blob: df344ec75921e774b7f6c817970b86c1884ce16b [file] [log] [blame]
// Do not edit. Bootstrap copy of /usr/local/google/buildbot/src/android/build-tools/out/obj/go/src/cmd/compile/internal/arm64/ssa.go
//line /usr/local/google/buildbot/src/android/build-tools/out/obj/go/src/cmd/compile/internal/arm64/ssa.go:1
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package arm64
import (
"math"
"bootstrap/cmd/compile/internal/gc"
"bootstrap/cmd/compile/internal/ssa"
"bootstrap/cmd/internal/obj"
"bootstrap/cmd/internal/obj/arm64"
)
// loadByType returns the load instruction of the given type.
func loadByType(t ssa.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return arm64.AFMOVS
case 8:
return arm64.AFMOVD
}
} else {
switch t.Size() {
case 1:
if t.IsSigned() {
return arm64.AMOVB
} else {
return arm64.AMOVBU
}
case 2:
if t.IsSigned() {
return arm64.AMOVH
} else {
return arm64.AMOVHU
}
case 4:
if t.IsSigned() {
return arm64.AMOVW
} else {
return arm64.AMOVWU
}
case 8:
return arm64.AMOVD
}
}
panic("bad load type")
}
// storeByType returns the store instruction of the given type.
func storeByType(t ssa.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return arm64.AFMOVS
case 8:
return arm64.AFMOVD
}
} else {
switch t.Size() {
case 1:
return arm64.AMOVB
case 2:
return arm64.AMOVH
case 4:
return arm64.AMOVW
case 8:
return arm64.AMOVD
}
}
panic("bad store type")
}
// makeshift encodes a register shifted by a constant, used as an Offset in Prog
func makeshift(reg int16, typ int64, s int64) int64 {
return int64(reg&31)<<16 | typ | (s&63)<<10
}
// genshift generates a Prog for r = r0 op (r1 shifted by s)
func genshift(as obj.As, r0, r1, r int16, typ int64, s int64) *obj.Prog {
p := gc.Prog(as)
p.From.Type = obj.TYPE_SHIFT
p.From.Offset = makeshift(r1, typ, s)
p.Reg = r0
if r != 0 {
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
return p
}
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpInitMem:
// memory arg needs no code
case ssa.OpArg:
// input args need no code
case ssa.OpSP, ssa.OpSB, ssa.OpGetG:
// nothing to do
case ssa.OpCopy, ssa.OpARM64MOVDconvert, ssa.OpARM64MOVDreg:
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x == y {
return
}
as := arm64.AMOVD
if v.Type.IsFloat() {
switch v.Type.Size() {
case 4:
as = arm64.AFMOVS
case 8:
as = arm64.AFMOVD
default:
panic("bad float size")
}
}
p := gc.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
case ssa.OpARM64MOVDnop:
if v.Reg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
// nothing to do
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
p := gc.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpPhi:
gc.CheckLoweredPhi(v)
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
p := gc.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v)
case ssa.OpARM64ADD,
ssa.OpARM64SUB,
ssa.OpARM64AND,
ssa.OpARM64OR,
ssa.OpARM64XOR,
ssa.OpARM64BIC,
ssa.OpARM64MUL,
ssa.OpARM64MULW,
ssa.OpARM64MULH,
ssa.OpARM64UMULH,
ssa.OpARM64MULL,
ssa.OpARM64UMULL,
ssa.OpARM64DIV,
ssa.OpARM64UDIV,
ssa.OpARM64DIVW,
ssa.OpARM64UDIVW,
ssa.OpARM64MOD,
ssa.OpARM64UMOD,
ssa.OpARM64MODW,
ssa.OpARM64UMODW,
ssa.OpARM64SLL,
ssa.OpARM64SRL,
ssa.OpARM64SRA,
ssa.OpARM64FADDS,
ssa.OpARM64FADDD,
ssa.OpARM64FSUBS,
ssa.OpARM64FSUBD,
ssa.OpARM64FMULS,
ssa.OpARM64FMULD,
ssa.OpARM64FDIVS,
ssa.OpARM64FDIVD:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARM64ADDconst,
ssa.OpARM64SUBconst,
ssa.OpARM64ANDconst,
ssa.OpARM64ORconst,
ssa.OpARM64XORconst,
ssa.OpARM64BICconst,
ssa.OpARM64SLLconst,
ssa.OpARM64SRLconst,
ssa.OpARM64SRAconst,
ssa.OpARM64RORconst,
ssa.OpARM64RORWconst:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARM64ADDshiftLL,
ssa.OpARM64SUBshiftLL,
ssa.OpARM64ANDshiftLL,
ssa.OpARM64ORshiftLL,
ssa.OpARM64XORshiftLL,
ssa.OpARM64BICshiftLL:
genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm64.SHIFT_LL, v.AuxInt)
case ssa.OpARM64ADDshiftRL,
ssa.OpARM64SUBshiftRL,
ssa.OpARM64ANDshiftRL,
ssa.OpARM64ORshiftRL,
ssa.OpARM64XORshiftRL,
ssa.OpARM64BICshiftRL:
genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm64.SHIFT_LR, v.AuxInt)
case ssa.OpARM64ADDshiftRA,
ssa.OpARM64SUBshiftRA,
ssa.OpARM64ANDshiftRA,
ssa.OpARM64ORshiftRA,
ssa.OpARM64XORshiftRA,
ssa.OpARM64BICshiftRA:
genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm64.SHIFT_AR, v.AuxInt)
case ssa.OpARM64MOVDconst:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARM64FMOVSconst,
ssa.OpARM64FMOVDconst:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARM64CMP,
ssa.OpARM64CMPW,
ssa.OpARM64CMN,
ssa.OpARM64CMNW,
ssa.OpARM64FCMPS,
ssa.OpARM64FCMPD:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.Reg = v.Args[0].Reg()
case ssa.OpARM64CMPconst,
ssa.OpARM64CMPWconst,
ssa.OpARM64CMNconst,
ssa.OpARM64CMNWconst:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
case ssa.OpARM64CMPshiftLL:
genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm64.SHIFT_LL, v.AuxInt)
case ssa.OpARM64CMPshiftRL:
genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm64.SHIFT_LR, v.AuxInt)
case ssa.OpARM64CMPshiftRA:
genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm64.SHIFT_AR, v.AuxInt)
case ssa.OpARM64MOVDaddr:
p := gc.Prog(arm64.AMOVD)
p.From.Type = obj.TYPE_ADDR
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
var wantreg string
// MOVD $sym+off(base), R
// the assembler expands it as the following:
// - base is SP: add constant offset to SP (R13)
// when constant is large, tmp register (R11) may be used
// - base is SB: load external address from constant pool (use relocation)
switch v.Aux.(type) {
default:
v.Fatalf("aux is of unknown type %T", v.Aux)
case *ssa.ExternSymbol:
wantreg = "SB"
gc.AddAux(&p.From, v)
case *ssa.ArgSymbol, *ssa.AutoSymbol:
wantreg = "SP"
gc.AddAux(&p.From, v)
case nil:
// No sym, just MOVD $off(SP), R
wantreg = "SP"
p.From.Reg = arm64.REGSP
p.From.Offset = v.AuxInt
}
if reg := v.Args[0].RegName(); reg != wantreg {
v.Fatalf("bad reg %s for symbol type %T, want %s", reg, v.Aux, wantreg)
}
case ssa.OpARM64MOVBload,
ssa.OpARM64MOVBUload,
ssa.OpARM64MOVHload,
ssa.OpARM64MOVHUload,
ssa.OpARM64MOVWload,
ssa.OpARM64MOVWUload,
ssa.OpARM64MOVDload,
ssa.OpARM64FMOVSload,
ssa.OpARM64FMOVDload:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARM64LDAR,
ssa.OpARM64LDARW:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
case ssa.OpARM64MOVBstore,
ssa.OpARM64MOVHstore,
ssa.OpARM64MOVWstore,
ssa.OpARM64MOVDstore,
ssa.OpARM64FMOVSstore,
ssa.OpARM64FMOVDstore,
ssa.OpARM64STLR,
ssa.OpARM64STLRW:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
case ssa.OpARM64MOVBstorezero,
ssa.OpARM64MOVHstorezero,
ssa.OpARM64MOVWstorezero,
ssa.OpARM64MOVDstorezero:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = arm64.REGZERO
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
case ssa.OpARM64LoweredAtomicExchange64,
ssa.OpARM64LoweredAtomicExchange32:
// LDAXR (Rarg0), Rout
// STLXR Rarg1, (Rarg0), Rtmp
// CBNZ Rtmp, -2(PC)
ld := arm64.ALDAXR
st := arm64.ASTLXR
if v.Op == ssa.OpARM64LoweredAtomicExchange32 {
ld = arm64.ALDAXRW
st = arm64.ASTLXRW
}
r0 := v.Args[0].Reg()
r1 := v.Args[1].Reg()
out := v.Reg0()
p := gc.Prog(ld)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r0
p.To.Type = obj.TYPE_REG
p.To.Reg = out
p1 := gc.Prog(st)
p1.From.Type = obj.TYPE_REG
p1.From.Reg = r1
p1.To.Type = obj.TYPE_MEM
p1.To.Reg = r0
p1.RegTo2 = arm64.REGTMP
p2 := gc.Prog(arm64.ACBNZ)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = arm64.REGTMP
p2.To.Type = obj.TYPE_BRANCH
gc.Patch(p2, p)
case ssa.OpARM64LoweredAtomicAdd64,
ssa.OpARM64LoweredAtomicAdd32:
// LDAXR (Rarg0), Rout
// ADD Rarg1, Rout
// STLXR Rout, (Rarg0), Rtmp
// CBNZ Rtmp, -3(PC)
ld := arm64.ALDAXR
st := arm64.ASTLXR
if v.Op == ssa.OpARM64LoweredAtomicAdd32 {
ld = arm64.ALDAXRW
st = arm64.ASTLXRW
}
r0 := v.Args[0].Reg()
r1 := v.Args[1].Reg()
out := v.Reg0()
p := gc.Prog(ld)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r0
p.To.Type = obj.TYPE_REG
p.To.Reg = out
p1 := gc.Prog(arm64.AADD)
p1.From.Type = obj.TYPE_REG
p1.From.Reg = r1
p1.To.Type = obj.TYPE_REG
p1.To.Reg = out
p2 := gc.Prog(st)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = out
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = r0
p2.RegTo2 = arm64.REGTMP
p3 := gc.Prog(arm64.ACBNZ)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = arm64.REGTMP
p3.To.Type = obj.TYPE_BRANCH
gc.Patch(p3, p)
case ssa.OpARM64LoweredAtomicCas64,
ssa.OpARM64LoweredAtomicCas32:
// LDAXR (Rarg0), Rtmp
// CMP Rarg1, Rtmp
// BNE 3(PC)
// STLXR Rarg2, (Rarg0), Rtmp
// CBNZ Rtmp, -4(PC)
// CSET EQ, Rout
ld := arm64.ALDAXR
st := arm64.ASTLXR
cmp := arm64.ACMP
if v.Op == ssa.OpARM64LoweredAtomicCas32 {
ld = arm64.ALDAXRW
st = arm64.ASTLXRW
cmp = arm64.ACMPW
}
r0 := v.Args[0].Reg()
r1 := v.Args[1].Reg()
r2 := v.Args[2].Reg()
out := v.Reg0()
p := gc.Prog(ld)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r0
p.To.Type = obj.TYPE_REG
p.To.Reg = arm64.REGTMP
p1 := gc.Prog(cmp)
p1.From.Type = obj.TYPE_REG
p1.From.Reg = r1
p1.Reg = arm64.REGTMP
p2 := gc.Prog(arm64.ABNE)
p2.To.Type = obj.TYPE_BRANCH
p3 := gc.Prog(st)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = r2
p3.To.Type = obj.TYPE_MEM
p3.To.Reg = r0
p3.RegTo2 = arm64.REGTMP
p4 := gc.Prog(arm64.ACBNZ)
p4.From.Type = obj.TYPE_REG
p4.From.Reg = arm64.REGTMP
p4.To.Type = obj.TYPE_BRANCH
gc.Patch(p4, p)
p5 := gc.Prog(arm64.ACSET)
p5.From.Type = obj.TYPE_REG // assembler encodes conditional bits in Reg
p5.From.Reg = arm64.COND_EQ
p5.To.Type = obj.TYPE_REG
p5.To.Reg = out
gc.Patch(p2, p5)
case ssa.OpARM64LoweredAtomicAnd8,
ssa.OpARM64LoweredAtomicOr8:
// LDAXRB (Rarg0), Rtmp
// AND/OR Rarg1, Rtmp
// STLXRB Rtmp, (Rarg0), Rtmp
// CBNZ Rtmp, -3(PC)
r0 := v.Args[0].Reg()
r1 := v.Args[1].Reg()
p := gc.Prog(arm64.ALDAXRB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r0
p.To.Type = obj.TYPE_REG
p.To.Reg = arm64.REGTMP
p1 := gc.Prog(v.Op.Asm())
p1.From.Type = obj.TYPE_REG
p1.From.Reg = r1
p1.To.Type = obj.TYPE_REG
p1.To.Reg = arm64.REGTMP
p2 := gc.Prog(arm64.ASTLXRB)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = arm64.REGTMP
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = r0
p2.RegTo2 = arm64.REGTMP
p3 := gc.Prog(arm64.ACBNZ)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = arm64.REGTMP
p3.To.Type = obj.TYPE_BRANCH
gc.Patch(p3, p)
case ssa.OpARM64MOVBreg,
ssa.OpARM64MOVBUreg,
ssa.OpARM64MOVHreg,
ssa.OpARM64MOVHUreg,
ssa.OpARM64MOVWreg,
ssa.OpARM64MOVWUreg:
a := v.Args[0]
for a.Op == ssa.OpCopy || a.Op == ssa.OpARM64MOVDreg {
a = a.Args[0]
}
if a.Op == ssa.OpLoadReg {
t := a.Type
switch {
case v.Op == ssa.OpARM64MOVBreg && t.Size() == 1 && t.IsSigned(),
v.Op == ssa.OpARM64MOVBUreg && t.Size() == 1 && !t.IsSigned(),
v.Op == ssa.OpARM64MOVHreg && t.Size() == 2 && t.IsSigned(),
v.Op == ssa.OpARM64MOVHUreg && t.Size() == 2 && !t.IsSigned(),
v.Op == ssa.OpARM64MOVWreg && t.Size() == 4 && t.IsSigned(),
v.Op == ssa.OpARM64MOVWUreg && t.Size() == 4 && !t.IsSigned():
// arg is a proper-typed load, already zero/sign-extended, don't extend again
if v.Reg() == v.Args[0].Reg() {
return
}
p := gc.Prog(arm64.AMOVD)
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
return
default:
}
}
fallthrough
case ssa.OpARM64MVN,
ssa.OpARM64NEG,
ssa.OpARM64FNEGS,
ssa.OpARM64FNEGD,
ssa.OpARM64FSQRTD,
ssa.OpARM64FCVTZSSW,
ssa.OpARM64FCVTZSDW,
ssa.OpARM64FCVTZUSW,
ssa.OpARM64FCVTZUDW,
ssa.OpARM64FCVTZSS,
ssa.OpARM64FCVTZSD,
ssa.OpARM64FCVTZUS,
ssa.OpARM64FCVTZUD,
ssa.OpARM64SCVTFWS,
ssa.OpARM64SCVTFWD,
ssa.OpARM64SCVTFS,
ssa.OpARM64SCVTFD,
ssa.OpARM64UCVTFWS,
ssa.OpARM64UCVTFWD,
ssa.OpARM64UCVTFS,
ssa.OpARM64UCVTFD,
ssa.OpARM64FCVTSD,
ssa.OpARM64FCVTDS,
ssa.OpARM64REV,
ssa.OpARM64REVW,
ssa.OpARM64REV16W,
ssa.OpARM64RBIT,
ssa.OpARM64RBITW,
ssa.OpARM64CLZ,
ssa.OpARM64CLZW:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARM64CSELULT,
ssa.OpARM64CSELULT0:
r1 := int16(arm64.REGZERO)
if v.Op == ssa.OpARM64CSELULT {
r1 = v.Args[1].Reg()
}
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG // assembler encodes conditional bits in Reg
p.From.Reg = arm64.COND_LO
p.Reg = v.Args[0].Reg()
p.From3 = &obj.Addr{Type: obj.TYPE_REG, Reg: r1}
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARM64DUFFZERO:
// runtime.duffzero expects start address - 8 in R16
p := gc.Prog(arm64.ASUB)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = arm64.REG_R16
p = gc.Prog(obj.ADUFFZERO)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg))
p.To.Offset = v.AuxInt
case ssa.OpARM64LoweredZero:
// MOVD.P ZR, 8(R16)
// CMP Rarg1, R16
// BLE -2(PC)
// arg1 is the address of the last element to zero
p := gc.Prog(arm64.AMOVD)
p.Scond = arm64.C_XPOST
p.From.Type = obj.TYPE_REG
p.From.Reg = arm64.REGZERO
p.To.Type = obj.TYPE_MEM
p.To.Reg = arm64.REG_R16
p.To.Offset = 8
p2 := gc.Prog(arm64.ACMP)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = v.Args[1].Reg()
p2.Reg = arm64.REG_R16
p3 := gc.Prog(arm64.ABLE)
p3.To.Type = obj.TYPE_BRANCH
gc.Patch(p3, p)
case ssa.OpARM64DUFFCOPY:
p := gc.Prog(obj.ADUFFCOPY)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg))
p.To.Offset = v.AuxInt
case ssa.OpARM64LoweredMove:
// MOVD.P 8(R16), Rtmp
// MOVD.P Rtmp, 8(R17)
// CMP Rarg2, R16
// BLE -3(PC)
// arg2 is the address of the last element of src
p := gc.Prog(arm64.AMOVD)
p.Scond = arm64.C_XPOST
p.From.Type = obj.TYPE_MEM
p.From.Reg = arm64.REG_R16
p.From.Offset = 8
p.To.Type = obj.TYPE_REG
p.To.Reg = arm64.REGTMP
p2 := gc.Prog(arm64.AMOVD)
p2.Scond = arm64.C_XPOST
p2.From.Type = obj.TYPE_REG
p2.From.Reg = arm64.REGTMP
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = arm64.REG_R17
p2.To.Offset = 8
p3 := gc.Prog(arm64.ACMP)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = v.Args[2].Reg()
p3.Reg = arm64.REG_R16
p4 := gc.Prog(arm64.ABLE)
p4.To.Type = obj.TYPE_BRANCH
gc.Patch(p4, p)
case ssa.OpARM64CALLstatic:
if v.Aux.(*gc.Sym) == gc.Deferreturn.Sym {
// Deferred calls will appear to be returning to
// the CALL deferreturn(SB) that we are about to emit.
// However, the stack trace code will show the line
// of the instruction byte before the return PC.
// To avoid that being an unrelated instruction,
// insert an actual hardware NOP that will have the right line number.
// This is different from obj.ANOP, which is a virtual no-op
// that doesn't make it into the instruction stream.
ginsnop()
}
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(v.Aux.(*gc.Sym))
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpARM64CALLclosure:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 0
p.To.Reg = v.Args[0].Reg()
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpARM64CALLdefer:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(gc.Deferproc.Sym)
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpARM64CALLgo:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(gc.Newproc.Sym)
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpARM64CALLinter:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 0
p.To.Reg = v.Args[0].Reg()
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpARM64LoweredNilCheck:
// Issue a load which will fault if arg is nil.
p := gc.Prog(arm64.AMOVB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = arm64.REGTMP
if gc.Debug_checknil != 0 && v.Line > 1 { // v.Line==1 in generated wrappers
gc.Warnl(v.Line, "generated nil check")
}
case ssa.OpVarDef:
gc.Gvardef(v.Aux.(*gc.Node))
case ssa.OpVarKill:
gc.Gvarkill(v.Aux.(*gc.Node))
case ssa.OpVarLive:
gc.Gvarlive(v.Aux.(*gc.Node))
case ssa.OpKeepAlive:
gc.KeepAlive(v)
case ssa.OpARM64Equal,
ssa.OpARM64NotEqual,
ssa.OpARM64LessThan,
ssa.OpARM64LessEqual,
ssa.OpARM64GreaterThan,
ssa.OpARM64GreaterEqual,
ssa.OpARM64LessThanU,
ssa.OpARM64LessEqualU,
ssa.OpARM64GreaterThanU,
ssa.OpARM64GreaterEqualU:
// generate boolean values using CSET
p := gc.Prog(arm64.ACSET)
p.From.Type = obj.TYPE_REG // assembler encodes conditional bits in Reg
p.From.Reg = condBits[v.Op]
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpSelect0, ssa.OpSelect1:
// nothing to do
case ssa.OpARM64LoweredGetClosurePtr:
// Closure pointer is R26 (arm64.REGCTXT).
gc.CheckLoweredGetClosurePtr(v)
case ssa.OpARM64FlagEQ,
ssa.OpARM64FlagLT_ULT,
ssa.OpARM64FlagLT_UGT,
ssa.OpARM64FlagGT_ULT,
ssa.OpARM64FlagGT_UGT:
v.Fatalf("Flag* ops should never make it to codegen %v", v.LongString())
case ssa.OpARM64InvertFlags:
v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
var condBits = map[ssa.Op]int16{
ssa.OpARM64Equal: arm64.COND_EQ,
ssa.OpARM64NotEqual: arm64.COND_NE,
ssa.OpARM64LessThan: arm64.COND_LT,
ssa.OpARM64LessThanU: arm64.COND_LO,
ssa.OpARM64LessEqual: arm64.COND_LE,
ssa.OpARM64LessEqualU: arm64.COND_LS,
ssa.OpARM64GreaterThan: arm64.COND_GT,
ssa.OpARM64GreaterThanU: arm64.COND_HI,
ssa.OpARM64GreaterEqual: arm64.COND_GE,
ssa.OpARM64GreaterEqualU: arm64.COND_HS,
}
var blockJump = map[ssa.BlockKind]struct {
asm, invasm obj.As
}{
ssa.BlockARM64EQ: {arm64.ABEQ, arm64.ABNE},
ssa.BlockARM64NE: {arm64.ABNE, arm64.ABEQ},
ssa.BlockARM64LT: {arm64.ABLT, arm64.ABGE},
ssa.BlockARM64GE: {arm64.ABGE, arm64.ABLT},
ssa.BlockARM64LE: {arm64.ABLE, arm64.ABGT},
ssa.BlockARM64GT: {arm64.ABGT, arm64.ABLE},
ssa.BlockARM64ULT: {arm64.ABLO, arm64.ABHS},
ssa.BlockARM64UGE: {arm64.ABHS, arm64.ABLO},
ssa.BlockARM64UGT: {arm64.ABHI, arm64.ABLS},
ssa.BlockARM64ULE: {arm64.ABLS, arm64.ABHI},
ssa.BlockARM64Z: {arm64.ACBZ, arm64.ACBNZ},
ssa.BlockARM64NZ: {arm64.ACBNZ, arm64.ACBZ},
ssa.BlockARM64ZW: {arm64.ACBZW, arm64.ACBNZW},
ssa.BlockARM64NZW: {arm64.ACBNZW, arm64.ACBZW},
}
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
s.SetLineno(b.Line)
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0].Block() != next {
p := gc.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockDefer:
// defer returns in R0:
// 0 if we should continue executing
// 1 if we should jump to deferreturn call
p := gc.Prog(arm64.ACMP)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 0
p.Reg = arm64.REG_R0
p = gc.Prog(arm64.ABNE)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next {
p := gc.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockExit:
gc.Prog(obj.AUNDEF) // tell plive.go that we never reach here
case ssa.BlockRet:
gc.Prog(obj.ARET)
case ssa.BlockRetJmp:
p := gc.Prog(obj.ARET)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(b.Aux.(*gc.Sym))
case ssa.BlockARM64EQ, ssa.BlockARM64NE,
ssa.BlockARM64LT, ssa.BlockARM64GE,
ssa.BlockARM64LE, ssa.BlockARM64GT,
ssa.BlockARM64ULT, ssa.BlockARM64UGT,
ssa.BlockARM64ULE, ssa.BlockARM64UGE,
ssa.BlockARM64Z, ssa.BlockARM64NZ,
ssa.BlockARM64ZW, ssa.BlockARM64NZW:
jmp := blockJump[b.Kind]
var p *obj.Prog
switch next {
case b.Succs[0].Block():
p = gc.Prog(jmp.invasm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
case b.Succs[1].Block():
p = gc.Prog(jmp.asm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
default:
p = gc.Prog(jmp.asm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
q := gc.Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: q, B: b.Succs[1].Block()})
}
if !b.Control.Type.IsFlags() {
p.From.Type = obj.TYPE_REG
p.From.Reg = b.Control.Reg()
}
default:
b.Fatalf("branch not implemented: %s. Control: %s", b.LongString(), b.Control.LongString())
}
}