blob: e15a7fa8f5583b9cbd2df355923cff33de1e5e35 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_PACKAGE_MANAGER
#include "apexd_loop.h"
#include <ApexProperties.sysprop.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <dirent.h>
#include <fcntl.h>
#include <libdm/dm.h>
#include <linux/fs.h>
#include <linux/loop.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <unistd.h>
#include <utils/Trace.h>
#include <array>
#include <filesystem>
#include <mutex>
#include <string_view>
#include "apexd_utils.h"
using android::base::Basename;
using android::base::ErrnoError;
using android::base::Error;
using android::base::GetBoolProperty;
using android::base::ParseUint;
using android::base::ReadFileToString;
using android::base::Result;
using android::base::StartsWith;
using android::base::StringPrintf;
using android::base::unique_fd;
using android::dm::DeviceMapper;
namespace android {
namespace apex {
namespace loop {
static constexpr const char* kApexLoopIdPrefix = "apex:";
// 128 kB read-ahead, which we currently use for /system as well
static constexpr const char* kReadAheadKb = "128";
void LoopbackDeviceUniqueFd::MaybeCloseBad() {
if (device_fd.get() != -1) {
// Disassociate any files.
if (ioctl(device_fd.get(), LOOP_CLR_FD) == -1) {
PLOG(ERROR) << "Unable to clear fd for loopback device";
}
}
}
Result<void> ConfigureScheduler(const std::string& device_path) {
ATRACE_NAME("ConfigureScheduler");
if (!StartsWith(device_path, "/dev/")) {
return Error() << "Invalid argument " << device_path;
}
const std::string device_name = Basename(device_path);
const std::string sysfs_path =
StringPrintf("/sys/block/%s/queue/scheduler", device_name.c_str());
unique_fd sysfs_fd(open(sysfs_path.c_str(), O_RDWR | O_CLOEXEC));
if (sysfs_fd.get() == -1) {
return ErrnoError() << "Failed to open " << sysfs_path;
}
// Kernels before v4.1 only support 'noop'. Kernels [v4.1, v5.0) support
// 'noop' and 'none'. Kernels v5.0 and later only support 'none'.
static constexpr const std::array<std::string_view, 2> kNoScheduler = {
"none", "noop"};
int ret = 0;
std::string cur_sched_str;
if (!ReadFileToString(sysfs_path, &cur_sched_str)) {
return ErrnoError() << "Failed to read " << sysfs_path;
}
cur_sched_str = android::base::Trim(cur_sched_str);
if (std::count(kNoScheduler.begin(), kNoScheduler.end(), cur_sched_str)) {
return {};
}
for (const std::string_view& scheduler : kNoScheduler) {
ret = write(sysfs_fd.get(), scheduler.data(), scheduler.size());
if (ret > 0) {
break;
}
}
if (ret <= 0) {
return ErrnoError() << "Failed to write to " << sysfs_path;
}
return {};
}
// Return the parent device of a partition. Converts e.g. "sda26" into "sda".
static Result<std::string> PartitionParent(const std::string& blockdev) {
if (blockdev.find('/') != std::string::npos) {
return Error() << "Invalid argument " << blockdev;
}
std::error_code ec;
for (const auto& entry :
std::filesystem::directory_iterator("/sys/class/block", ec)) {
const std::string path = entry.path().string();
if (std::filesystem::exists(
StringPrintf("%s/%s", path.c_str(), blockdev.c_str()))) {
return Basename(path);
}
}
return blockdev;
}
// Convert a major:minor pair into a block device name.
static std::string BlockdevName(dev_t dev) {
std::error_code ec;
for (const auto& entry :
std::filesystem::directory_iterator("/dev/block", ec)) {
struct stat statbuf;
if (stat(entry.path().string().c_str(), &statbuf) < 0) {
continue;
}
if (dev == statbuf.st_rdev) {
return Basename(entry.path().string());
}
}
return {};
}
// For file `file_path`, retrieve the block device backing the filesystem on
// which the file exists and return the queue depth of the block device. The
// loop in this function may e.g. traverse the following hierarchy:
// /dev/block/dm-9 (system-verity; dm-verity)
// -> /dev/block/dm-1 (system_b; dm-linear)
// -> /dev/sda26
static Result<uint32_t> BlockDeviceQueueDepth(const std::string& file_path) {
struct stat statbuf;
int res = stat(file_path.c_str(), &statbuf);
if (res < 0) {
return ErrnoErrorf("stat({})", file_path.c_str());
}
std::string blockdev = "/dev/block/" + BlockdevName(statbuf.st_dev);
LOG(VERBOSE) << file_path << " -> " << blockdev;
if (blockdev.empty()) {
return Errorf("Failed to convert {}:{} (path {})", major(statbuf.st_dev),
minor(statbuf.st_dev), file_path.c_str());
}
auto& dm = DeviceMapper::Instance();
for (;;) {
std::optional<std::string> child = dm.GetParentBlockDeviceByPath(blockdev);
if (!child) {
break;
}
LOG(VERBOSE) << blockdev << " -> " << *child;
blockdev = *child;
}
std::optional<std::string> maybe_blockdev =
android::dm::ExtractBlockDeviceName(blockdev);
if (!maybe_blockdev) {
return Error() << "Failed to remove /dev/block/ prefix from " << blockdev;
}
Result<std::string> maybe_parent = PartitionParent(*maybe_blockdev);
if (!maybe_parent.ok()) {
return Error() << "Failed to determine parent of " << *maybe_blockdev;
}
blockdev = *maybe_parent;
LOG(VERBOSE) << "Partition parent: " << blockdev;
const std::string nr_tags_path =
StringPrintf("/sys/class/block/%s/mq/0/nr_tags", blockdev.c_str());
std::string nr_tags;
if (!ReadFileToString(nr_tags_path, &nr_tags)) {
return ErrnoError() << "Failed to read " << nr_tags_path;
}
nr_tags = android::base::Trim(nr_tags);
LOG(VERBOSE) << file_path << " is backed by /dev/" << blockdev
<< " and that block device supports queue depth " << nr_tags;
return strtol(nr_tags.c_str(), NULL, 0);
}
// Set 'nr_requests' of `loop_device_path` equal to the queue depth of
// the block device backing `file_path`.
Result<void> ConfigureQueueDepth(const std::string& loop_device_path,
const std::string& file_path) {
ATRACE_NAME("ConfigureQueueDepth");
if (!StartsWith(loop_device_path, "/dev/")) {
return Error() << "Invalid argument " << loop_device_path;
}
const std::string loop_device_name = Basename(loop_device_path);
const std::string sysfs_path =
StringPrintf("/sys/block/%s/queue/nr_requests", loop_device_name.c_str());
std::string cur_nr_requests_str;
if (!ReadFileToString(sysfs_path, &cur_nr_requests_str)) {
return ErrnoError() << "Failed to read " << sysfs_path;
}
cur_nr_requests_str = android::base::Trim(cur_nr_requests_str);
uint32_t cur_nr_requests = 0;
if (!ParseUint(cur_nr_requests_str.c_str(), &cur_nr_requests)) {
return Error() << "Failed to parse " << cur_nr_requests_str;
}
unique_fd sysfs_fd(open(sysfs_path.c_str(), O_RDWR | O_CLOEXEC));
if (sysfs_fd.get() == -1) {
return ErrnoErrorf("Failed to open {}", sysfs_path);
}
const auto qd = BlockDeviceQueueDepth(file_path);
if (!qd.ok()) {
return qd.error();
}
if (*qd == cur_nr_requests) {
return {};
}
// Only report write failures if reducing the queue depth. Attempts to
// increase the queue depth are rejected by the kernel if no I/O scheduler
// is associated with the request queue.
if (!WriteStringToFd(StringPrintf("%u", *qd), sysfs_fd) &&
*qd < cur_nr_requests) {
return ErrnoErrorf("Failed to write {} to {}", *qd, sysfs_path);
}
return {};
}
Result<void> ConfigureReadAhead(const std::string& device_path) {
ATRACE_NAME("ConfigureReadAhead");
CHECK(StartsWith(device_path, "/dev/"));
std::string device_name = Basename(device_path);
std::string sysfs_device =
StringPrintf("/sys/block/%s/queue/read_ahead_kb", device_name.c_str());
unique_fd sysfs_fd(open(sysfs_device.c_str(), O_RDWR | O_CLOEXEC));
if (sysfs_fd.get() == -1) {
return ErrnoError() << "Failed to open " << sysfs_device;
}
int ret = TEMP_FAILURE_RETRY(
write(sysfs_fd.get(), kReadAheadKb, strlen(kReadAheadKb) + 1));
if (ret < 0) {
return ErrnoError() << "Failed to write to " << sysfs_device;
}
return {};
}
Result<void> PreAllocateLoopDevices(size_t num) {
Result<void> loop_ready = WaitForFile("/dev/loop-control", 20s);
if (!loop_ready.ok()) {
return loop_ready;
}
unique_fd ctl_fd(
TEMP_FAILURE_RETRY(open("/dev/loop-control", O_RDWR | O_CLOEXEC)));
if (ctl_fd.get() == -1) {
return ErrnoError() << "Failed to open loop-control";
}
int new_allocations = 0; // for logging purpose
// Assumption: loop device ID [0..num) is valid.
// This is because pre-allocation happens during bootstrap.
// Anyway Kernel pre-allocated loop devices
// as many as CONFIG_BLK_DEV_LOOP_MIN_COUNT,
// Within the amount of kernel-pre-allocation,
// LOOP_CTL_ADD will fail with EEXIST
for (size_t id = 0ul, cnt = 0; cnt < num; ++id) {
int ret = ioctl(ctl_fd.get(), LOOP_CTL_ADD, id);
if (ret > 0) {
new_allocations++;
cnt++;
} else if (errno == EEXIST) {
// When LOOP_CTL_ADD failed with EEXIST, it can check
// whether it is already in use.
// Otherwise, the loop devices pre-allocated by the kernel can be used.
std::string loop_device = StringPrintf("/sys/block/loop%zu/loop", id);
if (access(loop_device.c_str(), F_OK) == 0) {
LOG(WARNING) << "Loop device " << id << " already in use";
} else {
cnt++;
}
} else {
return ErrnoError() << "Failed LOOP_CTL_ADD id = " << id;
}
}
// Don't wait until the dev nodes are actually created, which
// will delay the boot. By simply returing here, the creation of the dev
// nodes will be done in parallel with other boot processes, and we
// just optimistally hope that they are all created when we actually
// access them for activating APEXes. If the dev nodes are not ready
// even then, we wait 50ms and warning message will be printed (see below
// CreateLoopDevice()).
LOG(INFO) << "Found " << (num - new_allocations)
<< " idle loopback devices that were "
<< "pre-allocated by kernel. Allocated " << new_allocations
<< " more.";
return {};
}
Result<void> ConfigureLoopDevice(const int device_fd, const std::string& target,
const uint32_t image_offset,
const size_t image_size) {
static bool use_loop_configure;
static std::once_flag once_flag;
std::call_once(once_flag, [&]() {
// LOOP_CONFIGURE is a new ioctl in Linux 5.8 (and backported in Android
// common) that allows atomically configuring a loop device. It is a lot
// faster than the traditional LOOP_SET_FD/LOOP_SET_STATUS64 combo, but
// it may not be available on updating devices, so try once before
// deciding.
struct loop_config config;
memset(&config, 0, sizeof(config));
config.fd = -1;
if (ioctl(device_fd, LOOP_CONFIGURE, &config) == -1 && errno == EBADF) {
// If the IOCTL exists, it will fail with EBADF for the -1 fd
use_loop_configure = true;
}
});
/*
* Using O_DIRECT will tell the kernel that we want to use Direct I/O
* on the underlying file, which we want to do to avoid double caching.
* Note that Direct I/O won't be enabled immediately, because the block
* size of the underlying block device may not match the default loop
* device block size (512); when we call LOOP_SET_BLOCK_SIZE below, the
* kernel driver will automatically enable Direct I/O when it sees that
* condition is now met.
*/
bool use_buffered_io = false;
unique_fd target_fd(open(target.c_str(), O_RDONLY | O_CLOEXEC | O_DIRECT));
if (target_fd.get() == -1) {
struct statfs stbuf;
int saved_errno = errno;
// let's give another try with buffered I/O for EROFS and squashfs
if (statfs(target.c_str(), &stbuf) != 0 ||
(stbuf.f_type != EROFS_SUPER_MAGIC_V1 &&
stbuf.f_type != SQUASHFS_MAGIC &&
stbuf.f_type != OVERLAYFS_SUPER_MAGIC)) {
return Error(saved_errno) << "Failed to open " << target;
}
LOG(WARNING) << "Fallback to buffered I/O for " << target;
use_buffered_io = true;
target_fd.reset(open(target.c_str(), O_RDONLY | O_CLOEXEC));
if (target_fd.get() == -1) {
return ErrnoError() << "Failed to open " << target;
}
}
struct loop_info64 li;
memset(&li, 0, sizeof(li));
strlcpy((char*)li.lo_crypt_name, kApexLoopIdPrefix, LO_NAME_SIZE);
li.lo_offset = image_offset;
li.lo_sizelimit = image_size;
// Automatically free loop device on last close.
li.lo_flags |= LO_FLAGS_AUTOCLEAR;
if (use_loop_configure) {
struct loop_config config;
memset(&config, 0, sizeof(config));
config.fd = target_fd.get();
config.info = li;
config.block_size = 4096;
if (!use_buffered_io) {
li.lo_flags |= LO_FLAGS_DIRECT_IO;
}
if (ioctl(device_fd, LOOP_CONFIGURE, &config) == -1) {
return ErrnoError() << "Failed to LOOP_CONFIGURE";
}
return {};
} else {
if (ioctl(device_fd, LOOP_SET_FD, target_fd.get()) == -1) {
return ErrnoError() << "Failed to LOOP_SET_FD";
}
if (ioctl(device_fd, LOOP_SET_STATUS64, &li) == -1) {
return ErrnoError() << "Failed to LOOP_SET_STATUS64";
}
if (ioctl(device_fd, BLKFLSBUF, 0) == -1) {
// This works around a kernel bug where the following happens.
// 1) The device runs with a value of loop.max_part > 0
// 2) As part of LOOP_SET_FD above, we do a partition scan, which loads
// the first 2 pages of the underlying file into the buffer cache
// 3) When we then change the offset with LOOP_SET_STATUS64, those pages
// are not invalidated from the cache.
// 4) When we try to mount an ext4 filesystem on the loop device, the ext4
// code will try to find a superblock by reading 4k at offset 0; but,
// because we still have the old pages at offset 0 lying in the cache,
// those pages will be returned directly. However, those pages contain
// the data at offset 0 in the underlying file, not at the offset that
// we configured
// 5) the ext4 driver fails to find a superblock in the (wrong) data, and
// fails to mount the filesystem.
//
// To work around this, explicitly flush the block device, which will
// flush the buffer cache and make sure we actually read the data at the
// correct offset.
return ErrnoError() << "Failed to flush buffers on the loop device";
}
// Direct-IO requires the loop device to have the same block size as the
// underlying filesystem.
if (ioctl(device_fd, LOOP_SET_BLOCK_SIZE, 4096) == -1) {
PLOG(WARNING) << "Failed to LOOP_SET_BLOCK_SIZE";
}
}
return {};
}
Result<LoopbackDeviceUniqueFd> WaitForDevice(int num) {
const std::vector<std::string> candidate_devices = {
StringPrintf("/dev/block/loop%d", num),
StringPrintf("/dev/loop%d", num),
};
// apexd-bootstrap runs in parallel with ueventd to optimize boot time. In
// rare cases apexd would try attempt to mount an apex before ueventd created
// a loop device for it. To work around this we keep polling for loop device
// to be created until ueventd's cold boot sequence is done.
bool cold_boot_done = GetBoolProperty("ro.cold_boot_done", false);
// Even though the kernel has created the loop device, we still depend on
// ueventd to run to actually create the device node in userspace. To solve
// this properly we should listen on the netlink socket for uevents, or use
// inotify. For now, this will have to do.
size_t attempts =
android::sysprop::ApexProperties::loop_wait_attempts().value_or(3u);
for (size_t i = 0; i != attempts; ++i) {
if (!cold_boot_done) {
cold_boot_done = GetBoolProperty("ro.cold_boot_done", false);
}
for (const auto& device : candidate_devices) {
unique_fd sysfs_fd(open(device.c_str(), O_RDWR | O_CLOEXEC));
if (sysfs_fd.get() != -1) {
return LoopbackDeviceUniqueFd(std::move(sysfs_fd), device);
}
}
PLOG(WARNING) << "Loopback device " << num << " not ready. Waiting 50ms...";
usleep(50000);
if (!cold_boot_done) {
// ueventd hasn't finished cold boot yet, keep trying.
i = 0;
}
}
return Error() << "Failed to open loopback device " << num;
}
Result<LoopbackDeviceUniqueFd> CreateLoopDevice(const std::string& target,
uint32_t image_offset,
size_t image_size) {
ATRACE_NAME("CreateLoopDevice");
unique_fd ctl_fd(open("/dev/loop-control", O_RDWR | O_CLOEXEC));
if (ctl_fd.get() == -1) {
return ErrnoError() << "Failed to open loop-control";
}
static std::mutex mtx;
std::lock_guard lock(mtx);
int num = ioctl(ctl_fd.get(), LOOP_CTL_GET_FREE);
if (num == -1) {
return ErrnoError() << "Failed LOOP_CTL_GET_FREE";
}
Result<LoopbackDeviceUniqueFd> loop_device = WaitForDevice(num);
if (!loop_device.ok()) {
return loop_device.error();
}
CHECK_NE(loop_device->device_fd.get(), -1);
Result<void> configure_status = ConfigureLoopDevice(
loop_device->device_fd.get(), target, image_offset, image_size);
if (!configure_status.ok() && configure_status.error().code() == EBUSY) {
// EBUSY means that loop device was bound to a different process. We need to call
// CloseGood() here to ensure that when destroying LoopbackDeviceUniqueFd we
// don't call LOOP_CLR_FD ioctl on this loop device, essentially clearing the
// loop device while other process is using it.
loop_device->CloseGood();
return configure_status.error();
}
return loop_device;
}
Result<LoopbackDeviceUniqueFd> CreateAndConfigureLoopDevice(
const std::string& target, uint32_t image_offset, size_t image_size) {
ATRACE_NAME("CreateAndConfigureLoopDevice");
// Do minimal amount of work while holding a mutex. We need it because
// acquiring + configuring a loop device is not atomic. Ideally we should
// pre-acquire all the loop devices in advance, so that when we run APEX
// activation in-parallel, we can do it without holding any lock.
// Unfortunately, this will require some refactoring of how we manage loop
// devices, and probably some new loop-control ioctls, so for the time being
// we just limit the scope that requires locking.
android::base::Timer timer;
Result<LoopbackDeviceUniqueFd> loop_device;
while (timer.duration() < 1s) {
loop_device = CreateLoopDevice(target, image_offset, image_size);
if (loop_device.ok()) {
break;
}
std::this_thread::sleep_for(5ms);
}
if (!loop_device.ok()) {
return loop_device.error();
}
Result<void> sched_status = ConfigureScheduler(loop_device->name);
if (!sched_status.ok()) {
LOG(WARNING) << "Configuring I/O scheduler failed: "
<< sched_status.error();
}
Result<void> qd_status = ConfigureQueueDepth(loop_device->name, target);
if (!qd_status.ok()) {
LOG(WARNING) << qd_status.error();
}
Result<void> read_ahead_status = ConfigureReadAhead(loop_device->name);
if (!read_ahead_status.ok()) {
return read_ahead_status.error();
}
return loop_device;
}
void DestroyLoopDevice(const std::string& path, const DestroyLoopFn& extra) {
unique_fd fd(open(path.c_str(), O_RDWR | O_CLOEXEC));
if (fd.get() == -1) {
if (errno != ENOENT) {
PLOG(WARNING) << "Failed to open " << path;
}
return;
}
struct loop_info64 li;
if (ioctl(fd.get(), LOOP_GET_STATUS64, &li) < 0) {
if (errno != ENXIO) {
PLOG(WARNING) << "Failed to LOOP_GET_STATUS64 " << path;
}
return;
}
auto id = std::string((char*)li.lo_crypt_name);
if (StartsWith(id, kApexLoopIdPrefix)) {
extra(path, id);
if (ioctl(fd.get(), LOOP_CLR_FD, 0) < 0) {
PLOG(WARNING) << "Failed to LOOP_CLR_FD " << path;
}
}
}
} // namespace loop
} // namespace apex
} // namespace android