & 0xFF00) >> 8);
// Sampling Frequency
*p_result = (uint8_t)(p_ie->sampleRate & A2DP_LDAC_SAMPLING_FREQ_MASK);
if (*p_result == 0) return A2DP_INVALID_PARAMS;
p_result++;
// Channel Mode
*p_result = (uint8_t)(p_ie->channelMode & A2DP_LDAC_CHANNEL_MODE_MASK);
if (*p_result == 0) return A2DP_INVALID_PARAMS;
return A2DP_SUCCESS;
}
// Parses the LDAC Media Codec Capabilities byte sequence beginning from the
// LOSC octet. The result is stored in |p_ie|. The byte sequence to parse is
// |p_codec_info|. If |is_capability| is true, the byte sequence is
// codec capabilities, otherwise is codec configuration.
// Returns A2DP_SUCCESS on success, otherwise the corresponding A2DP error
// status code.
static tA2DP_STATUS A2DP_ParseInfoLdac(tA2DP_LDAC_CIE* p_ie,
const uint8_t* p_codec_info,
bool is_capability) {
uint8_t losc;
uint8_t media_type;
tA2DP_CODEC_TYPE codec_type;
if (p_ie == NULL || p_codec_info == NULL) return A2DP_INVALID_PARAMS;
// Check the codec capability length
losc = *p_codec_info++;
if (losc != A2DP_LDAC_CODEC_LEN) return A2DP_WRONG_CODEC;
media_type = (*p_codec_info++) >> 4;
codec_type = *p_codec_info++;
/* Check the Media Type and Media Codec Type */
if (media_type != AVDT_MEDIA_TYPE_AUDIO ||
codec_type != A2DP_MEDIA_CT_NON_A2DP) {
return A2DP_WRONG_CODEC;
}
// Check the Vendor ID and Codec ID */
p_ie->vendorId = (*p_codec_info & 0x000000FF) |
(*(p_codec_info + 1) << 8 & 0x0000FF00) |
(*(p_codec_info + 2) << 16 & 0x00FF0000) |
(*(p_codec_info + 3) << 24 & 0xFF000000);
p_codec_info += 4;
p_ie->codecId =
(*p_codec_info & 0x00FF) | (*(p_codec_info + 1) << 8 & 0xFF00);
p_codec_info += 2;
if (p_ie->vendorId != A2DP_LDAC_VENDOR_ID ||
p_ie->codecId != A2DP_LDAC_CODEC_ID) {
return A2DP_WRONG_CODEC;
}
p_ie->sampleRate = *p_codec_info++ & A2DP_LDAC_SAMPLING_FREQ_MASK;
p_ie->channelMode = *p_codec_info++ & A2DP_LDAC_CHANNEL_MODE_MASK;
if (is_capability) return A2DP_SUCCESS;
if (A2DP_BitsSet(p_ie->sampleRate) != A2DP_SET_ONE_BIT)
return A2DP_BAD_SAMP_FREQ;
if (A2DP_BitsSet(p_ie->channelMode) != A2DP_SET_ONE_BIT)
return A2DP_BAD_CH_MODE;
return A2DP_SUCCESS;
}
// Build the LDAC Media Payload Header.
// |p_dst| points to the location where the header should be written to.
// If |frag| is true, the media payload frame is fragmented.
// |start| is true for the first packet of a fragmented frame.
// |last| is true for the last packet of a fragmented frame.
// If |frag| is false, |num| is the number of number of frames in the packet,
// otherwise is the number of remaining fragments (including this one).
static void A2DP_BuildMediaPayloadHeaderLdac(uint8_t* p_dst, bool frag,
bool start, bool last,
uint8_t num) {
if (p_dst == NULL) return;
*p_dst = 0;
if (frag) *p_dst |= A2DP_LDAC_HDR_F_MSK;
if (start) *p_dst |= A2DP_LDAC_HDR_S_MSK;
if (last) *p_dst |= A2DP_LDAC_HDR_L_MSK;
*p_dst |= (A2DP_LDAC_HDR_NUM_MSK & num);
}
bool A2DP_IsVendorSourceCodecValidLdac(const uint8_t* p_codec_info) {
tA2DP_LDAC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoLdac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoLdac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsVendorPeerSinkCodecValidLdac(const uint8_t* p_codec_info) {
tA2DP_LDAC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoLdac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoLdac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
// Checks whether A2DP LDAC codec configuration matches with a device's codec
// capabilities. |p_cap| is the LDAC codec configuration. |p_codec_info| is
// the device's codec capabilities.
// If |is_capability| is true, the byte sequence is codec capabilities,
// otherwise is codec configuration.
// |p_codec_info| contains the codec capabilities for a peer device that
// is acting as an A2DP source.
// Returns A2DP_SUCCESS if the codec configuration matches with capabilities,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityLdac(
const tA2DP_LDAC_CIE* p_cap, const uint8_t* p_codec_info,
bool is_capability) {
tA2DP_STATUS status;
tA2DP_LDAC_CIE cfg_cie;
/* parse configuration */
status = A2DP_ParseInfoLdac(&cfg_cie, p_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: parsing failed %d", __func__, status);
return status;
}
/* verify that each parameter is in range */
LOG_DEBUG(LOG_TAG, "%s: FREQ peer: 0x%x, capability 0x%x", __func__,
cfg_cie.sampleRate, p_cap->sampleRate);
LOG_DEBUG(LOG_TAG, "%s: CH_MODE peer: 0x%x, capability 0x%x", __func__,
cfg_cie.channelMode, p_cap->channelMode);
/* sampling frequency */
if ((cfg_cie.sampleRate & p_cap->sampleRate) == 0) return A2DP_NS_SAMP_FREQ;
/* channel mode */
if ((cfg_cie.channelMode & p_cap->channelMode) == 0) return A2DP_NS_CH_MODE;
return A2DP_SUCCESS;
}
bool A2DP_VendorUsesRtpHeaderLdac(UNUSED_ATTR bool content_protection_enabled,
UNUSED_ATTR const uint8_t* p_codec_info) {
// TODO: Is this correct? The RTP header is always included?
return true;
}
const char* A2DP_VendorCodecNameLdac(UNUSED_ATTR const uint8_t* p_codec_info) {
return "LDAC";
}
bool A2DP_VendorCodecTypeEqualsLdac(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_LDAC_CIE ldac_cie_a;
tA2DP_LDAC_CIE ldac_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoLdac(&ldac_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoLdac(&ldac_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
return true;
}
bool A2DP_VendorCodecEqualsLdac(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_LDAC_CIE ldac_cie_a;
tA2DP_LDAC_CIE ldac_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoLdac(&ldac_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoLdac(&ldac_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
return (ldac_cie_a.sampleRate == ldac_cie_b.sampleRate) &&
(ldac_cie_a.channelMode == ldac_cie_b.channelMode);
}
int A2DP_VendorGetTrackSampleRateLdac(const uint8_t* p_codec_info) {
tA2DP_LDAC_CIE ldac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoLdac(&ldac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (ldac_cie.sampleRate) {
case A2DP_LDAC_SAMPLING_FREQ_44100:
return 44100;
case A2DP_LDAC_SAMPLING_FREQ_48000:
return 48000;
case A2DP_LDAC_SAMPLING_FREQ_88200:
return 88200;
case A2DP_LDAC_SAMPLING_FREQ_96000:
return 96000;
case A2DP_LDAC_SAMPLING_FREQ_176400:
return 176400;
case A2DP_LDAC_SAMPLING_FREQ_192000:
return 192000;
}
return -1;
}
int A2DP_VendorGetTrackBitsPerSampleLdac(const uint8_t* p_codec_info) {
tA2DP_LDAC_CIE ldac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoLdac(&ldac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (a2dp_ldac_caps.bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
return 16;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
return 24;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
return 32;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
break;
}
return -1;
}
int A2DP_VendorGetTrackChannelCountLdac(const uint8_t* p_codec_info) {
tA2DP_LDAC_CIE ldac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoLdac(&ldac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (ldac_cie.channelMode) {
case A2DP_LDAC_CHANNEL_MODE_MONO:
return 1;
case A2DP_LDAC_CHANNEL_MODE_DUAL:
return 2;
case A2DP_LDAC_CHANNEL_MODE_STEREO:
return 2;
}
return -1;
}
int A2DP_VendorGetChannelModeCodeLdac(const uint8_t* p_codec_info) {
tA2DP_LDAC_CIE ldac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoLdac(&ldac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (ldac_cie.channelMode) {
case A2DP_LDAC_CHANNEL_MODE_MONO:
case A2DP_LDAC_CHANNEL_MODE_DUAL:
case A2DP_LDAC_CHANNEL_MODE_STEREO:
return ldac_cie.channelMode;
default:
break;
}
return -1;
}
bool A2DP_VendorGetPacketTimestampLdac(UNUSED_ATTR const uint8_t* p_codec_info,
const uint8_t* p_data,
uint32_t* p_timestamp) {
// TODO: Is this function really codec-specific?
*p_timestamp = *(const uint32_t*)p_data;
return true;
}
bool A2DP_VendorBuildCodecHeaderLdac(UNUSED_ATTR const uint8_t* p_codec_info,
BT_HDR* p_buf,
uint16_t frames_per_packet) {
uint8_t* p;
p_buf->offset -= A2DP_LDAC_MPL_HDR_LEN;
p = (uint8_t*)(p_buf + 1) + p_buf->offset;
p_buf->len += A2DP_LDAC_MPL_HDR_LEN;
A2DP_BuildMediaPayloadHeaderLdac(p, false, false, false,
(uint8_t)frames_per_packet);
return true;
}
void A2DP_VendorDumpCodecInfoLdac(const uint8_t* p_codec_info) {
tA2DP_STATUS a2dp_status;
tA2DP_LDAC_CIE ldac_cie;
LOG_DEBUG(LOG_TAG, "%s", __func__);
a2dp_status = A2DP_ParseInfoLdac(&ldac_cie, p_codec_info, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: A2DP_ParseInfoLdac fail:%d", __func__, a2dp_status);
return;
}
LOG_DEBUG(LOG_TAG, "\tsamp_freq: 0x%x", ldac_cie.sampleRate);
if (ldac_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100) {
LOG_DEBUG(LOG_TAG, "\tsamp_freq: (44100)");
}
if (ldac_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000) {
LOG_DEBUG(LOG_TAG, "\tsamp_freq: (48000)");
}
if (ldac_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200) {
LOG_DEBUG(LOG_TAG, "\tsamp_freq: (88200)");
}
if (ldac_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000) {
LOG_DEBUG(LOG_TAG, "\tsamp_freq: (96000)");
}
if (ldac_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400) {
LOG_DEBUG(LOG_TAG, "\tsamp_freq: (176400)");
}
if (ldac_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000) {
LOG_DEBUG(LOG_TAG, "\tsamp_freq: (192000)");
}
LOG_DEBUG(LOG_TAG, "\tch_mode: 0x%x", ldac_cie.channelMode);
if (ldac_cie.channelMode & A2DP_LDAC_CHANNEL_MODE_MONO) {
LOG_DEBUG(LOG_TAG, "\tch_mode: (Mono)");
}
if (ldac_cie.channelMode & A2DP_LDAC_CHANNEL_MODE_DUAL) {
LOG_DEBUG(LOG_TAG, "\tch_mode: (Dual)");
}
if (ldac_cie.channelMode & A2DP_LDAC_CHANNEL_MODE_STEREO) {
LOG_DEBUG(LOG_TAG, "\tch_mode: (Stereo)");
}
}
const tA2DP_ENCODER_INTERFACE* A2DP_VendorGetEncoderInterfaceLdac(
const uint8_t* p_codec_info) {
if (!A2DP_IsVendorSourceCodecValidLdac(p_codec_info)) return NULL;
return &a2dp_encoder_interface_ldac;
}
bool A2DP_VendorAdjustCodecLdac(uint8_t* p_codec_info) {
tA2DP_LDAC_CIE cfg_cie;
// Nothing to do: just verify the codec info is valid
if (A2DP_ParseInfoLdac(&cfg_cie, p_codec_info, true) != A2DP_SUCCESS)
return false;
return true;
}
btav_a2dp_codec_index_t A2DP_VendorSourceCodecIndexLdac(
UNUSED_ATTR const uint8_t* p_codec_info) {
return BTAV_A2DP_CODEC_INDEX_SOURCE_LDAC;
}
const char* A2DP_VendorCodecIndexStrLdac(void) { return "LDAC"; }
bool A2DP_VendorInitCodecConfigLdac(tAVDT_CFG* p_cfg) {
if (A2DP_BuildInfoLdac(AVDT_MEDIA_TYPE_AUDIO, &a2dp_ldac_caps,
p_cfg->codec_info) != A2DP_SUCCESS) {
return false;
}
#if (BTA_AV_CO_CP_SCMS_T == TRUE)
/* Content protection info - support SCMS-T */
uint8_t* p = p_cfg->protect_info;
*p++ = AVDT_CP_LOSC;
UINT16_TO_STREAM(p, AVDT_CP_SCMS_T_ID);
p_cfg->num_protect = 1;
#endif
return true;
}
UNUSED_ATTR static void build_codec_config(const tA2DP_LDAC_CIE& config_cie,
btav_a2dp_codec_config_t* result) {
if (config_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
if (config_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
if (config_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
if (config_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
if (config_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_176400;
if (config_cie.sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_192000;
result->bits_per_sample = config_cie.bits_per_sample;
if (config_cie.channelMode & A2DP_LDAC_CHANNEL_MODE_MONO)
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (config_cie.channelMode &
(A2DP_LDAC_CHANNEL_MODE_DUAL | A2DP_LDAC_CHANNEL_MODE_STEREO)) {
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
}
A2dpCodecConfigLdac::A2dpCodecConfigLdac(
btav_a2dp_codec_priority_t codec_priority)
: A2dpCodecConfig(BTAV_A2DP_CODEC_INDEX_SOURCE_LDAC, "LDAC",
codec_priority) {
// Compute the local capability
if (a2dp_ldac_caps.sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
}
if (a2dp_ldac_caps.sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
if (a2dp_ldac_caps.sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
}
if (a2dp_ldac_caps.sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
}
if (a2dp_ldac_caps.sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_176400;
}
if (a2dp_ldac_caps.sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_192000;
}
codec_local_capability_.bits_per_sample = a2dp_ldac_caps.bits_per_sample;
if (a2dp_ldac_caps.channelMode & A2DP_LDAC_CHANNEL_MODE_MONO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (a2dp_ldac_caps.channelMode & A2DP_LDAC_CHANNEL_MODE_STEREO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (a2dp_ldac_caps.channelMode & A2DP_LDAC_CHANNEL_MODE_DUAL) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
}
A2dpCodecConfigLdac::~A2dpCodecConfigLdac() {}
bool A2dpCodecConfigLdac::init() {
if (!isValid()) return false;
// Load the encoder
if (!A2DP_VendorLoadEncoderLdac()) {
LOG_ERROR(LOG_TAG, "%s: cannot load the encoder", __func__);
return false;
}
return true;
}
bool A2dpCodecConfigLdac::useRtpHeaderMarkerBit() const { return false; }
//
// Selects the best sample rate from |sampleRate|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_sample_rate(uint8_t sampleRate,
tA2DP_LDAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_192000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_192000;
return true;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_176400;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_176400;
return true;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_96000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
return true;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_88200;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
return true;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_48000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_44100;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
return true;
}
return false;
}
//
// Selects the audio sample rate from |p_codec_audio_config|.
// |sampleRate| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_sample_rate(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t sampleRate,
tA2DP_LDAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_44100;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_48000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_88200;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_96000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_176400;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_176400;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000) {
p_result->sampleRate = A2DP_LDAC_SAMPLING_FREQ_192000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_192000;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
break;
}
return false;
}
//
// Selects the best bits per sample from |bits_per_sample|.
// |bits_per_sample| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_bits_per_sample(
btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_LDAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
return true;
}
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
return true;
}
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
}
return false;
}
//
// Selects the audio bits per sample from |p_codec_audio_config|.
// |bits_per_sample| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_bits_per_sample(
const btav_a2dp_codec_config_t* p_codec_audio_config,
btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_LDAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
break;
}
return false;
}
//
// Selects the best channel mode from |channelMode|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_channel_mode(uint8_t channelMode,
tA2DP_LDAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (channelMode & A2DP_LDAC_CHANNEL_MODE_STEREO) {
p_result->channelMode = A2DP_LDAC_CHANNEL_MODE_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (channelMode & A2DP_LDAC_CHANNEL_MODE_DUAL) {
p_result->channelMode = A2DP_LDAC_CHANNEL_MODE_DUAL;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (channelMode & A2DP_LDAC_CHANNEL_MODE_MONO) {
p_result->channelMode = A2DP_LDAC_CHANNEL_MODE_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
return false;
}
//
// Selects the audio channel mode from |p_codec_audio_config|.
// |channelMode| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_channel_mode(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t channelMode,
tA2DP_LDAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (channelMode & A2DP_LDAC_CHANNEL_MODE_MONO) {
p_result->channelMode = A2DP_LDAC_CHANNEL_MODE_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (channelMode & A2DP_LDAC_CHANNEL_MODE_STEREO) {
p_result->channelMode = A2DP_LDAC_CHANNEL_MODE_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (channelMode & A2DP_LDAC_CHANNEL_MODE_DUAL) {
p_result->channelMode = A2DP_LDAC_CHANNEL_MODE_DUAL;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
break;
}
return false;
}
bool A2dpCodecConfigLdac::setCodecConfig(const uint8_t* p_peer_codec_info,
bool is_capability,
uint8_t* p_result_codec_config) {
std::lock_guard<std::recursive_mutex> lock(codec_mutex_);
tA2DP_LDAC_CIE sink_info_cie;
tA2DP_LDAC_CIE result_config_cie;
uint8_t channelMode;
uint8_t sampleRate;
btav_a2dp_codec_bits_per_sample_t bits_per_sample;
// Save the internal state
btav_a2dp_codec_config_t saved_codec_config = codec_config_;
btav_a2dp_codec_config_t saved_codec_capability = codec_capability_;
btav_a2dp_codec_config_t saved_codec_selectable_capability =
codec_selectable_capability_;
btav_a2dp_codec_config_t saved_codec_user_config = codec_user_config_;
btav_a2dp_codec_config_t saved_codec_audio_config = codec_audio_config_;
uint8_t saved_ota_codec_config[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_config[AVDT_CODEC_SIZE];
memcpy(saved_ota_codec_config, ota_codec_config_, sizeof(ota_codec_config_));
memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_,
sizeof(ota_codec_peer_capability_));
memcpy(saved_ota_codec_peer_config, ota_codec_peer_config_,
sizeof(ota_codec_peer_config_));
tA2DP_STATUS status =
A2DP_ParseInfoLdac(&sink_info_cie, p_peer_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: can't parse peer's Sink capabilities: error = %d",
__func__, status);
goto fail;
}
//
// Build the preferred configuration
//
memset(&result_config_cie, 0, sizeof(result_config_cie));
result_config_cie.vendorId = a2dp_ldac_caps.vendorId;
result_config_cie.codecId = a2dp_ldac_caps.codecId;
//
// Select the sample frequency
//
sampleRate = a2dp_ldac_caps.sampleRate & sink_info_cie.sampleRate;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
switch (codec_user_config_.sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100) {
result_config_cie.sampleRate = A2DP_LDAC_SAMPLING_FREQ_44100;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000) {
result_config_cie.sampleRate = A2DP_LDAC_SAMPLING_FREQ_48000;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200) {
result_config_cie.sampleRate = A2DP_LDAC_SAMPLING_FREQ_88200;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000) {
result_config_cie.sampleRate = A2DP_LDAC_SAMPLING_FREQ_96000;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400) {
result_config_cie.sampleRate = A2DP_LDAC_SAMPLING_FREQ_176400;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000) {
result_config_cie.sampleRate = A2DP_LDAC_SAMPLING_FREQ_192000;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
codec_capability_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
break;
}
// Select the sample frequency if there is no user preference
do {
// Compute the selectable capability
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_176400;
}
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_192000;
}
if (codec_config_.sample_rate != BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) break;
// Compute the common capability
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_44100)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_48000)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_88200)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_96000)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_176400)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_176400;
if (sampleRate & A2DP_LDAC_SAMPLING_FREQ_192000)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_192000;
// No user preference - try the codec audio config
if (select_audio_sample_rate(&codec_audio_config_, sampleRate,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_sample_rate(
a2dp_ldac_default_config.sampleRate & sink_info_cie.sampleRate,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_sample_rate(sampleRate, &result_config_cie,
&codec_config_)) {
break;
}
} while (false);
if (codec_config_.sample_rate == BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) {
LOG_ERROR(LOG_TAG,
"%s: cannot match sample frequency: source caps = 0x%x "
"sink info = 0x%x",
__func__, a2dp_ldac_caps.sampleRate, sink_info_cie.sampleRate);
goto fail;
}
//
// Select the bits per sample
//
// NOTE: this information is NOT included in the LDAC A2DP codec description
// that is sent OTA.
bits_per_sample = a2dp_ldac_caps.bits_per_sample;
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
switch (codec_user_config_.bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
result_config_cie.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
codec_capability_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
break;
}
// Select the bits per sample if there is no user preference
do {
// Compute the selectable capability
codec_selectable_capability_.bits_per_sample =
a2dp_ldac_caps.bits_per_sample;
if (codec_config_.bits_per_sample != BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE)
break;
// Compute the common capability
codec_capability_.bits_per_sample = bits_per_sample;
// No user preference - the the codec audio config
if (select_audio_bits_per_sample(&codec_audio_config_,
a2dp_ldac_caps.bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_bits_per_sample(a2dp_ldac_default_config.bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_bits_per_sample(a2dp_ldac_caps.bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
} while (false);
if (codec_config_.bits_per_sample == BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) {
LOG_ERROR(LOG_TAG,
"%s: cannot match bits per sample: default = 0x%x "
"user preference = 0x%x",
__func__, a2dp_ldac_default_config.bits_per_sample,
codec_user_config_.bits_per_sample);
goto fail;
}
//
// Select the channel mode
//
channelMode = a2dp_ldac_caps.channelMode & sink_info_cie.channelMode;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
switch (codec_user_config_.channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (channelMode & A2DP_LDAC_CHANNEL_MODE_MONO) {
result_config_cie.channelMode = A2DP_LDAC_CHANNEL_MODE_MONO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (channelMode & A2DP_LDAC_CHANNEL_MODE_STEREO) {
result_config_cie.channelMode = A2DP_LDAC_CHANNEL_MODE_STEREO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
break;
}
if (channelMode & A2DP_LDAC_CHANNEL_MODE_DUAL) {
result_config_cie.channelMode = A2DP_LDAC_CHANNEL_MODE_DUAL;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
break;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
codec_capability_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
break;
}
// Select the channel mode if there is no user preference
do {
// Compute the selectable capability
if (channelMode & A2DP_LDAC_CHANNEL_MODE_MONO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (channelMode & A2DP_LDAC_CHANNEL_MODE_STEREO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (channelMode & A2DP_LDAC_CHANNEL_MODE_DUAL) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (codec_config_.channel_mode != BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) break;
// Compute the common capability
if (channelMode & A2DP_LDAC_CHANNEL_MODE_MONO)
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (channelMode &
(A2DP_LDAC_CHANNEL_MODE_STEREO | A2DP_LDAC_CHANNEL_MODE_DUAL)) {
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
// No user preference - try the codec audio config
if (select_audio_channel_mode(&codec_audio_config_, channelMode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_channel_mode(
a2dp_ldac_default_config.channelMode & sink_info_cie.channelMode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_channel_mode(channelMode, &result_config_cie,
&codec_config_)) {
break;
}
} while (false);
if (codec_config_.channel_mode == BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) {
LOG_ERROR(LOG_TAG,
"%s: cannot match channel mode: source caps = 0x%x "
"sink info = 0x%x",
__func__, a2dp_ldac_caps.channelMode, sink_info_cie.channelMode);
goto fail;
}
if (A2DP_BuildInfoLdac(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
p_result_codec_config) != A2DP_SUCCESS) {
goto fail;
}
//
// Copy the codec-specific fields if they are not zero
//
if (codec_user_config_.codec_specific_1 != 0)
codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1;
if (codec_user_config_.codec_specific_2 != 0)
codec_config_.codec_specific_2 = codec_user_config_.codec_specific_2;
if (codec_user_config_.codec_specific_3 != 0)
codec_config_.codec_specific_3 = codec_user_config_.codec_specific_3;
if (codec_user_config_.codec_specific_4 != 0)
codec_config_.codec_specific_4 = codec_user_config_.codec_specific_4;
// Create a local copy of the peer codec capability, and the
// result codec config.
if (is_capability) {
status = A2DP_BuildInfoLdac(AVDT_MEDIA_TYPE_AUDIO, &sink_info_cie,
ota_codec_peer_capability_);
} else {
status = A2DP_BuildInfoLdac(AVDT_MEDIA_TYPE_AUDIO, &sink_info_cie,
ota_codec_peer_config_);
}
CHECK(status == A2DP_SUCCESS);
status = A2DP_BuildInfoLdac(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
ota_codec_config_);
CHECK(status == A2DP_SUCCESS);
return true;
fail:
// Restore the internal state
codec_config_ = saved_codec_config;
codec_capability_ = saved_codec_capability;
codec_selectable_capability_ = saved_codec_selectable_capability;
codec_user_config_ = saved_codec_user_config;
codec_audio_config_ = saved_codec_audio_config;
memcpy(ota_codec_config_, saved_ota_codec_config, sizeof(ota_codec_config_));
memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability,
sizeof(ota_codec_peer_capability_));
memcpy(ota_codec_peer_config_, saved_ota_codec_peer_config,
sizeof(ota_codec_peer_config_));
return false;
}