blob: 7f88df92cc088c4a78c0fb6040d4e08a5f8968c5 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2014 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#define LOG_TAG "bt_osi_reactor"
#include "osi/include/reactor.h"
#include <base/logging.h>
#include <errno.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <unistd.h>
#include <mutex>
#include "osi/include/allocator.h"
#include "osi/include/list.h"
#include "osi/include/log.h"
#if !defined(EFD_SEMAPHORE)
#define EFD_SEMAPHORE (1 << 0)
#endif
struct reactor_t {
int epoll_fd;
int event_fd;
std::mutex* list_mutex;
list_t* invalidation_list; // reactor objects that have been unregistered.
pthread_t run_thread; // the pthread on which reactor_run is executing.
bool is_running; // indicates whether |run_thread| is valid.
bool object_removed;
};
struct reactor_object_t {
int fd; // the file descriptor to monitor for events.
void* context; // a context that's passed back to the *_ready functions.
reactor_t* reactor; // the reactor instance this object is registered with.
std::mutex* mutex; // protects the lifetime of this object and all variables.
void (*read_ready)(void* context); // function to call when the file
// descriptor becomes readable.
void (*write_ready)(void* context); // function to call when the file
// descriptor becomes writeable.
};
static reactor_status_t run_reactor(reactor_t* reactor, int iterations);
static const size_t MAX_EVENTS = 64;
static const eventfd_t EVENT_REACTOR_STOP = 1;
reactor_t* reactor_new(void) {
reactor_t* ret = (reactor_t*)osi_calloc(sizeof(reactor_t));
ret->epoll_fd = INVALID_FD;
ret->event_fd = INVALID_FD;
ret->epoll_fd = epoll_create(MAX_EVENTS);
if (ret->epoll_fd == INVALID_FD) {
LOG_ERROR(LOG_TAG, "%s unable to create epoll instance: %s", __func__,
strerror(errno));
goto error;
}
ret->event_fd = eventfd(0, 0);
if (ret->event_fd == INVALID_FD) {
LOG_ERROR(LOG_TAG, "%s unable to create eventfd: %s", __func__,
strerror(errno));
goto error;
}
ret->list_mutex = new std::mutex;
ret->invalidation_list = list_new(NULL);
if (!ret->invalidation_list) {
LOG_ERROR(LOG_TAG, "%s unable to allocate object invalidation list.",
__func__);
goto error;
}
struct epoll_event event;
memset(&event, 0, sizeof(event));
event.events = EPOLLIN;
event.data.ptr = NULL;
if (epoll_ctl(ret->epoll_fd, EPOLL_CTL_ADD, ret->event_fd, &event) == -1) {
LOG_ERROR(LOG_TAG, "%s unable to register eventfd with epoll set: %s",
__func__, strerror(errno));
goto error;
}
return ret;
error:;
reactor_free(ret);
return NULL;
}
void reactor_free(reactor_t* reactor) {
if (!reactor) return;
list_free(reactor->invalidation_list);
close(reactor->event_fd);
close(reactor->epoll_fd);
osi_free(reactor);
}
reactor_status_t reactor_start(reactor_t* reactor) {
CHECK(reactor != NULL);
return run_reactor(reactor, 0);
}
reactor_status_t reactor_run_once(reactor_t* reactor) {
CHECK(reactor != NULL);
return run_reactor(reactor, 1);
}
void reactor_stop(reactor_t* reactor) {
CHECK(reactor != NULL);
eventfd_write(reactor->event_fd, EVENT_REACTOR_STOP);
}
reactor_object_t* reactor_register(reactor_t* reactor, int fd, void* context,
void (*read_ready)(void* context),
void (*write_ready)(void* context)) {
CHECK(reactor != NULL);
CHECK(fd != INVALID_FD);
reactor_object_t* object =
(reactor_object_t*)osi_calloc(sizeof(reactor_object_t));
object->reactor = reactor;
object->fd = fd;
object->context = context;
object->read_ready = read_ready;
object->write_ready = write_ready;
object->mutex = new std::mutex;
struct epoll_event event;
memset(&event, 0, sizeof(event));
if (read_ready) event.events |= (EPOLLIN | EPOLLRDHUP);
if (write_ready) event.events |= EPOLLOUT;
event.data.ptr = object;
if (epoll_ctl(reactor->epoll_fd, EPOLL_CTL_ADD, fd, &event) == -1) {
LOG_ERROR(LOG_TAG, "%s unable to register fd %d to epoll set: %s", __func__,
fd, strerror(errno));
delete object->mutex;
osi_free(object);
return NULL;
}
return object;
}
bool reactor_change_registration(reactor_object_t* object,
void (*read_ready)(void* context),
void (*write_ready)(void* context)) {
CHECK(object != NULL);
struct epoll_event event;
memset(&event, 0, sizeof(event));
if (read_ready) event.events |= (EPOLLIN | EPOLLRDHUP);
if (write_ready) event.events |= EPOLLOUT;
event.data.ptr = object;
if (epoll_ctl(object->reactor->epoll_fd, EPOLL_CTL_MOD, object->fd, &event) ==
-1) {
LOG_ERROR(LOG_TAG, "%s unable to modify interest set for fd %d: %s",
__func__, object->fd, strerror(errno));
return false;
}
std::lock_guard<std::mutex> lock(*object->mutex);
object->read_ready = read_ready;
object->write_ready = write_ready;
return true;
}
void reactor_unregister(reactor_object_t* obj) {
CHECK(obj != NULL);
reactor_t* reactor = obj->reactor;
if (epoll_ctl(reactor->epoll_fd, EPOLL_CTL_DEL, obj->fd, NULL) == -1)
LOG_ERROR(LOG_TAG, "%s unable to unregister fd %d from epoll set: %s",
__func__, obj->fd, strerror(errno));
if (reactor->is_running &&
pthread_equal(pthread_self(), reactor->run_thread)) {
reactor->object_removed = true;
return;
}
{
std::unique_lock<std::mutex> lock(*reactor->list_mutex);
list_append(reactor->invalidation_list, obj);
}
// Taking the object lock here makes sure a callback for |obj| isn't
// currently executing. The reactor thread must then either be before
// the callbacks or after. If after, we know that the object won't be
// referenced because it has been taken out of the epoll set. If before,
// it won't be referenced because the reactor thread will check the
// invalidation_list and find it in there. So by taking this lock, we
// are waiting until the reactor thread drops all references to |obj|.
// One the wait completes, we can unlock and destroy |obj| safely.
obj->mutex->lock();
obj->mutex->unlock();
delete obj->mutex;
osi_free(obj);
}
// Runs the reactor loop for a maximum of |iterations|.
// 0 |iterations| means loop forever.
// |reactor| may not be NULL.
static reactor_status_t run_reactor(reactor_t* reactor, int iterations) {
CHECK(reactor != NULL);
reactor->run_thread = pthread_self();
reactor->is_running = true;
struct epoll_event events[MAX_EVENTS];
for (int i = 0; iterations == 0 || i < iterations; ++i) {
{
std::lock_guard<std::mutex> lock(*reactor->list_mutex);
list_clear(reactor->invalidation_list);
}
int ret;
OSI_NO_INTR(ret = epoll_wait(reactor->epoll_fd, events, MAX_EVENTS, -1));
if (ret == -1) {
LOG_ERROR(LOG_TAG, "%s error in epoll_wait: %s", __func__,
strerror(errno));
reactor->is_running = false;
return REACTOR_STATUS_ERROR;
}
for (int j = 0; j < ret; ++j) {
// The event file descriptor is the only one that registers with
// a NULL data pointer. We use the NULL to identify it and break
// out of the reactor loop.
if (events[j].data.ptr == NULL) {
eventfd_t value;
eventfd_read(reactor->event_fd, &value);
reactor->is_running = false;
return REACTOR_STATUS_STOP;
}
reactor_object_t* object = (reactor_object_t*)events[j].data.ptr;
std::unique_lock<std::mutex> lock(*reactor->list_mutex);
if (list_contains(reactor->invalidation_list, object)) {
continue;
}
// Downgrade the list lock to an object lock.
{
std::lock_guard<std::mutex> obj_lock(*object->mutex);
lock.unlock();
reactor->object_removed = false;
if (events[j].events & (EPOLLIN | EPOLLHUP | EPOLLRDHUP | EPOLLERR) &&
object->read_ready)
object->read_ready(object->context);
if (!reactor->object_removed && events[j].events & EPOLLOUT &&
object->write_ready)
object->write_ready(object->context);
}
if (reactor->object_removed) {
delete object->mutex;
osi_free(object);
}
}
}
reactor->is_running = false;
return REACTOR_STATUS_DONE;
}