blob: 416916b93b873a11ab8cf7e904ae1af72ac5911b [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2014 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#define LOG_TAG "bt_osi_alarm"
#include "osi/include/alarm.h"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <malloc.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include <hardware/bluetooth.h>
#include "osi/include/allocator.h"
#include "osi/include/list.h"
#include "osi/include/log.h"
#include "osi/include/osi.h"
#include "osi/include/semaphore.h"
#include "osi/include/thread.h"
struct alarm_t {
// The lock is held while the callback for this alarm is being executed.
// It allows us to release the coarse-grained monitor lock while a potentially
// long-running callback is executing. |alarm_cancel| uses this lock to provide
// a guarantee to its caller that the callback will not be in progress when it
// returns.
pthread_mutex_t callback_lock;
period_ms_t creation_time;
period_ms_t period;
period_ms_t deadline;
bool is_periodic;
alarm_callback_t callback;
void *data;
};
extern bt_os_callouts_t *bt_os_callouts;
// If the next wakeup time is less than this threshold, we should acquire
// a wakelock instead of setting a wake alarm so we're not bouncing in
// and out of suspend frequently. This value is externally visible to allow
// unit tests to run faster. It should not be modified by production code.
int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
static const char *WAKE_LOCK_ID = "bluedroid_timer";
// This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
// functions execute serially and not concurrently. As a result, this mutex also
// protects the |alarms| list.
static pthread_mutex_t monitor;
static list_t *alarms;
static timer_t timer;
static bool timer_set;
// All alarm callbacks are dispatched from |callback_thread|
static thread_t *callback_thread;
static bool callback_thread_active;
static semaphore_t *alarm_expired;
static bool lazy_initialize(void);
static period_ms_t now(void);
static void alarm_set_internal(alarm_t *alarm, period_ms_t deadline, alarm_callback_t cb, void *data, bool is_periodic);
static void schedule_next_instance(alarm_t *alarm, bool force_reschedule);
static void reschedule_root_alarm(void);
static void timer_callback(void *data);
static void callback_dispatch(void *context);
alarm_t *alarm_new(void) {
// Make sure we have a list we can insert alarms into.
if (!alarms && !lazy_initialize())
return NULL;
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
alarm_t *ret = osi_calloc(sizeof(alarm_t));
if (!ret) {
LOG_ERROR(LOG_TAG, "%s unable to allocate memory for alarm.", __func__);
goto error;
}
// Make this a recursive mutex to make it safe to call |alarm_cancel| from
// within the callback function of the alarm.
int error = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
if (error) {
LOG_ERROR(LOG_TAG, "%s unable to create a recursive mutex: %s", __func__, strerror(error));
goto error;
}
error = pthread_mutex_init(&ret->callback_lock, &attr);
if (error) {
LOG_ERROR(LOG_TAG, "%s unable to initialize mutex: %s", __func__, strerror(error));
goto error;
}
pthread_mutexattr_destroy(&attr);
return ret;
error:;
pthread_mutexattr_destroy(&attr);
osi_free(ret);
return NULL;
}
void alarm_free(alarm_t *alarm) {
if (!alarm)
return;
alarm_cancel(alarm);
pthread_mutex_destroy(&alarm->callback_lock);
osi_free(alarm);
}
void alarm_set(alarm_t *alarm, period_ms_t deadline, alarm_callback_t cb, void *data) {
alarm_set_internal(alarm, deadline, cb, data, false);
}
void alarm_set_periodic(alarm_t *alarm, period_ms_t period, alarm_callback_t cb, void *data) {
alarm_set_internal(alarm, period, cb, data, true);
}
// Runs in exclusion with alarm_cancel and timer_callback.
static void alarm_set_internal(alarm_t *alarm, period_ms_t period, alarm_callback_t cb, void *data, bool is_periodic) {
assert(alarms != NULL);
assert(alarm != NULL);
assert(cb != NULL);
pthread_mutex_lock(&monitor);
alarm->creation_time = now();
alarm->is_periodic = is_periodic;
alarm->period = period;
alarm->callback = cb;
alarm->data = data;
schedule_next_instance(alarm, false);
pthread_mutex_unlock(&monitor);
}
void alarm_cancel(alarm_t *alarm) {
assert(alarms != NULL);
assert(alarm != NULL);
pthread_mutex_lock(&monitor);
bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
list_remove(alarms, alarm);
alarm->deadline = 0;
alarm->callback = NULL;
alarm->data = NULL;
if (needs_reschedule)
reschedule_root_alarm();
pthread_mutex_unlock(&monitor);
// If the callback for |alarm| is in progress, wait here until it completes.
pthread_mutex_lock(&alarm->callback_lock);
pthread_mutex_unlock(&alarm->callback_lock);
}
void alarm_cleanup(void) {
// If lazy_initialize never ran there is nothing to do
if (!alarms)
return;
callback_thread_active = false;
semaphore_post(alarm_expired);
thread_free(callback_thread);
callback_thread = NULL;
semaphore_free(alarm_expired);
alarm_expired = NULL;
timer_delete(&timer);
list_free(alarms);
alarms = NULL;
pthread_mutex_destroy(&monitor);
}
static bool lazy_initialize(void) {
assert(alarms == NULL);
pthread_mutex_init(&monitor, NULL);
alarms = list_new(NULL);
if (!alarms) {
LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
return false;
}
struct sigevent sigevent;
memset(&sigevent, 0, sizeof(sigevent));
sigevent.sigev_notify = SIGEV_THREAD;
sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
if (timer_create(CLOCK_ID, &sigevent, &timer) == -1) {
LOG_ERROR(LOG_TAG, "%s unable to create timer: %s", __func__, strerror(errno));
return false;
}
alarm_expired = semaphore_new(0);
if (!alarm_expired) {
LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
return false;
}
callback_thread_active = true;
callback_thread = thread_new("alarm_callbacks");
if (!callback_thread) {
LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
return false;
}
thread_post(callback_thread, callback_dispatch, NULL);
return true;
}
static period_ms_t now(void) {
assert(alarms != NULL);
struct timespec ts;
if (clock_gettime(CLOCK_ID, &ts) == -1) {
LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__, strerror(errno));
return 0;
}
return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
}
// Must be called with monitor held
static void schedule_next_instance(alarm_t *alarm, bool force_reschedule) {
// If the alarm is currently set and it's at the start of the list,
// we'll need to re-schedule since we've adjusted the earliest deadline.
bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
if (alarm->callback)
list_remove(alarms, alarm);
// Calculate the next deadline for this alarm
period_ms_t just_now = now();
period_ms_t ms_into_period = alarm->is_periodic ? ((just_now - alarm->creation_time) % alarm->period) : 0;
alarm->deadline = just_now + (alarm->period - ms_into_period);
// Add it into the timer list sorted by deadline (earliest deadline first).
if (list_is_empty(alarms) || ((alarm_t *)list_front(alarms))->deadline >= alarm->deadline)
list_prepend(alarms, alarm);
else
for (list_node_t *node = list_begin(alarms); node != list_end(alarms); node = list_next(node)) {
list_node_t *next = list_next(node);
if (next == list_end(alarms) || ((alarm_t *)list_node(next))->deadline >= alarm->deadline) {
list_insert_after(alarms, node, alarm);
break;
}
}
// If the new alarm has the earliest deadline, we need to re-evaluate our schedule.
if (force_reschedule || needs_reschedule || (!list_is_empty(alarms) && list_front(alarms) == alarm))
reschedule_root_alarm();
}
// NOTE: must be called with monitor lock.
static void reschedule_root_alarm(void) {
bool timer_was_set = timer_set;
assert(alarms != NULL);
// If used in a zeroed state, disarms the timer
struct itimerspec wakeup_time;
memset(&wakeup_time, 0, sizeof(wakeup_time));
if (list_is_empty(alarms))
goto done;
alarm_t *next = list_front(alarms);
int64_t next_expiration = next->deadline - now();
if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
if (!timer_set) {
int status = bt_os_callouts->acquire_wake_lock(WAKE_LOCK_ID);
if (status != BT_STATUS_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock: %d", __func__, status);
goto done;
}
}
wakeup_time.it_value.tv_sec = (next->deadline / 1000);
wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
} else {
if (!bt_os_callouts->set_wake_alarm(next_expiration, true, timer_callback, NULL))
LOG_ERROR(LOG_TAG, "%s unable to set wake alarm for %" PRId64 "ms.", __func__, next_expiration);
}
done:
timer_set = wakeup_time.it_value.tv_sec != 0 || wakeup_time.it_value.tv_nsec != 0;
if (timer_was_set && !timer_set) {
bt_os_callouts->release_wake_lock(WAKE_LOCK_ID);
}
if (timer_settime(timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
// If next expiration was in the past (e.g. short timer that got context switched)
// then the timer might have diarmed itself. Detect this case and work around it
// by manually signalling the |alarm_expired| semaphore.
//
// It is possible that the timer was actually super short (a few milliseconds)
// and the timer expired normally before we called |timer_gettime|. Worst case,
// |alarm_expired| is signaled twice for that alarm. Nothing bad should happen in
// that case though since the callback dispatch function checks to make sure the
// timer at the head of the list actually expired.
if (timer_set) {
struct itimerspec time_to_expire;
timer_gettime(timer, &time_to_expire);
if (time_to_expire.it_value.tv_sec == 0 && time_to_expire.it_value.tv_nsec == 0) {
LOG_ERROR(LOG_TAG, "%s alarm expiration too close for posix timers, switching to guns", __func__);
semaphore_post(alarm_expired);
}
}
}
// Callback function for wake alarms and our posix timer
static void timer_callback(UNUSED_ATTR void *ptr) {
semaphore_post(alarm_expired);
}
// Function running on |callback_thread| that dispatches alarm callbacks upon
// alarm expiration, which is signaled using |alarm_expired|.
static void callback_dispatch(UNUSED_ATTR void *context) {
while (true) {
semaphore_wait(alarm_expired);
if (!callback_thread_active)
break;
pthread_mutex_lock(&monitor);
alarm_t *alarm;
// Take into account that the alarm may get cancelled before we get to it.
// We're done here if there are no alarms or the alarm at the front is in
// the future. Release the monitor lock and exit right away since there's
// nothing left to do.
if (list_is_empty(alarms) || (alarm = list_front(alarms))->deadline > now()) {
reschedule_root_alarm();
pthread_mutex_unlock(&monitor);
continue;
}
list_remove(alarms, alarm);
alarm_callback_t callback = alarm->callback;
void *data = alarm->data;
if (alarm->is_periodic) {
schedule_next_instance(alarm, true);
} else {
reschedule_root_alarm();
alarm->deadline = 0;
alarm->callback = NULL;
alarm->data = NULL;
}
// Downgrade lock.
pthread_mutex_lock(&alarm->callback_lock);
pthread_mutex_unlock(&monitor);
callback(data);
pthread_mutex_unlock(&alarm->callback_lock);
}
LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
}