blob: 6e536e5705f8df4f7c13638d50c114cbfb92fb4a [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This file contains classes which describe a type of protocol message.
// You can use a message's descriptor to learn at runtime what fields
// it contains and what the types of those fields are. The Message
// interface also allows you to dynamically access and modify individual
// fields by passing the FieldDescriptor of the field you are interested
// in.
//
// Most users will not care about descriptors, because they will write
// code specific to certain protocol types and will simply use the classes
// generated by the protocol compiler directly. Advanced users who want
// to operate on arbitrary types (not known at compile time) may want to
// read descriptors in order to learn about the contents of a message.
// A very small number of users will want to construct their own
// Descriptors, either because they are implementing Message manually or
// because they are writing something like the protocol compiler.
//
// For an example of how you might use descriptors, see the code example
// at the top of message.h.
#ifndef GOOGLE_PROTOBUF_DESCRIPTOR_H__
#define GOOGLE_PROTOBUF_DESCRIPTOR_H__
#include <atomic>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/mutex.h>
#include <google/protobuf/stubs/once.h>
#include <google/protobuf/port.h>
// Must be included last.
#include <google/protobuf/port_def.inc>
// TYPE_BOOL is defined in the MacOS's ConditionalMacros.h.
#ifdef TYPE_BOOL
#undef TYPE_BOOL
#endif // TYPE_BOOL
#ifdef SWIG
#define PROTOBUF_EXPORT
#endif
namespace google {
namespace protobuf {
// Defined in this file.
class Descriptor;
class FieldDescriptor;
class OneofDescriptor;
class EnumDescriptor;
class EnumValueDescriptor;
class ServiceDescriptor;
class MethodDescriptor;
class FileDescriptor;
class DescriptorDatabase;
class DescriptorPool;
// Defined in descriptor.proto
class DescriptorProto;
class DescriptorProto_ExtensionRange;
class FieldDescriptorProto;
class OneofDescriptorProto;
class EnumDescriptorProto;
class EnumValueDescriptorProto;
class ServiceDescriptorProto;
class MethodDescriptorProto;
class FileDescriptorProto;
class MessageOptions;
class FieldOptions;
class OneofOptions;
class EnumOptions;
class EnumValueOptions;
class ExtensionRangeOptions;
class ServiceOptions;
class MethodOptions;
class FileOptions;
class UninterpretedOption;
class SourceCodeInfo;
// Defined in message.h
class Message;
class Reflection;
// Defined in descriptor.cc
class DescriptorBuilder;
class FileDescriptorTables;
class Symbol;
// Defined in unknown_field_set.h.
class UnknownField;
// Defined in command_line_interface.cc
namespace compiler {
class CommandLineInterface;
namespace cpp {
// Defined in helpers.h
class Formatter;
} // namespace cpp
} // namespace compiler
namespace descriptor_unittest {
class DescriptorTest;
} // namespace descriptor_unittest
// Defined in printer.h
namespace io {
class Printer;
} // namespace io
// NB, all indices are zero-based.
struct SourceLocation {
int start_line;
int end_line;
int start_column;
int end_column;
// Doc comments found at the source location.
// See the comments in SourceCodeInfo.Location (descriptor.proto) for details.
std::string leading_comments;
std::string trailing_comments;
std::vector<std::string> leading_detached_comments;
};
// Options when generating machine-parsable output from a descriptor with
// DebugString().
struct DebugStringOptions {
// include original user comments as recorded in SourceLocation entries. N.B.
// that this must be |false| by default: several other pieces of code (for
// example, the C++ code generation for fields in the proto compiler) rely on
// DebugString() output being unobstructed by user comments.
bool include_comments;
// If true, elide the braced body in the debug string.
bool elide_group_body;
bool elide_oneof_body;
DebugStringOptions()
: include_comments(false),
elide_group_body(false),
elide_oneof_body(false) {
}
};
// A class to handle the simplest cases of a lazily linked descriptor
// for a message type that isn't built at the time of cross linking,
// which is needed when a pool has lazily_build_dependencies_ set.
// Must be instantiated as mutable in a descriptor.
namespace internal {
// The classes in this file represent a significant memory footprint for the
// library. We make sure we are not accidentally making them larger by
// hardcoding the struct size for a specific platform. Use as:
//
// PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(type, expected_size_in_x84-64);
//
#if !defined(PROTOBUF_INTERNAL_CHECK_CLASS_SIZE)
#define PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(t, expected)
#endif
class FlatAllocator;
class PROTOBUF_EXPORT LazyDescriptor {
public:
// Init function to be called at init time of a descriptor containing
// a LazyDescriptor.
void Init() {
descriptor_ = nullptr;
once_ = nullptr;
}
// Sets the value of the descriptor if it is known during the descriptor
// building process. Not thread safe, should only be called during the
// descriptor build process. Should not be called after SetLazy has been
// called.
void Set(const Descriptor* descriptor);
// Sets the information needed to lazily cross link the descriptor at a later
// time, SetLazy is not thread safe, should be called only once at descriptor
// build time if the symbol wasn't found and building of the file containing
// that type is delayed because lazily_build_dependencies_ is set on the pool.
// Should not be called after Set() has been called.
void SetLazy(StringPiece name, const FileDescriptor* file);
// Returns the current value of the descriptor, thread-safe. If SetLazy(...)
// has been called, will do a one-time cross link of the type specified,
// building the descriptor file that contains the type if necessary.
inline const Descriptor* Get(const ServiceDescriptor* service) {
Once(service);
return descriptor_;
}
private:
void Once(const ServiceDescriptor* service);
const Descriptor* descriptor_;
// The once_ flag is followed by a NUL terminated string for the type name.
internal::once_flag* once_;
};
class PROTOBUF_EXPORT SymbolBase {
private:
friend class google::protobuf::Symbol;
uint8_t symbol_type_;
};
// Some types have more than one SymbolBase because they have multiple
// identities in the table. We can't have duplicate direct bases, so we use this
// intermediate base to do so.
// See BuildEnumValue for details.
template <int N>
class PROTOBUF_EXPORT SymbolBaseN : public SymbolBase {};
} // namespace internal
// Describes a type of protocol message, or a particular group within a
// message. To obtain the Descriptor for a given message object, call
// Message::GetDescriptor(). Generated message classes also have a
// static method called descriptor() which returns the type's descriptor.
// Use DescriptorPool to construct your own descriptors.
class PROTOBUF_EXPORT Descriptor : private internal::SymbolBase {
public:
typedef DescriptorProto Proto;
// The name of the message type, not including its scope.
const std::string& name() const;
// The fully-qualified name of the message type, scope delimited by
// periods. For example, message type "Foo" which is declared in package
// "bar" has full name "bar.Foo". If a type "Baz" is nested within
// Foo, Baz's full_name is "bar.Foo.Baz". To get only the part that
// comes after the last '.', use name().
const std::string& full_name() const;
// Index of this descriptor within the file or containing type's message
// type array.
int index() const;
// The .proto file in which this message type was defined. Never nullptr.
const FileDescriptor* file() const;
// If this Descriptor describes a nested type, this returns the type
// in which it is nested. Otherwise, returns nullptr.
const Descriptor* containing_type() const;
// Get options for this message type. These are specified in the .proto file
// by placing lines like "option foo = 1234;" in the message definition.
// Allowed options are defined by MessageOptions in descriptor.proto, and any
// available extensions of that message.
const MessageOptions& options() const;
// Write the contents of this Descriptor into the given DescriptorProto.
// The target DescriptorProto must be clear before calling this; if it
// isn't, the result may be garbage.
void CopyTo(DescriptorProto* proto) const;
// Write the contents of this descriptor in a human-readable form. Output
// will be suitable for re-parsing.
std::string DebugString() const;
// Similar to DebugString(), but additionally takes options (e.g.,
// include original user comments in output).
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Returns true if this is a placeholder for an unknown type. This will
// only be the case if this descriptor comes from a DescriptorPool
// with AllowUnknownDependencies() set.
bool is_placeholder() const;
enum WellKnownType {
WELLKNOWNTYPE_UNSPECIFIED, // Not a well-known type.
// Wrapper types.
WELLKNOWNTYPE_DOUBLEVALUE, // google.protobuf.DoubleValue
WELLKNOWNTYPE_FLOATVALUE, // google.protobuf.FloatValue
WELLKNOWNTYPE_INT64VALUE, // google.protobuf.Int64Value
WELLKNOWNTYPE_UINT64VALUE, // google.protobuf.UInt64Value
WELLKNOWNTYPE_INT32VALUE, // google.protobuf.Int32Value
WELLKNOWNTYPE_UINT32VALUE, // google.protobuf.UInt32Value
WELLKNOWNTYPE_STRINGVALUE, // google.protobuf.StringValue
WELLKNOWNTYPE_BYTESVALUE, // google.protobuf.BytesValue
WELLKNOWNTYPE_BOOLVALUE, // google.protobuf.BoolValue
// Other well known types.
WELLKNOWNTYPE_ANY, // google.protobuf.Any
WELLKNOWNTYPE_FIELDMASK, // google.protobuf.FieldMask
WELLKNOWNTYPE_DURATION, // google.protobuf.Duration
WELLKNOWNTYPE_TIMESTAMP, // google.protobuf.Timestamp
WELLKNOWNTYPE_VALUE, // google.protobuf.Value
WELLKNOWNTYPE_LISTVALUE, // google.protobuf.ListValue
WELLKNOWNTYPE_STRUCT, // google.protobuf.Struct
// New well-known types may be added in the future.
// Please make sure any switch() statements have a 'default' case.
__WELLKNOWNTYPE__DO_NOT_USE__ADD_DEFAULT_INSTEAD__,
};
WellKnownType well_known_type() const;
// Field stuff -----------------------------------------------------
// The number of fields in this message type.
int field_count() const;
// Gets a field by index, where 0 <= index < field_count().
// These are returned in the order they were defined in the .proto file.
const FieldDescriptor* field(int index) const;
// Looks up a field by declared tag number. Returns nullptr if no such field
// exists.
const FieldDescriptor* FindFieldByNumber(int number) const;
// Looks up a field by name. Returns nullptr if no such field exists.
const FieldDescriptor* FindFieldByName(ConstStringParam name) const;
// Looks up a field by lowercased name (as returned by lowercase_name()).
// This lookup may be ambiguous if multiple field names differ only by case,
// in which case the field returned is chosen arbitrarily from the matches.
const FieldDescriptor* FindFieldByLowercaseName(
ConstStringParam lowercase_name) const;
// Looks up a field by camel-case name (as returned by camelcase_name()).
// This lookup may be ambiguous if multiple field names differ in a way that
// leads them to have identical camel-case names, in which case the field
// returned is chosen arbitrarily from the matches.
const FieldDescriptor* FindFieldByCamelcaseName(
ConstStringParam camelcase_name) const;
// The number of oneofs in this message type.
int oneof_decl_count() const;
// The number of oneofs in this message type, excluding synthetic oneofs.
// Real oneofs always come first, so iterating up to real_oneof_decl_cout()
// will yield all real oneofs.
int real_oneof_decl_count() const;
// Get a oneof by index, where 0 <= index < oneof_decl_count().
// These are returned in the order they were defined in the .proto file.
const OneofDescriptor* oneof_decl(int index) const;
// Looks up a oneof by name. Returns nullptr if no such oneof exists.
const OneofDescriptor* FindOneofByName(ConstStringParam name) const;
// Nested type stuff -----------------------------------------------
// The number of nested types in this message type.
int nested_type_count() const;
// Gets a nested type by index, where 0 <= index < nested_type_count().
// These are returned in the order they were defined in the .proto file.
const Descriptor* nested_type(int index) const;
// Looks up a nested type by name. Returns nullptr if no such nested type
// exists.
const Descriptor* FindNestedTypeByName(ConstStringParam name) const;
// Enum stuff ------------------------------------------------------
// The number of enum types in this message type.
int enum_type_count() const;
// Gets an enum type by index, where 0 <= index < enum_type_count().
// These are returned in the order they were defined in the .proto file.
const EnumDescriptor* enum_type(int index) const;
// Looks up an enum type by name. Returns nullptr if no such enum type
// exists.
const EnumDescriptor* FindEnumTypeByName(ConstStringParam name) const;
// Looks up an enum value by name, among all enum types in this message.
// Returns nullptr if no such value exists.
const EnumValueDescriptor* FindEnumValueByName(ConstStringParam name) const;
// Extensions ------------------------------------------------------
// A range of field numbers which are designated for third-party
// extensions.
struct ExtensionRange {
typedef DescriptorProto_ExtensionRange Proto;
typedef ExtensionRangeOptions OptionsType;
// See Descriptor::CopyTo().
void CopyTo(DescriptorProto_ExtensionRange* proto) const;
int start; // inclusive
int end; // exclusive
const ExtensionRangeOptions* options_;
};
// The number of extension ranges in this message type.
int extension_range_count() const;
// Gets an extension range by index, where 0 <= index <
// extension_range_count(). These are returned in the order they were defined
// in the .proto file.
const ExtensionRange* extension_range(int index) const;
// Returns true if the number is in one of the extension ranges.
bool IsExtensionNumber(int number) const;
// Returns nullptr if no extension range contains the given number.
const ExtensionRange* FindExtensionRangeContainingNumber(int number) const;
// The number of extensions defined nested within this message type's scope.
// See doc:
// https://developers.google.com/protocol-buffers/docs/proto#nested-extensions
//
// Note that the extensions may be extending *other* messages.
//
// For example:
// message M1 {
// extensions 1 to max;
// }
//
// message M2 {
// extend M1 {
// optional int32 foo = 1;
// }
// }
//
// In this case,
// DescriptorPool::generated_pool()
// ->FindMessageTypeByName("M2")
// ->extension(0)
// will return "foo", even though "foo" is an extension of M1.
// To find all known extensions of a given message, instead use
// DescriptorPool::FindAllExtensions.
int extension_count() const;
// Get an extension by index, where 0 <= index < extension_count().
// These are returned in the order they were defined in the .proto file.
const FieldDescriptor* extension(int index) const;
// Looks up a named extension (which extends some *other* message type)
// defined within this message type's scope.
const FieldDescriptor* FindExtensionByName(ConstStringParam name) const;
// Similar to FindFieldByLowercaseName(), but finds extensions defined within
// this message type's scope.
const FieldDescriptor* FindExtensionByLowercaseName(
ConstStringParam name) const;
// Similar to FindFieldByCamelcaseName(), but finds extensions defined within
// this message type's scope.
const FieldDescriptor* FindExtensionByCamelcaseName(
ConstStringParam name) const;
// Reserved fields -------------------------------------------------
// A range of reserved field numbers.
struct ReservedRange {
int start; // inclusive
int end; // exclusive
};
// The number of reserved ranges in this message type.
int reserved_range_count() const;
// Gets an reserved range by index, where 0 <= index <
// reserved_range_count(). These are returned in the order they were defined
// in the .proto file.
const ReservedRange* reserved_range(int index) const;
// Returns true if the number is in one of the reserved ranges.
bool IsReservedNumber(int number) const;
// Returns nullptr if no reserved range contains the given number.
const ReservedRange* FindReservedRangeContainingNumber(int number) const;
// The number of reserved field names in this message type.
int reserved_name_count() const;
// Gets a reserved name by index, where 0 <= index < reserved_name_count().
const std::string& reserved_name(int index) const;
// Returns true if the field name is reserved.
bool IsReservedName(ConstStringParam name) const;
// Source Location ---------------------------------------------------
// Updates |*out_location| to the source location of the complete
// extent of this message declaration. Returns false and leaves
// |*out_location| unchanged iff location information was not available.
bool GetSourceLocation(SourceLocation* out_location) const;
// Maps --------------------------------------------------------------
// Returns the FieldDescriptor for the "key" field. If this isn't a map entry
// field, returns nullptr.
const FieldDescriptor* map_key() const;
// Returns the FieldDescriptor for the "value" field. If this isn't a map
// entry field, returns nullptr.
const FieldDescriptor* map_value() const;
private:
friend class Symbol;
typedef MessageOptions OptionsType;
// Allows tests to test CopyTo(proto, true).
friend class descriptor_unittest::DescriptorTest;
// Allows access to GetLocationPath for annotations.
friend class io::Printer;
friend class compiler::cpp::Formatter;
// Fill the json_name field of FieldDescriptorProto.
void CopyJsonNameTo(DescriptorProto* proto) const;
// Internal version of DebugString; controls the level of indenting for
// correct depth. Takes |options| to control debug-string options, and
// |include_opening_clause| to indicate whether the "message ... " part of the
// clause has already been generated (this varies depending on context).
void DebugString(int depth, std::string* contents,
const DebugStringOptions& options,
bool include_opening_clause) const;
// Walks up the descriptor tree to generate the source location path
// to this descriptor from the file root.
void GetLocationPath(std::vector<int>* output) const;
// True if this is a placeholder for an unknown type.
bool is_placeholder_ : 1;
// True if this is a placeholder and the type name wasn't fully-qualified.
bool is_unqualified_placeholder_ : 1;
// Well known type. Stored like this to conserve space.
uint8_t well_known_type_ : 5;
// This points to the last field _number_ that is part of the sequence
// starting at 1, where
// `desc->field(i)->number() == i + 1`
// A value of `0` means no field matches. That is, there are no fields or the
// first field is not field `1`.
// Uses 16-bit to avoid extra padding. Unlikely to have more than 2^16
// sequentially numbered fields in a message.
uint16_t sequential_field_limit_;
int field_count_;
// all_names_ = [name, full_name]
const std::string* all_names_;
const FileDescriptor* file_;
const Descriptor* containing_type_;
const MessageOptions* options_;
// These arrays are separated from their sizes to minimize padding on 64-bit.
FieldDescriptor* fields_;
OneofDescriptor* oneof_decls_;
Descriptor* nested_types_;
EnumDescriptor* enum_types_;
ExtensionRange* extension_ranges_;
FieldDescriptor* extensions_;
ReservedRange* reserved_ranges_;
const std::string** reserved_names_;
int oneof_decl_count_;
int real_oneof_decl_count_;
int nested_type_count_;
int enum_type_count_;
int extension_range_count_;
int extension_count_;
int reserved_range_count_;
int reserved_name_count_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<Descriptor>() and AllocateArray<Descriptor>() in descriptor.cc
// and update them to initialize the field.
// Must be constructed using DescriptorPool.
Descriptor() {}
friend class DescriptorBuilder;
friend class DescriptorPool;
friend class EnumDescriptor;
friend class FieldDescriptor;
friend class FileDescriptorTables;
friend class OneofDescriptor;
friend class MethodDescriptor;
friend class FileDescriptor;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Descriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(Descriptor, 136);
// Describes a single field of a message. To get the descriptor for a given
// field, first get the Descriptor for the message in which it is defined,
// then call Descriptor::FindFieldByName(). To get a FieldDescriptor for
// an extension, do one of the following:
// - Get the Descriptor or FileDescriptor for its containing scope, then
// call Descriptor::FindExtensionByName() or
// FileDescriptor::FindExtensionByName().
// - Given a DescriptorPool, call DescriptorPool::FindExtensionByNumber() or
// DescriptorPool::FindExtensionByPrintableName().
// Use DescriptorPool to construct your own descriptors.
class PROTOBUF_EXPORT FieldDescriptor : private internal::SymbolBase {
public:
typedef FieldDescriptorProto Proto;
// Identifies a field type. 0 is reserved for errors. The order is weird
// for historical reasons. Types 12 and up are new in proto2.
enum Type {
TYPE_DOUBLE = 1, // double, exactly eight bytes on the wire.
TYPE_FLOAT = 2, // float, exactly four bytes on the wire.
TYPE_INT64 = 3, // int64, varint on the wire. Negative numbers
// take 10 bytes. Use TYPE_SINT64 if negative
// values are likely.
TYPE_UINT64 = 4, // uint64, varint on the wire.
TYPE_INT32 = 5, // int32, varint on the wire. Negative numbers
// take 10 bytes. Use TYPE_SINT32 if negative
// values are likely.
TYPE_FIXED64 = 6, // uint64, exactly eight bytes on the wire.
TYPE_FIXED32 = 7, // uint32, exactly four bytes on the wire.
TYPE_BOOL = 8, // bool, varint on the wire.
TYPE_STRING = 9, // UTF-8 text.
TYPE_GROUP = 10, // Tag-delimited message. Deprecated.
TYPE_MESSAGE = 11, // Length-delimited message.
TYPE_BYTES = 12, // Arbitrary byte array.
TYPE_UINT32 = 13, // uint32, varint on the wire
TYPE_ENUM = 14, // Enum, varint on the wire
TYPE_SFIXED32 = 15, // int32, exactly four bytes on the wire
TYPE_SFIXED64 = 16, // int64, exactly eight bytes on the wire
TYPE_SINT32 = 17, // int32, ZigZag-encoded varint on the wire
TYPE_SINT64 = 18, // int64, ZigZag-encoded varint on the wire
MAX_TYPE = 18, // Constant useful for defining lookup tables
// indexed by Type.
};
// Specifies the C++ data type used to represent the field. There is a
// fixed mapping from Type to CppType where each Type maps to exactly one
// CppType. 0 is reserved for errors.
enum CppType {
CPPTYPE_INT32 = 1, // TYPE_INT32, TYPE_SINT32, TYPE_SFIXED32
CPPTYPE_INT64 = 2, // TYPE_INT64, TYPE_SINT64, TYPE_SFIXED64
CPPTYPE_UINT32 = 3, // TYPE_UINT32, TYPE_FIXED32
CPPTYPE_UINT64 = 4, // TYPE_UINT64, TYPE_FIXED64
CPPTYPE_DOUBLE = 5, // TYPE_DOUBLE
CPPTYPE_FLOAT = 6, // TYPE_FLOAT
CPPTYPE_BOOL = 7, // TYPE_BOOL
CPPTYPE_ENUM = 8, // TYPE_ENUM
CPPTYPE_STRING = 9, // TYPE_STRING, TYPE_BYTES
CPPTYPE_MESSAGE = 10, // TYPE_MESSAGE, TYPE_GROUP
MAX_CPPTYPE = 10, // Constant useful for defining lookup tables
// indexed by CppType.
};
// Identifies whether the field is optional, required, or repeated. 0 is
// reserved for errors.
enum Label {
LABEL_OPTIONAL = 1, // optional
LABEL_REQUIRED = 2, // required
LABEL_REPEATED = 3, // repeated
MAX_LABEL = 3, // Constant useful for defining lookup tables
// indexed by Label.
};
// Valid field numbers are positive integers up to kMaxNumber.
static const int kMaxNumber = (1 << 29) - 1;
// First field number reserved for the protocol buffer library implementation.
// Users may not declare fields that use reserved numbers.
static const int kFirstReservedNumber = 19000;
// Last field number reserved for the protocol buffer library implementation.
// Users may not declare fields that use reserved numbers.
static const int kLastReservedNumber = 19999;
const std::string& name() const; // Name of this field within the message.
const std::string& full_name() const; // Fully-qualified name of the field.
const std::string& json_name() const; // JSON name of this field.
const FileDescriptor* file() const; // File in which this field was defined.
bool is_extension() const; // Is this an extension field?
int number() const; // Declared tag number.
// Same as name() except converted to lower-case. This (and especially the
// FindFieldByLowercaseName() method) can be useful when parsing formats
// which prefer to use lowercase naming style. (Although, technically
// field names should be lowercased anyway according to the protobuf style
// guide, so this only makes a difference when dealing with old .proto files
// which do not follow the guide.)
const std::string& lowercase_name() const;
// Same as name() except converted to camel-case. In this conversion, any
// time an underscore appears in the name, it is removed and the next
// letter is capitalized. Furthermore, the first letter of the name is
// lower-cased. Examples:
// FooBar -> fooBar
// foo_bar -> fooBar
// fooBar -> fooBar
// This (and especially the FindFieldByCamelcaseName() method) can be useful
// when parsing formats which prefer to use camel-case naming style.
const std::string& camelcase_name() const;
Type type() const; // Declared type of this field.
const char* type_name() const; // Name of the declared type.
CppType cpp_type() const; // C++ type of this field.
const char* cpp_type_name() const; // Name of the C++ type.
Label label() const; // optional/required/repeated
bool is_required() const; // shorthand for label() == LABEL_REQUIRED
bool is_optional() const; // shorthand for label() == LABEL_OPTIONAL
bool is_repeated() const; // shorthand for label() == LABEL_REPEATED
bool is_packable() const; // shorthand for is_repeated() &&
// IsTypePackable(type())
bool is_packed() const; // shorthand for is_packable() &&
// options().packed()
bool is_map() const; // shorthand for type() == TYPE_MESSAGE &&
// message_type()->options().map_entry()
// Returns true if this field was syntactically written with "optional" in the
// .proto file. Excludes singular proto3 fields that do not have a label.
bool has_optional_keyword() const;
// Returns true if this field tracks presence, ie. does the field
// distinguish between "unset" and "present with default value."
// This includes required, optional, and oneof fields. It excludes maps,
// repeated fields, and singular proto3 fields without "optional".
//
// For fields where has_presence() == true, the return value of
// Reflection::HasField() is semantically meaningful.
bool has_presence() const;
// Index of this field within the message's field array, or the file or
// extension scope's extensions array.
int index() const;
// Does this field have an explicitly-declared default value?
bool has_default_value() const;
// Whether the user has specified the json_name field option in the .proto
// file.
bool has_json_name() const;
// Get the field default value if cpp_type() == CPPTYPE_INT32. If no
// explicit default was defined, the default is 0.
int32_t default_value_int32_t() const;
int32_t default_value_int32() const { return default_value_int32_t(); }
// Get the field default value if cpp_type() == CPPTYPE_INT64. If no
// explicit default was defined, the default is 0.
int64_t default_value_int64_t() const;
int64_t default_value_int64() const { return default_value_int64_t(); }
// Get the field default value if cpp_type() == CPPTYPE_UINT32. If no
// explicit default was defined, the default is 0.
uint32_t default_value_uint32_t() const;
uint32_t default_value_uint32() const { return default_value_uint32_t(); }
// Get the field default value if cpp_type() == CPPTYPE_UINT64. If no
// explicit default was defined, the default is 0.
uint64_t default_value_uint64_t() const;
uint64_t default_value_uint64() const { return default_value_uint64_t(); }
// Get the field default value if cpp_type() == CPPTYPE_FLOAT. If no
// explicit default was defined, the default is 0.0.
float default_value_float() const;
// Get the field default value if cpp_type() == CPPTYPE_DOUBLE. If no
// explicit default was defined, the default is 0.0.
double default_value_double() const;
// Get the field default value if cpp_type() == CPPTYPE_BOOL. If no
// explicit default was defined, the default is false.
bool default_value_bool() const;
// Get the field default value if cpp_type() == CPPTYPE_ENUM. If no
// explicit default was defined, the default is the first value defined
// in the enum type (all enum types are required to have at least one value).
// This never returns nullptr.
const EnumValueDescriptor* default_value_enum() const;
// Get the field default value if cpp_type() == CPPTYPE_STRING. If no
// explicit default was defined, the default is the empty string.
const std::string& default_value_string() const;
// The Descriptor for the message of which this is a field. For extensions,
// this is the extended type. Never nullptr.
const Descriptor* containing_type() const;
// If the field is a member of a oneof, this is the one, otherwise this is
// nullptr.
const OneofDescriptor* containing_oneof() const;
// If the field is a member of a non-synthetic oneof, returns the descriptor
// for the oneof, otherwise returns nullptr.
const OneofDescriptor* real_containing_oneof() const;
// If the field is a member of a oneof, returns the index in that oneof.
int index_in_oneof() const;
// An extension may be declared within the scope of another message. If this
// field is an extension (is_extension() is true), then extension_scope()
// returns that message, or nullptr if the extension was declared at global
// scope. If this is not an extension, extension_scope() is undefined (may
// assert-fail).
const Descriptor* extension_scope() const;
// If type is TYPE_MESSAGE or TYPE_GROUP, returns a descriptor for the
// message or the group type. Otherwise, returns null.
const Descriptor* message_type() const;
// If type is TYPE_ENUM, returns a descriptor for the enum. Otherwise,
// returns null.
const EnumDescriptor* enum_type() const;
// Get the FieldOptions for this field. This includes things listed in
// square brackets after the field definition. E.g., the field:
// optional string text = 1 [ctype=CORD];
// has the "ctype" option set. Allowed options are defined by FieldOptions in
// descriptor.proto, and any available extensions of that message.
const FieldOptions& options() const;
// See Descriptor::CopyTo().
void CopyTo(FieldDescriptorProto* proto) const;
// See Descriptor::DebugString().
std::string DebugString() const;
// See Descriptor::DebugStringWithOptions().
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Helper method to get the CppType for a particular Type.
static CppType TypeToCppType(Type type);
// Helper method to get the name of a Type.
static const char* TypeName(Type type);
// Helper method to get the name of a CppType.
static const char* CppTypeName(CppType cpp_type);
// Return true iff [packed = true] is valid for fields of this type.
static inline bool IsTypePackable(Type field_type);
// Returns full_name() except if the field is a MessageSet extension,
// in which case it returns the full_name() of the containing message type
// for backwards compatibility with proto1.
//
// A MessageSet extension is defined as an optional message extension
// whose containing type has the message_set_wire_format option set.
// This should be true of extensions of google.protobuf.bridge.MessageSet;
// by convention, such extensions are named "message_set_extension".
//
// The opposite operation (looking up an extension's FieldDescriptor given
// its printable name) can be accomplished with
// message->file()->pool()->FindExtensionByPrintableName(message, name)
// where the extension extends "message".
const std::string& PrintableNameForExtension() const;
// Source Location ---------------------------------------------------
// Updates |*out_location| to the source location of the complete
// extent of this field declaration. Returns false and leaves
// |*out_location| unchanged iff location information was not available.
bool GetSourceLocation(SourceLocation* out_location) const;
private:
friend class Symbol;
typedef FieldOptions OptionsType;
// Allows access to GetLocationPath for annotations.
friend class io::Printer;
friend class compiler::cpp::Formatter;
friend class Reflection;
// Fill the json_name field of FieldDescriptorProto.
void CopyJsonNameTo(FieldDescriptorProto* proto) const;
// See Descriptor::DebugString().
void DebugString(int depth, std::string* contents,
const DebugStringOptions& options) const;
// formats the default value appropriately and returns it as a string.
// Must have a default value to call this. If quote_string_type is true, then
// types of CPPTYPE_STRING will be surrounded by quotes and CEscaped.
std::string DefaultValueAsString(bool quote_string_type) const;
// Helper function that returns the field type name for DebugString.
std::string FieldTypeNameDebugString() const;
// Walks up the descriptor tree to generate the source location path
// to this descriptor from the file root.
void GetLocationPath(std::vector<int>* output) const;
// Returns true if this is a map message type.
bool is_map_message_type() const;
bool has_default_value_ : 1;
bool proto3_optional_ : 1;
// Whether the user has specified the json_name field option in the .proto
// file.
bool has_json_name_ : 1;
bool is_extension_ : 1;
bool is_oneof_ : 1;
// Actually a `Label` but stored as uint8_t to save space.
uint8_t label_ : 2;
// Actually a `Type`, but stored as uint8_t to save space.
mutable uint8_t type_;
// Logically:
// all_names_ = [name, full_name, lower, camel, json]
// However:
// duplicates will be omitted, so lower/camel/json might be in the same
// position.
// We store the true offset for each name here, and the bit width must be
// large enough to account for the worst case where all names are present.
uint8_t lowercase_name_index_ : 2;
uint8_t camelcase_name_index_ : 2;
uint8_t json_name_index_ : 3;
// Sadly, `number_` located here to reduce padding. Unrelated to all_names_
// and its indices above.
int number_;
const std::string* all_names_;
const FileDescriptor* file_;
// The once_flag is followed by a NUL terminated string for the type name and
// enum default value (or empty string if no default enum).
internal::once_flag* type_once_;
static void TypeOnceInit(const FieldDescriptor* to_init);
void InternalTypeOnceInit() const;
const Descriptor* containing_type_;
union {
const OneofDescriptor* containing_oneof;
const Descriptor* extension_scope;
} scope_;
union {
mutable const Descriptor* message_type;
mutable const EnumDescriptor* enum_type;
} type_descriptor_;
const FieldOptions* options_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<FieldDescriptor>() and AllocateArray<FieldDescriptor>() in
// descriptor.cc and update them to initialize the field.
union {
int32_t default_value_int32_t_;
int64_t default_value_int64_t_;
uint32_t default_value_uint32_t_;
uint64_t default_value_uint64_t_;
float default_value_float_;
double default_value_double_;
bool default_value_bool_;
mutable const EnumValueDescriptor* default_value_enum_;
const std::string* default_value_string_;
mutable std::atomic<const Message*> default_generated_instance_;
};
static const CppType kTypeToCppTypeMap[MAX_TYPE + 1];
static const char* const kTypeToName[MAX_TYPE + 1];
static const char* const kCppTypeToName[MAX_CPPTYPE + 1];
static const char* const kLabelToName[MAX_LABEL + 1];
// Must be constructed using DescriptorPool.
FieldDescriptor() {}
friend class DescriptorBuilder;
friend class FileDescriptor;
friend class Descriptor;
friend class OneofDescriptor;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FieldDescriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(FieldDescriptor, 72);
// Describes a oneof defined in a message type.
class PROTOBUF_EXPORT OneofDescriptor : private internal::SymbolBase {
public:
typedef OneofDescriptorProto Proto;
const std::string& name() const; // Name of this oneof.
const std::string& full_name() const; // Fully-qualified name of the oneof.
// Index of this oneof within the message's oneof array.
int index() const;
// Returns whether this oneof was inserted by the compiler to wrap a proto3
// optional field. If this returns true, code generators should *not* emit it.
bool is_synthetic() const;
// The .proto file in which this oneof was defined. Never nullptr.
const FileDescriptor* file() const;
// The Descriptor for the message containing this oneof.
const Descriptor* containing_type() const;
// The number of (non-extension) fields which are members of this oneof.
int field_count() const;
// Get a member of this oneof, in the order in which they were declared in the
// .proto file. Does not include extensions.
const FieldDescriptor* field(int index) const;
const OneofOptions& options() const;
// See Descriptor::CopyTo().
void CopyTo(OneofDescriptorProto* proto) const;
// See Descriptor::DebugString().
std::string DebugString() const;
// See Descriptor::DebugStringWithOptions().
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Source Location ---------------------------------------------------
// Updates |*out_location| to the source location of the complete
// extent of this oneof declaration. Returns false and leaves
// |*out_location| unchanged iff location information was not available.
bool GetSourceLocation(SourceLocation* out_location) const;
private:
friend class Symbol;
typedef OneofOptions OptionsType;
// Allows access to GetLocationPath for annotations.
friend class io::Printer;
friend class compiler::cpp::Formatter;
// See Descriptor::DebugString().
void DebugString(int depth, std::string* contents,
const DebugStringOptions& options) const;
// Walks up the descriptor tree to generate the source location path
// to this descriptor from the file root.
void GetLocationPath(std::vector<int>* output) const;
int field_count_;
// all_names_ = [name, full_name]
const std::string* all_names_;
const Descriptor* containing_type_;
const OneofOptions* options_;
const FieldDescriptor* fields_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<OneofDescriptor>() and AllocateArray<OneofDescriptor>()
// in descriptor.cc and update them to initialize the field.
// Must be constructed using DescriptorPool.
OneofDescriptor() {}
friend class DescriptorBuilder;
friend class Descriptor;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OneofDescriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(OneofDescriptor, 40);
// Describes an enum type defined in a .proto file. To get the EnumDescriptor
// for a generated enum type, call TypeName_descriptor(). Use DescriptorPool
// to construct your own descriptors.
class PROTOBUF_EXPORT EnumDescriptor : private internal::SymbolBase {
public:
typedef EnumDescriptorProto Proto;
// The name of this enum type in the containing scope.
const std::string& name() const;
// The fully-qualified name of the enum type, scope delimited by periods.
const std::string& full_name() const;
// Index of this enum within the file or containing message's enum array.
int index() const;
// The .proto file in which this enum type was defined. Never nullptr.
const FileDescriptor* file() const;
// The number of values for this EnumDescriptor. Guaranteed to be greater
// than zero.
int value_count() const;
// Gets a value by index, where 0 <= index < value_count().
// These are returned in the order they were defined in the .proto file.
const EnumValueDescriptor* value(int index) const;
// Looks up a value by name. Returns nullptr if no such value exists.
const EnumValueDescriptor* FindValueByName(ConstStringParam name) const;
// Looks up a value by number. Returns nullptr if no such value exists. If
// multiple values have this number, the first one defined is returned.
const EnumValueDescriptor* FindValueByNumber(int number) const;
// If this enum type is nested in a message type, this is that message type.
// Otherwise, nullptr.
const Descriptor* containing_type() const;
// Get options for this enum type. These are specified in the .proto file by
// placing lines like "option foo = 1234;" in the enum definition. Allowed
// options are defined by EnumOptions in descriptor.proto, and any available
// extensions of that message.
const EnumOptions& options() const;
// See Descriptor::CopyTo().
void CopyTo(EnumDescriptorProto* proto) const;
// See Descriptor::DebugString().
std::string DebugString() const;
// See Descriptor::DebugStringWithOptions().
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Returns true if this is a placeholder for an unknown enum. This will
// only be the case if this descriptor comes from a DescriptorPool
// with AllowUnknownDependencies() set.
bool is_placeholder() const;
// Reserved fields -------------------------------------------------
// A range of reserved field numbers.
struct ReservedRange {
int start; // inclusive
int end; // inclusive
};
// The number of reserved ranges in this message type.
int reserved_range_count() const;
// Gets an reserved range by index, where 0 <= index <
// reserved_range_count(). These are returned in the order they were defined
// in the .proto file.
const EnumDescriptor::ReservedRange* reserved_range(int index) const;
// Returns true if the number is in one of the reserved ranges.
bool IsReservedNumber(int number) const;
// Returns nullptr if no reserved range contains the given number.
const EnumDescriptor::ReservedRange* FindReservedRangeContainingNumber(
int number) const;
// The number of reserved field names in this message type.
int reserved_name_count() const;
// Gets a reserved name by index, where 0 <= index < reserved_name_count().
const std::string& reserved_name(int index) const;
// Returns true if the field name is reserved.
bool IsReservedName(ConstStringParam name) const;
// Source Location ---------------------------------------------------
// Updates |*out_location| to the source location of the complete
// extent of this enum declaration. Returns false and leaves
// |*out_location| unchanged iff location information was not available.
bool GetSourceLocation(SourceLocation* out_location) const;
private:
friend class Symbol;
typedef EnumOptions OptionsType;
// Allows access to GetLocationPath for annotations.
friend class io::Printer;
friend class compiler::cpp::Formatter;
// Allow access to FindValueByNumberCreatingIfUnknown.
friend class descriptor_unittest::DescriptorTest;
// Looks up a value by number. If the value does not exist, dynamically
// creates a new EnumValueDescriptor for that value, assuming that it was
// unknown. If a new descriptor is created, this is done in a thread-safe way,
// and future calls will return the same value descriptor pointer.
//
// This is private but is used by Reflection (which is friended below) to
// return a valid EnumValueDescriptor from GetEnum() when this feature is
// enabled.
const EnumValueDescriptor* FindValueByNumberCreatingIfUnknown(
int number) const;
// See Descriptor::DebugString().
void DebugString(int depth, std::string* contents,
const DebugStringOptions& options) const;
// Walks up the descriptor tree to generate the source location path
// to this descriptor from the file root.
void GetLocationPath(std::vector<int>* output) const;
// True if this is a placeholder for an unknown type.
bool is_placeholder_ : 1;
// True if this is a placeholder and the type name wasn't fully-qualified.
bool is_unqualified_placeholder_ : 1;
// This points to the last value _index_ that is part of the sequence starting
// with the first label, where
// `enum->value(i)->number() == enum->value(0)->number() + i`
// We measure relative to the first label to adapt to enum labels starting at
// 0 or 1.
// Uses 16-bit to avoid extra padding. Unlikely to have more than 2^15
// sequentially numbered labels in an enum.
int16_t sequential_value_limit_;
int value_count_;
// all_names_ = [name, full_name]
const std::string* all_names_;
const FileDescriptor* file_;
const Descriptor* containing_type_;
const EnumOptions* options_;
EnumValueDescriptor* values_;
int reserved_range_count_;
int reserved_name_count_;
EnumDescriptor::ReservedRange* reserved_ranges_;
const std::string** reserved_names_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<EnumDescriptor>() and AllocateArray<EnumDescriptor>() in
// descriptor.cc and update them to initialize the field.
// Must be constructed using DescriptorPool.
EnumDescriptor() {}
friend class DescriptorBuilder;
friend class Descriptor;
friend class FieldDescriptor;
friend class FileDescriptorTables;
friend class EnumValueDescriptor;
friend class FileDescriptor;
friend class DescriptorPool;
friend class Reflection;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(EnumDescriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(EnumDescriptor, 72);
// Describes an individual enum constant of a particular type. To get the
// EnumValueDescriptor for a given enum value, first get the EnumDescriptor
// for its type, then use EnumDescriptor::FindValueByName() or
// EnumDescriptor::FindValueByNumber(). Use DescriptorPool to construct
// your own descriptors.
class PROTOBUF_EXPORT EnumValueDescriptor : private internal::SymbolBaseN<0>,
private internal::SymbolBaseN<1> {
public:
typedef EnumValueDescriptorProto Proto;
const std::string& name() const; // Name of this enum constant.
int index() const; // Index within the enums's Descriptor.
int number() const; // Numeric value of this enum constant.
// The full_name of an enum value is a sibling symbol of the enum type.
// e.g. the full name of FieldDescriptorProto::TYPE_INT32 is actually
// "google.protobuf.FieldDescriptorProto.TYPE_INT32", NOT
// "google.protobuf.FieldDescriptorProto.Type.TYPE_INT32". This is to conform
// with C++ scoping rules for enums.
const std::string& full_name() const;
// The .proto file in which this value was defined. Never nullptr.
const FileDescriptor* file() const;
// The type of this value. Never nullptr.
const EnumDescriptor* type() const;
// Get options for this enum value. These are specified in the .proto file by
// adding text like "[foo = 1234]" after an enum value definition. Allowed
// options are defined by EnumValueOptions in descriptor.proto, and any
// available extensions of that message.
const EnumValueOptions& options() const;
// See Descriptor::CopyTo().
void CopyTo(EnumValueDescriptorProto* proto) const;
// See Descriptor::DebugString().
std::string DebugString() const;
// See Descriptor::DebugStringWithOptions().
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Source Location ---------------------------------------------------
// Updates |*out_location| to the source location of the complete
// extent of this enum value declaration. Returns false and leaves
// |*out_location| unchanged iff location information was not available.
bool GetSourceLocation(SourceLocation* out_location) const;
private:
friend class Symbol;
typedef EnumValueOptions OptionsType;
// Allows access to GetLocationPath for annotations.
friend class io::Printer;
friend class compiler::cpp::Formatter;
// See Descriptor::DebugString().
void DebugString(int depth, std::string* contents,
const DebugStringOptions& options) const;
// Walks up the descriptor tree to generate the source location path
// to this descriptor from the file root.
void GetLocationPath(std::vector<int>* output) const;
int number_;
// all_names_ = [name, full_name]
const std::string* all_names_;
const EnumDescriptor* type_;
const EnumValueOptions* options_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<EnumValueDescriptor>() and AllocateArray<EnumValueDescriptor>()
// in descriptor.cc and update them to initialize the field.
// Must be constructed using DescriptorPool.
EnumValueDescriptor() {}
friend class DescriptorBuilder;
friend class EnumDescriptor;
friend class DescriptorPool;
friend class FileDescriptorTables;
friend class Reflection;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(EnumValueDescriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(EnumValueDescriptor, 32);
// Describes an RPC service. Use DescriptorPool to construct your own
// descriptors.
class PROTOBUF_EXPORT ServiceDescriptor : private internal::SymbolBase {
public:
typedef ServiceDescriptorProto Proto;
// The name of the service, not including its containing scope.
const std::string& name() const;
// The fully-qualified name of the service, scope delimited by periods.
const std::string& full_name() const;
// Index of this service within the file's services array.
int index() const;
// The .proto file in which this service was defined. Never nullptr.
const FileDescriptor* file() const;
// Get options for this service type. These are specified in the .proto file
// by placing lines like "option foo = 1234;" in the service definition.
// Allowed options are defined by ServiceOptions in descriptor.proto, and any
// available extensions of that message.
const ServiceOptions& options() const;
// The number of methods this service defines.
int method_count() const;
// Gets a MethodDescriptor by index, where 0 <= index < method_count().
// These are returned in the order they were defined in the .proto file.
const MethodDescriptor* method(int index) const;
// Look up a MethodDescriptor by name.
const MethodDescriptor* FindMethodByName(ConstStringParam name) const;
// See Descriptor::CopyTo().
void CopyTo(ServiceDescriptorProto* proto) const;
// See Descriptor::DebugString().
std::string DebugString() const;
// See Descriptor::DebugStringWithOptions().
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Source Location ---------------------------------------------------
// Updates |*out_location| to the source location of the complete
// extent of this service declaration. Returns false and leaves
// |*out_location| unchanged iff location information was not available.
bool GetSourceLocation(SourceLocation* out_location) const;
private:
friend class Symbol;
typedef ServiceOptions OptionsType;
// Allows access to GetLocationPath for annotations.
friend class io::Printer;
friend class compiler::cpp::Formatter;
// See Descriptor::DebugString().
void DebugString(std::string* contents,
const DebugStringOptions& options) const;
// Walks up the descriptor tree to generate the source location path
// to this descriptor from the file root.
void GetLocationPath(std::vector<int>* output) const;
// all_names_ = [name, full_name]
const std::string* all_names_;
const FileDescriptor* file_;
const ServiceOptions* options_;
MethodDescriptor* methods_;
int method_count_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<ServiceDescriptor>() and AllocateArray<ServiceDescriptor>() in
// descriptor.cc and update them to initialize the field.
// Must be constructed using DescriptorPool.
ServiceDescriptor() {}
friend class DescriptorBuilder;
friend class FileDescriptor;
friend class MethodDescriptor;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ServiceDescriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(ServiceDescriptor, 48);
// Describes an individual service method. To obtain a MethodDescriptor given
// a service, first get its ServiceDescriptor, then call
// ServiceDescriptor::FindMethodByName(). Use DescriptorPool to construct your
// own descriptors.
class PROTOBUF_EXPORT MethodDescriptor : private internal::SymbolBase {
public:
typedef MethodDescriptorProto Proto;
// Name of this method, not including containing scope.
const std::string& name() const;
// The fully-qualified name of the method, scope delimited by periods.
const std::string& full_name() const;
// Index within the service's Descriptor.
int index() const;
// The .proto file in which this method was defined. Never nullptr.
const FileDescriptor* file() const;
// Gets the service to which this method belongs. Never nullptr.
const ServiceDescriptor* service() const;
// Gets the type of protocol message which this method accepts as input.
const Descriptor* input_type() const;
// Gets the type of protocol message which this message produces as output.
const Descriptor* output_type() const;
// Gets whether the client streams multiple requests.
bool client_streaming() const;
// Gets whether the server streams multiple responses.
bool server_streaming() const;
// Get options for this method. These are specified in the .proto file by
// placing lines like "option foo = 1234;" in curly-braces after a method
// declaration. Allowed options are defined by MethodOptions in
// descriptor.proto, and any available extensions of that message.
const MethodOptions& options() const;
// See Descriptor::CopyTo().
void CopyTo(MethodDescriptorProto* proto) const;
// See Descriptor::DebugString().
std::string DebugString() const;
// See Descriptor::DebugStringWithOptions().
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Source Location ---------------------------------------------------
// Updates |*out_location| to the source location of the complete
// extent of this method declaration. Returns false and leaves
// |*out_location| unchanged iff location information was not available.
bool GetSourceLocation(SourceLocation* out_location) const;
private:
friend class Symbol;
typedef MethodOptions OptionsType;
// Allows access to GetLocationPath for annotations.
friend class io::Printer;
friend class compiler::cpp::Formatter;
// See Descriptor::DebugString().
void DebugString(int depth, std::string* contents,
const DebugStringOptions& options) const;
// Walks up the descriptor tree to generate the source location path
// to this descriptor from the file root.
void GetLocationPath(std::vector<int>* output) const;
bool client_streaming_;
bool server_streaming_;
// all_names_ = [name, full_name]
const std::string* all_names_;
const ServiceDescriptor* service_;
mutable internal::LazyDescriptor input_type_;
mutable internal::LazyDescriptor output_type_;
const MethodOptions* options_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<MethodDescriptor>() and AllocateArray<MethodDescriptor>() in
// descriptor.cc and update them to initialize the field.
// Must be constructed using DescriptorPool.
MethodDescriptor() {}
friend class DescriptorBuilder;
friend class ServiceDescriptor;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MethodDescriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(MethodDescriptor, 64);
// Describes a whole .proto file. To get the FileDescriptor for a compiled-in
// file, get the descriptor for something defined in that file and call
// descriptor->file(). Use DescriptorPool to construct your own descriptors.
class PROTOBUF_EXPORT FileDescriptor : private internal::SymbolBase {
public:
typedef FileDescriptorProto Proto;
// The filename, relative to the source tree.
// e.g. "foo/bar/baz.proto"
const std::string& name() const;
// The package, e.g. "google.protobuf.compiler".
const std::string& package() const;
// The DescriptorPool in which this FileDescriptor and all its contents were
// allocated. Never nullptr.
const DescriptorPool* pool() const;
// The number of files imported by this one.
int dependency_count() const;
// Gets an imported file by index, where 0 <= index < dependency_count().
// These are returned in the order they were defined in the .proto file.
const FileDescriptor* dependency(int index) const;
// The number of files public imported by this one.
// The public dependency list is a subset of the dependency list.
int public_dependency_count() const;
// Gets a public imported file by index, where 0 <= index <
// public_dependency_count().
// These are returned in the order they were defined in the .proto file.
const FileDescriptor* public_dependency(int index) const;
// The number of files that are imported for weak fields.
// The weak dependency list is a subset of the dependency list.
int weak_dependency_count() const;
// Gets a weak imported file by index, where 0 <= index <
// weak_dependency_count().
// These are returned in the order they were defined in the .proto file.
const FileDescriptor* weak_dependency(int index) const;
// Number of top-level message types defined in this file. (This does not
// include nested types.)
int message_type_count() const;
// Gets a top-level message type, where 0 <= index < message_type_count().
// These are returned in the order they were defined in the .proto file.
const Descriptor* message_type(int index) const;
// Number of top-level enum types defined in this file. (This does not
// include nested types.)
int enum_type_count() const;
// Gets a top-level enum type, where 0 <= index < enum_type_count().
// These are returned in the order they were defined in the .proto file.
const EnumDescriptor* enum_type(int index) const;
// Number of services defined in this file.
int service_count() const;
// Gets a service, where 0 <= index < service_count().
// These are returned in the order they were defined in the .proto file.
const ServiceDescriptor* service(int index) const;
// Number of extensions defined at file scope. (This does not include
// extensions nested within message types.)
int extension_count() const;
// Gets an extension's descriptor, where 0 <= index < extension_count().
// These are returned in the order they were defined in the .proto file.
const FieldDescriptor* extension(int index) const;
// Get options for this file. These are specified in the .proto file by
// placing lines like "option foo = 1234;" at the top level, outside of any
// other definitions. Allowed options are defined by FileOptions in
// descriptor.proto, and any available extensions of that message.
const FileOptions& options() const;
// Syntax of this file.
enum Syntax {
SYNTAX_UNKNOWN = 0,
SYNTAX_PROTO2 = 2,
SYNTAX_PROTO3 = 3,
};
Syntax syntax() const;
static const char* SyntaxName(Syntax syntax);
// Find a top-level message type by name (not full_name). Returns nullptr if
// not found.
const Descriptor* FindMessageTypeByName(ConstStringParam name) const;
// Find a top-level enum type by name. Returns nullptr if not found.
const EnumDescriptor* FindEnumTypeByName(ConstStringParam name) const;
// Find an enum value defined in any top-level enum by name. Returns nullptr
// if not found.
const EnumValueDescriptor* FindEnumValueByName(ConstStringParam name) const;
// Find a service definition by name. Returns nullptr if not found.
const ServiceDescriptor* FindServiceByName(ConstStringParam name) const;
// Find a top-level extension definition by name. Returns nullptr if not
// found.
const FieldDescriptor* FindExtensionByName(ConstStringParam name) const;
// Similar to FindExtensionByName(), but searches by lowercased-name. See
// Descriptor::FindFieldByLowercaseName().
const FieldDescriptor* FindExtensionByLowercaseName(
ConstStringParam name) const;
// Similar to FindExtensionByName(), but searches by camelcased-name. See
// Descriptor::FindFieldByCamelcaseName().
const FieldDescriptor* FindExtensionByCamelcaseName(
ConstStringParam name) const;
// See Descriptor::CopyTo().
// Notes:
// - This method does NOT copy source code information since it is relatively
// large and rarely needed. See CopySourceCodeInfoTo() below.
void CopyTo(FileDescriptorProto* proto) const;
// Write the source code information of this FileDescriptor into the given
// FileDescriptorProto. See CopyTo() above.
void CopySourceCodeInfoTo(FileDescriptorProto* proto) const;
// Fill the json_name field of FieldDescriptorProto for all fields. Can only
// be called after CopyTo().
void CopyJsonNameTo(FileDescriptorProto* proto) const;
// See Descriptor::DebugString().
std::string DebugString() const;
// See Descriptor::DebugStringWithOptions().
std::string DebugStringWithOptions(const DebugStringOptions& options) const;
// Returns true if this is a placeholder for an unknown file. This will
// only be the case if this descriptor comes from a DescriptorPool
// with AllowUnknownDependencies() set.
bool is_placeholder() const;
// Updates |*out_location| to the source location of the complete extent of
// this file declaration (namely, the empty path).
bool GetSourceLocation(SourceLocation* out_location) const;
// Updates |*out_location| to the source location of the complete
// extent of the declaration or declaration-part denoted by |path|.
// Returns false and leaves |*out_location| unchanged iff location
// information was not available. (See SourceCodeInfo for
// description of path encoding.)
bool GetSourceLocation(const std::vector<int>& path,
SourceLocation* out_location) const;
private:
friend class Symbol;
typedef FileOptions OptionsType;
bool is_placeholder_;
// Indicates the FileDescriptor is completed building. Used to verify
// that type accessor functions that can possibly build a dependent file
// aren't called during the process of building the file.
bool finished_building_;
// Actually a `Syntax` but stored as uint8_t to save space.
uint8_t syntax_;
// This one is here to fill the padding.
int extension_count_;
const std::string* name_;
const std::string* package_;
const DescriptorPool* pool_;
// dependencies_once_ contain a once_flag followed by N NUL terminated
// strings. Dependencies that do not need to be loaded will be empty. ie just
// {'\0'}
internal::once_flag* dependencies_once_;
static void DependenciesOnceInit(const FileDescriptor* to_init);
void InternalDependenciesOnceInit() const;
// These are arranged to minimize padding on 64-bit.
int dependency_count_;
int public_dependency_count_;
int weak_dependency_count_;
int message_type_count_;
int enum_type_count_;
int service_count_;
mutable const FileDescriptor** dependencies_;
int* public_dependencies_;
int* weak_dependencies_;
Descriptor* message_types_;
EnumDescriptor* enum_types_;
ServiceDescriptor* services_;
FieldDescriptor* extensions_;
const FileOptions* options_;
const FileDescriptorTables* tables_;
const SourceCodeInfo* source_code_info_;
// IMPORTANT: If you add a new field, make sure to search for all instances
// of Allocate<FileDescriptor>() and AllocateArray<FileDescriptor>() in
// descriptor.cc and update them to initialize the field.
FileDescriptor() {}
friend class DescriptorBuilder;
friend class DescriptorPool;
friend class Descriptor;
friend class FieldDescriptor;
friend class internal::LazyDescriptor;
friend class OneofDescriptor;
friend class EnumDescriptor;
friend class EnumValueDescriptor;
friend class MethodDescriptor;
friend class ServiceDescriptor;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FileDescriptor);
};
PROTOBUF_INTERNAL_CHECK_CLASS_SIZE(FileDescriptor, 144);
// ===================================================================
// Used to construct descriptors.
//
// Normally you won't want to build your own descriptors. Message classes
// constructed by the protocol compiler will provide them for you. However,
// if you are implementing Message on your own, or if you are writing a
// program which can operate on totally arbitrary types and needs to load
// them from some sort of database, you might need to.
//
// Since Descriptors are composed of a whole lot of cross-linked bits of
// data that would be a pain to put together manually, the
// DescriptorPool class is provided to make the process easier. It can
// take a FileDescriptorProto (defined in descriptor.proto), validate it,
// and convert it to a set of nicely cross-linked Descriptors.
//
// DescriptorPool also helps with memory management. Descriptors are
// composed of many objects containing static data and pointers to each
// other. In all likelihood, when it comes time to delete this data,
// you'll want to delete it all at once. In fact, it is not uncommon to
// have a whole pool of descriptors all cross-linked with each other which
// you wish to delete all at once. This class represents such a pool, and
// handles the memory management for you.
//
// You can also search for descriptors within a DescriptorPool by name, and
// extensions by number.
class PROTOBUF_EXPORT DescriptorPool {
public:
// Create a normal, empty DescriptorPool.
DescriptorPool();
// Constructs a DescriptorPool that, when it can't find something among the
// descriptors already in the pool, looks for it in the given
// DescriptorDatabase.
// Notes:
// - If a DescriptorPool is constructed this way, its BuildFile*() methods
// must not be called (they will assert-fail). The only way to populate
// the pool with descriptors is to call the Find*By*() methods.
// - The Find*By*() methods may block the calling thread if the
// DescriptorDatabase blocks. This in turn means that parsing messages
// may block if they need to look up extensions.
// - The Find*By*() methods will use mutexes for thread-safety, thus making
// them slower even when they don't have to fall back to the database.
// In fact, even the Find*By*() methods of descriptor objects owned by
// this pool will be slower, since they will have to obtain locks too.
// - An ErrorCollector may optionally be given to collect validation errors
// in files loaded from the database. If not given, errors will be printed
// to GOOGLE_LOG(ERROR). Remember that files are built on-demand, so this
// ErrorCollector may be called from any thread that calls one of the
// Find*By*() methods.
// - The DescriptorDatabase must not be mutated during the lifetime of
// the DescriptorPool. Even if the client takes care to avoid data races,
// changes to the content of the DescriptorDatabase may not be reflected
// in subsequent lookups in the DescriptorPool.
class ErrorCollector;
explicit DescriptorPool(DescriptorDatabase* fallback_database,
ErrorCollector* error_collector = nullptr);
~DescriptorPool();
// Get a pointer to the generated pool. Generated protocol message classes
// which are compiled into the binary will allocate their descriptors in
// this pool. Do not add your own descriptors to this pool.
static const DescriptorPool* generated_pool();
// Find a FileDescriptor in the pool by file name. Returns nullptr if not
// found.
const FileDescriptor* FindFileByName(ConstStringParam name) const;
// Find the FileDescriptor in the pool which defines the given symbol.
// If any of the Find*ByName() methods below would succeed, then this is
// equivalent to calling that method and calling the result's file() method.
// Otherwise this returns nullptr.
const FileDescriptor* FindFileContainingSymbol(
ConstStringParam symbol_name) const;
// Looking up descriptors ------------------------------------------
// These find descriptors by fully-qualified name. These will find both
// top-level descriptors and nested descriptors. They return nullptr if not
// found.
const Descriptor* FindMessageTypeByName(ConstStringParam name) const;
const FieldDescriptor* FindFieldByName(ConstStringParam name) const;
const FieldDescriptor* FindExtensionByName(ConstStringParam name) const;
const OneofDescriptor* FindOneofByName(ConstStringParam name) const;
const EnumDescriptor* FindEnumTypeByName(ConstStringParam name) const;
const EnumValueDescriptor* FindEnumValueByName(ConstStringParam name) const;
const ServiceDescriptor* FindServiceByName(ConstStringParam name) const;
const MethodDescriptor* FindMethodByName(ConstStringParam name) const;
// Finds an extension of the given type by number. The extendee must be
// a member of this DescriptorPool or one of its underlays.
const FieldDescriptor* FindExtensionByNumber(const Descriptor* extendee,
int number) const;
// Finds an extension of the given type by its printable name.
// See comments above PrintableNameForExtension() for the definition of
// "printable name". The extendee must be a member of this DescriptorPool
// or one of its underlays. Returns nullptr if there is no known message
// extension with the given printable name.
const FieldDescriptor* FindExtensionByPrintableName(
const Descriptor* extendee, ConstStringParam printable_name) const;
// Finds extensions of extendee. The extensions will be appended to
// out in an undefined order. Only extensions defined directly in
// this DescriptorPool or one of its underlays are guaranteed to be
// found: extensions defined in the fallback database might not be found
// depending on the database implementation.
void FindAllExtensions(const Descriptor* extendee,
std::vector<const FieldDescriptor*>* out) const;
// Building descriptors --------------------------------------------
// When converting a FileDescriptorProto to a FileDescriptor, various
// errors might be detected in the input. The caller may handle these
// programmatically by implementing an ErrorCollector.
class PROTOBUF_EXPORT ErrorCollector {
public:
inline ErrorCollector() {}
virtual ~ErrorCollector();
// These constants specify what exact part of the construct is broken.
// This is useful e.g. for mapping the error back to an exact location
// in a .proto file.
enum ErrorLocation {
NAME, // the symbol name, or the package name for files
NUMBER, // field or extension range number
TYPE, // field type
EXTENDEE, // field extendee
DEFAULT_VALUE, // field default value
INPUT_TYPE, // method input type
OUTPUT_TYPE, // method output type
OPTION_NAME, // name in assignment
OPTION_VALUE, // value in option assignment
IMPORT, // import error
OTHER // some other problem
};
// Reports an error in the FileDescriptorProto. Use this function if the
// problem occurred should interrupt building the FileDescriptorProto.
virtual void AddError(
const std::string& filename, // File name in which the error occurred.
const std::string& element_name, // Full name of the erroneous element.
const Message* descriptor, // Descriptor of the erroneous element.
ErrorLocation location, // One of the location constants, above.
const std::string& message // Human-readable error message.
) = 0;
// Reports a warning in the FileDescriptorProto. Use this function if the
// problem occurred should NOT interrupt building the FileDescriptorProto.
virtual void AddWarning(
const std::string& /*filename*/, // File name in which the error
// occurred.
const std::string& /*element_name*/, // Full name of the erroneous
// element.
const Message* /*descriptor*/, // Descriptor of the erroneous element.
ErrorLocation /*location*/, // One of the location constants, above.
const std::string& /*message*/ // Human-readable error message.
) {}
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ErrorCollector);
};
// Convert the FileDescriptorProto to real descriptors and place them in
// this DescriptorPool. All dependencies of the file must already be in
// the pool. Returns the resulting FileDescriptor, or nullptr if there were
// problems with the input (e.g. the message was invalid, or dependencies
// were missing). Details about the errors are written to GOOGLE_LOG(ERROR).
const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
// Same as BuildFile() except errors are sent to the given ErrorCollector.
const FileDescriptor* BuildFileCollectingErrors(
const FileDescriptorProto& proto, ErrorCollector* error_collector);
// By default, it is an error if a FileDescriptorProto contains references
// to types or other files that are not found in the DescriptorPool (or its
// backing DescriptorDatabase, if any). If you call
// AllowUnknownDependencies(), however, then unknown types and files
// will be replaced by placeholder descriptors (which can be identified by
// the is_placeholder() method). This can allow you to
// perform some useful operations with a .proto file even if you do not
// have access to other .proto files on which it depends. However, some
// heuristics must be used to fill in the gaps in information, and these
// can lead to descriptors which are inaccurate. For example, the
// DescriptorPool may be forced to guess whether an unknown type is a message
// or an enum, as well as what package it resides in. Furthermore,
// placeholder types will not be discoverable via FindMessageTypeByName()
// and similar methods, which could confuse some descriptor-based algorithms.
// Generally, the results of this option should be handled with extreme care.
void AllowUnknownDependencies() { allow_unknown_ = true; }
// By default, weak imports are allowed to be missing, in which case we will
// use a placeholder for the dependency and convert the field to be an Empty
// message field. If you call EnforceWeakDependencies(true), however, the
// DescriptorPool will report a import not found error.
void EnforceWeakDependencies(bool enforce) { enforce_weak_ = enforce; }
// Internal stuff --------------------------------------------------
// These methods MUST NOT be called from outside the proto2 library.
// These methods may contain hidden pitfalls and may be removed in a
// future library version.
// Create a DescriptorPool which is overlaid on top of some other pool.
// If you search for a descriptor in the overlay and it is not found, the
// underlay will be searched as a backup. If the underlay has its own
// underlay, that will be searched next, and so on. This also means that
// files built in the overlay will be cross-linked with the underlay's
// descriptors if necessary. The underlay remains property of the caller;
// it must remain valid for the lifetime of the newly-constructed pool.
//
// Example: Say you want to parse a .proto file at runtime in order to use
// its type with a DynamicMessage. Say this .proto file has dependencies,
// but you know that all the dependencies will be things that are already
// compiled into the binary. For ease of use, you'd like to load the types
// right out of generated_pool() rather than have to parse redundant copies
// of all these .protos and runtime. But, you don't want to add the parsed
// types directly into generated_pool(): this is not allowed, and would be
// bad design anyway. So, instead, you could use generated_pool() as an
// underlay for a new DescriptorPool in which you add only the new file.
//
// WARNING: Use of underlays can lead to many subtle gotchas. Instead,
// try to formulate what you want to do in terms of DescriptorDatabases.
explicit DescriptorPool(const DescriptorPool* underlay);
// Called by generated classes at init time to add their descriptors to
// generated_pool. Do NOT call this in your own code! filename must be a
// permanent string (e.g. a string literal).
static void InternalAddGeneratedFile(const void* encoded_file_descriptor,
int size);
// Disallow [enforce_utf8 = false] in .proto files.
void DisallowEnforceUtf8() { disallow_enforce_utf8_ = true; }
// For internal use only: Gets a non-const pointer to the generated pool.
// This is called at static-initialization time only, so thread-safety is
// not a concern. If both an underlay and a fallback database are present,
// the underlay takes precedence.
static DescriptorPool* internal_generated_pool();
// For internal use only: Gets a non-const pointer to the generated
// descriptor database.
// Only used for testing.
static DescriptorDatabase* internal_generated_database();
// For internal use only: Changes the behavior of BuildFile() such that it
// allows the file to make reference to message types declared in other files
// which it did not officially declare as dependencies.
void InternalDontEnforceDependencies();
// For internal use only: Enables lazy building of dependencies of a file.
// Delay the building of dependencies of a file descriptor until absolutely
// necessary, like when message_type() is called on a field that is defined
// in that dependency's file. This will cause functional issues if a proto
// or one of its dependencies has errors. Should only be enabled for the
// generated_pool_ (because no descriptor build errors are guaranteed by
// the compilation generation process), testing, or if a lack of descriptor
// build errors can be guaranteed for a pool.
void InternalSetLazilyBuildDependencies() {
lazily_build_dependencies_ = true;
// This needs to be set when lazily building dependencies, as it breaks
// dependency checking.
InternalDontEnforceDependencies();
}
// For internal use only.
void internal_set_underlay(const DescriptorPool* underlay) {
underlay_ = underlay;
}
// For internal (unit test) use only: Returns true if a FileDescriptor has
// been constructed for the given file, false otherwise. Useful for testing
// lazy descriptor initialization behavior.
bool InternalIsFileLoaded(ConstStringParam filename) const;
// Add a file to unused_import_track_files_. DescriptorBuilder will log
// warnings or errors for those files if there is any unused import.
void AddUnusedImportTrackFile(ConstStringParam file_name,
bool is_error = false);
void ClearUnusedImportTrackFiles();
private:
friend class Descriptor;
friend class internal::LazyDescriptor;
friend class FieldDescriptor;
friend class EnumDescriptor;
friend class ServiceDescriptor;
friend class MethodDescriptor;
friend class FileDescriptor;
friend class DescriptorBuilder;
friend class FileDescriptorTables;
// Return true if the given name is a sub-symbol of any non-package
// descriptor that already exists in the descriptor pool. (The full
// definition of such types is already known.)
bool IsSubSymbolOfBuiltType(StringPiece name) const;
// Tries to find something in the fallback database and link in the
// corresponding proto file. Returns true if successful, in which case
// the caller should search for the thing again. These are declared
// const because they are called by (semantically) const methods.
bool TryFindFileInFallbackDatabase(StringPiece name) const;
bool TryFindSymbolInFallbackDatabase(StringPiece name) const;
bool TryFindExtensionInFallbackDatabase(const Descriptor* containing_type,
int field_number) const;
// This internal find extension method only check with its table and underlay
// descriptor_pool's table. It does not check with fallback DB and no
// additional proto file will be build in this method.
const FieldDescriptor* InternalFindExtensionByNumberNoLock(
const Descriptor* extendee, int number) const;
// Like BuildFile() but called internally when the file has been loaded from
// fallback_database_. Declared const because it is called by (semantically)
// const methods.
const FileDescriptor* BuildFileFromDatabase(
const FileDescriptorProto& proto) const;
// Helper for when lazily_build_dependencies_ is set, can look up a symbol
// after the file's descriptor is built, and can build the file where that
// symbol is defined if necessary. Will create a placeholder if the type
// doesn't exist in the fallback database, or the file doesn't build
// successfully.
Symbol CrossLinkOnDemandHelper(StringPiece name,
bool expecting_enum) const;
// Create a placeholder FileDescriptor of the specified name
FileDescriptor* NewPlaceholderFile(StringPiece name) const;
FileDescriptor* NewPlaceholderFileWithMutexHeld(
StringPiece name, internal::FlatAllocator& alloc) const;
enum PlaceholderType {
PLACEHOLDER_MESSAGE,
PLACEHOLDER_ENUM,
PLACEHOLDER_EXTENDABLE_MESSAGE
};
// Create a placeholder Descriptor of the specified name
Symbol NewPlaceholder(StringPiece name,
PlaceholderType placeholder_type) const;
Symbol NewPlaceholderWithMutexHeld(StringPiece name,
PlaceholderType placeholder_type) const;
// If fallback_database_ is nullptr, this is nullptr. Otherwise, this is a
// mutex which must be locked while accessing tables_.
internal::WrappedMutex* mutex_;
// See constructor.
DescriptorDatabase* fallback_database_;
ErrorCollector* default_error_collector_;
const DescriptorPool* underlay_;
// This class contains a lot of hash maps with complicated types that
// we'd like to keep out of the header.
class Tables;
std::unique_ptr<Tables> tables_;
bool enforce_dependencies_;
bool lazily_build_dependencies_;
bool allow_unknown_;
bool enforce_weak_;
bool disallow_enforce_utf8_;
// Set of files to track for unused imports. The bool value when true means
// unused imports are treated as errors (and as warnings when false).
std::map<std::string, bool> unused_import_track_files_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DescriptorPool);
};
// inline methods ====================================================
// These macros makes this repetitive code more readable.
#define PROTOBUF_DEFINE_ACCESSOR(CLASS, FIELD, TYPE) \
inline TYPE CLASS::FIELD() const { return FIELD##_; }
// Strings fields are stored as pointers but returned as const references.
#define PROTOBUF_DEFINE_STRING_ACCESSOR(CLASS, FIELD) \
inline const std::string& CLASS::FIELD() const { return *FIELD##_; }
// Name and full name are stored in a single array to save space.
#define PROTOBUF_DEFINE_NAME_ACCESSOR(CLASS) \
inline const std::string& CLASS::name() const { return all_names_[0]; } \
inline const std::string& CLASS::full_name() const { return all_names_[1]; }
// Arrays take an index parameter, obviously.
#define PROTOBUF_DEFINE_ARRAY_ACCESSOR(CLASS, FIELD, TYPE) \
inline TYPE CLASS::FIELD(int index) const { return FIELD##s_ + index; }
#define PROTOBUF_DEFINE_OPTIONS_ACCESSOR(CLASS, TYPE) \
inline const TYPE& CLASS::options() const { return *options_; }
PROTOBUF_DEFINE_NAME_ACCESSOR(Descriptor)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, file, const FileDescriptor*)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, containing_type, const Descriptor*)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, field_count, int)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, oneof_decl_count, int)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, real_oneof_decl_count, int)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, nested_type_count, int)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, enum_type_count, int)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, field, const FieldDescriptor*)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, oneof_decl, const OneofDescriptor*)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, nested_type, const Descriptor*)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, enum_type, const EnumDescriptor*)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, extension_range_count, int)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, extension_count, int)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, extension_range,
const Descriptor::ExtensionRange*)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, extension, const FieldDescriptor*)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, reserved_range_count, int)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, reserved_range,
const Descriptor::ReservedRange*)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, reserved_name_count, int)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(Descriptor, MessageOptions)
PROTOBUF_DEFINE_ACCESSOR(Descriptor, is_placeholder, bool)
PROTOBUF_DEFINE_NAME_ACCESSOR(FieldDescriptor)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, file, const FileDescriptor*)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, number, int)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, is_extension, bool)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, containing_type, const Descriptor*)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(FieldDescriptor, FieldOptions)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, has_default_value, bool)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, has_json_name, bool)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_int32_t, int32_t)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_int64_t, int64_t)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_uint32_t, uint32_t)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_uint64_t, uint64_t)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_float, float)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_double, double)
PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_bool, bool)
PROTOBUF_DEFINE_STRING_ACCESSOR(FieldDescriptor, default_value_string)
PROTOBUF_DEFINE_NAME_ACCESSOR(OneofDescriptor)
PROTOBUF_DEFINE_ACCESSOR(OneofDescriptor, containing_type, const Descriptor*)
PROTOBUF_DEFINE_ACCESSOR(OneofDescriptor, field_count, int)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(OneofDescriptor, field, const FieldDescriptor*)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(OneofDescriptor, OneofOptions)
PROTOBUF_DEFINE_NAME_ACCESSOR(EnumDescriptor)
PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, file, const FileDescriptor*)
PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, containing_type, const Descriptor*)
PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, value_count, int)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(EnumDescriptor, value,
const EnumValueDescriptor*)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(EnumDescriptor, EnumOptions)
PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, is_placeholder, bool)
PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, reserved_range_count, int)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(EnumDescriptor, reserved_range,
const EnumDescriptor::ReservedRange*)
PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, reserved_name_count, int)
PROTOBUF_DEFINE_NAME_ACCESSOR(EnumValueDescriptor)
PROTOBUF_DEFINE_ACCESSOR(EnumValueDescriptor, number, int)
PROTOBUF_DEFINE_ACCESSOR(EnumValueDescriptor, type, const EnumDescriptor*)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(EnumValueDescriptor, EnumValueOptions)
PROTOBUF_DEFINE_NAME_ACCESSOR(ServiceDescriptor)
PROTOBUF_DEFINE_ACCESSOR(ServiceDescriptor, file, const FileDescriptor*)
PROTOBUF_DEFINE_ACCESSOR(ServiceDescriptor, method_count, int)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(ServiceDescriptor, method,
const MethodDescriptor*)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(ServiceDescriptor, ServiceOptions)
PROTOBUF_DEFINE_NAME_ACCESSOR(MethodDescriptor)
PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, service, const ServiceDescriptor*)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(MethodDescriptor, MethodOptions)
PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, client_streaming, bool)
PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, server_streaming, bool)
PROTOBUF_DEFINE_STRING_ACCESSOR(FileDescriptor, name)
PROTOBUF_DEFINE_STRING_ACCESSOR(FileDescriptor, package)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, pool, const DescriptorPool*)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, dependency_count, int)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, public_dependency_count, int)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, weak_dependency_count, int)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, message_type_count, int)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, enum_type_count, int)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, service_count, int)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, extension_count, int)
PROTOBUF_DEFINE_OPTIONS_ACCESSOR(FileDescriptor, FileOptions)
PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, is_placeholder, bool)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, message_type, const Descriptor*)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, enum_type, const EnumDescriptor*)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, service,
const ServiceDescriptor*)
PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, extension,
const FieldDescriptor*)
#undef PROTOBUF_DEFINE_ACCESSOR
#undef PROTOBUF_DEFINE_STRING_ACCESSOR
#undef PROTOBUF_DEFINE_ARRAY_ACCESSOR
// A few accessors differ from the macros...
inline Descriptor::WellKnownType Descriptor::well_known_type() const {
return static_cast<Descriptor::WellKnownType>(well_known_type_);
}
inline bool Descriptor::IsExtensionNumber(int number) const {
return FindExtensionRangeContainingNumber(number) != nullptr;
}
inline bool Descriptor::IsReservedNumber(int number) const {
return FindReservedRangeContainingNumber(number) != nullptr;
}
inline bool Descriptor::IsReservedName(ConstStringParam name) const {
for (int i = 0; i < reserved_name_count(); i++) {
if (name == static_cast<ConstStringParam>(reserved_name(i))) {
return true;
}
}
return false;
}
// Can't use PROTOBUF_DEFINE_ARRAY_ACCESSOR because reserved_names_ is actually
// an array of pointers rather than the usual array of objects.
inline const std::string& Descriptor::reserved_name(int index) const {
return *reserved_names_[index];
}
inline bool EnumDescriptor::IsReservedNumber(int number) const {
return FindReservedRangeContainingNumber(number) != nullptr;
}
inline bool EnumDescriptor::IsReservedName(ConstStringParam name) const {
for (int i = 0; i < reserved_name_count(); i++) {
if (name == static_cast<ConstStringParam>(reserved_name(i))) {
return true;
}
}
return false;
}
// Can't use PROTOBUF_DEFINE_ARRAY_ACCESSOR because reserved_names_ is actually
// an array of pointers rather than the usual array of objects.
inline const std::string& EnumDescriptor::reserved_name(int index) const {
return *reserved_names_[index];
}
inline const std::string& FieldDescriptor::lowercase_name() const {
return all_names_[lowercase_name_index_];
}
inline const std::string& FieldDescriptor::camelcase_name() const {
return all_names_[camelcase_name_index_];
}
inline const std::string& FieldDescriptor::json_name() const {
return all_names_[json_name_index_];
}
inline const OneofDescriptor* FieldDescriptor::containing_oneof() const {
return is_oneof_ ? scope_.containing_oneof : nullptr;
}
inline int FieldDescriptor::index_in_oneof() const {
GOOGLE_DCHECK(is_oneof_);
return static_cast<int>(this - scope_.containing_oneof->field(0));
}
inline const Descriptor* FieldDescriptor::extension_scope() const {
GOOGLE_CHECK(is_extension_);
return scope_.extension_scope;
}
inline FieldDescriptor::Label FieldDescriptor::label() const {
return static_cast<Label>(label_);
}
inline FieldDescriptor::Type FieldDescriptor::type() const {
if (type_once_) {
internal::call_once(*type_once_, &FieldDescriptor::TypeOnceInit, this);
}
return static_cast<Type>(type_);
}
inline bool FieldDescriptor::is_required() const {
return label() == LABEL_REQUIRED;
}
inline bool FieldDescriptor::is_optional() const {
return label() == LABEL_OPTIONAL;
}
inline bool FieldDescriptor::is_repeated() const {
return label() == LABEL_REPEATED;
}
inline bool FieldDescriptor::is_packable() const {
return is_repeated() && IsTypePackable(type());
}
inline bool FieldDescriptor::is_map() const {
return type() == TYPE_MESSAGE && is_map_message_type();
}
inline bool FieldDescriptor::has_optional_keyword() const {
return proto3_optional_ ||
(file()->syntax() == FileDescriptor::SYNTAX_PROTO2 && is_optional() &&
!containing_oneof());
}
inline const OneofDescriptor* FieldDescriptor::real_containing_oneof() const {
auto* oneof = containing_oneof();
return oneof && !oneof->is_synthetic() ? oneof : nullptr;
}
inline bool FieldDescriptor::has_presence() const {
if (is_repeated()) return false;
return cpp_type() == CPPTYPE_MESSAGE || containing_oneof() ||
file()->syntax() == FileDescriptor::SYNTAX_PROTO2;
}
// To save space, index() is computed by looking at the descriptor's position
// in the parent's array of children.
inline int FieldDescriptor::index() const {
if (!is_extension_) {
return static_cast<int>(this - containing_type()->fields_);
} else if (extension_scope() != nullptr) {
return static_cast<int>(this - extension_scope()->extensions_);
} else {
return static_cast<int>(this - file_->extensions_);
}
}
inline int Descriptor::index() const {
if (containing_type_ == nullptr) {
return static_cast<int>(this - file_->message_types_);
} else {
return static_cast<int>(this - containing_type_->nested_types_);
}
}
inline const FileDescriptor* OneofDescriptor::file() const {
return containing_type()->file();
}
inline int OneofDescriptor::index() const {
return static_cast<int>(this - containing_type_->oneof_decls_);
}
inline bool OneofDescriptor::is_synthetic() const {
return field_count() == 1 && field(0)->proto3_optional_;
}
inline int EnumDescriptor::index() const {
if (containing_type_ == nullptr) {
return static_cast<int>(this - file_->enum_types_);
} else {
return static_cast<int>(this - containing_type_->enum_types_);
}
}
inline const FileDescriptor* EnumValueDescriptor::file() const {
return type()->file();
}
inline int EnumValueDescriptor::index() const {
return static_cast<int>(this - type_->values_);
}
inline int ServiceDescriptor::index() const {
return static_cast<int>(this - file_->services_);
}
inline const FileDescriptor* MethodDescriptor::file() const {
return service()->file();
}
inline int MethodDescriptor::index() const {
return static_cast<int>(this - service_->methods_);
}
inline const char* FieldDescriptor::type_name() const {
return kTypeToName[type()];
}
inline FieldDescriptor::CppType FieldDescriptor::cpp_type() const {
return kTypeToCppTypeMap[type()];
}
inline const char* FieldDescriptor::cpp_type_name() const {
return kCppTypeToName[kTypeToCppTypeMap[type()]];
}
inline FieldDescriptor::CppType FieldDescriptor::TypeToCppType(Type type) {
return kTypeToCppTypeMap[type];
}
inline const char* FieldDescriptor::TypeName(Type type) {
return kTypeToName[type];
}
inline const char* FieldDescriptor::CppTypeName(CppType cpp_type) {
return kCppTypeToName[cpp_type];
}
inline bool FieldDescriptor::IsTypePackable(Type field_type) {
return (field_type != FieldDescriptor::TYPE_STRING &&
field_type != FieldDescriptor::TYPE_GROUP &&
field_type != FieldDescriptor::TYPE_MESSAGE &&
field_type != FieldDescriptor::TYPE_BYTES);
}
inline const FileDescriptor* FileDescriptor::public_dependency(
int index) const {
return dependency(public_dependencies_[index]);
}
inline const FileDescriptor* FileDescriptor::weak_dependency(int index) const {
return dependency(weak_dependencies_[index]);
}
inline FileDescriptor::Syntax FileDescriptor::syntax() const {
return static_cast<Syntax>(syntax_);
}
} // namespace protobuf
} // namespace google
#undef PROTOBUF_INTERNAL_CHECK_CLASS_SIZE
#include <google/protobuf/port_undef.inc>
#endif // GOOGLE_PROTOBUF_DESCRIPTOR_H__