blob: 3fb734e5cb43111aa25d557e9be4d14f565919de [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// This header covers RepeatedField.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#include <algorithm>
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
#include <utility>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/port.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/repeated_ptr_field.h>
// Must be included last.
#include <google/protobuf/port_def.inc>
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Message;
namespace internal {
template <typename T, int kRepHeaderSize>
constexpr int RepeatedFieldLowerClampLimit() {
// The header is padded to be at least `sizeof(T)` when it would be smaller
// otherwise.
static_assert(sizeof(T) <= kRepHeaderSize, "");
// We want to pad the minimum size to be a power of two bytes, including the
// header.
// The first allocation is kRepHeaderSize bytes worth of elements for a total
// of 2*kRepHeaderSize bytes.
// For an 8-byte header, we allocate 8 bool, 2 ints, or 1 int64.
return kRepHeaderSize / sizeof(T);
}
// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
// this will clamp to the maximum int value instead of following exponential
// growth when growing a repeated field.
constexpr int kRepeatedFieldUpperClampLimit =
(std::numeric_limits<int>::max() / 2) + 1;
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
return static_cast<int>(std::distance(begin, end));
}
template <typename Iter>
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
std::input_iterator_tag /*unused*/) {
return -1;
}
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
typedef typename std::iterator_traits<Iter>::iterator_category Category;
return CalculateReserve(begin, end, Category());
}
// Swaps two blocks of memory of size sizeof(T).
template <typename T>
inline void SwapBlock(char* p, char* q) {
T tmp;
memcpy(&tmp, p, sizeof(T));
memcpy(p, q, sizeof(T));
memcpy(q, &tmp, sizeof(T));
}
// Swaps two blocks of memory of size kSize:
// template <int kSize> void memswap(char* p, char* q);
template <int kSize>
inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
}
#define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \
template <int kSize> \
typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
void>::type \
memswap(char* p, char* q) { \
SwapBlock<reg_type>(p, q); \
memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \
q + sizeof(reg_type)); \
}
PROTO_MEMSWAP_DEF_SIZE(uint8_t, 2)
PROTO_MEMSWAP_DEF_SIZE(uint16_t, 4)
PROTO_MEMSWAP_DEF_SIZE(uint32_t, 8)
#ifdef __SIZEOF_INT128__
PROTO_MEMSWAP_DEF_SIZE(uint64_t, 16)
PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
#else
PROTO_MEMSWAP_DEF_SIZE(uint64_t, (1u << 31))
#endif
#undef PROTO_MEMSWAP_DEF_SIZE
template <typename Element>
class RepeatedIterator;
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField final {
static_assert(
alignof(Arena) >= alignof(Element),
"We only support types that have an alignment smaller than Arena");
public:
constexpr RepeatedField();
explicit RepeatedField(Arena* arena);
RepeatedField(const RepeatedField& other);
template <typename Iter,
typename = typename std::enable_if<std::is_constructible<
Element, decltype(*std::declval<Iter>())>::value>::type>
RepeatedField(Iter begin, Iter end);
~RepeatedField();
RepeatedField& operator=(const RepeatedField& other);
RepeatedField(RepeatedField&& other) noexcept;
RepeatedField& operator=(RepeatedField&& other) noexcept;
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
const Element& operator[](int index) const { return Get(index); }
Element& operator[](int index) { return *Mutable(index); }
const Element& at(int index) const;
Element& at(int index);
void Set(int index, const Element& value);
void Add(const Element& value);
// Appends a new element and returns a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
Element* Add();
// Appends elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
// Removes the last element in the array.
void RemoveLast();
// Extracts elements with indices in "[start .. start+num-1]".
// Copies them into "elements[0 .. num-1]" if "elements" is not nullptr.
// Caution: also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element* elements);
PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear();
void MergeFrom(const RepeatedField& other);
PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other);
// Replaces the contents with RepeatedField(begin, end).
template <typename Iter>
PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
// Reserves space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Resizes the RepeatedField to a new, smaller size. This is O(1).
void Truncate(int new_size);
void AddAlreadyReserved(const Element& value);
// Appends a new element and return a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
// Should be called only if Capacity() > Size().
Element* AddAlreadyReserved();
Element* AddNAlreadyReserved(int elements);
int Capacity() const;
// Like STL resize. Uses value to fill appended elements.
// Like Truncate() if new_size <= size(), otherwise this is
// O(new_size - size()).
void Resize(int new_size, const Element& value);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element* mutable_data();
const Element* data() const;
// Swaps entire contents with "other". If they are separate arenas then,
// copies data between each other.
void Swap(RepeatedField* other);
// Swaps entire contents with "other". Should be called only if the caller can
// guarantee that both repeated fields are on the same arena or are on the
// heap. Swapping between different arenas is disallowed and caught by a
// GOOGLE_DCHECK (see API docs for details).
void UnsafeArenaSwap(RepeatedField* other);
// Swaps two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef internal::RepeatedIterator<Element> iterator;
typedef internal::RepeatedIterator<const Element> const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
const_iterator end() const;
const_iterator cend() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Returns the number of bytes used by the repeated field, excluding
// sizeof(*this)
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position);
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first, const_iterator last);
// Gets the Arena on which this RepeatedField stores its elements.
inline Arena* GetArena() const {
return GetOwningArena();
}
// For internal use only.
//
// This is public due to it being called by generated code.
inline void InternalSwap(RepeatedField* other);
private:
template <typename T> friend class Arena::InternalHelper;
// Gets the Arena on which this RepeatedField stores its elements.
inline Arena* GetOwningArena() const {
return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
: rep()->arena;
}
static constexpr int kInitialSize = 0;
// A note on the representation here (see also comment below for
// RepeatedPtrFieldBase's struct Rep):
//
// We maintain the same sizeof(RepeatedField) as before we added arena support
// so that we do not degrade performance by bloating memory usage. Directly
// adding an arena_ element to RepeatedField is quite costly. By using
// indirection in this way, we keep the same size when the RepeatedField is
// empty (common case), and add only an 8-byte header to the elements array
// when non-empty. We make sure to place the size fields directly in the
// RepeatedField class to avoid costly cache misses due to the indirection.
int current_size_;
int total_size_;
// Pad the Rep after arena allow for power-of-two byte sizes when
// sizeof(Element) > sizeof(Arena*). eg for 16-byte objects.
static PROTOBUF_CONSTEXPR const size_t kRepHeaderSize =
sizeof(Arena*) < sizeof(Element) ? sizeof(Element) : sizeof(Arena*);
struct Rep {
Arena* arena;
Element* elements() {
return reinterpret_cast<Element*>(reinterpret_cast<char*>(this) +
kRepHeaderSize);
}
};
// If total_size_ == 0 this points to an Arena otherwise it points to the
// elements member of a Rep struct. Using this invariant allows the storage of
// the arena pointer without an extra allocation in the constructor.
void* arena_or_elements_;
// Returns a pointer to elements array.
// pre-condition: the array must have been allocated.
Element* elements() const {
GOOGLE_DCHECK_GT(total_size_, 0);
// Because of above pre-condition this cast is safe.
return unsafe_elements();
}
// Returns a pointer to elements array if it exists; otherwise either null or
// an invalid pointer is returned. This only happens for empty repeated
// fields, where you can't dereference this pointer anyway (it's empty).
Element* unsafe_elements() const {
return static_cast<Element*>(arena_or_elements_);
}
// Returns a pointer to the Rep struct.
// pre-condition: the Rep must have been allocated, ie elements() is safe.
Rep* rep() const {
return reinterpret_cast<Rep*>(reinterpret_cast<char*>(elements()) -
kRepHeaderSize);
}
friend class Arena;
typedef void InternalArenaConstructable_;
// Moves the contents of |from| into |to|, possibly clobbering |from| in the
// process. For primitive types this is just a memcpy(), but it could be
// specialized for non-primitive types to, say, swap each element instead.
void MoveArray(Element* to, Element* from, int size);
// Copies the elements of |from| into |to|.
void CopyArray(Element* to, const Element* from, int size);
// Internal helper to delete all elements and deallocate the storage.
void InternalDeallocate(Rep* rep, int size, bool in_destructor) {
if (rep != nullptr) {
Element* e = &rep->elements()[0];
if (!std::is_trivial<Element>::value) {
Element* limit = &rep->elements()[size];
for (; e < limit; e++) {
e->~Element();
}
}
const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
if (rep->arena == nullptr) {
internal::SizedDelete(rep, bytes);
} else if (!in_destructor) {
// If we are in the destructor, we might be being destroyed as part of
// the arena teardown. We can't try and return blocks to the arena then.
rep->arena->ReturnArrayMemory(rep, bytes);
}
}
}
// This class is a performance wrapper around RepeatedField::Add(const T&)
// function. In general unless a RepeatedField is a local stack variable LLVM
// has a hard time optimizing Add. The machine code tends to be
// loop:
// mov %size, dword ptr [%repeated_field] // load
// cmp %size, dword ptr [%repeated_field + 4]
// jae fallback
// mov %buffer, qword ptr [%repeated_field + 8]
// mov dword [%buffer + %size * 4], %value
// inc %size // increment
// mov dword ptr [%repeated_field], %size // store
// jmp loop
//
// This puts a load/store in each iteration of the important loop variable
// size. It's a pretty bad compile that happens even in simple cases, but
// largely the presence of the fallback path disturbs the compilers mem-to-reg
// analysis.
//
// This class takes ownership of a repeated field for the duration of its
// lifetime. The repeated field should not be accessed during this time, ie.
// only access through this class is allowed. This class should always be a
// function local stack variable. Intended use
//
// void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
// {
// RepeatedFieldAdder<int> adder(out); // Take ownership of out
// for (auto it = begin; it != end; ++it) {
// adder.Add(*it);
// }
// }
//
// Typically, due to the fact that adder is a local stack variable, the
// compiler will be successful in mem-to-reg transformation and the machine
// code will be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer
// + %size * 4], %val inc %size jmp loop
//
// The first version executes at 7 cycles per iteration while the second
// version executes at only 1 or 2 cycles.
template <int = 0, bool = std::is_trivial<Element>::value>
class FastAdderImpl {
public:
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {
index_ = repeated_field_->current_size_;
capacity_ = repeated_field_->total_size_;
buffer_ = repeated_field_->unsafe_elements();
}
~FastAdderImpl() { repeated_field_->current_size_ = index_; }
void Add(Element val) {
if (index_ == capacity_) {
repeated_field_->current_size_ = index_;
repeated_field_->Reserve(index_ + 1);
capacity_ = repeated_field_->total_size_;
buffer_ = repeated_field_->unsafe_elements();
}
buffer_[index_++] = val;
}
private:
RepeatedField* repeated_field_;
int index_;
int capacity_;
Element* buffer_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
};
// FastAdder is a wrapper for adding fields. The specialization above handles
// POD types more efficiently than RepeatedField.
template <int I>
class FastAdderImpl<I, false> {
public:
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {}
void Add(const Element& val) { repeated_field_->Add(val); }
private:
RepeatedField* repeated_field_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
};
using FastAdder = FastAdderImpl<>;
friend class TestRepeatedFieldHelper;
friend class ::google::protobuf::internal::ParseContext;
};
namespace internal {
// This is a helper template to copy an array of elements efficiently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
bool HasTrivialCopy = std::is_trivial<Element>::value>
struct ElementCopier {
void operator()(Element* to, const Element* from, int array_size);
};
} // namespace internal
// implementation ====================================================
template <typename Element>
constexpr RepeatedField<Element>::RepeatedField()
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena)
: current_size_(0), total_size_(0), arena_or_elements_(arena) {}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
if (other.current_size_ != 0) {
Reserve(other.size());
AddNAlreadyReserved(other.size());
CopyArray(Mutable(0), &other.Get(0), other.size());
}
}
template <typename Element>
template <typename Iter, typename>
RepeatedField<Element>::RepeatedField(Iter begin, Iter end)
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
Add(begin, end);
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds if arena_
// lifetime has ended before the destructor.
auto arena = GetOwningArena();
if (arena) (void)arena->SpaceAllocated();
#endif
if (total_size_ > 0) {
InternalDeallocate(rep(), total_size_, true);
}
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
const RepeatedField& other) {
if (this != &other) CopyFrom(other);
return *this;
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
: RepeatedField() {
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
CopyFrom(other);
#else // PROTOBUF_FORCE_COPY_IN_MOVE
// We don't just call Swap(&other) here because it would perform 3 copies if
// other is on an arena. This field can't be on an arena because arena
// construction always uses the Arena* accepting constructor.
if (other.GetOwningArena()) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
RepeatedField&& other) noexcept {
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (GetOwningArena() != other.GetOwningArena()
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
|| GetOwningArena() == nullptr
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
}
return *this;
}
template <typename Element>
inline bool RepeatedField<Element>::empty() const {
return current_size_ == 0;
}
template <typename Element>
inline int RepeatedField<Element>::size() const {
return current_size_;
}
template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
return total_size_;
}
template <typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
GOOGLE_DCHECK_LT(current_size_, total_size_);
elements()[current_size_++] = value;
}
template <typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
GOOGLE_DCHECK_LT(current_size_, total_size_);
return &elements()[current_size_++];
}
template <typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int elements) {
GOOGLE_DCHECK_GE(total_size_ - current_size_, elements)
<< total_size_ << ", " << current_size_;
// Warning: sometimes people call this when elements == 0 and
// total_size_ == 0. In this case the return pointer points to a zero size
// array (n == 0). Hence we can just use unsafe_elements(), because the user
// cannot dereference the pointer anyway.
Element* ret = unsafe_elements() + current_size_;
current_size_ += elements;
return ret;
}
template <typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
GOOGLE_DCHECK_GE(new_size, 0);
if (new_size > current_size_) {
Reserve(new_size);
std::fill(&elements()[current_size_], &elements()[new_size], value);
}
current_size_ = new_size;
}
template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return elements()[index];
}
template <typename Element>
inline const Element& RepeatedField<Element>::at(int index) const {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return elements()[index];
}
template <typename Element>
inline Element& RepeatedField<Element>::at(int index) {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return elements()[index];
}
template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return &elements()[index];
}
template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
elements()[index] = value;
}
template <typename Element>
inline void RepeatedField<Element>::Add(const Element& value) {
uint32_t size = current_size_;
if (static_cast<int>(size) == total_size_) {
// value could reference an element of the array. Reserving new space will
// invalidate the reference. So we must make a copy first.
auto tmp = value;
Reserve(total_size_ + 1);
elements()[size] = std::move(tmp);
} else {
elements()[size] = value;
}
current_size_ = size + 1;
}
template <typename Element>
inline Element* RepeatedField<Element>::Add() {
uint32_t size = current_size_;
if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1);
auto ptr = &elements()[size];
current_size_ = size + 1;
return ptr;
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
int reserve = internal::CalculateReserve(begin, end);
if (reserve != -1) {
if (reserve == 0) {
return;
}
Reserve(reserve + size());
// TODO(ckennelly): The compiler loses track of the buffer freshly
// allocated by Reserve() by the time we call elements, so it cannot
// guarantee that elements does not alias [begin(), end()).
//
// If restrict is available, annotating the pointer obtained from elements()
// causes this to lower to memcpy instead of memmove.
std::copy(begin, end, elements() + size());
current_size_ = reserve + size();
} else {
FastAdder fast_adder(this);
for (; begin != end; ++begin) fast_adder.Add(*begin);
}
}
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
current_size_--;
}
template <typename Element>
void RepeatedField<Element>::ExtractSubrange(int start, int num,
Element* elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, this->current_size_);
// Save the values of the removed elements if requested.
if (elements != nullptr) {
for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start);
}
// Slide remaining elements down to fill the gap.
if (num > 0) {
for (int i = start + num; i < this->current_size_; ++i)
this->Set(i - num, this->Get(i));
this->Truncate(this->current_size_ - num);
}
}
template <typename Element>
inline void RepeatedField<Element>::Clear() {
current_size_ = 0;
}
template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
GOOGLE_DCHECK_NE(&other, this);
if (other.current_size_ != 0) {
int existing_size = size();
Reserve(existing_size + other.size());
AddNAlreadyReserved(other.size());
CopyArray(Mutable(existing_size), &other.Get(0), other.size());
}
}
template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
if (&other == this) return;
Clear();
MergeFrom(other);
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Assign(Iter begin, Iter end) {
Clear();
Add(begin, end);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator position) {
return erase(position, position + 1);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator first, const_iterator last) {
size_type first_offset = first - cbegin();
if (first != last) {
Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
}
return begin() + first_offset;
}
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
return unsafe_elements();
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
return unsafe_elements();
}
template <typename Element>
inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
GOOGLE_DCHECK(this != other);
// Swap all fields at once.
static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
"offsetof() requires standard layout before c++17");
internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
sizeof(this->arena_or_elements_) -
offsetof(RepeatedField, current_size_)>(
reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_),
reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_));
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
if (this == other) return;
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
if (GetOwningArena() != nullptr &&
GetOwningArena() == other->GetOwningArena()) {
#else // PROTOBUF_FORCE_COPY_IN_SWAP
if (GetOwningArena() == other->GetOwningArena()) {
#endif // !PROTOBUF_FORCE_COPY_IN_SWAP
InternalSwap(other);
} else {
RepeatedField<Element> temp(other->GetOwningArena());
temp.MergeFrom(*this);
CopyFrom(*other);
other->UnsafeArenaSwap(&temp);
}
}
template <typename Element>
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
if (this == other) return;
GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena());
InternalSwap(other);
}
template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(elements()[index1], elements()[index2]);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
return iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
return const_iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const {
return const_iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() {
return iterator(unsafe_elements() + current_size_);
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
return const_iterator(unsafe_elements() + current_size_);
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const {
return const_iterator(unsafe_elements() + current_size_);
}
template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
}
namespace internal {
// Returns the new size for a reserved field based on its 'total_size' and the
// requested 'new_size'. The result is clamped to the closed interval:
// [internal::kMinRepeatedFieldAllocationSize,
// std::numeric_limits<int>::max()]
// Requires:
// new_size > total_size &&
// (total_size == 0 ||
// total_size >= kRepeatedFieldLowerClampLimit)
template <typename T, int kRepHeaderSize>
inline int CalculateReserveSize(int total_size, int new_size) {
constexpr int lower_limit = RepeatedFieldLowerClampLimit<T, kRepHeaderSize>();
if (new_size < lower_limit) {
// Clamp to smallest allowed size.
return lower_limit;
}
constexpr int kMaxSizeBeforeClamp =
(std::numeric_limits<int>::max() - kRepHeaderSize) / 2;
if (PROTOBUF_PREDICT_FALSE(total_size > kMaxSizeBeforeClamp)) {
return std::numeric_limits<int>::max();
}
// We want to double the number of bytes, not the number of elements, to try
// to stay within power-of-two allocations.
// The allocation has kRepHeaderSize + sizeof(T) * capacity.
int doubled_size = 2 * total_size + kRepHeaderSize / sizeof(T);
return std::max(doubled_size, new_size);
}
} // namespace internal
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
if (total_size_ >= new_size) return;
Rep* old_rep = total_size_ > 0 ? rep() : nullptr;
Rep* new_rep;
Arena* arena = GetOwningArena();
new_size = internal::CalculateReserveSize<Element, kRepHeaderSize>(
total_size_, new_size);
GOOGLE_DCHECK_LE(
static_cast<size_t>(new_size),
(std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
<< "Requested size is too large to fit into size_t.";
size_t bytes =
kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
if (arena == nullptr) {
new_rep = static_cast<Rep*>(::operator new(bytes));
} else {
new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, bytes));
}
new_rep->arena = arena;
int old_total_size = total_size_;
// Already known: new_size >= internal::kMinRepeatedFieldAllocationSize
// Maintain invariant:
// total_size_ == 0 ||
// total_size_ >= internal::kMinRepeatedFieldAllocationSize
total_size_ = new_size;
arena_or_elements_ = new_rep->elements();
// Invoke placement-new on newly allocated elements. We shouldn't have to do
// this, since Element is supposed to be POD, but a previous version of this
// code allocated storage with "new Element[size]" and some code uses
// RepeatedField with non-POD types, relying on constructor invocation. If
// Element has a trivial constructor (e.g., int32_t), gcc (tested with -O2)
// completely removes this loop because the loop body is empty, so this has no
// effect unless its side-effects are required for correctness.
// Note that we do this before MoveArray() below because Element's copy
// assignment implementation will want an initialized instance first.
Element* e = &elements()[0];
Element* limit = e + total_size_;
for (; e < limit; e++) {
new (e) Element;
}
if (current_size_ > 0) {
MoveArray(&elements()[0], old_rep->elements(), current_size_);
}
// Likewise, we need to invoke destructors on the old array.
InternalDeallocate(old_rep, old_total_size, false);
}
template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
GOOGLE_DCHECK_LE(new_size, current_size_);
if (current_size_ > 0) {
current_size_ = new_size;
}
}
template <typename Element>
inline void RepeatedField<Element>::MoveArray(Element* to, Element* from,
int array_size) {
CopyArray(to, from, array_size);
}
template <typename Element>
inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from,
int array_size) {
internal::ElementCopier<Element>()(to, from, array_size);
}
namespace internal {
template <typename Element, bool HasTrivialCopy>
void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to,
const Element* from,
int array_size) {
std::copy(from, from + array_size, to);
}
template <typename Element>
struct ElementCopier<Element, true> {
void operator()(Element* to, const Element* from, int array_size) {
memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
}
};
} // namespace internal
// -------------------------------------------------------------------
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// STL-like iterator implementation for RepeatedField. You should not
// refer to this class directly; use RepeatedField<T>::iterator instead.
//
// Note: All of the iterator operators *must* be inlined to avoid performance
// regressions. This is caused by the extern template declarations below (which
// are required because of the RepeatedField extern template declarations). If
// any of these functions aren't explicitly inlined (e.g. defined in the class),
// the compiler isn't allowed to inline them.
template <typename Element>
class RepeatedIterator {
public:
using iterator_category = std::random_access_iterator_tag;
// Note: remove_const is necessary for std::partial_sum, which uses value_type
// to determine the summation variable type.
using value_type = typename std::remove_const<Element>::type;
using difference_type = std::ptrdiff_t;
using pointer = Element*;
using reference = Element&;
constexpr RepeatedIterator() noexcept : it_(nullptr) {}
// Allows "upcasting" from RepeatedIterator<T**> to
// RepeatedIterator<const T*const*>.
template <typename OtherElement,
typename std::enable_if<std::is_convertible<
OtherElement*, pointer>::value>::type* = nullptr>
constexpr RepeatedIterator(
const RepeatedIterator<OtherElement>& other) noexcept
: it_(other.it_) {}
// dereferenceable
constexpr reference operator*() const noexcept { return *it_; }
constexpr pointer operator->() const noexcept { return it_; }
private:
// Helper alias to hide the internal type.
using iterator = RepeatedIterator<Element>;
public:
// {inc,dec}rementable
iterator& operator++() noexcept {
++it_;
return *this;
}
iterator operator++(int) noexcept { return iterator(it_++); }
iterator& operator--() noexcept {
--it_;
return *this;
}
iterator operator--(int) noexcept { return iterator(it_--); }
// equality_comparable
friend constexpr bool operator==(const iterator& x,
const iterator& y) noexcept {
return x.it_ == y.it_;
}
friend constexpr bool operator!=(const iterator& x,
const iterator& y) noexcept {
return x.it_ != y.it_;
}
// less_than_comparable
friend constexpr bool operator<(const iterator& x,
const iterator& y) noexcept {
return x.it_ < y.it_;
}
friend constexpr bool operator<=(const iterator& x,
const iterator& y) noexcept {
return x.it_ <= y.it_;
}
friend constexpr bool operator>(const iterator& x,
const iterator& y) noexcept {
return x.it_ > y.it_;
}
friend constexpr bool operator>=(const iterator& x,
const iterator& y) noexcept {
return x.it_ >= y.it_;
}
// addable, subtractable
iterator& operator+=(difference_type d) noexcept {
it_ += d;
return *this;
}
constexpr iterator operator+(difference_type d) const noexcept {
return iterator(it_ + d);
}
friend constexpr iterator operator+(const difference_type d,
iterator it) noexcept {
return it + d;
}
iterator& operator-=(difference_type d) noexcept {
it_ -= d;
return *this;
}
iterator constexpr operator-(difference_type d) const noexcept {
return iterator(it_ - d);
}
// indexable
constexpr reference operator[](difference_type d) const noexcept {
return it_[d];
}
// random access iterator
friend constexpr difference_type operator-(iterator it1,
iterator it2) noexcept {
return it1.it_ - it2.it_;
}
private:
template <typename OtherElement>
friend class RepeatedIterator;
// Allow construction from RepeatedField.
friend class RepeatedField<value_type>;
explicit RepeatedIterator(Element* it) noexcept : it_(it) {}
// The internal iterator.
Element* it_;
};
// A back inserter for RepeatedField objects.
template <typename T>
class RepeatedFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
explicit RepeatedFieldBackInsertIterator(
RepeatedField<T>* const mutable_field)
: field_(mutable_field) {}
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
field_->Add(value);
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
RepeatedField<T>* const mutable_field) {
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}
// Extern declarations of common instantiations to reduce library bloat.
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>;
namespace internal {
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<bool>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
RepeatedIterator<int32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
RepeatedIterator<uint32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
RepeatedIterator<int64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
RepeatedIterator<uint64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<float>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<double>;
} // namespace internal
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__