blob: 2391012cdfc68b078c0b1c4627bcac93387ff7b0 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include <stdarg.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "bt_trace.h"
#include "hcidefs.h"
#include "stack/include/smp_api.h"
#include "stack/smp/smp_int.h"
/*
* This test verifies various key distribution methods in SMP works using the
* following parameter set:
*
* When testing target as Master (Initiator is local, Responder is remote)
*
* Initiator's Pairing Request: 0x070710000001(01)
* Responder's Pairing Response: 0x050008000003(02)
* Initiator's Bluetooth Address: 0xA1A2A3A4A5A6
* Initiator's Bluetooth Address Type: 0x01
* Responder's Bluetooth Address: 0xB1B2B3B4B5B6
* Responder's Bluetooth Address Type: 0x00
* Initiator's Random Number: 0x5783D52156AD6F0E6388274EC6702EE0
* TK Encryption Key: 0x0
*
* Correct values:
*
* p1: 0x05000800000302070710000001010001
* p1 XOR r: 0x5283dd2156ae6d096498274ec7712ee1
* p1 prime: 0x02c7aa2a9857ac866ff91232df0e3c95
* p2: 0x00000000a1a2a3a4a5a6b1b2b3b4b5b6
* MConfirm (c1): 0x1e1e3fef878988ead2a74dc5bef13b86
*
* NOTE: All these values are presented in mathematical reasonable canonical
* form that has MSB on the left and LSB on the right. In Bluetooth packets,
* they are mostly reversed to be Little Endian which have LSB on the left and
* MSB on the right.
*/
// Set remote bda to 0xB1B2B3B4B5B6
bool BTM_ReadRemoteConnectionAddr(const RawAddress& pseudo_addr,
RawAddress& conn_addr,
tBLE_ADDR_TYPE* p_addr_type) {
conn_addr = RawAddress({0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6});
*p_addr_type = 0x00;
return true;
}
// Set local_bda to 0xA1A2A3A4A5A6
void BTM_ReadConnectionAddr(const RawAddress& remote_bda,
RawAddress& local_conn_addr,
tBLE_ADDR_TYPE* p_addr_type) {
local_conn_addr = RawAddress({0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6});
*p_addr_type = 0x01;
}
// Require bte_logmsg.cc to run, here is just to fake it as we don't care about
// trace in unit test
void LogMsg(uint32_t trace_set_mask, const char* fmt_str, ...) {
va_list args;
va_start(args, fmt_str);
vprintf(fmt_str, args);
va_end(args);
}
extern void smp_gen_p1_4_confirm(tSMP_CB* p_cb,
tBLE_ADDR_TYPE remote_bd_addr_type,
BT_OCTET16 p1);
extern void smp_gen_p2_4_confirm(tSMP_CB* p_cb, const RawAddress& remote_bda,
BT_OCTET16 p2);
extern tSMP_STATUS smp_calculate_comfirm(tSMP_CB* p_cb, BT_OCTET16 rand,
tSMP_ENC* output);
namespace testing {
void dump_uint128(BT_OCTET16 a, char* buffer) {
for (unsigned int i = 0; i < sizeof(BT_OCTET16); ++i) {
snprintf(buffer, 3, "%02x", a[i]);
buffer += 2;
}
*buffer = '\0';
}
void dump_uint128_reverse(BT_OCTET16 a, char* buffer) {
for (int i = (int)(sizeof(BT_OCTET16) - 1); i >= 0; --i) {
snprintf(buffer, 3, "%02x", a[i]);
buffer += 2;
}
*buffer = '\0';
}
void print_uint128(BT_OCTET16 a) {
for (unsigned int i = 0; i < sizeof(BT_OCTET16); ++i) {
printf("%02x", a[i]);
}
printf("\n");
}
void parse_uint128(const char* input, BT_OCTET16 output) {
memset(output, 0, sizeof(BT_OCTET16));
for (unsigned int count = 0; count < sizeof(BT_OCTET16); count++) {
sscanf(input, "%2hhx", &output[count]);
input += 2;
}
}
void reverse_array_inplace(BT_OCTET16 a) {
uint8_t tmp;
uint8_t* a_end = a + sizeof(BT_OCTET16) - 1;
while (a_end > a) {
tmp = *a_end;
*a_end = *a;
*a = tmp;
++a;
--a_end;
}
}
class SmpCalculateConfirmTest : public Test {
protected:
tSMP_CB p_cb_;
// Set random to 0x5783D52156AD6F0E6388274EC6702EE0
BT_OCTET16 rand_ = {0x57, 0x83, 0xD5, 0x21, 0x56, 0xAD, 0x6F, 0x0E,
0x63, 0x88, 0x27, 0x4E, 0xC6, 0x70, 0x2E, 0xE0};
void SetUp() {
memset(p_cb_.tk, 0, sizeof(p_cb_.tk));
// Set pairing request packet to 0x070710000001(01)
p_cb_.local_io_capability = 0x01;
p_cb_.loc_oob_flag = 0x00;
p_cb_.loc_auth_req = 0x00;
p_cb_.loc_enc_size = 0x10;
p_cb_.local_i_key = 0x07;
p_cb_.local_r_key = 0x07;
// Set pairing response packet to 0x050008000003(02)
p_cb_.peer_io_caps = 0x03;
p_cb_.peer_oob_flag = 0x00;
p_cb_.peer_auth_req = 0x00;
p_cb_.peer_enc_size = 0x08;
p_cb_.peer_i_key = 0x00;
p_cb_.peer_r_key = 0x05;
// Set role to master
p_cb_.role = HCI_ROLE_MASTER;
reverse_array_inplace(rand_);
}
void TearDown() {}
public:
};
// Test smp_gen_p2_4_confirm function implementation
TEST_F(SmpCalculateConfirmTest, test_smp_gen_p2_4_confirm_as_master) {
BT_OCTET16 p2;
RawAddress remote_bda;
tBLE_ADDR_TYPE remote_bd_addr_type = 0;
BTM_ReadRemoteConnectionAddr(p_cb_.pairing_bda, remote_bda,
&remote_bd_addr_type);
BTM_ReadConnectionAddr(p_cb_.pairing_bda, p_cb_.local_bda, &p_cb_.addr_type);
smp_gen_p2_4_confirm(&p_cb_, remote_bda, p2);
// Correct p2 is 0x00000000a1a2a3a4a5a6b1b2b3b4b5b6
const char expected_p2_str[] = "00000000a1a2a3a4a5a6b1b2b3b4b5b6";
char p2_str[2 * sizeof(BT_OCTET16) + 1];
dump_uint128_reverse(p2, p2_str);
ASSERT_THAT(p2_str, StrEq(expected_p2_str));
}
// Test smp_gen_p1_4_confirm and SMP_Encrypt function implementation
TEST_F(SmpCalculateConfirmTest, test_SMP_Encrypt_as_master) {
BT_OCTET16 p1;
RawAddress remote_bda;
tBLE_ADDR_TYPE remote_bd_addr_type = 0;
BTM_ReadRemoteConnectionAddr(p_cb_.pairing_bda, remote_bda,
&remote_bd_addr_type);
BTM_ReadConnectionAddr(p_cb_.pairing_bda, p_cb_.local_bda, &p_cb_.addr_type);
smp_gen_p1_4_confirm(&p_cb_, remote_bd_addr_type, p1);
// Correct p1 is 0x05000800000302070710000001010001
const char expected_p1_str[] = "05000800000302070710000001010001";
char p1_str[2 * sizeof(BT_OCTET16) + 1];
dump_uint128_reverse(p1, p1_str);
ASSERT_THAT(p1_str, StrEq(expected_p1_str));
smp_xor_128(p1, rand_);
// Correct p1 xor r is 0x5283dd2156ae6d096498274ec7712ee1
const char expected_p1_xor_r_str[] = "5283dd2156ae6d096498274ec7712ee1";
char p1_xor_r_str[2 * sizeof(BT_OCTET16) + 1];
dump_uint128_reverse(p1, p1_xor_r_str);
ASSERT_THAT(p1_xor_r_str, StrEq(expected_p1_xor_r_str));
tSMP_ENC output;
memset(&output, 0, sizeof(tSMP_ENC));
ASSERT_TRUE(
SMP_Encrypt(p_cb_.tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, &output));
const char expected_p1_prime_str[] = "02c7aa2a9857ac866ff91232df0e3c95";
char p1_prime_str[2 * sizeof(BT_OCTET16) + 1];
dump_uint128_reverse(output.param_buf, p1_prime_str);
ASSERT_THAT(p1_prime_str, StrEq(expected_p1_prime_str));
}
// Test smp_calculate_comfirm function implementation
TEST_F(SmpCalculateConfirmTest, test_smp_calculate_comfirm_as_master) {
tSMP_ENC output;
tSMP_STATUS status = smp_calculate_comfirm(&p_cb_, rand_, &output);
EXPECT_EQ(status, SMP_SUCCESS);
// Correct MConfirm is 0x1e1e3fef878988ead2a74dc5bef13b86
const char expected_confirm_str[] = "1e1e3fef878988ead2a74dc5bef13b86";
char confirm_str[2 * sizeof(BT_OCTET16) + 1];
dump_uint128_reverse(output.param_buf, confirm_str);
ASSERT_THAT(confirm_str, StrEq(expected_confirm_str));
}
} // namespace testing