| // Formatting library for C++ - chrono support |
| // |
| // Copyright (c) 2012 - present, Victor Zverovich |
| // All rights reserved. |
| // |
| // For the license information refer to format.h. |
| |
| #ifndef FMT_CHRONO_H_ |
| #define FMT_CHRONO_H_ |
| |
| #include <chrono> |
| #include <ctime> |
| #include <locale> |
| #include <sstream> |
| |
| #include "format.h" |
| #include "locale.h" |
| |
| FMT_BEGIN_NAMESPACE |
| |
| // Enable safe chrono durations, unless explicitly disabled. |
| #ifndef FMT_SAFE_DURATION_CAST |
| # define FMT_SAFE_DURATION_CAST 1 |
| #endif |
| #if FMT_SAFE_DURATION_CAST |
| |
| // For conversion between std::chrono::durations without undefined |
| // behaviour or erroneous results. |
| // This is a stripped down version of duration_cast, for inclusion in fmt. |
| // See https://github.com/pauldreik/safe_duration_cast |
| // |
| // Copyright Paul Dreik 2019 |
| namespace safe_duration_cast { |
| |
| template <typename To, typename From, |
| FMT_ENABLE_IF(!std::is_same<From, To>::value && |
| std::numeric_limits<From>::is_signed == |
| std::numeric_limits<To>::is_signed)> |
| FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) { |
| ec = 0; |
| using F = std::numeric_limits<From>; |
| using T = std::numeric_limits<To>; |
| static_assert(F::is_integer, "From must be integral"); |
| static_assert(T::is_integer, "To must be integral"); |
| |
| // A and B are both signed, or both unsigned. |
| if (F::digits <= T::digits) { |
| // From fits in To without any problem. |
| } else { |
| // From does not always fit in To, resort to a dynamic check. |
| if (from < (T::min)() || from > (T::max)()) { |
| // outside range. |
| ec = 1; |
| return {}; |
| } |
| } |
| return static_cast<To>(from); |
| } |
| |
| /** |
| * converts From to To, without loss. If the dynamic value of from |
| * can't be converted to To without loss, ec is set. |
| */ |
| template <typename To, typename From, |
| FMT_ENABLE_IF(!std::is_same<From, To>::value && |
| std::numeric_limits<From>::is_signed != |
| std::numeric_limits<To>::is_signed)> |
| FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) { |
| ec = 0; |
| using F = std::numeric_limits<From>; |
| using T = std::numeric_limits<To>; |
| static_assert(F::is_integer, "From must be integral"); |
| static_assert(T::is_integer, "To must be integral"); |
| |
| if (detail::const_check(F::is_signed && !T::is_signed)) { |
| // From may be negative, not allowed! |
| if (fmt::detail::is_negative(from)) { |
| ec = 1; |
| return {}; |
| } |
| // From is positive. Can it always fit in To? |
| if (F::digits > T::digits && |
| from > static_cast<From>(detail::max_value<To>())) { |
| ec = 1; |
| return {}; |
| } |
| } |
| |
| if (!F::is_signed && T::is_signed && F::digits >= T::digits && |
| from > static_cast<From>(detail::max_value<To>())) { |
| ec = 1; |
| return {}; |
| } |
| return static_cast<To>(from); // Lossless conversion. |
| } |
| |
| template <typename To, typename From, |
| FMT_ENABLE_IF(std::is_same<From, To>::value)> |
| FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) { |
| ec = 0; |
| return from; |
| } // function |
| |
| // clang-format off |
| /** |
| * converts From to To if possible, otherwise ec is set. |
| * |
| * input | output |
| * ---------------------------------|--------------- |
| * NaN | NaN |
| * Inf | Inf |
| * normal, fits in output | converted (possibly lossy) |
| * normal, does not fit in output | ec is set |
| * subnormal | best effort |
| * -Inf | -Inf |
| */ |
| // clang-format on |
| template <typename To, typename From, |
| FMT_ENABLE_IF(!std::is_same<From, To>::value)> |
| FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) { |
| ec = 0; |
| using T = std::numeric_limits<To>; |
| static_assert(std::is_floating_point<From>::value, "From must be floating"); |
| static_assert(std::is_floating_point<To>::value, "To must be floating"); |
| |
| // catch the only happy case |
| if (std::isfinite(from)) { |
| if (from >= T::lowest() && from <= (T::max)()) { |
| return static_cast<To>(from); |
| } |
| // not within range. |
| ec = 1; |
| return {}; |
| } |
| |
| // nan and inf will be preserved |
| return static_cast<To>(from); |
| } // function |
| |
| template <typename To, typename From, |
| FMT_ENABLE_IF(std::is_same<From, To>::value)> |
| FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) { |
| ec = 0; |
| static_assert(std::is_floating_point<From>::value, "From must be floating"); |
| return from; |
| } |
| |
| /** |
| * safe duration cast between integral durations |
| */ |
| template <typename To, typename FromRep, typename FromPeriod, |
| FMT_ENABLE_IF(std::is_integral<FromRep>::value), |
| FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)> |
| To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from, |
| int& ec) { |
| using From = std::chrono::duration<FromRep, FromPeriod>; |
| ec = 0; |
| // the basic idea is that we need to convert from count() in the from type |
| // to count() in the To type, by multiplying it with this: |
| struct Factor |
| : std::ratio_divide<typename From::period, typename To::period> {}; |
| |
| static_assert(Factor::num > 0, "num must be positive"); |
| static_assert(Factor::den > 0, "den must be positive"); |
| |
| // the conversion is like this: multiply from.count() with Factor::num |
| // /Factor::den and convert it to To::rep, all this without |
| // overflow/underflow. let's start by finding a suitable type that can hold |
| // both To, From and Factor::num |
| using IntermediateRep = |
| typename std::common_type<typename From::rep, typename To::rep, |
| decltype(Factor::num)>::type; |
| |
| // safe conversion to IntermediateRep |
| IntermediateRep count = |
| lossless_integral_conversion<IntermediateRep>(from.count(), ec); |
| if (ec) return {}; |
| // multiply with Factor::num without overflow or underflow |
| if (detail::const_check(Factor::num != 1)) { |
| const auto max1 = detail::max_value<IntermediateRep>() / Factor::num; |
| if (count > max1) { |
| ec = 1; |
| return {}; |
| } |
| const auto min1 = |
| (std::numeric_limits<IntermediateRep>::min)() / Factor::num; |
| if (count < min1) { |
| ec = 1; |
| return {}; |
| } |
| count *= Factor::num; |
| } |
| |
| if (detail::const_check(Factor::den != 1)) count /= Factor::den; |
| auto tocount = lossless_integral_conversion<typename To::rep>(count, ec); |
| return ec ? To() : To(tocount); |
| } |
| |
| /** |
| * safe duration_cast between floating point durations |
| */ |
| template <typename To, typename FromRep, typename FromPeriod, |
| FMT_ENABLE_IF(std::is_floating_point<FromRep>::value), |
| FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)> |
| To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from, |
| int& ec) { |
| using From = std::chrono::duration<FromRep, FromPeriod>; |
| ec = 0; |
| if (std::isnan(from.count())) { |
| // nan in, gives nan out. easy. |
| return To{std::numeric_limits<typename To::rep>::quiet_NaN()}; |
| } |
| // maybe we should also check if from is denormal, and decide what to do about |
| // it. |
| |
| // +-inf should be preserved. |
| if (std::isinf(from.count())) { |
| return To{from.count()}; |
| } |
| |
| // the basic idea is that we need to convert from count() in the from type |
| // to count() in the To type, by multiplying it with this: |
| struct Factor |
| : std::ratio_divide<typename From::period, typename To::period> {}; |
| |
| static_assert(Factor::num > 0, "num must be positive"); |
| static_assert(Factor::den > 0, "den must be positive"); |
| |
| // the conversion is like this: multiply from.count() with Factor::num |
| // /Factor::den and convert it to To::rep, all this without |
| // overflow/underflow. let's start by finding a suitable type that can hold |
| // both To, From and Factor::num |
| using IntermediateRep = |
| typename std::common_type<typename From::rep, typename To::rep, |
| decltype(Factor::num)>::type; |
| |
| // force conversion of From::rep -> IntermediateRep to be safe, |
| // even if it will never happen be narrowing in this context. |
| IntermediateRep count = |
| safe_float_conversion<IntermediateRep>(from.count(), ec); |
| if (ec) { |
| return {}; |
| } |
| |
| // multiply with Factor::num without overflow or underflow |
| if (Factor::num != 1) { |
| constexpr auto max1 = detail::max_value<IntermediateRep>() / |
| static_cast<IntermediateRep>(Factor::num); |
| if (count > max1) { |
| ec = 1; |
| return {}; |
| } |
| constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() / |
| static_cast<IntermediateRep>(Factor::num); |
| if (count < min1) { |
| ec = 1; |
| return {}; |
| } |
| count *= static_cast<IntermediateRep>(Factor::num); |
| } |
| |
| // this can't go wrong, right? den>0 is checked earlier. |
| if (Factor::den != 1) { |
| using common_t = typename std::common_type<IntermediateRep, intmax_t>::type; |
| count /= static_cast<common_t>(Factor::den); |
| } |
| |
| // convert to the to type, safely |
| using ToRep = typename To::rep; |
| |
| const ToRep tocount = safe_float_conversion<ToRep>(count, ec); |
| if (ec) { |
| return {}; |
| } |
| return To{tocount}; |
| } |
| } // namespace safe_duration_cast |
| #endif |
| |
| // Prevents expansion of a preceding token as a function-style macro. |
| // Usage: f FMT_NOMACRO() |
| #define FMT_NOMACRO |
| |
| namespace detail { |
| inline null<> localtime_r FMT_NOMACRO(...) { return null<>(); } |
| inline null<> localtime_s(...) { return null<>(); } |
| inline null<> gmtime_r(...) { return null<>(); } |
| inline null<> gmtime_s(...) { return null<>(); } |
| } // namespace detail |
| |
| // Thread-safe replacement for std::localtime |
| inline std::tm localtime(std::time_t time) { |
| struct dispatcher { |
| std::time_t time_; |
| std::tm tm_; |
| |
| dispatcher(std::time_t t) : time_(t) {} |
| |
| bool run() { |
| using namespace fmt::detail; |
| return handle(localtime_r(&time_, &tm_)); |
| } |
| |
| bool handle(std::tm* tm) { return tm != nullptr; } |
| |
| bool handle(detail::null<>) { |
| using namespace fmt::detail; |
| return fallback(localtime_s(&tm_, &time_)); |
| } |
| |
| bool fallback(int res) { return res == 0; } |
| |
| #if !FMT_MSC_VER |
| bool fallback(detail::null<>) { |
| using namespace fmt::detail; |
| std::tm* tm = std::localtime(&time_); |
| if (tm) tm_ = *tm; |
| return tm != nullptr; |
| } |
| #endif |
| }; |
| dispatcher lt(time); |
| // Too big time values may be unsupported. |
| if (!lt.run()) FMT_THROW(format_error("time_t value out of range")); |
| return lt.tm_; |
| } |
| |
| inline std::tm localtime( |
| std::chrono::time_point<std::chrono::system_clock> time_point) { |
| return localtime(std::chrono::system_clock::to_time_t(time_point)); |
| } |
| |
| // Thread-safe replacement for std::gmtime |
| inline std::tm gmtime(std::time_t time) { |
| struct dispatcher { |
| std::time_t time_; |
| std::tm tm_; |
| |
| dispatcher(std::time_t t) : time_(t) {} |
| |
| bool run() { |
| using namespace fmt::detail; |
| return handle(gmtime_r(&time_, &tm_)); |
| } |
| |
| bool handle(std::tm* tm) { return tm != nullptr; } |
| |
| bool handle(detail::null<>) { |
| using namespace fmt::detail; |
| return fallback(gmtime_s(&tm_, &time_)); |
| } |
| |
| bool fallback(int res) { return res == 0; } |
| |
| #if !FMT_MSC_VER |
| bool fallback(detail::null<>) { |
| std::tm* tm = std::gmtime(&time_); |
| if (tm) tm_ = *tm; |
| return tm != nullptr; |
| } |
| #endif |
| }; |
| dispatcher gt(time); |
| // Too big time values may be unsupported. |
| if (!gt.run()) FMT_THROW(format_error("time_t value out of range")); |
| return gt.tm_; |
| } |
| |
| inline std::tm gmtime( |
| std::chrono::time_point<std::chrono::system_clock> time_point) { |
| return gmtime(std::chrono::system_clock::to_time_t(time_point)); |
| } |
| |
| namespace detail { |
| inline size_t strftime(char* str, size_t count, const char* format, |
| const std::tm* time) { |
| return std::strftime(str, count, format, time); |
| } |
| |
| inline size_t strftime(wchar_t* str, size_t count, const wchar_t* format, |
| const std::tm* time) { |
| return std::wcsftime(str, count, format, time); |
| } |
| } // namespace detail |
| |
| template <typename Char> |
| struct formatter<std::chrono::time_point<std::chrono::system_clock>, Char> |
| : formatter<std::tm, Char> { |
| template <typename FormatContext> |
| auto format(std::chrono::time_point<std::chrono::system_clock> val, |
| FormatContext& ctx) -> decltype(ctx.out()) { |
| std::tm time = localtime(val); |
| return formatter<std::tm, Char>::format(time, ctx); |
| } |
| }; |
| |
| template <typename Char> struct formatter<std::tm, Char> { |
| template <typename ParseContext> |
| auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { |
| auto it = ctx.begin(); |
| if (it != ctx.end() && *it == ':') ++it; |
| auto end = it; |
| while (end != ctx.end() && *end != '}') ++end; |
| tm_format.reserve(detail::to_unsigned(end - it + 1)); |
| tm_format.append(it, end); |
| tm_format.push_back('\0'); |
| return end; |
| } |
| |
| template <typename FormatContext> |
| auto format(const std::tm& tm, FormatContext& ctx) -> decltype(ctx.out()) { |
| basic_memory_buffer<Char> buf; |
| size_t start = buf.size(); |
| for (;;) { |
| size_t size = buf.capacity() - start; |
| size_t count = detail::strftime(&buf[start], size, &tm_format[0], &tm); |
| if (count != 0) { |
| buf.resize(start + count); |
| break; |
| } |
| if (size >= tm_format.size() * 256) { |
| // If the buffer is 256 times larger than the format string, assume |
| // that `strftime` gives an empty result. There doesn't seem to be a |
| // better way to distinguish the two cases: |
| // https://github.com/fmtlib/fmt/issues/367 |
| break; |
| } |
| const size_t MIN_GROWTH = 10; |
| buf.reserve(buf.capacity() + (size > MIN_GROWTH ? size : MIN_GROWTH)); |
| } |
| return std::copy(buf.begin(), buf.end(), ctx.out()); |
| } |
| |
| basic_memory_buffer<Char> tm_format; |
| }; |
| |
| namespace detail { |
| template <typename Period> FMT_CONSTEXPR const char* get_units() { |
| return nullptr; |
| } |
| template <> FMT_CONSTEXPR const char* get_units<std::atto>() { return "as"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::femto>() { return "fs"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::pico>() { return "ps"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::nano>() { return "ns"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::micro>() { return "µs"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::milli>() { return "ms"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::centi>() { return "cs"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::deci>() { return "ds"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::ratio<1>>() { return "s"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::deca>() { return "das"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::hecto>() { return "hs"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::kilo>() { return "ks"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::mega>() { return "Ms"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::giga>() { return "Gs"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::tera>() { return "Ts"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::peta>() { return "Ps"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::exa>() { return "Es"; } |
| template <> FMT_CONSTEXPR const char* get_units<std::ratio<60>>() { |
| return "m"; |
| } |
| template <> FMT_CONSTEXPR const char* get_units<std::ratio<3600>>() { |
| return "h"; |
| } |
| |
| enum class numeric_system { |
| standard, |
| // Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale. |
| alternative |
| }; |
| |
| // Parses a put_time-like format string and invokes handler actions. |
| template <typename Char, typename Handler> |
| FMT_CONSTEXPR const Char* parse_chrono_format(const Char* begin, |
| const Char* end, |
| Handler&& handler) { |
| auto ptr = begin; |
| while (ptr != end) { |
| auto c = *ptr; |
| if (c == '}') break; |
| if (c != '%') { |
| ++ptr; |
| continue; |
| } |
| if (begin != ptr) handler.on_text(begin, ptr); |
| ++ptr; // consume '%' |
| if (ptr == end) FMT_THROW(format_error("invalid format")); |
| c = *ptr++; |
| switch (c) { |
| case '%': |
| handler.on_text(ptr - 1, ptr); |
| break; |
| case 'n': { |
| const Char newline[] = {'\n'}; |
| handler.on_text(newline, newline + 1); |
| break; |
| } |
| case 't': { |
| const Char tab[] = {'\t'}; |
| handler.on_text(tab, tab + 1); |
| break; |
| } |
| // Day of the week: |
| case 'a': |
| handler.on_abbr_weekday(); |
| break; |
| case 'A': |
| handler.on_full_weekday(); |
| break; |
| case 'w': |
| handler.on_dec0_weekday(numeric_system::standard); |
| break; |
| case 'u': |
| handler.on_dec1_weekday(numeric_system::standard); |
| break; |
| // Month: |
| case 'b': |
| handler.on_abbr_month(); |
| break; |
| case 'B': |
| handler.on_full_month(); |
| break; |
| // Hour, minute, second: |
| case 'H': |
| handler.on_24_hour(numeric_system::standard); |
| break; |
| case 'I': |
| handler.on_12_hour(numeric_system::standard); |
| break; |
| case 'M': |
| handler.on_minute(numeric_system::standard); |
| break; |
| case 'S': |
| handler.on_second(numeric_system::standard); |
| break; |
| // Other: |
| case 'c': |
| handler.on_datetime(numeric_system::standard); |
| break; |
| case 'x': |
| handler.on_loc_date(numeric_system::standard); |
| break; |
| case 'X': |
| handler.on_loc_time(numeric_system::standard); |
| break; |
| case 'D': |
| handler.on_us_date(); |
| break; |
| case 'F': |
| handler.on_iso_date(); |
| break; |
| case 'r': |
| handler.on_12_hour_time(); |
| break; |
| case 'R': |
| handler.on_24_hour_time(); |
| break; |
| case 'T': |
| handler.on_iso_time(); |
| break; |
| case 'p': |
| handler.on_am_pm(); |
| break; |
| case 'Q': |
| handler.on_duration_value(); |
| break; |
| case 'q': |
| handler.on_duration_unit(); |
| break; |
| case 'z': |
| handler.on_utc_offset(); |
| break; |
| case 'Z': |
| handler.on_tz_name(); |
| break; |
| // Alternative representation: |
| case 'E': { |
| if (ptr == end) FMT_THROW(format_error("invalid format")); |
| c = *ptr++; |
| switch (c) { |
| case 'c': |
| handler.on_datetime(numeric_system::alternative); |
| break; |
| case 'x': |
| handler.on_loc_date(numeric_system::alternative); |
| break; |
| case 'X': |
| handler.on_loc_time(numeric_system::alternative); |
| break; |
| default: |
| FMT_THROW(format_error("invalid format")); |
| } |
| break; |
| } |
| case 'O': |
| if (ptr == end) FMT_THROW(format_error("invalid format")); |
| c = *ptr++; |
| switch (c) { |
| case 'w': |
| handler.on_dec0_weekday(numeric_system::alternative); |
| break; |
| case 'u': |
| handler.on_dec1_weekday(numeric_system::alternative); |
| break; |
| case 'H': |
| handler.on_24_hour(numeric_system::alternative); |
| break; |
| case 'I': |
| handler.on_12_hour(numeric_system::alternative); |
| break; |
| case 'M': |
| handler.on_minute(numeric_system::alternative); |
| break; |
| case 'S': |
| handler.on_second(numeric_system::alternative); |
| break; |
| default: |
| FMT_THROW(format_error("invalid format")); |
| } |
| break; |
| default: |
| FMT_THROW(format_error("invalid format")); |
| } |
| begin = ptr; |
| } |
| if (begin != ptr) handler.on_text(begin, ptr); |
| return ptr; |
| } |
| |
| struct chrono_format_checker { |
| FMT_NORETURN void report_no_date() { FMT_THROW(format_error("no date")); } |
| |
| template <typename Char> void on_text(const Char*, const Char*) {} |
| FMT_NORETURN void on_abbr_weekday() { report_no_date(); } |
| FMT_NORETURN void on_full_weekday() { report_no_date(); } |
| FMT_NORETURN void on_dec0_weekday(numeric_system) { report_no_date(); } |
| FMT_NORETURN void on_dec1_weekday(numeric_system) { report_no_date(); } |
| FMT_NORETURN void on_abbr_month() { report_no_date(); } |
| FMT_NORETURN void on_full_month() { report_no_date(); } |
| void on_24_hour(numeric_system) {} |
| void on_12_hour(numeric_system) {} |
| void on_minute(numeric_system) {} |
| void on_second(numeric_system) {} |
| FMT_NORETURN void on_datetime(numeric_system) { report_no_date(); } |
| FMT_NORETURN void on_loc_date(numeric_system) { report_no_date(); } |
| FMT_NORETURN void on_loc_time(numeric_system) { report_no_date(); } |
| FMT_NORETURN void on_us_date() { report_no_date(); } |
| FMT_NORETURN void on_iso_date() { report_no_date(); } |
| void on_12_hour_time() {} |
| void on_24_hour_time() {} |
| void on_iso_time() {} |
| void on_am_pm() {} |
| void on_duration_value() {} |
| void on_duration_unit() {} |
| FMT_NORETURN void on_utc_offset() { report_no_date(); } |
| FMT_NORETURN void on_tz_name() { report_no_date(); } |
| }; |
| |
| template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> |
| inline bool isnan(T) { |
| return false; |
| } |
| template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> |
| inline bool isnan(T value) { |
| return std::isnan(value); |
| } |
| |
| template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> |
| inline bool isfinite(T) { |
| return true; |
| } |
| template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> |
| inline bool isfinite(T value) { |
| return std::isfinite(value); |
| } |
| |
| // Converts value to int and checks that it's in the range [0, upper). |
| template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> |
| inline int to_nonnegative_int(T value, int upper) { |
| FMT_ASSERT(value >= 0 && value <= upper, "invalid value"); |
| (void)upper; |
| return static_cast<int>(value); |
| } |
| template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> |
| inline int to_nonnegative_int(T value, int upper) { |
| FMT_ASSERT( |
| std::isnan(value) || (value >= 0 && value <= static_cast<T>(upper)), |
| "invalid value"); |
| (void)upper; |
| return static_cast<int>(value); |
| } |
| |
| template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> |
| inline T mod(T x, int y) { |
| return x % static_cast<T>(y); |
| } |
| template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> |
| inline T mod(T x, int y) { |
| return std::fmod(x, static_cast<T>(y)); |
| } |
| |
| // If T is an integral type, maps T to its unsigned counterpart, otherwise |
| // leaves it unchanged (unlike std::make_unsigned). |
| template <typename T, bool INTEGRAL = std::is_integral<T>::value> |
| struct make_unsigned_or_unchanged { |
| using type = T; |
| }; |
| |
| template <typename T> struct make_unsigned_or_unchanged<T, true> { |
| using type = typename std::make_unsigned<T>::type; |
| }; |
| |
| #if FMT_SAFE_DURATION_CAST |
| // throwing version of safe_duration_cast |
| template <typename To, typename FromRep, typename FromPeriod> |
| To fmt_safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) { |
| int ec; |
| To to = safe_duration_cast::safe_duration_cast<To>(from, ec); |
| if (ec) FMT_THROW(format_error("cannot format duration")); |
| return to; |
| } |
| #endif |
| |
| template <typename Rep, typename Period, |
| FMT_ENABLE_IF(std::is_integral<Rep>::value)> |
| inline std::chrono::duration<Rep, std::milli> get_milliseconds( |
| std::chrono::duration<Rep, Period> d) { |
| // this may overflow and/or the result may not fit in the |
| // target type. |
| #if FMT_SAFE_DURATION_CAST |
| using CommonSecondsType = |
| typename std::common_type<decltype(d), std::chrono::seconds>::type; |
| const auto d_as_common = fmt_safe_duration_cast<CommonSecondsType>(d); |
| const auto d_as_whole_seconds = |
| fmt_safe_duration_cast<std::chrono::seconds>(d_as_common); |
| // this conversion should be nonproblematic |
| const auto diff = d_as_common - d_as_whole_seconds; |
| const auto ms = |
| fmt_safe_duration_cast<std::chrono::duration<Rep, std::milli>>(diff); |
| return ms; |
| #else |
| auto s = std::chrono::duration_cast<std::chrono::seconds>(d); |
| return std::chrono::duration_cast<std::chrono::milliseconds>(d - s); |
| #endif |
| } |
| |
| template <typename Rep, typename Period, |
| FMT_ENABLE_IF(std::is_floating_point<Rep>::value)> |
| inline std::chrono::duration<Rep, std::milli> get_milliseconds( |
| std::chrono::duration<Rep, Period> d) { |
| using common_type = typename std::common_type<Rep, std::intmax_t>::type; |
| auto ms = mod(d.count() * static_cast<common_type>(Period::num) / |
| static_cast<common_type>(Period::den) * 1000, |
| 1000); |
| return std::chrono::duration<Rep, std::milli>(static_cast<Rep>(ms)); |
| } |
| |
| template <typename Char, typename Rep, typename OutputIt> |
| OutputIt format_duration_value(OutputIt out, Rep val, int precision) { |
| const Char pr_f[] = {'{', ':', '.', '{', '}', 'f', '}', 0}; |
| if (precision >= 0) return format_to(out, pr_f, val, precision); |
| const Char fp_f[] = {'{', ':', 'g', '}', 0}; |
| const Char format[] = {'{', '}', 0}; |
| return format_to(out, std::is_floating_point<Rep>::value ? fp_f : format, |
| val); |
| } |
| template <typename Char, typename OutputIt> |
| OutputIt copy_unit(string_view unit, OutputIt out, Char) { |
| return std::copy(unit.begin(), unit.end(), out); |
| } |
| |
| template <typename OutputIt> |
| OutputIt copy_unit(string_view unit, OutputIt out, wchar_t) { |
| // This works when wchar_t is UTF-32 because units only contain characters |
| // that have the same representation in UTF-16 and UTF-32. |
| utf8_to_utf16 u(unit); |
| return std::copy(u.c_str(), u.c_str() + u.size(), out); |
| } |
| |
| template <typename Char, typename Period, typename OutputIt> |
| OutputIt format_duration_unit(OutputIt out) { |
| if (const char* unit = get_units<Period>()) |
| return copy_unit(string_view(unit), out, Char()); |
| const Char num_f[] = {'[', '{', '}', ']', 's', 0}; |
| if (const_check(Period::den == 1)) return format_to(out, num_f, Period::num); |
| const Char num_def_f[] = {'[', '{', '}', '/', '{', '}', ']', 's', 0}; |
| return format_to(out, num_def_f, Period::num, Period::den); |
| } |
| |
| template <typename FormatContext, typename OutputIt, typename Rep, |
| typename Period> |
| struct chrono_formatter { |
| FormatContext& context; |
| OutputIt out; |
| int precision; |
| // rep is unsigned to avoid overflow. |
| using rep = |
| conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int), |
| unsigned, typename make_unsigned_or_unchanged<Rep>::type>; |
| rep val; |
| using seconds = std::chrono::duration<rep>; |
| seconds s; |
| using milliseconds = std::chrono::duration<rep, std::milli>; |
| bool negative; |
| |
| using char_type = typename FormatContext::char_type; |
| |
| explicit chrono_formatter(FormatContext& ctx, OutputIt o, |
| std::chrono::duration<Rep, Period> d) |
| : context(ctx), |
| out(o), |
| val(static_cast<rep>(d.count())), |
| negative(false) { |
| if (d.count() < 0) { |
| val = 0 - val; |
| negative = true; |
| } |
| |
| // this may overflow and/or the result may not fit in the |
| // target type. |
| #if FMT_SAFE_DURATION_CAST |
| // might need checked conversion (rep!=Rep) |
| auto tmpval = std::chrono::duration<rep, Period>(val); |
| s = fmt_safe_duration_cast<seconds>(tmpval); |
| #else |
| s = std::chrono::duration_cast<seconds>( |
| std::chrono::duration<rep, Period>(val)); |
| #endif |
| } |
| |
| // returns true if nan or inf, writes to out. |
| bool handle_nan_inf() { |
| if (isfinite(val)) { |
| return false; |
| } |
| if (isnan(val)) { |
| write_nan(); |
| return true; |
| } |
| // must be +-inf |
| if (val > 0) { |
| write_pinf(); |
| } else { |
| write_ninf(); |
| } |
| return true; |
| } |
| |
| Rep hour() const { return static_cast<Rep>(mod((s.count() / 3600), 24)); } |
| |
| Rep hour12() const { |
| Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12)); |
| return hour <= 0 ? 12 : hour; |
| } |
| |
| Rep minute() const { return static_cast<Rep>(mod((s.count() / 60), 60)); } |
| Rep second() const { return static_cast<Rep>(mod(s.count(), 60)); } |
| |
| std::tm time() const { |
| auto time = std::tm(); |
| time.tm_hour = to_nonnegative_int(hour(), 24); |
| time.tm_min = to_nonnegative_int(minute(), 60); |
| time.tm_sec = to_nonnegative_int(second(), 60); |
| return time; |
| } |
| |
| void write_sign() { |
| if (negative) { |
| *out++ = '-'; |
| negative = false; |
| } |
| } |
| |
| void write(Rep value, int width) { |
| write_sign(); |
| if (isnan(value)) return write_nan(); |
| uint32_or_64_or_128_t<int> n = |
| to_unsigned(to_nonnegative_int(value, max_value<int>())); |
| int num_digits = detail::count_digits(n); |
| if (width > num_digits) out = std::fill_n(out, width - num_digits, '0'); |
| out = format_decimal<char_type>(out, n, num_digits).end; |
| } |
| |
| void write_nan() { std::copy_n("nan", 3, out); } |
| void write_pinf() { std::copy_n("inf", 3, out); } |
| void write_ninf() { std::copy_n("-inf", 4, out); } |
| |
| void format_localized(const tm& time, char format, char modifier = 0) { |
| if (isnan(val)) return write_nan(); |
| auto locale = context.locale().template get<std::locale>(); |
| auto& facet = std::use_facet<std::time_put<char_type>>(locale); |
| std::basic_ostringstream<char_type> os; |
| os.imbue(locale); |
| facet.put(os, os, ' ', &time, format, modifier); |
| auto str = os.str(); |
| std::copy(str.begin(), str.end(), out); |
| } |
| |
| void on_text(const char_type* begin, const char_type* end) { |
| std::copy(begin, end, out); |
| } |
| |
| // These are not implemented because durations don't have date information. |
| void on_abbr_weekday() {} |
| void on_full_weekday() {} |
| void on_dec0_weekday(numeric_system) {} |
| void on_dec1_weekday(numeric_system) {} |
| void on_abbr_month() {} |
| void on_full_month() {} |
| void on_datetime(numeric_system) {} |
| void on_loc_date(numeric_system) {} |
| void on_loc_time(numeric_system) {} |
| void on_us_date() {} |
| void on_iso_date() {} |
| void on_utc_offset() {} |
| void on_tz_name() {} |
| |
| void on_24_hour(numeric_system ns) { |
| if (handle_nan_inf()) return; |
| |
| if (ns == numeric_system::standard) return write(hour(), 2); |
| auto time = tm(); |
| time.tm_hour = to_nonnegative_int(hour(), 24); |
| format_localized(time, 'H', 'O'); |
| } |
| |
| void on_12_hour(numeric_system ns) { |
| if (handle_nan_inf()) return; |
| |
| if (ns == numeric_system::standard) return write(hour12(), 2); |
| auto time = tm(); |
| time.tm_hour = to_nonnegative_int(hour12(), 12); |
| format_localized(time, 'I', 'O'); |
| } |
| |
| void on_minute(numeric_system ns) { |
| if (handle_nan_inf()) return; |
| |
| if (ns == numeric_system::standard) return write(minute(), 2); |
| auto time = tm(); |
| time.tm_min = to_nonnegative_int(minute(), 60); |
| format_localized(time, 'M', 'O'); |
| } |
| |
| void on_second(numeric_system ns) { |
| if (handle_nan_inf()) return; |
| |
| if (ns == numeric_system::standard) { |
| write(second(), 2); |
| #if FMT_SAFE_DURATION_CAST |
| // convert rep->Rep |
| using duration_rep = std::chrono::duration<rep, Period>; |
| using duration_Rep = std::chrono::duration<Rep, Period>; |
| auto tmpval = fmt_safe_duration_cast<duration_Rep>(duration_rep{val}); |
| #else |
| auto tmpval = std::chrono::duration<Rep, Period>(val); |
| #endif |
| auto ms = get_milliseconds(tmpval); |
| if (ms != std::chrono::milliseconds(0)) { |
| *out++ = '.'; |
| write(ms.count(), 3); |
| } |
| return; |
| } |
| auto time = tm(); |
| time.tm_sec = to_nonnegative_int(second(), 60); |
| format_localized(time, 'S', 'O'); |
| } |
| |
| void on_12_hour_time() { |
| if (handle_nan_inf()) return; |
| format_localized(time(), 'r'); |
| } |
| |
| void on_24_hour_time() { |
| if (handle_nan_inf()) { |
| *out++ = ':'; |
| handle_nan_inf(); |
| return; |
| } |
| |
| write(hour(), 2); |
| *out++ = ':'; |
| write(minute(), 2); |
| } |
| |
| void on_iso_time() { |
| on_24_hour_time(); |
| *out++ = ':'; |
| if (handle_nan_inf()) return; |
| write(second(), 2); |
| } |
| |
| void on_am_pm() { |
| if (handle_nan_inf()) return; |
| format_localized(time(), 'p'); |
| } |
| |
| void on_duration_value() { |
| if (handle_nan_inf()) return; |
| write_sign(); |
| out = format_duration_value<char_type>(out, val, precision); |
| } |
| |
| void on_duration_unit() { |
| out = format_duration_unit<char_type, Period>(out); |
| } |
| }; |
| } // namespace detail |
| |
| template <typename Rep, typename Period, typename Char> |
| struct formatter<std::chrono::duration<Rep, Period>, Char> { |
| private: |
| basic_format_specs<Char> specs; |
| int precision; |
| using arg_ref_type = detail::arg_ref<Char>; |
| arg_ref_type width_ref; |
| arg_ref_type precision_ref; |
| mutable basic_string_view<Char> format_str; |
| using duration = std::chrono::duration<Rep, Period>; |
| |
| struct spec_handler { |
| formatter& f; |
| basic_format_parse_context<Char>& context; |
| basic_string_view<Char> format_str; |
| |
| template <typename Id> FMT_CONSTEXPR arg_ref_type make_arg_ref(Id arg_id) { |
| context.check_arg_id(arg_id); |
| return arg_ref_type(arg_id); |
| } |
| |
| FMT_CONSTEXPR arg_ref_type make_arg_ref(basic_string_view<Char> arg_id) { |
| context.check_arg_id(arg_id); |
| return arg_ref_type(arg_id); |
| } |
| |
| FMT_CONSTEXPR arg_ref_type make_arg_ref(detail::auto_id) { |
| return arg_ref_type(context.next_arg_id()); |
| } |
| |
| void on_error(const char* msg) { FMT_THROW(format_error(msg)); } |
| void on_fill(basic_string_view<Char> fill) { f.specs.fill = fill; } |
| void on_align(align_t align) { f.specs.align = align; } |
| void on_width(int width) { f.specs.width = width; } |
| void on_precision(int _precision) { f.precision = _precision; } |
| void end_precision() {} |
| |
| template <typename Id> void on_dynamic_width(Id arg_id) { |
| f.width_ref = make_arg_ref(arg_id); |
| } |
| |
| template <typename Id> void on_dynamic_precision(Id arg_id) { |
| f.precision_ref = make_arg_ref(arg_id); |
| } |
| }; |
| |
| using iterator = typename basic_format_parse_context<Char>::iterator; |
| struct parse_range { |
| iterator begin; |
| iterator end; |
| }; |
| |
| FMT_CONSTEXPR parse_range do_parse(basic_format_parse_context<Char>& ctx) { |
| auto begin = ctx.begin(), end = ctx.end(); |
| if (begin == end || *begin == '}') return {begin, begin}; |
| spec_handler handler{*this, ctx, format_str}; |
| begin = detail::parse_align(begin, end, handler); |
| if (begin == end) return {begin, begin}; |
| begin = detail::parse_width(begin, end, handler); |
| if (begin == end) return {begin, begin}; |
| if (*begin == '.') { |
| if (std::is_floating_point<Rep>::value) |
| begin = detail::parse_precision(begin, end, handler); |
| else |
| handler.on_error("precision not allowed for this argument type"); |
| } |
| end = parse_chrono_format(begin, end, detail::chrono_format_checker()); |
| return {begin, end}; |
| } |
| |
| public: |
| formatter() : precision(-1) {} |
| |
| FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx) |
| -> decltype(ctx.begin()) { |
| auto range = do_parse(ctx); |
| format_str = basic_string_view<Char>( |
| &*range.begin, detail::to_unsigned(range.end - range.begin)); |
| return range.end; |
| } |
| |
| template <typename FormatContext> |
| auto format(const duration& d, FormatContext& ctx) -> decltype(ctx.out()) { |
| auto begin = format_str.begin(), end = format_str.end(); |
| // As a possible future optimization, we could avoid extra copying if width |
| // is not specified. |
| basic_memory_buffer<Char> buf; |
| auto out = std::back_inserter(buf); |
| detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref, |
| ctx); |
| detail::handle_dynamic_spec<detail::precision_checker>(precision, |
| precision_ref, ctx); |
| if (begin == end || *begin == '}') { |
| out = detail::format_duration_value<Char>(out, d.count(), precision); |
| detail::format_duration_unit<Char, Period>(out); |
| } else { |
| detail::chrono_formatter<FormatContext, decltype(out), Rep, Period> f( |
| ctx, out, d); |
| f.precision = precision; |
| parse_chrono_format(begin, end, f); |
| } |
| return detail::write( |
| ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs); |
| } |
| }; |
| |
| FMT_END_NAMESPACE |
| |
| #endif // FMT_CHRONO_H_ |