blob: e3146ed779f0095c7418f73f69b660fd2191da90 [file] [log] [blame]
// Do not edit. Bootstrap copy of /Volumes/Android/buildbot/src/android/build-tools/out/obj/go/src/cmd/internal/obj/pcln.go
//line /Volumes/Android/buildbot/src/android/build-tools/out/obj/go/src/cmd/internal/obj/pcln.go:1
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package obj
import "log"
func addvarint(d *Pcdata, v uint32) {
for ; v >= 0x80; v >>= 7 {
d.P = append(d.P, uint8(v|0x80))
}
d.P = append(d.P, uint8(v))
}
// funcpctab writes to dst a pc-value table mapping the code in func to the values
// returned by valfunc parameterized by arg. The invocation of valfunc to update the
// current value is, for each p,
//
// val = valfunc(func, val, p, 0, arg);
// record val as value at p->pc;
// val = valfunc(func, val, p, 1, arg);
//
// where func is the function, val is the current value, p is the instruction being
// considered, and arg can be used to further parameterize valfunc.
func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) {
// To debug a specific function, uncomment lines and change name.
dbg := 0
//if func_.Name == "main.main" || desc == "pctospadj" {
// dbg = 1
//}
ctxt.Debugpcln += int32(dbg)
dst.P = dst.P[:0]
if ctxt.Debugpcln != 0 {
ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc)
}
val := int32(-1)
oldval := val
if func_.Text == nil {
ctxt.Debugpcln -= int32(dbg)
return
}
pc := func_.Text.Pc
if ctxt.Debugpcln != 0 {
ctxt.Logf("%6x %6d %v\n", uint64(pc), val, func_.Text)
}
started := int32(0)
var delta uint32
for p := func_.Text; p != nil; p = p.Link {
// Update val. If it's not changing, keep going.
val = valfunc(ctxt, func_, val, p, 0, arg)
if val == oldval && started != 0 {
val = valfunc(ctxt, func_, val, p, 1, arg)
if ctxt.Debugpcln != 0 {
ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
}
continue
}
// If the pc of the next instruction is the same as the
// pc of this instruction, this instruction is not a real
// instruction. Keep going, so that we only emit a delta
// for a true instruction boundary in the program.
if p.Link != nil && p.Link.Pc == p.Pc {
val = valfunc(ctxt, func_, val, p, 1, arg)
if ctxt.Debugpcln != 0 {
ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
}
continue
}
// The table is a sequence of (value, pc) pairs, where each
// pair states that the given value is in effect from the current position
// up to the given pc, which becomes the new current position.
// To generate the table as we scan over the program instructions,
// we emit a "(value" when pc == func->value, and then
// each time we observe a change in value we emit ", pc) (value".
// When the scan is over, we emit the closing ", pc)".
//
// The table is delta-encoded. The value deltas are signed and
// transmitted in zig-zag form, where a complement bit is placed in bit 0,
// and the pc deltas are unsigned. Both kinds of deltas are sent
// as variable-length little-endian base-128 integers,
// where the 0x80 bit indicates that the integer continues.
if ctxt.Debugpcln != 0 {
ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p)
}
if started != 0 {
addvarint(dst, uint32((p.Pc-pc)/int64(ctxt.Arch.MinLC)))
pc = p.Pc
}
delta = uint32(val) - uint32(oldval)
if delta>>31 != 0 {
delta = 1 | ^(delta << 1)
} else {
delta <<= 1
}
addvarint(dst, delta)
oldval = val
started = 1
val = valfunc(ctxt, func_, val, p, 1, arg)
}
if started != 0 {
if ctxt.Debugpcln != 0 {
ctxt.Logf("%6x done\n", uint64(func_.Text.Pc+func_.Size))
}
addvarint(dst, uint32((func_.Size-pc)/int64(ctxt.Arch.MinLC)))
addvarint(dst, 0) // terminator
}
if ctxt.Debugpcln != 0 {
ctxt.Logf("wrote %d bytes to %p\n", len(dst.P), dst)
for i := 0; i < len(dst.P); i++ {
ctxt.Logf(" %02x", dst.P[i])
}
ctxt.Logf("\n")
}
ctxt.Debugpcln -= int32(dbg)
}
// pctofileline computes either the file number (arg == 0)
// or the line number (arg == 1) to use at p.
// Because p->lineno applies to p, phase == 0 (before p)
// takes care of the update.
func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
if p.As == ATEXT || p.As == ANOP || p.As == AUSEFIELD || p.Lineno == 0 || phase == 1 {
return oldval
}
f, l := linkgetline(ctxt, p.Lineno)
if f == nil {
// print("getline failed for %s %v\n", ctxt->cursym->name, p);
return oldval
}
if arg == nil {
return l
}
pcln := arg.(*Pcln)
if f == pcln.Lastfile {
return int32(pcln.Lastindex)
}
for i, file := range pcln.File {
if file == f {
pcln.Lastfile = f
pcln.Lastindex = i
return int32(i)
}
}
i := len(pcln.File)
pcln.File = append(pcln.File, f)
pcln.Lastfile = f
pcln.Lastindex = i
return int32(i)
}
// pctospadj computes the sp adjustment in effect.
// It is oldval plus any adjustment made by p itself.
// The adjustment by p takes effect only after p, so we
// apply the change during phase == 1.
func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
if oldval == -1 { // starting
oldval = 0
}
if phase == 0 {
return oldval
}
if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
log.Fatalf("bad code")
}
return oldval + p.Spadj
}
// pctopcdata computes the pcdata value in effect at p.
// A PCDATA instruction sets the value in effect at future
// non-PCDATA instructions.
// Since PCDATA instructions have no width in the final code,
// it does not matter which phase we use for the update.
func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
return oldval
}
if int64(int32(p.To.Offset)) != p.To.Offset {
ctxt.Diag("overflow in PCDATA instruction: %v", p)
log.Fatalf("bad code")
}
return int32(p.To.Offset)
}
func linkpcln(ctxt *Link, cursym *LSym) {
ctxt.Cursym = cursym
pcln := new(Pcln)
cursym.Pcln = pcln
npcdata := 0
nfuncdata := 0
for p := cursym.Text; p != nil; p = p.Link {
// Find the highest ID of any used PCDATA table. This ignores PCDATA table
// that consist entirely of "-1", since that's the assumed default value.
// From.Offset is table ID
// To.Offset is data
if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed
npcdata = int(p.From.Offset + 1)
}
// Find the highest ID of any FUNCDATA table.
// From.Offset is table ID
if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
nfuncdata = int(p.From.Offset + 1)
}
}
pcln.Pcdata = make([]Pcdata, npcdata)
pcln.Pcdata = pcln.Pcdata[:npcdata]
pcln.Funcdata = make([]*LSym, nfuncdata)
pcln.Funcdataoff = make([]int64, nfuncdata)
pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]
funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil)
funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln)
funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil)
// tabulate which pc and func data we have.
havepc := make([]uint32, (npcdata+31)/32)
havefunc := make([]uint32, (nfuncdata+31)/32)
for p := cursym.Text; p != nil; p = p.Link {
if p.As == AFUNCDATA {
if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
}
havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
}
if p.As == APCDATA && p.To.Offset != -1 {
havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
}
}
// pcdata.
for i := 0; i < npcdata; i++ {
if (havepc[i/32]>>uint(i%32))&1 == 0 {
continue
}
funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
}
// funcdata
if nfuncdata > 0 {
var i int
for p := cursym.Text; p != nil; p = p.Link {
if p.As == AFUNCDATA {
i = int(p.From.Offset)
pcln.Funcdataoff[i] = p.To.Offset
if p.To.Type != TYPE_CONST {
// TODO: Dedup.
//funcdata_bytes += p->to.sym->size;
pcln.Funcdata[i] = p.To.Sym
}
}
}
}
}