blob: be3141e46a1cc375b10076648abe3b0b8fda7d6a [file] [log] [blame]
#![unstable(issue = "none", feature = "windows_stdio")]
use crate::char::decode_utf16;
use crate::cmp;
use crate::io;
use crate::ptr;
use crate::str;
use crate::sys::c;
use crate::sys::cvt;
use crate::sys::handle::Handle;
// Don't cache handles but get them fresh for every read/write. This allows us to track changes to
// the value over time (such as if a process calls `SetStdHandle` while it's running). See #40490.
pub struct Stdin {
surrogate: u16,
}
pub struct Stdout;
pub struct Stderr;
// Apparently Windows doesn't handle large reads on stdin or writes to stdout/stderr well (see
// #13304 for details).
//
// From MSDN (2011): "The storage for this buffer is allocated from a shared heap for the
// process that is 64 KB in size. The maximum size of the buffer will depend on heap usage."
//
// We choose the cap at 8 KiB because libuv does the same, and it seems to be acceptable so far.
const MAX_BUFFER_SIZE: usize = 8192;
// The standard buffer size of BufReader for Stdin should be able to hold 3x more bytes than there
// are `u16`'s in MAX_BUFFER_SIZE. This ensures the read data can always be completely decoded from
// UTF-16 to UTF-8.
pub const STDIN_BUF_SIZE: usize = MAX_BUFFER_SIZE / 2 * 3;
pub fn get_handle(handle_id: c::DWORD) -> io::Result<c::HANDLE> {
let handle = unsafe { c::GetStdHandle(handle_id) };
if handle == c::INVALID_HANDLE_VALUE {
Err(io::Error::last_os_error())
} else if handle.is_null() {
Err(io::Error::from_raw_os_error(c::ERROR_INVALID_HANDLE as i32))
} else {
Ok(handle)
}
}
fn is_console(handle: c::HANDLE) -> bool {
// `GetConsoleMode` will return false (0) if this is a pipe (we don't care about the reported
// mode). This will only detect Windows Console, not other terminals connected to a pipe like
// MSYS. Which is exactly what we need, as only Windows Console needs a conversion to UTF-16.
let mut mode = 0;
unsafe { c::GetConsoleMode(handle, &mut mode) != 0 }
}
fn write(handle_id: c::DWORD, data: &[u8]) -> io::Result<usize> {
let handle = get_handle(handle_id)?;
if !is_console(handle) {
let handle = Handle::new(handle);
let ret = handle.write(data);
handle.into_raw(); // Don't close the handle
return ret;
}
// As the console is meant for presenting text, we assume bytes of `data` come from a string
// and are encoded as UTF-8, which needs to be encoded as UTF-16.
//
// If the data is not valid UTF-8 we write out as many bytes as are valid.
// Only when there are no valid bytes (which will happen on the next call), return an error.
let len = cmp::min(data.len(), MAX_BUFFER_SIZE / 2);
let utf8 = match str::from_utf8(&data[..len]) {
Ok(s) => s,
Err(ref e) if e.valid_up_to() == 0 => {
return Err(io::Error::new_const(
io::ErrorKind::InvalidData,
&"Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
));
}
Err(e) => str::from_utf8(&data[..e.valid_up_to()]).unwrap(),
};
let mut utf16 = [0u16; MAX_BUFFER_SIZE / 2];
let mut len_utf16 = 0;
for (chr, dest) in utf8.encode_utf16().zip(utf16.iter_mut()) {
*dest = chr;
len_utf16 += 1;
}
let utf16 = &utf16[..len_utf16];
let mut written = write_u16s(handle, &utf16)?;
// Figure out how many bytes of as UTF-8 were written away as UTF-16.
if written == utf16.len() {
Ok(utf8.len())
} else {
// Make sure we didn't end up writing only half of a surrogate pair (even though the chance
// is tiny). Because it is not possible for user code to re-slice `data` in such a way that
// a missing surrogate can be produced (and also because of the UTF-8 validation above),
// write the missing surrogate out now.
// Buffering it would mean we have to lie about the number of bytes written.
let first_char_remaining = utf16[written];
if first_char_remaining >= 0xDCEE && first_char_remaining <= 0xDFFF {
// low surrogate
// We just hope this works, and give up otherwise
let _ = write_u16s(handle, &utf16[written..written + 1]);
written += 1;
}
// Calculate the number of bytes of `utf8` that were actually written.
let mut count = 0;
for ch in utf16[..written].iter() {
count += match ch {
0x0000..=0x007F => 1,
0x0080..=0x07FF => 2,
0xDCEE..=0xDFFF => 1, // Low surrogate. We already counted 3 bytes for the other.
_ => 3,
};
}
debug_assert!(String::from_utf16(&utf16[..written]).unwrap() == utf8[..count]);
Ok(count)
}
}
fn write_u16s(handle: c::HANDLE, data: &[u16]) -> io::Result<usize> {
let mut written = 0;
cvt(unsafe {
c::WriteConsoleW(
handle,
data.as_ptr() as c::LPCVOID,
data.len() as u32,
&mut written,
ptr::null_mut(),
)
})?;
Ok(written as usize)
}
impl Stdin {
pub const fn new() -> Stdin {
Stdin { surrogate: 0 }
}
}
impl io::Read for Stdin {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let handle = get_handle(c::STD_INPUT_HANDLE)?;
if !is_console(handle) {
let handle = Handle::new(handle);
let ret = handle.read(buf);
handle.into_raw(); // Don't close the handle
return ret;
}
if buf.len() == 0 {
return Ok(0);
} else if buf.len() < 4 {
return Err(io::Error::new_const(
io::ErrorKind::InvalidInput,
&"Windows stdin in console mode does not support a buffer too small to \
guarantee holding one arbitrary UTF-8 character (4 bytes)",
));
}
let mut utf16_buf = [0u16; MAX_BUFFER_SIZE / 2];
// In the worst case, an UTF-8 string can take 3 bytes for every `u16` of an UTF-16. So
// we can read at most a third of `buf.len()` chars and uphold the guarantee no data gets
// lost.
let amount = cmp::min(buf.len() / 3, utf16_buf.len());
let read = read_u16s_fixup_surrogates(handle, &mut utf16_buf, amount, &mut self.surrogate)?;
utf16_to_utf8(&utf16_buf[..read], buf)
}
}
// We assume that if the last `u16` is an unpaired surrogate they got sliced apart by our
// buffer size, and keep it around for the next read hoping to put them together.
// This is a best effort, and may not work if we are not the only reader on Stdin.
fn read_u16s_fixup_surrogates(
handle: c::HANDLE,
buf: &mut [u16],
mut amount: usize,
surrogate: &mut u16,
) -> io::Result<usize> {
// Insert possibly remaining unpaired surrogate from last read.
let mut start = 0;
if *surrogate != 0 {
buf[0] = *surrogate;
*surrogate = 0;
start = 1;
if amount == 1 {
// Special case: `Stdin::read` guarantees we can always read at least one new `u16`
// and combine it with an unpaired surrogate, because the UTF-8 buffer is at least
// 4 bytes.
amount = 2;
}
}
let mut amount = read_u16s(handle, &mut buf[start..amount])? + start;
if amount > 0 {
let last_char = buf[amount - 1];
if last_char >= 0xD800 && last_char <= 0xDBFF {
// high surrogate
*surrogate = last_char;
amount -= 1;
}
}
Ok(amount)
}
fn read_u16s(handle: c::HANDLE, buf: &mut [u16]) -> io::Result<usize> {
// Configure the `pInputControl` parameter to not only return on `\r\n` but also Ctrl-Z, the
// traditional DOS method to indicate end of character stream / user input (SUB).
// See #38274 and https://stackoverflow.com/questions/43836040/win-api-readconsole.
const CTRL_Z: u16 = 0x1A;
const CTRL_Z_MASK: c::ULONG = 1 << CTRL_Z;
let mut input_control = c::CONSOLE_READCONSOLE_CONTROL {
nLength: crate::mem::size_of::<c::CONSOLE_READCONSOLE_CONTROL>() as c::ULONG,
nInitialChars: 0,
dwCtrlWakeupMask: CTRL_Z_MASK,
dwControlKeyState: 0,
};
let mut amount = 0;
cvt(unsafe {
c::ReadConsoleW(
handle,
buf.as_mut_ptr() as c::LPVOID,
buf.len() as u32,
&mut amount,
&mut input_control as c::PCONSOLE_READCONSOLE_CONTROL,
)
})?;
if amount > 0 && buf[amount as usize - 1] == CTRL_Z {
amount -= 1;
}
Ok(amount as usize)
}
#[allow(unused)]
fn utf16_to_utf8(utf16: &[u16], utf8: &mut [u8]) -> io::Result<usize> {
let mut written = 0;
for chr in decode_utf16(utf16.iter().cloned()) {
match chr {
Ok(chr) => {
chr.encode_utf8(&mut utf8[written..]);
written += chr.len_utf8();
}
Err(_) => {
// We can't really do any better than forget all data and return an error.
return Err(io::Error::new_const(
io::ErrorKind::InvalidData,
&"Windows stdin in console mode does not support non-UTF-16 input; \
encountered unpaired surrogate",
));
}
}
}
Ok(written)
}
impl Stdout {
pub const fn new() -> Stdout {
Stdout
}
}
impl io::Write for Stdout {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
write(c::STD_OUTPUT_HANDLE, buf)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl Stderr {
pub const fn new() -> Stderr {
Stderr
}
}
impl io::Write for Stderr {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
write(c::STD_ERROR_HANDLE, buf)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
pub fn is_ebadf(err: &io::Error) -> bool {
err.raw_os_error() == Some(c::ERROR_INVALID_HANDLE as i32)
}
pub fn panic_output() -> Option<impl io::Write> {
Some(Stderr::new())
}