blob: 1db39aeb21a4fd72328f06dc6105c0c4cfd70dfd [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2009-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#define LOG_TAG "bt_btif_sock_rfcomm"
#include <base/logging.h>
#include <errno.h>
#include <features.h>
#include <pthread.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <mutex>
#include <hardware/bluetooth.h>
#include <hardware/bt_sock.h>
#include "bt_common.h"
#include "bt_target.h"
#include "bta_api.h"
#include "bta_jv_api.h"
#include "bta_jv_co.h"
#include "btif_common.h"
#include "btif_sock_sdp.h"
#include "btif_sock_thread.h"
#include "btif_sock_util.h"
#include "btif_uid.h"
#include "btif_util.h"
#include "btm_api.h"
#include "btm_int.h"
#include "btu.h"
#include "hcimsgs.h"
#include "osi/include/compat.h"
#include "osi/include/list.h"
#include "osi/include/log.h"
#include "osi/include/osi.h"
#include "port_api.h"
#include "sdp_api.h"
/* The JV interface can have only one user, hence we need to call a few
* L2CAP functions from this file. */
#include "btif_sock_l2cap.h"
// Maximum number of RFCOMM channels (1-30 inclusive).
#define MAX_RFC_CHANNEL 30
// Maximum number of devices we can have an RFCOMM connection with.
#define MAX_RFC_SESSION 7
typedef struct {
int outgoing_congest : 1;
int pending_sdp_request : 1;
int doing_sdp_request : 1;
int server : 1;
int connected : 1;
int closing : 1;
} flags_t;
typedef struct {
flags_t f;
uint32_t id; // Non-zero indicates a valid (in-use) slot.
int security;
int scn; // Server channel number
int scn_notified;
bt_bdaddr_t addr;
int is_service_uuid_valid;
uint8_t service_uuid[16];
char service_name[256];
int fd;
int app_fd; // Temporary storage for the half of the socketpair that's sent
// back to upper layers.
int app_uid; // UID of the app for which this socket was created.
int mtu;
uint8_t* packet;
int sdp_handle;
int rfc_handle;
int rfc_port_handle;
int role;
list_t* incoming_queue;
} rfc_slot_t;
static rfc_slot_t rfc_slots[MAX_RFC_CHANNEL];
static uint32_t rfc_slot_id;
static volatile int pth = -1; // poll thread handle
static std::recursive_mutex slot_lock;
static uid_set_t* uid_set = NULL;
static rfc_slot_t* find_free_slot(void);
static void cleanup_rfc_slot(rfc_slot_t* rs);
static void jv_dm_cback(tBTA_JV_EVT event, tBTA_JV* p_data, uint32_t id);
static uint32_t rfcomm_cback(tBTA_JV_EVT event, tBTA_JV* p_data,
uint32_t rfcomm_slot_id);
static bool send_app_scn(rfc_slot_t* rs);
static bool is_init_done(void) { return pth != -1; }
bt_status_t btsock_rfc_init(int poll_thread_handle, uid_set_t* set) {
pth = poll_thread_handle;
uid_set = set;
memset(rfc_slots, 0, sizeof(rfc_slots));
for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) {
rfc_slots[i].scn = -1;
rfc_slots[i].sdp_handle = 0;
rfc_slots[i].fd = INVALID_FD;
rfc_slots[i].app_fd = INVALID_FD;
rfc_slots[i].incoming_queue = list_new(osi_free);
CHECK(rfc_slots[i].incoming_queue != NULL);
}
BTA_JvEnable(jv_dm_cback);
return BT_STATUS_SUCCESS;
}
void btsock_rfc_cleanup(void) {
pth = -1;
uid_set = NULL;
BTA_JvDisable();
std::unique_lock<std::recursive_mutex> lock(slot_lock);
for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) {
if (rfc_slots[i].id) cleanup_rfc_slot(&rfc_slots[i]);
list_free(rfc_slots[i].incoming_queue);
rfc_slots[i].incoming_queue = NULL;
}
}
static rfc_slot_t* find_free_slot(void) {
for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i)
if (rfc_slots[i].fd == INVALID_FD) return &rfc_slots[i];
return NULL;
}
static rfc_slot_t* find_rfc_slot_by_id(uint32_t id) {
CHECK(id != 0);
for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i)
if (rfc_slots[i].id == id) return &rfc_slots[i];
LOG_ERROR(LOG_TAG, "%s unable to find RFCOMM slot id: %d", __func__, id);
return NULL;
}
static rfc_slot_t* find_rfc_slot_by_pending_sdp(void) {
uint32_t min_id = UINT32_MAX;
int slot = -1;
for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i)
if (rfc_slots[i].id && rfc_slots[i].f.pending_sdp_request &&
rfc_slots[i].id < min_id) {
min_id = rfc_slots[i].id;
slot = i;
}
return (slot == -1) ? NULL : &rfc_slots[slot];
}
static bool is_requesting_sdp(void) {
for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i)
if (rfc_slots[i].id && rfc_slots[i].f.doing_sdp_request) return true;
return false;
}
static rfc_slot_t* alloc_rfc_slot(const bt_bdaddr_t* addr, const char* name,
const uint8_t* uuid, int channel, int flags,
bool server) {
int security = 0;
if (flags & BTSOCK_FLAG_ENCRYPT)
security |= server ? BTM_SEC_IN_ENCRYPT : BTM_SEC_OUT_ENCRYPT;
if (flags & BTSOCK_FLAG_AUTH)
security |= server ? BTM_SEC_IN_AUTHENTICATE : BTM_SEC_OUT_AUTHENTICATE;
if (flags & BTSOCK_FLAG_AUTH_MITM)
security |= server ? BTM_SEC_IN_MITM : BTM_SEC_OUT_MITM;
if (flags & BTSOCK_FLAG_AUTH_16_DIGIT)
security |= BTM_SEC_IN_MIN_16_DIGIT_PIN;
rfc_slot_t* slot = find_free_slot();
if (!slot) {
LOG_ERROR(LOG_TAG, "%s unable to find free RFCOMM slot.", __func__);
return NULL;
}
int fds[2] = {INVALID_FD, INVALID_FD};
if (socketpair(AF_LOCAL, SOCK_STREAM, 0, fds) == -1) {
LOG_ERROR(LOG_TAG, "%s error creating socketpair: %s", __func__,
strerror(errno));
return NULL;
}
// Increment slot id and make sure we don't use id=0.
if (++rfc_slot_id == 0) rfc_slot_id = 1;
slot->fd = fds[0];
slot->app_fd = fds[1];
slot->security = security;
slot->scn = channel;
slot->app_uid = -1;
if (!is_uuid_empty(uuid)) {
memcpy(slot->service_uuid, uuid, sizeof(slot->service_uuid));
slot->is_service_uuid_valid = true;
} else {
memset(slot->service_uuid, 0, sizeof(slot->service_uuid));
slot->is_service_uuid_valid = false;
}
if (name && *name) {
strlcpy(slot->service_name, name, sizeof(slot->service_name));
} else {
memset(slot->service_name, 0, sizeof(slot->service_name));
}
if (addr) slot->addr = *addr;
slot->id = rfc_slot_id;
slot->f.server = server;
return slot;
}
static rfc_slot_t* create_srv_accept_rfc_slot(rfc_slot_t* srv_rs,
const bt_bdaddr_t* addr,
int open_handle,
int new_listen_handle) {
rfc_slot_t* accept_rs = alloc_rfc_slot(
addr, srv_rs->service_name, srv_rs->service_uuid, srv_rs->scn, 0, false);
if (!accept_rs) {
LOG_ERROR(LOG_TAG, "%s unable to allocate RFCOMM slot.", __func__);
return NULL;
}
accept_rs->f.server = false;
accept_rs->f.connected = true;
accept_rs->security = srv_rs->security;
accept_rs->mtu = srv_rs->mtu;
accept_rs->role = srv_rs->role;
accept_rs->rfc_handle = open_handle;
accept_rs->rfc_port_handle = BTA_JvRfcommGetPortHdl(open_handle);
accept_rs->app_uid = srv_rs->app_uid;
srv_rs->rfc_handle = new_listen_handle;
srv_rs->rfc_port_handle = BTA_JvRfcommGetPortHdl(new_listen_handle);
CHECK(accept_rs->rfc_port_handle != srv_rs->rfc_port_handle);
// now swap the slot id
uint32_t new_listen_id = accept_rs->id;
accept_rs->id = srv_rs->id;
srv_rs->id = new_listen_id;
return accept_rs;
}
bt_status_t btsock_rfc_listen(const char* service_name,
const uint8_t* service_uuid, int channel,
int* sock_fd, int flags, int app_uid) {
CHECK(sock_fd != NULL);
CHECK((service_uuid != NULL) ||
(channel >= 1 && channel <= MAX_RFC_CHANNEL) ||
((flags & BTSOCK_FLAG_NO_SDP) != 0));
*sock_fd = INVALID_FD;
// TODO(sharvil): not sure that this check makes sense; seems like a logic
// error to call
// functions on RFCOMM sockets before initializing the module. Probably should
// be an assert.
if (!is_init_done()) return BT_STATUS_NOT_READY;
if ((flags & BTSOCK_FLAG_NO_SDP) == 0) {
if (is_uuid_empty(service_uuid)) {
APPL_TRACE_DEBUG(
"BTA_JvGetChannelId: service_uuid not set AND "
"BTSOCK_FLAG_NO_SDP is not set - changing to SPP");
service_uuid =
UUID_SPP; // Use serial port profile to listen to specified channel
} else {
// Check the service_uuid. overwrite the channel # if reserved
int reserved_channel = get_reserved_rfc_channel(service_uuid);
if (reserved_channel > 0) {
channel = reserved_channel;
}
}
}
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot =
alloc_rfc_slot(NULL, service_name, service_uuid, channel, flags, true);
if (!slot) {
LOG_ERROR(LOG_TAG, "%s unable to allocate RFCOMM slot.", __func__);
return BT_STATUS_FAIL;
}
APPL_TRACE_DEBUG("BTA_JvGetChannelId: service_name: %s - channel: %d",
service_name, channel);
BTA_JvGetChannelId(BTA_JV_CONN_TYPE_RFCOMM, slot->id, channel);
*sock_fd = slot->app_fd; // Transfer ownership of fd to caller.
/*TODO:
* We are leaking one of the app_fd's - either the listen socket, or the
connection socket.
* WE need to close this in native, as the FD might belong to another process
- This is the server socket FD
- For accepted connections, we close the FD after passing it to JAVA.
- Try to simply remove the = -1 to free the FD at rs cleanup.*/
// close(rs->app_fd);
slot->app_fd = INVALID_FD; // Drop our reference to the fd.
slot->app_uid = app_uid;
btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_EXCEPTION,
slot->id);
return BT_STATUS_SUCCESS;
}
bt_status_t btsock_rfc_connect(const bt_bdaddr_t* bd_addr,
const uint8_t* service_uuid, int channel,
int* sock_fd, int flags, int app_uid) {
CHECK(sock_fd != NULL);
CHECK(service_uuid != NULL || (channel >= 1 && channel <= MAX_RFC_CHANNEL));
*sock_fd = INVALID_FD;
// TODO(sharvil): not sure that this check makes sense; seems like a logic
// error to call
// functions on RFCOMM sockets before initializing the module. Probably should
// be an assert.
if (!is_init_done()) return BT_STATUS_NOT_READY;
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot =
alloc_rfc_slot(bd_addr, NULL, service_uuid, channel, flags, false);
if (!slot) {
LOG_ERROR(LOG_TAG, "%s unable to allocate RFCOMM slot.", __func__);
return BT_STATUS_FAIL;
}
if (is_uuid_empty(service_uuid)) {
tBTA_JV_STATUS ret =
BTA_JvRfcommConnect(slot->security, slot->role, slot->scn,
slot->addr.address, rfcomm_cback, slot->id);
if (ret != BTA_JV_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s unable to initiate RFCOMM connection: %d",
__func__, ret);
cleanup_rfc_slot(slot);
return BT_STATUS_FAIL;
}
if (!send_app_scn(slot)) {
LOG_ERROR(LOG_TAG, "%s unable to send channel number.", __func__);
cleanup_rfc_slot(slot);
return BT_STATUS_FAIL;
}
} else {
tSDP_UUID sdp_uuid;
sdp_uuid.len = 16;
memcpy(sdp_uuid.uu.uuid128, service_uuid, sizeof(sdp_uuid.uu.uuid128));
if (!is_requesting_sdp()) {
BTA_JvStartDiscovery((uint8_t*)bd_addr->address, 1, &sdp_uuid, slot->id);
slot->f.pending_sdp_request = false;
slot->f.doing_sdp_request = true;
} else {
slot->f.pending_sdp_request = true;
slot->f.doing_sdp_request = false;
}
}
*sock_fd = slot->app_fd; // Transfer ownership of fd to caller.
slot->app_fd = INVALID_FD; // Drop our reference to the fd.
slot->app_uid = app_uid;
btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD,
slot->id);
return BT_STATUS_SUCCESS;
}
static int create_server_sdp_record(rfc_slot_t* slot) {
if (slot->scn == 0) {
return false;
}
slot->sdp_handle =
add_rfc_sdp_rec(slot->service_name, slot->service_uuid, slot->scn);
return (slot->sdp_handle > 0);
}
static void free_rfc_slot_scn(rfc_slot_t* slot) {
if (slot->scn <= 0) return;
if (slot->f.server && !slot->f.closing && slot->rfc_handle) {
BTA_JvRfcommStopServer(slot->rfc_handle, slot->id);
slot->rfc_handle = 0;
}
if (slot->f.server) BTM_FreeSCN(slot->scn);
slot->scn = 0;
}
static void cleanup_rfc_slot(rfc_slot_t* slot) {
if (slot->fd != INVALID_FD) {
shutdown(slot->fd, SHUT_RDWR);
close(slot->fd);
slot->fd = INVALID_FD;
}
if (slot->app_fd != INVALID_FD) {
close(slot->app_fd);
slot->app_fd = INVALID_FD;
}
if (slot->sdp_handle > 0) {
del_rfc_sdp_rec(slot->sdp_handle);
slot->sdp_handle = 0;
}
if (slot->rfc_handle && !slot->f.closing && !slot->f.server) {
BTA_JvRfcommClose(slot->rfc_handle, slot->id);
slot->rfc_handle = 0;
}
free_rfc_slot_scn(slot);
list_clear(slot->incoming_queue);
slot->rfc_port_handle = 0;
memset(&slot->f, 0, sizeof(slot->f));
slot->id = 0;
slot->scn_notified = false;
}
static bool send_app_scn(rfc_slot_t* slot) {
if (slot->scn_notified == true) {
// already send, just return success.
return true;
}
slot->scn_notified = true;
return sock_send_all(slot->fd, (const uint8_t*)&slot->scn,
sizeof(slot->scn)) == sizeof(slot->scn);
}
static bool send_app_connect_signal(int fd, const bt_bdaddr_t* addr,
int channel, int status, int send_fd) {
sock_connect_signal_t cs;
cs.size = sizeof(cs);
cs.bd_addr = *addr;
cs.channel = channel;
cs.status = status;
cs.max_rx_packet_size = 0; // not used for RFCOMM
cs.max_tx_packet_size = 0; // not used for RFCOMM
if (send_fd == INVALID_FD)
return sock_send_all(fd, (const uint8_t*)&cs, sizeof(cs)) == sizeof(cs);
return sock_send_fd(fd, (const uint8_t*)&cs, sizeof(cs), send_fd) ==
sizeof(cs);
}
static void on_cl_rfc_init(tBTA_JV_RFCOMM_CL_INIT* p_init, uint32_t id) {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (!slot) return;
if (p_init->status == BTA_JV_SUCCESS) {
slot->rfc_handle = p_init->handle;
} else {
cleanup_rfc_slot(slot);
}
}
static void on_srv_rfc_listen_started(tBTA_JV_RFCOMM_START* p_start,
uint32_t id) {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (!slot) return;
if (p_start->status == BTA_JV_SUCCESS) {
slot->rfc_handle = p_start->handle;
} else {
cleanup_rfc_slot(slot);
}
}
static uint32_t on_srv_rfc_connect(tBTA_JV_RFCOMM_SRV_OPEN* p_open,
uint32_t id) {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* accept_rs;
rfc_slot_t* srv_rs = find_rfc_slot_by_id(id);
if (!srv_rs) return 0;
accept_rs =
create_srv_accept_rfc_slot(srv_rs, (const bt_bdaddr_t*)p_open->rem_bda,
p_open->handle, p_open->new_listen_handle);
if (!accept_rs) return 0;
// Start monitoring the socket.
btsock_thread_add_fd(pth, srv_rs->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_EXCEPTION,
srv_rs->id);
btsock_thread_add_fd(pth, accept_rs->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD,
accept_rs->id);
send_app_connect_signal(srv_rs->fd, &accept_rs->addr, srv_rs->scn, 0,
accept_rs->app_fd);
accept_rs->app_fd =
INVALID_FD; // Ownership of the application fd has been transferred.
return srv_rs->id;
}
static void on_cli_rfc_connect(tBTA_JV_RFCOMM_OPEN* p_open, uint32_t id) {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (!slot) return;
if (p_open->status != BTA_JV_SUCCESS) {
cleanup_rfc_slot(slot);
return;
}
slot->rfc_port_handle = BTA_JvRfcommGetPortHdl(p_open->handle);
memcpy(slot->addr.address, p_open->rem_bda, 6);
if (send_app_connect_signal(slot->fd, &slot->addr, slot->scn, 0, -1)) {
slot->f.connected = true;
} else {
LOG_ERROR(LOG_TAG, "%s unable to send connect completion signal to caller.",
__func__);
}
}
static void on_rfc_close(UNUSED_ATTR tBTA_JV_RFCOMM_CLOSE* p_close,
uint32_t id) {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
// rfc_handle already closed when receiving rfcomm close event from stack.
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (slot) cleanup_rfc_slot(slot);
}
static void on_rfc_write_done(tBTA_JV_RFCOMM_WRITE* p, uint32_t id) {
if (p->status != BTA_JV_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s error writing to RFCOMM socket with slot %u.",
__func__, p->req_id);
return;
}
int app_uid = -1;
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (slot) {
app_uid = slot->app_uid;
if (!slot->f.outgoing_congest) {
btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD,
slot->id);
}
}
uid_set_add_tx(uid_set, app_uid, p->len);
}
static void on_rfc_outgoing_congest(tBTA_JV_RFCOMM_CONG* p, uint32_t id) {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (slot) {
slot->f.outgoing_congest = p->cong ? 1 : 0;
if (!slot->f.outgoing_congest)
btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD,
slot->id);
}
}
static uint32_t rfcomm_cback(tBTA_JV_EVT event, tBTA_JV* p_data,
uint32_t rfcomm_slot_id) {
uint32_t id = 0;
switch (event) {
case BTA_JV_RFCOMM_START_EVT:
on_srv_rfc_listen_started(&p_data->rfc_start, rfcomm_slot_id);
break;
case BTA_JV_RFCOMM_CL_INIT_EVT:
on_cl_rfc_init(&p_data->rfc_cl_init, rfcomm_slot_id);
break;
case BTA_JV_RFCOMM_OPEN_EVT:
BTA_JvSetPmProfile(p_data->rfc_open.handle, BTA_JV_PM_ID_1,
BTA_JV_CONN_OPEN);
on_cli_rfc_connect(&p_data->rfc_open, rfcomm_slot_id);
break;
case BTA_JV_RFCOMM_SRV_OPEN_EVT:
BTA_JvSetPmProfile(p_data->rfc_srv_open.handle, BTA_JV_PM_ALL,
BTA_JV_CONN_OPEN);
id = on_srv_rfc_connect(&p_data->rfc_srv_open, rfcomm_slot_id);
break;
case BTA_JV_RFCOMM_CLOSE_EVT:
APPL_TRACE_DEBUG("BTA_JV_RFCOMM_CLOSE_EVT: rfcomm_slot_id:%d",
rfcomm_slot_id);
on_rfc_close(&p_data->rfc_close, rfcomm_slot_id);
break;
case BTA_JV_RFCOMM_WRITE_EVT:
on_rfc_write_done(&p_data->rfc_write, rfcomm_slot_id);
break;
case BTA_JV_RFCOMM_CONG_EVT:
on_rfc_outgoing_congest(&p_data->rfc_cong, rfcomm_slot_id);
break;
case BTA_JV_RFCOMM_DATA_IND_EVT:
// Unused.
break;
default:
LOG_ERROR(LOG_TAG, "%s unhandled event %d, slot id: %zi", __func__, event,
rfcomm_slot_id);
break;
}
return id;
}
static void jv_dm_cback(tBTA_JV_EVT event, tBTA_JV* p_data, uint32_t id) {
switch (event) {
case BTA_JV_GET_SCN_EVT: {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* rs = find_rfc_slot_by_id(id);
int new_scn = p_data->scn;
if (rs && (new_scn != 0)) {
rs->scn = new_scn;
/* BTA_JvCreateRecordByUser will only create a record if a UUID is
* specified,
* else it just allocate a RFC channel and start the RFCOMM thread -
* needed
* for the java
* layer to get a RFCOMM channel.
* If uuid is null the create_sdp_record() will be called from Java when
* it
* has received the RFCOMM and L2CAP channel numbers through the
* sockets.*/
// Send channel ID to java layer
if (!send_app_scn(rs)) {
// closed
APPL_TRACE_DEBUG("send_app_scn() failed, close rs->id:%d", rs->id);
cleanup_rfc_slot(rs);
} else {
if (rs->is_service_uuid_valid == true) {
// We already have data for SDP record, create it (RFC-only
// profiles)
BTA_JvCreateRecordByUser(rs->id);
} else {
APPL_TRACE_DEBUG(
"is_service_uuid_valid==false - don't set SDP-record, "
"just start the RFCOMM server",
rs->id);
// now start the rfcomm server after sdp & channel # assigned
BTA_JvRfcommStartServer(rs->security, rs->role, rs->scn,
MAX_RFC_SESSION, rfcomm_cback, rs->id);
}
}
} else if (rs) {
APPL_TRACE_ERROR(
"jv_dm_cback: Error: allocate channel %d, slot found:%p", rs->scn,
rs);
cleanup_rfc_slot(rs);
}
break;
}
case BTA_JV_GET_PSM_EVT: {
APPL_TRACE_DEBUG("Received PSM: 0x%04x", p_data->psm);
on_l2cap_psm_assigned(id, p_data->psm);
break;
}
case BTA_JV_CREATE_RECORD_EVT: {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (slot && create_server_sdp_record(slot)) {
// Start the rfcomm server after sdp & channel # assigned.
BTA_JvRfcommStartServer(slot->security, slot->role, slot->scn,
MAX_RFC_SESSION, rfcomm_cback, slot->id);
} else if (slot) {
APPL_TRACE_ERROR("jv_dm_cback: cannot start server, slot found:%p",
slot);
cleanup_rfc_slot(slot);
}
break;
}
case BTA_JV_DISCOVERY_COMP_EVT: {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (p_data->disc_comp.status == BTA_JV_SUCCESS && p_data->disc_comp.scn) {
if (slot && slot->f.doing_sdp_request) {
// Establish the connection if we successfully looked up a channel
// number to connect to.
if (BTA_JvRfcommConnect(slot->security, slot->role,
p_data->disc_comp.scn, slot->addr.address,
rfcomm_cback, slot->id) == BTA_JV_SUCCESS) {
slot->scn = p_data->disc_comp.scn;
slot->f.doing_sdp_request = false;
if (!send_app_scn(slot)) cleanup_rfc_slot(slot);
} else {
cleanup_rfc_slot(slot);
}
} else if (slot) {
// TODO(sharvil): this is really a logic error and we should probably
// assert.
LOG_ERROR(LOG_TAG,
"%s SDP response returned but RFCOMM slot %d did not "
"request SDP record.",
__func__, id);
}
} else if (slot) {
cleanup_rfc_slot(slot);
}
// Find the next slot that needs to perform an SDP request and service it.
slot = find_rfc_slot_by_pending_sdp();
if (slot) {
tSDP_UUID sdp_uuid;
sdp_uuid.len = 16;
memcpy(sdp_uuid.uu.uuid128, slot->service_uuid,
sizeof(sdp_uuid.uu.uuid128));
BTA_JvStartDiscovery((uint8_t*)slot->addr.address, 1, &sdp_uuid,
slot->id);
slot->f.pending_sdp_request = false;
slot->f.doing_sdp_request = true;
}
break;
}
default:
APPL_TRACE_DEBUG("unhandled event:%d, slot id:%d", event, id);
break;
}
}
typedef enum {
SENT_FAILED,
SENT_NONE,
SENT_PARTIAL,
SENT_ALL,
} sent_status_t;
static sent_status_t send_data_to_app(int fd, BT_HDR* p_buf) {
if (p_buf->len == 0) return SENT_ALL;
ssize_t sent;
OSI_NO_INTR(
sent = send(fd, p_buf->data + p_buf->offset, p_buf->len, MSG_DONTWAIT));
if (sent == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) return SENT_NONE;
LOG_ERROR(LOG_TAG, "%s error writing RFCOMM data back to app: %s", __func__,
strerror(errno));
return SENT_FAILED;
}
if (sent == 0) return SENT_FAILED;
if (sent == p_buf->len) return SENT_ALL;
p_buf->offset += sent;
p_buf->len -= sent;
return SENT_PARTIAL;
}
static bool flush_incoming_que_on_wr_signal(rfc_slot_t* slot) {
while (!list_is_empty(slot->incoming_queue)) {
BT_HDR* p_buf = (BT_HDR*)list_front(slot->incoming_queue);
switch (send_data_to_app(slot->fd, p_buf)) {
case SENT_NONE:
case SENT_PARTIAL:
// monitor the fd to get callback when app is ready to receive data
btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_WR,
slot->id);
return true;
case SENT_ALL:
list_remove(slot->incoming_queue, p_buf);
break;
case SENT_FAILED:
list_remove(slot->incoming_queue, p_buf);
return false;
}
}
// app is ready to receive data, tell stack to start the data flow
// fix me: need a jv flow control api to serialize the call in stack
APPL_TRACE_DEBUG(
"enable data flow, rfc_handle:0x%x, rfc_port_handle:0x%x, user_id:%d",
slot->rfc_handle, slot->rfc_port_handle, slot->id);
PORT_FlowControl_MaxCredit(slot->rfc_port_handle, true);
return true;
}
void btsock_rfc_signaled(UNUSED_ATTR int fd, int flags, uint32_t user_id) {
bool need_close = false;
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(user_id);
if (!slot) return;
// Data available from app, tell stack we have outgoing data.
if (flags & SOCK_THREAD_FD_RD && !slot->f.server) {
if (slot->f.connected) {
// Make sure there's data pending in case the peer closed the socket.
int size = 0;
if (!(flags & SOCK_THREAD_FD_EXCEPTION) ||
(ioctl(slot->fd, FIONREAD, &size) == 0 && size)) {
BTA_JvRfcommWrite(slot->rfc_handle, slot->id);
}
} else {
LOG_ERROR(LOG_TAG,
"%s socket signaled for read while disconnected, slot: %d, "
"channel: %d",
__func__, slot->id, slot->scn);
need_close = true;
}
}
if (flags & SOCK_THREAD_FD_WR) {
// App is ready to receive more data, tell stack to enable data flow.
if (!slot->f.connected || !flush_incoming_que_on_wr_signal(slot)) {
LOG_ERROR(LOG_TAG,
"%s socket signaled for write while disconnected (or write "
"failure), slot: %d, channel: %d",
__func__, slot->id, slot->scn);
need_close = true;
}
}
if (need_close || (flags & SOCK_THREAD_FD_EXCEPTION)) {
// Clean up if there's no data pending.
int size = 0;
if (need_close || ioctl(slot->fd, FIONREAD, &size) != 0 || !size)
cleanup_rfc_slot(slot);
}
}
int bta_co_rfc_data_incoming(uint32_t id, BT_HDR* p_buf) {
int app_uid = -1;
uint64_t bytes_rx = 0;
int ret = 0;
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (!slot) return 0;
app_uid = slot->app_uid;
bytes_rx = p_buf->len;
if (list_is_empty(slot->incoming_queue)) {
switch (send_data_to_app(slot->fd, p_buf)) {
case SENT_NONE:
case SENT_PARTIAL:
list_append(slot->incoming_queue, p_buf);
btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_WR,
slot->id);
break;
case SENT_ALL:
osi_free(p_buf);
ret = 1; // Enable data flow.
break;
case SENT_FAILED:
osi_free(p_buf);
cleanup_rfc_slot(slot);
break;
}
} else {
list_append(slot->incoming_queue, p_buf);
}
uid_set_add_rx(uid_set, app_uid, bytes_rx);
return ret; // Return 0 to disable data flow.
}
int bta_co_rfc_data_outgoing_size(uint32_t id, int* size) {
*size = 0;
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (!slot) return false;
if (ioctl(slot->fd, FIONREAD, size) != 0) {
LOG_ERROR(LOG_TAG,
"%s unable to determine bytes remaining to be read on fd %d: %s",
__func__, slot->fd, strerror(errno));
cleanup_rfc_slot(slot);
return false;
}
return true;
}
int bta_co_rfc_data_outgoing(uint32_t id, uint8_t* buf, uint16_t size) {
std::unique_lock<std::recursive_mutex> lock(slot_lock);
rfc_slot_t* slot = find_rfc_slot_by_id(id);
if (!slot) return false;
ssize_t received;
OSI_NO_INTR(received = recv(slot->fd, buf, size, 0));
if (received != size) {
LOG_ERROR(LOG_TAG, "%s error receiving RFCOMM data from app: %s", __func__,
strerror(errno));
cleanup_rfc_slot(slot);
return false;
}
return true;
}