blob: 3e7aa84da7181e2ab270e181b9f63deb1905542f [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <google/protobuf/util/internal/datapiece.h>
#include <cmath>
#include <cstdint>
#include <limits>
#include <google/protobuf/struct.pb.h>
#include <google/protobuf/type.pb.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/stubs/status.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/util/internal/utility.h>
#include <google/protobuf/stubs/mathutil.h>
namespace google {
namespace protobuf {
namespace util {
namespace converter {
using util::Status;
namespace {
template <typename To, typename From>
util::StatusOr<To> ValidateNumberConversion(To after, From before) {
if (after == before &&
MathUtil::Sign<From>(before) == MathUtil::Sign<To>(after)) {
return after;
} else {
return util::InvalidArgumentError(
std::is_integral<From>::value ? ValueAsString(before)
: std::is_same<From, double>::value ? DoubleAsString(before)
: FloatAsString(before));
}
}
// For general conversion between
// int32, int64, uint32, uint64, double and float
// except conversion between double and float.
template <typename To, typename From>
util::StatusOr<To> NumberConvertAndCheck(From before) {
if (std::is_same<From, To>::value) return before;
To after = static_cast<To>(before);
return ValidateNumberConversion(after, before);
}
// For conversion to integer types (int32, int64, uint32, uint64) from floating
// point types (double, float) only.
template <typename To, typename From>
util::StatusOr<To> FloatingPointToIntConvertAndCheck(From before) {
if (std::is_same<From, To>::value) return before;
To after = static_cast<To>(before);
return ValidateNumberConversion(after, before);
}
// For conversion between double and float only.
util::StatusOr<double> FloatToDouble(float before) {
// Casting float to double should just work as double has more precision
// than float.
return static_cast<double>(before);
}
util::StatusOr<float> DoubleToFloat(double before) {
if (std::isnan(before)) {
return std::numeric_limits<float>::quiet_NaN();
} else if (!std::isfinite(before)) {
// Converting a double +inf/-inf to float should just work.
return static_cast<float>(before);
} else if (before > std::numeric_limits<float>::max() ||
before < -std::numeric_limits<float>::max()) {
// Some doubles are larger than the largest float, but after
// rounding they will be equal to the largest float.
// We can't just attempt the conversion because that has UB if
// the value really is out-of-range.
// Here we take advantage that 1/2-ing a large floating point
// will not lose precision.
double half_before = before * 0.5;
if (half_before < std::numeric_limits<float>::max() &&
half_before > -std::numeric_limits<float>::max()) {
const float half_fmax = std::numeric_limits<float>::max() * 0.5f;
// If after being cut in half, the value is less than the largest float,
// then it's safe to convert it to float. Importantly, this conversion
// rounds in the same way that the original does.
float half_after = static_cast<float>(half_before);
if (half_after <= half_fmax && half_after >= -half_fmax) {
return half_after + half_after;
}
}
// Double value outside of the range of float.
return util::InvalidArgumentError(DoubleAsString(before));
} else {
return static_cast<float>(before);
}
}
} // namespace
util::StatusOr<int32_t> DataPiece::ToInt32() const {
if (type_ == TYPE_STRING)
return StringToNumber<int32_t>(safe_strto32);
if (type_ == TYPE_DOUBLE)
return FloatingPointToIntConvertAndCheck<int32_t, double>(double_);
if (type_ == TYPE_FLOAT)
return FloatingPointToIntConvertAndCheck<int32_t, float>(float_);
return GenericConvert<int32_t>();
}
util::StatusOr<uint32_t> DataPiece::ToUint32() const {
if (type_ == TYPE_STRING)
return StringToNumber<uint32_t>(safe_strtou32);
if (type_ == TYPE_DOUBLE)
return FloatingPointToIntConvertAndCheck<uint32_t, double>(double_);
if (type_ == TYPE_FLOAT)
return FloatingPointToIntConvertAndCheck<uint32_t, float>(float_);
return GenericConvert<uint32_t>();
}
util::StatusOr<int64_t> DataPiece::ToInt64() const {
if (type_ == TYPE_STRING)
return StringToNumber<int64_t>(safe_strto64);
if (type_ == TYPE_DOUBLE)
return FloatingPointToIntConvertAndCheck<int64_t, double>(double_);
if (type_ == TYPE_FLOAT)
return FloatingPointToIntConvertAndCheck<int64_t, float>(float_);
return GenericConvert<int64_t>();
}
util::StatusOr<uint64_t> DataPiece::ToUint64() const {
if (type_ == TYPE_STRING)
return StringToNumber<uint64_t>(safe_strtou64);
if (type_ == TYPE_DOUBLE)
return FloatingPointToIntConvertAndCheck<uint64_t, double>(double_);
if (type_ == TYPE_FLOAT)
return FloatingPointToIntConvertAndCheck<uint64_t, float>(float_);
return GenericConvert<uint64_t>();
}
util::StatusOr<double> DataPiece::ToDouble() const {
if (type_ == TYPE_FLOAT) {
return FloatToDouble(float_);
}
if (type_ == TYPE_STRING) {
if (str_ == "Infinity") return std::numeric_limits<double>::infinity();
if (str_ == "-Infinity") return -std::numeric_limits<double>::infinity();
if (str_ == "NaN") return std::numeric_limits<double>::quiet_NaN();
util::StatusOr<double> value = StringToNumber<double>(safe_strtod);
if (value.ok() && !std::isfinite(value.value())) {
// safe_strtod converts out-of-range values to +inf/-inf, but we want
// to report them as errors.
return util::InvalidArgumentError(StrCat("\"", str_, "\""));
} else {
return value;
}
}
return GenericConvert<double>();
}
util::StatusOr<float> DataPiece::ToFloat() const {
if (type_ == TYPE_DOUBLE) {
return DoubleToFloat(double_);
}
if (type_ == TYPE_STRING) {
if (str_ == "Infinity") return std::numeric_limits<float>::infinity();
if (str_ == "-Infinity") return -std::numeric_limits<float>::infinity();
if (str_ == "NaN") return std::numeric_limits<float>::quiet_NaN();
// SafeStrToFloat() is used instead of safe_strtof() because the later
// does not fail on inputs like SimpleDtoa(DBL_MAX).
return StringToNumber<float>(SafeStrToFloat);
}
return GenericConvert<float>();
}
util::StatusOr<bool> DataPiece::ToBool() const {
switch (type_) {
case TYPE_BOOL:
return bool_;
case TYPE_STRING:
return StringToNumber<bool>(safe_strtob);
default:
return util::InvalidArgumentError(
ValueAsStringOrDefault("Wrong type. Cannot convert to Bool."));
}
}
util::StatusOr<std::string> DataPiece::ToString() const {
switch (type_) {
case TYPE_STRING:
return std::string(str_);
case TYPE_BYTES: {
std::string base64;
Base64Escape(str_, &base64);
return base64;
}
default:
return util::InvalidArgumentError(
ValueAsStringOrDefault("Cannot convert to string."));
}
}
std::string DataPiece::ValueAsStringOrDefault(
StringPiece default_string) const {
switch (type_) {
case TYPE_INT32:
return StrCat(i32_);
case TYPE_INT64:
return StrCat(i64_);
case TYPE_UINT32:
return StrCat(u32_);
case TYPE_UINT64:
return StrCat(u64_);
case TYPE_DOUBLE:
return DoubleAsString(double_);
case TYPE_FLOAT:
return FloatAsString(float_);
case TYPE_BOOL:
return SimpleBtoa(bool_);
case TYPE_STRING:
return StrCat("\"", str_.ToString(), "\"");
case TYPE_BYTES: {
std::string base64;
WebSafeBase64Escape(str_, &base64);
return StrCat("\"", base64, "\"");
}
case TYPE_NULL:
return "null";
default:
return std::string(default_string);
}
}
util::StatusOr<std::string> DataPiece::ToBytes() const {
if (type_ == TYPE_BYTES) return str_.ToString();
if (type_ == TYPE_STRING) {
std::string decoded;
if (!DecodeBase64(str_, &decoded)) {
return util::InvalidArgumentError(
ValueAsStringOrDefault("Invalid data in input."));
}
return decoded;
} else {
return util::InvalidArgumentError(ValueAsStringOrDefault(
"Wrong type. Only String or Bytes can be converted to Bytes."));
}
}
util::StatusOr<int> DataPiece::ToEnum(const google::protobuf::Enum* enum_type,
bool use_lower_camel_for_enums,
bool case_insensitive_enum_parsing,
bool ignore_unknown_enum_values,
bool* is_unknown_enum_value) const {
if (type_ == TYPE_NULL) return google::protobuf::NULL_VALUE;
if (type_ == TYPE_STRING) {
// First try the given value as a name.
std::string enum_name = std::string(str_);
const google::protobuf::EnumValue* value =
FindEnumValueByNameOrNull(enum_type, enum_name);
if (value != nullptr) return value->number();
// Check if int version of enum is sent as string.
util::StatusOr<int32_t> int_value = ToInt32();
if (int_value.ok()) {
if (const google::protobuf::EnumValue* enum_value =
FindEnumValueByNumberOrNull(enum_type, int_value.value())) {
return enum_value->number();
}
}
// Next try a normalized name.
bool should_normalize_enum =
case_insensitive_enum_parsing || use_lower_camel_for_enums;
if (should_normalize_enum) {
for (std::string::iterator it = enum_name.begin(); it != enum_name.end();
++it) {
*it = *it == '-' ? '_' : ascii_toupper(*it);
}
value = FindEnumValueByNameOrNull(enum_type, enum_name);
if (value != nullptr) return value->number();
}
// If use_lower_camel_for_enums is true try with enum name without
// underscore. This will also accept camel case names as the enum_name has
// been normalized before.
if (use_lower_camel_for_enums) {
value = FindEnumValueByNameWithoutUnderscoreOrNull(enum_type, enum_name);
if (value != nullptr) return value->number();
}
// If ignore_unknown_enum_values is true an unknown enum value is ignored.
if (ignore_unknown_enum_values) {
*is_unknown_enum_value = true;
if (enum_type->enumvalue_size() > 0) {
return enum_type->enumvalue(0).number();
}
}
} else {
// We don't need to check whether the value is actually declared in the
// enum because we preserve unknown enum values as well.
return ToInt32();
}
return util::InvalidArgumentError(
ValueAsStringOrDefault("Cannot find enum with given value."));
}
template <typename To>
util::StatusOr<To> DataPiece::GenericConvert() const {
switch (type_) {
case TYPE_INT32:
return NumberConvertAndCheck<To, int32_t>(i32_);
case TYPE_INT64:
return NumberConvertAndCheck<To, int64_t>(i64_);
case TYPE_UINT32:
return NumberConvertAndCheck<To, uint32_t>(u32_);
case TYPE_UINT64:
return NumberConvertAndCheck<To, uint64_t>(u64_);
case TYPE_DOUBLE:
return NumberConvertAndCheck<To, double>(double_);
case TYPE_FLOAT:
return NumberConvertAndCheck<To, float>(float_);
default: // TYPE_ENUM, TYPE_STRING, TYPE_CORD, TYPE_BOOL
return util::InvalidArgumentError(ValueAsStringOrDefault(
"Wrong type. Bool, Enum, String and Cord not supported in "
"GenericConvert."));
}
}
template <typename To>
util::StatusOr<To> DataPiece::StringToNumber(bool (*func)(StringPiece,
To*)) const {
if (str_.size() > 0 && (str_[0] == ' ' || str_[str_.size() - 1] == ' ')) {
return util::InvalidArgumentError(StrCat("\"", str_, "\""));
}
To result;
if (func(str_, &result)) return result;
return util::InvalidArgumentError(
StrCat("\"", std::string(str_), "\""));
}
bool DataPiece::DecodeBase64(StringPiece src, std::string* dest) const {
// Try web-safe decode first, if it fails, try the non-web-safe decode.
if (WebSafeBase64Unescape(src, dest)) {
if (use_strict_base64_decoding_) {
// In strict mode, check if the escaped version gives us the same value as
// unescaped.
std::string encoded;
// WebSafeBase64Escape does no padding by default.
WebSafeBase64Escape(*dest, &encoded);
// Remove trailing padding '=' characters before comparison.
StringPiece src_no_padding = StringPiece(src).substr(
0, HasSuffixString(src, "=") ? src.find_last_not_of('=') + 1
: src.length());
return encoded == src_no_padding;
}
return true;
}
if (Base64Unescape(src, dest)) {
if (use_strict_base64_decoding_) {
std::string encoded;
Base64Escape(reinterpret_cast<const unsigned char*>(dest->data()),
dest->length(), &encoded, false);
StringPiece src_no_padding = StringPiece(src).substr(
0, HasSuffixString(src, "=") ? src.find_last_not_of('=') + 1
: src.length());
return encoded == src_no_padding;
}
return true;
}
return false;
}
void DataPiece::InternalCopy(const DataPiece& other) {
type_ = other.type_;
use_strict_base64_decoding_ = other.use_strict_base64_decoding_;
switch (type_) {
case TYPE_INT32:
case TYPE_INT64:
case TYPE_UINT32:
case TYPE_UINT64:
case TYPE_DOUBLE:
case TYPE_FLOAT:
case TYPE_BOOL:
case TYPE_ENUM:
case TYPE_NULL:
case TYPE_BYTES:
case TYPE_STRING: {
str_ = other.str_;
break;
}
}
}
} // namespace converter
} // namespace util
} // namespace protobuf
} // namespace google