blob: 999173e34033418ccf57c377dcf72a29cf196f30 [file] [log] [blame]
// Do not edit. Bootstrap copy of /Volumes/Android/buildbot/src/android/build-tools/out/obj/go/src/cmd/compile/internal/gc/reflect.go
//line /Volumes/Android/buildbot/src/android/build-tools/out/obj/go/src/cmd/compile/internal/gc/reflect.go:1
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"bootstrap/cmd/internal/gcprog"
"bootstrap/cmd/internal/obj"
"fmt"
"os"
"sort"
"strings"
)
type itabEntry struct {
t, itype *Type
sym *Sym
}
type ptabEntry struct {
s *Sym
t *Type
}
// runtime interface and reflection data structures
var signatlist []*Node
var itabs []itabEntry
var ptabs []ptabEntry
type Sig struct {
name string
pkg *Pkg
isym *Sym
tsym *Sym
type_ *Type
mtype *Type
offset int32
}
// byMethodNameAndPackagePath sorts method signatures by name, then package path.
type byMethodNameAndPackagePath []*Sig
func (x byMethodNameAndPackagePath) Len() int { return len(x) }
func (x byMethodNameAndPackagePath) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byMethodNameAndPackagePath) Less(i, j int) bool {
return siglt(x[i], x[j])
}
// siglt reports whether a < b
func siglt(a, b *Sig) bool {
if a.name != b.name {
return a.name < b.name
}
if a.pkg == b.pkg {
return false
}
if a.pkg == nil {
return true
}
if b.pkg == nil {
return false
}
return a.pkg.Path < b.pkg.Path
}
// Builds a type representing a Bucket structure for
// the given map type. This type is not visible to users -
// we include only enough information to generate a correct GC
// program for it.
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
const (
BUCKETSIZE = 8
MAXKEYSIZE = 128
MAXVALSIZE = 128
)
func structfieldSize() int { return 3 * Widthptr } // Sizeof(runtime.structfield{})
func imethodSize() int { return 4 + 4 } // Sizeof(runtime.imethod{})
func uncommonSize(t *Type) int { // Sizeof(runtime.uncommontype{})
if t.Sym == nil && len(methods(t)) == 0 {
return 0
}
return 4 + 2 + 2 + 4 + 4
}
func makefield(name string, t *Type) *Field {
f := newField()
f.Type = t
f.Sym = nopkg.Lookup(name)
return f
}
func mapbucket(t *Type) *Type {
if t.MapType().Bucket != nil {
return t.MapType().Bucket
}
bucket := typ(TSTRUCT)
keytype := t.Key()
valtype := t.Val()
dowidth(keytype)
dowidth(valtype)
if keytype.Width > MAXKEYSIZE {
keytype = ptrto(keytype)
}
if valtype.Width > MAXVALSIZE {
valtype = ptrto(valtype)
}
field := make([]*Field, 0, 5)
// The first field is: uint8 topbits[BUCKETSIZE].
arr := typArray(Types[TUINT8], BUCKETSIZE)
field = append(field, makefield("topbits", arr))
arr = typArray(keytype, BUCKETSIZE)
arr.Noalg = true
field = append(field, makefield("keys", arr))
arr = typArray(valtype, BUCKETSIZE)
arr.Noalg = true
field = append(field, makefield("values", arr))
// Make sure the overflow pointer is the last memory in the struct,
// because the runtime assumes it can use size-ptrSize as the
// offset of the overflow pointer. We double-check that property
// below once the offsets and size are computed.
//
// BUCKETSIZE is 8, so the struct is aligned to 64 bits to this point.
// On 32-bit systems, the max alignment is 32-bit, and the
// overflow pointer will add another 32-bit field, and the struct
// will end with no padding.
// On 64-bit systems, the max alignment is 64-bit, and the
// overflow pointer will add another 64-bit field, and the struct
// will end with no padding.
// On nacl/amd64p32, however, the max alignment is 64-bit,
// but the overflow pointer will add only a 32-bit field,
// so if the struct needs 64-bit padding (because a key or value does)
// then it would end with an extra 32-bit padding field.
// Preempt that by emitting the padding here.
if int(t.Val().Align) > Widthptr || int(t.Key().Align) > Widthptr {
field = append(field, makefield("pad", Types[TUINTPTR]))
}
// If keys and values have no pointers, the map implementation
// can keep a list of overflow pointers on the side so that
// buckets can be marked as having no pointers.
// Arrange for the bucket to have no pointers by changing
// the type of the overflow field to uintptr in this case.
// See comment on hmap.overflow in ../../../../runtime/hashmap.go.
otyp := ptrto(bucket)
if !haspointers(t.Val()) && !haspointers(t.Key()) && t.Val().Width <= MAXVALSIZE && t.Key().Width <= MAXKEYSIZE {
otyp = Types[TUINTPTR]
}
ovf := makefield("overflow", otyp)
field = append(field, ovf)
// link up fields
bucket.Noalg = true
bucket.Local = t.Local
bucket.SetFields(field[:])
dowidth(bucket)
// Double-check that overflow field is final memory in struct,
// with no padding at end. See comment above.
if ovf.Offset != bucket.Width-int64(Widthptr) {
yyerror("bad math in mapbucket for %v", t)
}
t.MapType().Bucket = bucket
bucket.StructType().Map = t
return bucket
}
// Builds a type representing a Hmap structure for the given map type.
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
func hmap(t *Type) *Type {
if t.MapType().Hmap != nil {
return t.MapType().Hmap
}
bucket := mapbucket(t)
fields := []*Field{
makefield("count", Types[TINT]),
makefield("flags", Types[TUINT8]),
makefield("B", Types[TUINT8]),
makefield("noverflow", Types[TUINT16]),
makefield("hash0", Types[TUINT32]),
makefield("buckets", ptrto(bucket)),
makefield("oldbuckets", ptrto(bucket)),
makefield("nevacuate", Types[TUINTPTR]),
makefield("overflow", Types[TUNSAFEPTR]),
}
h := typ(TSTRUCT)
h.Noalg = true
h.Local = t.Local
h.SetFields(fields)
dowidth(h)
t.MapType().Hmap = h
h.StructType().Map = t
return h
}
func hiter(t *Type) *Type {
if t.MapType().Hiter != nil {
return t.MapType().Hiter
}
// build a struct:
// hiter {
// key *Key
// val *Value
// t *MapType
// h *Hmap
// buckets *Bucket
// bptr *Bucket
// overflow0 unsafe.Pointer
// overflow1 unsafe.Pointer
// startBucket uintptr
// stuff uintptr
// bucket uintptr
// checkBucket uintptr
// }
// must match ../../../../runtime/hashmap.go:hiter.
var field [12]*Field
field[0] = makefield("key", ptrto(t.Key()))
field[1] = makefield("val", ptrto(t.Val()))
field[2] = makefield("t", ptrto(Types[TUINT8]))
field[3] = makefield("h", ptrto(hmap(t)))
field[4] = makefield("buckets", ptrto(mapbucket(t)))
field[5] = makefield("bptr", ptrto(mapbucket(t)))
field[6] = makefield("overflow0", Types[TUNSAFEPTR])
field[7] = makefield("overflow1", Types[TUNSAFEPTR])
field[8] = makefield("startBucket", Types[TUINTPTR])
field[9] = makefield("stuff", Types[TUINTPTR]) // offset+wrapped+B+I
field[10] = makefield("bucket", Types[TUINTPTR])
field[11] = makefield("checkBucket", Types[TUINTPTR])
// build iterator struct holding the above fields
i := typ(TSTRUCT)
i.Noalg = true
i.SetFields(field[:])
dowidth(i)
if i.Width != int64(12*Widthptr) {
yyerror("hash_iter size not correct %d %d", i.Width, 12*Widthptr)
}
t.MapType().Hiter = i
i.StructType().Map = t
return i
}
// f is method type, with receiver.
// return function type, receiver as first argument (or not).
func methodfunc(f *Type, receiver *Type) *Type {
var in []*Node
if receiver != nil {
d := nod(ODCLFIELD, nil, nil)
d.Type = receiver
in = append(in, d)
}
var d *Node
for _, t := range f.Params().Fields().Slice() {
d = nod(ODCLFIELD, nil, nil)
d.Type = t.Type
d.Isddd = t.Isddd
in = append(in, d)
}
var out []*Node
for _, t := range f.Results().Fields().Slice() {
d = nod(ODCLFIELD, nil, nil)
d.Type = t.Type
out = append(out, d)
}
t := functype(nil, in, out)
if f.Nname() != nil {
// Link to name of original method function.
t.SetNname(f.Nname())
}
return t
}
// methods returns the methods of the non-interface type t, sorted by name.
// Generates stub functions as needed.
func methods(t *Type) []*Sig {
// method type
mt := methtype(t)
if mt == nil {
return nil
}
expandmeth(mt)
// type stored in interface word
it := t
if !isdirectiface(it) {
it = ptrto(t)
}
// make list of methods for t,
// generating code if necessary.
var ms []*Sig
for _, f := range mt.AllMethods().Slice() {
if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
Fatalf("non-method on %v method %v %v\n", mt, f.Sym, f)
}
if f.Type.Recv() == nil {
Fatalf("receiver with no type on %v method %v %v\n", mt, f.Sym, f)
}
if f.Nointerface {
continue
}
method := f.Sym
if method == nil {
continue
}
// get receiver type for this particular method.
// if pointer receiver but non-pointer t and
// this is not an embedded pointer inside a struct,
// method does not apply.
this := f.Type.Recv().Type
if this.IsPtr() && this.Elem() == t {
continue
}
if this.IsPtr() && !t.IsPtr() && f.Embedded != 2 && !isifacemethod(f.Type) {
continue
}
var sig Sig
ms = append(ms, &sig)
sig.name = method.Name
if !exportname(method.Name) {
if method.Pkg == nil {
Fatalf("methods: missing package")
}
sig.pkg = method.Pkg
}
sig.isym = methodsym(method, it, 1)
sig.tsym = methodsym(method, t, 0)
sig.type_ = methodfunc(f.Type, t)
sig.mtype = methodfunc(f.Type, nil)
if sig.isym.Flags&SymSiggen == 0 {
sig.isym.Flags |= SymSiggen
if !eqtype(this, it) || this.Width < Types[Tptr].Width {
compiling_wrappers = 1
genwrapper(it, f, sig.isym, 1)
compiling_wrappers = 0
}
}
if sig.tsym.Flags&SymSiggen == 0 {
sig.tsym.Flags |= SymSiggen
if !eqtype(this, t) {
compiling_wrappers = 1
genwrapper(t, f, sig.tsym, 0)
compiling_wrappers = 0
}
}
}
sort.Sort(byMethodNameAndPackagePath(ms))
return ms
}
// imethods returns the methods of the interface type t, sorted by name.
func imethods(t *Type) []*Sig {
var methods []*Sig
for _, f := range t.Fields().Slice() {
if f.Type.Etype != TFUNC || f.Sym == nil {
continue
}
method := f.Sym
var sig = Sig{
name: method.Name,
}
if !exportname(method.Name) {
if method.Pkg == nil {
Fatalf("imethods: missing package")
}
sig.pkg = method.Pkg
}
sig.mtype = f.Type
sig.offset = 0
sig.type_ = methodfunc(f.Type, nil)
if n := len(methods); n > 0 {
last := methods[n-1]
if !(siglt(last, &sig)) {
Fatalf("sigcmp vs sortinter %s %s", last.name, sig.name)
}
}
methods = append(methods, &sig)
// Compiler can only refer to wrappers for non-blank methods.
if isblanksym(method) {
continue
}
// NOTE(rsc): Perhaps an oversight that
// IfaceType.Method is not in the reflect data.
// Generate the method body, so that compiled
// code can refer to it.
isym := methodsym(method, t, 0)
if isym.Flags&SymSiggen == 0 {
isym.Flags |= SymSiggen
genwrapper(t, f, isym, 0)
}
}
return methods
}
func dimportpath(p *Pkg) {
if p.Pathsym != nil {
return
}
// If we are compiling the runtime package, there are two runtime packages around
// -- localpkg and Runtimepkg. We don't want to produce import path symbols for
// both of them, so just produce one for localpkg.
if myimportpath == "runtime" && p == Runtimepkg {
return
}
var str string
if p == localpkg {
// Note: myimportpath != "", or else dgopkgpath won't call dimportpath.
str = myimportpath
} else {
str = p.Path
}
s := obj.Linklookup(Ctxt, "type..importpath."+p.Prefix+".", 0)
ot := dnameData(s, 0, str, "", nil, false)
ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
p.Pathsym = s
}
func dgopkgpath(s *Sym, ot int, pkg *Pkg) int {
return dgopkgpathLSym(Linksym(s), ot, pkg)
}
func dgopkgpathLSym(s *obj.LSym, ot int, pkg *Pkg) int {
if pkg == nil {
return duintxxLSym(s, ot, 0, Widthptr)
}
if pkg == localpkg && myimportpath == "" {
// If we don't know the full import path of the package being compiled
// (i.e. -p was not passed on the compiler command line), emit a reference to
// type..importpath.""., which the linker will rewrite using the correct import path.
// Every package that imports this one directly defines the symbol.
// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
ns := obj.Linklookup(Ctxt, `type..importpath."".`, 0)
return dsymptrLSym(s, ot, ns, 0)
}
dimportpath(pkg)
return dsymptrLSym(s, ot, pkg.Pathsym, 0)
}
// dgopkgpathOffLSym writes an offset relocation in s at offset ot to the pkg path symbol.
func dgopkgpathOffLSym(s *obj.LSym, ot int, pkg *Pkg) int {
if pkg == nil {
return duintxxLSym(s, ot, 0, 4)
}
if pkg == localpkg && myimportpath == "" {
// If we don't know the full import path of the package being compiled
// (i.e. -p was not passed on the compiler command line), emit a reference to
// type..importpath.""., which the linker will rewrite using the correct import path.
// Every package that imports this one directly defines the symbol.
// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
ns := obj.Linklookup(Ctxt, `type..importpath."".`, 0)
return dsymptrOffLSym(s, ot, ns, 0)
}
dimportpath(pkg)
return dsymptrOffLSym(s, ot, pkg.Pathsym, 0)
}
// isExportedField reports whether a struct field is exported.
// It also returns the package to use for PkgPath for an unexported field.
func isExportedField(ft *Field) (bool, *Pkg) {
if ft.Sym != nil && ft.Embedded == 0 {
return exportname(ft.Sym.Name), ft.Sym.Pkg
} else {
if ft.Type.Sym != nil &&
(ft.Type.Sym.Pkg == builtinpkg || !exportname(ft.Type.Sym.Name)) {
return false, ft.Type.Sym.Pkg
} else {
return true, nil
}
}
}
// dnameField dumps a reflect.name for a struct field.
func dnameField(s *Sym, ot int, spkg *Pkg, ft *Field) int {
var name string
if ft.Sym != nil && ft.Embedded == 0 {
name = ft.Sym.Name
}
isExported, fpkg := isExportedField(ft)
if isExported || fpkg == spkg {
fpkg = nil
}
nsym := dname(name, ft.Note, fpkg, isExported)
return dsymptrLSym(Linksym(s), ot, nsym, 0)
}
// dnameData writes the contents of a reflect.name into s at offset ot.
func dnameData(s *obj.LSym, ot int, name, tag string, pkg *Pkg, exported bool) int {
if len(name) > 1<<16-1 {
Fatalf("name too long: %s", name)
}
if len(tag) > 1<<16-1 {
Fatalf("tag too long: %s", tag)
}
// Encode name and tag. See reflect/type.go for details.
var bits byte
l := 1 + 2 + len(name)
if exported {
bits |= 1 << 0
}
if len(tag) > 0 {
l += 2 + len(tag)
bits |= 1 << 1
}
if pkg != nil {
bits |= 1 << 2
}
b := make([]byte, l)
b[0] = bits
b[1] = uint8(len(name) >> 8)
b[2] = uint8(len(name))
copy(b[3:], name)
if len(tag) > 0 {
tb := b[3+len(name):]
tb[0] = uint8(len(tag) >> 8)
tb[1] = uint8(len(tag))
copy(tb[2:], tag)
}
ot = int(s.WriteBytes(Ctxt, int64(ot), b))
if pkg != nil {
ot = dgopkgpathOffLSym(s, ot, pkg)
}
return ot
}
var dnameCount int
// dname creates a reflect.name for a struct field or method.
func dname(name, tag string, pkg *Pkg, exported bool) *obj.LSym {
// Write out data as "type.." to signal two things to the
// linker, first that when dynamically linking, the symbol
// should be moved to a relro section, and second that the
// contents should not be decoded as a type.
sname := "type..namedata."
if pkg == nil {
// In the common case, share data with other packages.
if name == "" {
if exported {
sname += "-noname-exported." + tag
} else {
sname += "-noname-unexported." + tag
}
} else {
sname += name + "." + tag
}
} else {
sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount)
dnameCount++
}
s := obj.Linklookup(Ctxt, sname, 0)
if len(s.P) > 0 {
return s
}
ot := dnameData(s, 0, name, tag, pkg, exported)
ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
return s
}
// dextratype dumps the fields of a runtime.uncommontype.
// dataAdd is the offset in bytes after the header where the
// backing array of the []method field is written (by dextratypeData).
func dextratype(s *Sym, ot int, t *Type, dataAdd int) int {
m := methods(t)
if t.Sym == nil && len(m) == 0 {
return ot
}
noff := int(Rnd(int64(ot), int64(Widthptr)))
if noff != ot {
Fatalf("unexpected alignment in dextratype for %v", t)
}
for _, a := range m {
dtypesym(a.type_)
}
ot = dgopkgpathOffLSym(Linksym(s), ot, typePkg(t))
dataAdd += uncommonSize(t)
mcount := len(m)
if mcount != int(uint16(mcount)) {
Fatalf("too many methods on %v: %d", t, mcount)
}
if dataAdd != int(uint32(dataAdd)) {
Fatalf("methods are too far away on %v: %d", t, dataAdd)
}
ot = duint16(s, ot, uint16(mcount))
ot = duint16(s, ot, 0)
ot = duint32(s, ot, uint32(dataAdd))
ot = duint32(s, ot, 0)
return ot
}
func typePkg(t *Type) *Pkg {
tsym := t.Sym
if tsym == nil {
switch t.Etype {
case TARRAY, TSLICE, TPTR32, TPTR64, TCHAN:
if t.Elem() != nil {
tsym = t.Elem().Sym
}
}
}
if tsym != nil && t != Types[t.Etype] && t != errortype {
return tsym.Pkg
}
return nil
}
// dextratypeData dumps the backing array for the []method field of
// runtime.uncommontype.
func dextratypeData(s *Sym, ot int, t *Type) int {
lsym := Linksym(s)
for _, a := range methods(t) {
// ../../../../runtime/type.go:/method
exported := exportname(a.name)
var pkg *Pkg
if !exported && a.pkg != typePkg(t) {
pkg = a.pkg
}
nsym := dname(a.name, "", pkg, exported)
ot = dsymptrOffLSym(lsym, ot, nsym, 0)
ot = dmethodptrOffLSym(lsym, ot, Linksym(dtypesym(a.mtype)))
ot = dmethodptrOffLSym(lsym, ot, Linksym(a.isym))
ot = dmethodptrOffLSym(lsym, ot, Linksym(a.tsym))
}
return ot
}
func dmethodptrOffLSym(s *obj.LSym, ot int, x *obj.LSym) int {
duintxxLSym(s, ot, 0, 4)
r := obj.Addrel(s)
r.Off = int32(ot)
r.Siz = 4
r.Sym = x
r.Type = obj.R_METHODOFF
return ot + 4
}
var kinds = []int{
TINT: obj.KindInt,
TUINT: obj.KindUint,
TINT8: obj.KindInt8,
TUINT8: obj.KindUint8,
TINT16: obj.KindInt16,
TUINT16: obj.KindUint16,
TINT32: obj.KindInt32,
TUINT32: obj.KindUint32,
TINT64: obj.KindInt64,
TUINT64: obj.KindUint64,
TUINTPTR: obj.KindUintptr,
TFLOAT32: obj.KindFloat32,
TFLOAT64: obj.KindFloat64,
TBOOL: obj.KindBool,
TSTRING: obj.KindString,
TPTR32: obj.KindPtr,
TPTR64: obj.KindPtr,
TSTRUCT: obj.KindStruct,
TINTER: obj.KindInterface,
TCHAN: obj.KindChan,
TMAP: obj.KindMap,
TARRAY: obj.KindArray,
TSLICE: obj.KindSlice,
TFUNC: obj.KindFunc,
TCOMPLEX64: obj.KindComplex64,
TCOMPLEX128: obj.KindComplex128,
TUNSAFEPTR: obj.KindUnsafePointer,
}
func haspointers(t *Type) bool {
switch t.Etype {
case TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64,
TUINT64, TUINTPTR, TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, TBOOL:
return false
case TSLICE:
return true
case TARRAY:
at := t.Extra.(*ArrayType)
if at.Haspointers != 0 {
return at.Haspointers-1 != 0
}
ret := false
if t.NumElem() != 0 { // non-empty array
ret = haspointers(t.Elem())
}
at.Haspointers = 1 + uint8(obj.Bool2int(ret))
return ret
case TSTRUCT:
st := t.StructType()
if st.Haspointers != 0 {
return st.Haspointers-1 != 0
}
ret := false
for _, t1 := range t.Fields().Slice() {
if haspointers(t1.Type) {
ret = true
break
}
}
st.Haspointers = 1 + uint8(obj.Bool2int(ret))
return ret
}
return true
}
// typeptrdata returns the length in bytes of the prefix of t
// containing pointer data. Anything after this offset is scalar data.
func typeptrdata(t *Type) int64 {
if !haspointers(t) {
return 0
}
switch t.Etype {
case TPTR32,
TPTR64,
TUNSAFEPTR,
TFUNC,
TCHAN,
TMAP:
return int64(Widthptr)
case TSTRING:
// struct { byte *str; intgo len; }
return int64(Widthptr)
case TINTER:
// struct { Itab *tab; void *data; } or
// struct { Type *type; void *data; }
return 2 * int64(Widthptr)
case TSLICE:
// struct { byte *array; uintgo len; uintgo cap; }
return int64(Widthptr)
case TARRAY:
// haspointers already eliminated t.NumElem() == 0.
return (t.NumElem()-1)*t.Elem().Width + typeptrdata(t.Elem())
case TSTRUCT:
// Find the last field that has pointers.
var lastPtrField *Field
for _, t1 := range t.Fields().Slice() {
if haspointers(t1.Type) {
lastPtrField = t1
}
}
return lastPtrField.Offset + typeptrdata(lastPtrField.Type)
default:
Fatalf("typeptrdata: unexpected type, %v", t)
return 0
}
}
// tflag is documented in reflect/type.go.
//
// tflag values must be kept in sync with copies in:
// cmd/compile/internal/gc/reflect.go
// cmd/link/internal/ld/decodesym.go
// reflect/type.go
// runtime/type.go
const (
tflagUncommon = 1 << 0
tflagExtraStar = 1 << 1
tflagNamed = 1 << 2
)
var dcommontype_algarray *Sym
// dcommontype dumps the contents of a reflect.rtype (runtime._type).
func dcommontype(s *Sym, ot int, t *Type) int {
if ot != 0 {
Fatalf("dcommontype %d", ot)
}
sizeofAlg := 2 * Widthptr
if dcommontype_algarray == nil {
dcommontype_algarray = Pkglookup("algarray", Runtimepkg)
}
dowidth(t)
alg := algtype(t)
var algsym *Sym
if alg == ASPECIAL || alg == AMEM {
algsym = dalgsym(t)
}
sptrWeak := true
var sptr *Sym
if !t.IsPtr() || t.ptrTo != nil {
tptr := ptrto(t)
if t.Sym != nil || methods(tptr) != nil {
sptrWeak = false
}
sptr = dtypesym(tptr)
}
gcsym, useGCProg, ptrdata := dgcsym(t)
// ../../../../reflect/type.go:/^type.rtype
// actual type structure
// type rtype struct {
// size uintptr
// ptrdata uintptr
// hash uint32
// tflag tflag
// align uint8
// fieldAlign uint8
// kind uint8
// alg *typeAlg
// gcdata *byte
// str nameOff
// ptrToThis typeOff
// }
ot = duintptr(s, ot, uint64(t.Width))
ot = duintptr(s, ot, uint64(ptrdata))
ot = duint32(s, ot, typehash(t))
var tflag uint8
if uncommonSize(t) != 0 {
tflag |= tflagUncommon
}
if t.Sym != nil && t.Sym.Name != "" {
tflag |= tflagNamed
}
exported := false
p := t.tconv(FmtLeft | FmtUnsigned)
// If we're writing out type T,
// we are very likely to write out type *T as well.
// Use the string "*T"[1:] for "T", so that the two
// share storage. This is a cheap way to reduce the
// amount of space taken up by reflect strings.
if !strings.HasPrefix(p, "*") {
p = "*" + p
tflag |= tflagExtraStar
if t.Sym != nil {
exported = exportname(t.Sym.Name)
}
} else {
if t.Elem() != nil && t.Elem().Sym != nil {
exported = exportname(t.Elem().Sym.Name)
}
}
ot = duint8(s, ot, tflag)
// runtime (and common sense) expects alignment to be a power of two.
i := int(t.Align)
if i == 0 {
i = 1
}
if i&(i-1) != 0 {
Fatalf("invalid alignment %d for %v", t.Align, t)
}
ot = duint8(s, ot, t.Align) // align
ot = duint8(s, ot, t.Align) // fieldAlign
i = kinds[t.Etype]
if !haspointers(t) {
i |= obj.KindNoPointers
}
if isdirectiface(t) {
i |= obj.KindDirectIface
}
if useGCProg {
i |= obj.KindGCProg
}
ot = duint8(s, ot, uint8(i)) // kind
if algsym == nil {
ot = dsymptr(s, ot, dcommontype_algarray, int(alg)*sizeofAlg)
} else {
ot = dsymptr(s, ot, algsym, 0)
}
ot = dsymptr(s, ot, gcsym, 0) // gcdata
nsym := dname(p, "", nil, exported)
ot = dsymptrOffLSym(Linksym(s), ot, nsym, 0) // str
// ptrToThis
if sptr == nil {
ot = duint32(s, ot, 0)
} else if sptrWeak {
ot = dsymptrWeakOffLSym(Linksym(s), ot, Linksym(sptr))
} else {
ot = dsymptrOffLSym(Linksym(s), ot, Linksym(sptr), 0)
}
return ot
}
func typesym(t *Type) *Sym {
name := t.tconv(FmtLeft)
// Use a separate symbol name for Noalg types for #17752.
if a, bad := algtype1(t); a == ANOEQ && bad.Noalg {
name = "noalg." + name
}
return Pkglookup(name, typepkg)
}
// tracksym returns the symbol for tracking use of field/method f, assumed
// to be a member of struct/interface type t.
func tracksym(t *Type, f *Field) *Sym {
return Pkglookup(t.tconv(FmtLeft)+"."+f.Sym.Name, trackpkg)
}
func typesymprefix(prefix string, t *Type) *Sym {
p := prefix + "." + t.tconv(FmtLeft)
s := Pkglookup(p, typepkg)
//print("algsym: %s -> %+S\n", p, s);
return s
}
func typenamesym(t *Type) *Sym {
if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
Fatalf("typename %v", t)
}
s := typesym(t)
if s.Def == nil {
n := newname(s)
n.Type = Types[TUINT8]
n.Class = PEXTERN
n.Typecheck = 1
s.Def = n
signatlist = append(signatlist, typenod(t))
}
return s.Def.Sym
}
func typename(t *Type) *Node {
s := typenamesym(t)
n := nod(OADDR, s.Def, nil)
n.Type = ptrto(s.Def.Type)
n.Addable = true
n.Ullman = 2
n.Typecheck = 1
return n
}
func itabname(t, itype *Type) *Node {
if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() || !itype.IsInterface() || itype.IsEmptyInterface() {
Fatalf("itabname(%v, %v)", t, itype)
}
s := Pkglookup(t.tconv(FmtLeft)+","+itype.tconv(FmtLeft), itabpkg)
if s.Def == nil {
n := newname(s)
n.Type = Types[TUINT8]
n.Class = PEXTERN
n.Typecheck = 1
s.Def = n
itabs = append(itabs, itabEntry{t: t, itype: itype, sym: s})
}
n := nod(OADDR, s.Def, nil)
n.Type = ptrto(s.Def.Type)
n.Addable = true
n.Ullman = 2
n.Typecheck = 1
return n
}
// isreflexive reports whether t has a reflexive equality operator.
// That is, if x==x for all x of type t.
func isreflexive(t *Type) bool {
switch t.Etype {
case TBOOL,
TINT,
TUINT,
TINT8,
TUINT8,
TINT16,
TUINT16,
TINT32,
TUINT32,
TINT64,
TUINT64,
TUINTPTR,
TPTR32,
TPTR64,
TUNSAFEPTR,
TSTRING,
TCHAN:
return true
case TFLOAT32,
TFLOAT64,
TCOMPLEX64,
TCOMPLEX128,
TINTER:
return false
case TARRAY:
return isreflexive(t.Elem())
case TSTRUCT:
for _, t1 := range t.Fields().Slice() {
if !isreflexive(t1.Type) {
return false
}
}
return true
default:
Fatalf("bad type for map key: %v", t)
return false
}
}
// needkeyupdate reports whether map updates with t as a key
// need the key to be updated.
func needkeyupdate(t *Type) bool {
switch t.Etype {
case TBOOL,
TINT,
TUINT,
TINT8,
TUINT8,
TINT16,
TUINT16,
TINT32,
TUINT32,
TINT64,
TUINT64,
TUINTPTR,
TPTR32,
TPTR64,
TUNSAFEPTR,
TCHAN:
return false
case TFLOAT32, // floats can be +0/-0
TFLOAT64,
TCOMPLEX64,
TCOMPLEX128,
TINTER,
TSTRING: // strings might have smaller backing stores
return true
case TARRAY:
return needkeyupdate(t.Elem())
case TSTRUCT:
for _, t1 := range t.Fields().Slice() {
if needkeyupdate(t1.Type) {
return true
}
}
return false
default:
Fatalf("bad type for map key: %v", t)
return true
}
}
func dtypesym(t *Type) *Sym {
// Replace byte, rune aliases with real type.
// They've been separate internally to make error messages
// better, but we have to merge them in the reflect tables.
if t == bytetype || t == runetype {
t = Types[t.Etype]
}
if t.IsUntyped() {
Fatalf("dtypesym %v", t)
}
s := typesym(t)
if s.Flags&SymSiggen != 0 {
return s
}
s.Flags |= SymSiggen
// special case (look for runtime below):
// when compiling package runtime,
// emit the type structures for int, float, etc.
tbase := t
if t.IsPtr() && t.Sym == nil && t.Elem().Sym != nil {
tbase = t.Elem()
}
dupok := 0
if tbase.Sym == nil {
dupok = obj.DUPOK
}
if myimportpath == "runtime" && (tbase == Types[tbase.Etype] || tbase == bytetype || tbase == runetype || tbase == errortype) { // int, float, etc
goto ok
}
// named types from other files are defined only by those files
if tbase.Sym != nil && !tbase.Local {
return s
}
if isforw[tbase.Etype] {
return s
}
ok:
ot := 0
switch t.Etype {
default:
ot = dcommontype(s, ot, t)
ot = dextratype(s, ot, t, 0)
case TARRAY:
// ../../../../runtime/type.go:/arrayType
s1 := dtypesym(t.Elem())
t2 := typSlice(t.Elem())
s2 := dtypesym(t2)
ot = dcommontype(s, ot, t)
ot = dsymptr(s, ot, s1, 0)
ot = dsymptr(s, ot, s2, 0)
ot = duintptr(s, ot, uint64(t.NumElem()))
ot = dextratype(s, ot, t, 0)
case TSLICE:
// ../../../../runtime/type.go:/sliceType
s1 := dtypesym(t.Elem())
ot = dcommontype(s, ot, t)
ot = dsymptr(s, ot, s1, 0)
ot = dextratype(s, ot, t, 0)
case TCHAN:
// ../../../../runtime/type.go:/chanType
s1 := dtypesym(t.Elem())
ot = dcommontype(s, ot, t)
ot = dsymptr(s, ot, s1, 0)
ot = duintptr(s, ot, uint64(t.ChanDir()))
ot = dextratype(s, ot, t, 0)
case TFUNC:
for _, t1 := range t.Recvs().Fields().Slice() {
dtypesym(t1.Type)
}
isddd := false
for _, t1 := range t.Params().Fields().Slice() {
isddd = t1.Isddd
dtypesym(t1.Type)
}
for _, t1 := range t.Results().Fields().Slice() {
dtypesym(t1.Type)
}
ot = dcommontype(s, ot, t)
inCount := t.Recvs().NumFields() + t.Params().NumFields()
outCount := t.Results().NumFields()
if isddd {
outCount |= 1 << 15
}
ot = duint16(s, ot, uint16(inCount))
ot = duint16(s, ot, uint16(outCount))
if Widthptr == 8 {
ot += 4 // align for *rtype
}
dataAdd := (inCount + t.Results().NumFields()) * Widthptr
ot = dextratype(s, ot, t, dataAdd)
// Array of rtype pointers follows funcType.
for _, t1 := range t.Recvs().Fields().Slice() {
ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
}
for _, t1 := range t.Params().Fields().Slice() {
ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
}
for _, t1 := range t.Results().Fields().Slice() {
ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
}
case TINTER:
m := imethods(t)
n := len(m)
for _, a := range m {
dtypesym(a.type_)
}
// ../../../../runtime/type.go:/interfaceType
ot = dcommontype(s, ot, t)
var tpkg *Pkg
if t.Sym != nil && t != Types[t.Etype] && t != errortype {
tpkg = t.Sym.Pkg
}
ot = dgopkgpath(s, ot, tpkg)
ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint+uncommonSize(t))
ot = duintxx(s, ot, uint64(n), Widthint)
ot = duintxx(s, ot, uint64(n), Widthint)
dataAdd := imethodSize() * n
ot = dextratype(s, ot, t, dataAdd)
lsym := Linksym(s)
for _, a := range m {
// ../../../../runtime/type.go:/imethod
exported := exportname(a.name)
var pkg *Pkg
if !exported && a.pkg != tpkg {
pkg = a.pkg
}
nsym := dname(a.name, "", pkg, exported)
ot = dsymptrOffLSym(lsym, ot, nsym, 0)
ot = dsymptrOffLSym(lsym, ot, Linksym(dtypesym(a.type_)), 0)
}
// ../../../../runtime/type.go:/mapType
case TMAP:
s1 := dtypesym(t.Key())
s2 := dtypesym(t.Val())
s3 := dtypesym(mapbucket(t))
s4 := dtypesym(hmap(t))
ot = dcommontype(s, ot, t)
ot = dsymptr(s, ot, s1, 0)
ot = dsymptr(s, ot, s2, 0)
ot = dsymptr(s, ot, s3, 0)
ot = dsymptr(s, ot, s4, 0)
if t.Key().Width > MAXKEYSIZE {
ot = duint8(s, ot, uint8(Widthptr))
ot = duint8(s, ot, 1) // indirect
} else {
ot = duint8(s, ot, uint8(t.Key().Width))
ot = duint8(s, ot, 0) // not indirect
}
if t.Val().Width > MAXVALSIZE {
ot = duint8(s, ot, uint8(Widthptr))
ot = duint8(s, ot, 1) // indirect
} else {
ot = duint8(s, ot, uint8(t.Val().Width))
ot = duint8(s, ot, 0) // not indirect
}
ot = duint16(s, ot, uint16(mapbucket(t).Width))
ot = duint8(s, ot, uint8(obj.Bool2int(isreflexive(t.Key()))))
ot = duint8(s, ot, uint8(obj.Bool2int(needkeyupdate(t.Key()))))
ot = dextratype(s, ot, t, 0)
case TPTR32, TPTR64:
if t.Elem().Etype == TANY {
// ../../../../runtime/type.go:/UnsafePointerType
ot = dcommontype(s, ot, t)
ot = dextratype(s, ot, t, 0)
break
}
// ../../../../runtime/type.go:/ptrType
s1 := dtypesym(t.Elem())
ot = dcommontype(s, ot, t)
ot = dsymptr(s, ot, s1, 0)
ot = dextratype(s, ot, t, 0)
// ../../../../runtime/type.go:/structType
// for security, only the exported fields.
case TSTRUCT:
n := 0
for _, t1 := range t.Fields().Slice() {
dtypesym(t1.Type)
n++
}
ot = dcommontype(s, ot, t)
pkg := localpkg
if t.Sym != nil {
pkg = t.Sym.Pkg
} else {
// Unnamed type. Grab the package from the first field, if any.
for _, f := range t.Fields().Slice() {
if f.Embedded != 0 {
continue
}
pkg = f.Sym.Pkg
break
}
}
ot = dgopkgpath(s, ot, pkg)
ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint+uncommonSize(t))
ot = duintxx(s, ot, uint64(n), Widthint)
ot = duintxx(s, ot, uint64(n), Widthint)
dataAdd := n * structfieldSize()
ot = dextratype(s, ot, t, dataAdd)
for _, f := range t.Fields().Slice() {
// ../../../../runtime/type.go:/structField
ot = dnameField(s, ot, pkg, f)
ot = dsymptr(s, ot, dtypesym(f.Type), 0)
ot = duintptr(s, ot, uint64(f.Offset))
}
}
ot = dextratypeData(s, ot, t)
ggloblsym(s, int32(ot), int16(dupok|obj.RODATA))
// The linker will leave a table of all the typelinks for
// types in the binary, so the runtime can find them.
//
// When buildmode=shared, all types are in typelinks so the
// runtime can deduplicate type pointers.
keep := Ctxt.Flag_dynlink
if !keep && t.Sym == nil {
// For an unnamed type, we only need the link if the type can
// be created at run time by reflect.PtrTo and similar
// functions. If the type exists in the program, those
// functions must return the existing type structure rather
// than creating a new one.
switch t.Etype {
case TPTR32, TPTR64, TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRUCT:
keep = true
}
}
s.Lsym.Set(obj.AttrMakeTypelink, keep)
return s
}
func dumptypestructs() {
// copy types from externdcl list to signatlist
for _, n := range externdcl {
if n.Op != OTYPE {
continue
}
signatlist = append(signatlist, n)
}
// Process signatlist. This can't use range, as entries are
// added to the list while it is being processed.
for i := 0; i < len(signatlist); i++ {
n := signatlist[i]
if n.Op != OTYPE {
continue
}
t := n.Type
dtypesym(t)
if t.Sym != nil {
dtypesym(ptrto(t))
}
}
// process itabs
for _, i := range itabs {
// dump empty itab symbol into i.sym
// type itab struct {
// inter *interfacetype
// _type *_type
// link *itab
// bad int32
// unused int32
// fun [1]uintptr // variable sized
// }
o := dsymptr(i.sym, 0, dtypesym(i.itype), 0)
o = dsymptr(i.sym, o, dtypesym(i.t), 0)
o += Widthptr + 8 // skip link/bad/inhash fields
o += len(imethods(i.itype)) * Widthptr // skip fun method pointers
// at runtime the itab will contain pointers to types, other itabs and
// method functions. None are allocated on heap, so we can use obj.NOPTR.
ggloblsym(i.sym, int32(o), int16(obj.DUPOK|obj.NOPTR))
ilink := Pkglookup(i.t.tconv(FmtLeft)+","+i.itype.tconv(FmtLeft), itablinkpkg)
dsymptr(ilink, 0, i.sym, 0)
ggloblsym(ilink, int32(Widthptr), int16(obj.DUPOK|obj.RODATA))
}
// process ptabs
if localpkg.Name == "main" && len(ptabs) > 0 {
ot := 0
s := obj.Linklookup(Ctxt, "go.plugin.tabs", 0)
for _, p := range ptabs {
// Dump ptab symbol into go.pluginsym package.
//
// type ptab struct {
// name nameOff
// typ typeOff // pointer to symbol
// }
nsym := dname(p.s.Name, "", nil, true)
ot = dsymptrOffLSym(s, ot, nsym, 0)
ot = dsymptrOffLSym(s, ot, Linksym(dtypesym(p.t)), 0)
}
ggloblLSym(s, int32(ot), int16(obj.RODATA))
ot = 0
s = obj.Linklookup(Ctxt, "go.plugin.exports", 0)
for _, p := range ptabs {
ot = dsymptrLSym(s, ot, Linksym(p.s), 0)
}
ggloblLSym(s, int32(ot), int16(obj.RODATA))
}
// generate import strings for imported packages
if forceObjFileStability {
// Sorting the packages is not necessary but to compare binaries created
// using textual and binary format we sort by path to reduce differences.
sort.Sort(pkgByPath(pkgs))
}
for _, p := range pkgs {
if p.Direct {
dimportpath(p)
}
}
// do basic types if compiling package runtime.
// they have to be in at least one package,
// and runtime is always loaded implicitly,
// so this is as good as any.
// another possible choice would be package main,
// but using runtime means fewer copies in .6 files.
if myimportpath == "runtime" {
for i := EType(1); i <= TBOOL; i++ {
dtypesym(ptrto(Types[i]))
}
dtypesym(ptrto(Types[TSTRING]))
dtypesym(ptrto(Types[TUNSAFEPTR]))
// emit type structs for error and func(error) string.
// The latter is the type of an auto-generated wrapper.
dtypesym(ptrto(errortype))
dtypesym(functype(nil, []*Node{nod(ODCLFIELD, nil, typenod(errortype))}, []*Node{nod(ODCLFIELD, nil, typenod(Types[TSTRING]))}))
// add paths for runtime and main, which 6l imports implicitly.
dimportpath(Runtimepkg)
if flag_race {
dimportpath(racepkg)
}
if flag_msan {
dimportpath(msanpkg)
}
dimportpath(mkpkg("main"))
}
}
type pkgByPath []*Pkg
func (a pkgByPath) Len() int { return len(a) }
func (a pkgByPath) Less(i, j int) bool { return a[i].Path < a[j].Path }
func (a pkgByPath) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func dalgsym(t *Type) *Sym {
var s *Sym
var hashfunc *Sym
var eqfunc *Sym
// dalgsym is only called for a type that needs an algorithm table,
// which implies that the type is comparable (or else it would use ANOEQ).
if algtype(t) == AMEM {
// we use one algorithm table for all AMEM types of a given size
p := fmt.Sprintf(".alg%d", t.Width)
s = Pkglookup(p, typepkg)
if s.Flags&SymAlgGen != 0 {
return s
}
s.Flags |= SymAlgGen
// make hash closure
p = fmt.Sprintf(".hashfunc%d", t.Width)
hashfunc = Pkglookup(p, typepkg)
ot := 0
ot = dsymptr(hashfunc, ot, Pkglookup("memhash_varlen", Runtimepkg), 0)
ot = duintxx(hashfunc, ot, uint64(t.Width), Widthptr) // size encoded in closure
ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)
// make equality closure
p = fmt.Sprintf(".eqfunc%d", t.Width)
eqfunc = Pkglookup(p, typepkg)
ot = 0
ot = dsymptr(eqfunc, ot, Pkglookup("memequal_varlen", Runtimepkg), 0)
ot = duintxx(eqfunc, ot, uint64(t.Width), Widthptr)
ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
} else {
// generate an alg table specific to this type
s = typesymprefix(".alg", t)
hash := typesymprefix(".hash", t)
eq := typesymprefix(".eq", t)
hashfunc = typesymprefix(".hashfunc", t)
eqfunc = typesymprefix(".eqfunc", t)
genhash(hash, t)
geneq(eq, t)
// make Go funcs (closures) for calling hash and equal from Go
dsymptr(hashfunc, 0, hash, 0)
ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
dsymptr(eqfunc, 0, eq, 0)
ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
}
// ../../../../runtime/alg.go:/typeAlg
ot := 0
ot = dsymptr(s, ot, hashfunc, 0)
ot = dsymptr(s, ot, eqfunc, 0)
ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
return s
}
// maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
// which holds 1-bit entries describing where pointers are in a given type.
// 16 bytes is enough to describe 128 pointer-sized words, 512 or 1024 bytes
// depending on the system. Above this length, the GC information is
// recorded as a GC program, which can express repetition compactly.
// In either form, the information is used by the runtime to initialize the
// heap bitmap, and for large types (like 128 or more words), they are
// roughly the same speed. GC programs are never much larger and often
// more compact. (If large arrays are involved, they can be arbitrarily more
// compact.)
//
// The cutoff must be large enough that any allocation large enough to
// use a GC program is large enough that it does not share heap bitmap
// bytes with any other objects, allowing the GC program execution to
// assume an aligned start and not use atomic operations. In the current
// runtime, this means all malloc size classes larger than the cutoff must
// be multiples of four words. On 32-bit systems that's 16 bytes, and
// all size classes >= 16 bytes are 16-byte aligned, so no real constraint.
// On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed
// for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated
// is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes
// must be >= 4.
//
// We used to use 16 because the GC programs do have some constant overhead
// to get started, and processing 128 pointers seems to be enough to
// amortize that overhead well.
//
// To make sure that the runtime's chansend can call typeBitsBulkBarrier,
// we raised the limit to 2048, so that even 32-bit systems are guaranteed to
// use bitmaps for objects up to 64 kB in size.
//
// Also known to reflect/type.go.
//
const maxPtrmaskBytes = 2048
// dgcsym emits and returns a data symbol containing GC information for type t,
// along with a boolean reporting whether the UseGCProg bit should be set in
// the type kind, and the ptrdata field to record in the reflect type information.
func dgcsym(t *Type) (sym *Sym, useGCProg bool, ptrdata int64) {
ptrdata = typeptrdata(t)
if ptrdata/int64(Widthptr) <= maxPtrmaskBytes*8 {
sym = dgcptrmask(t)
return
}
useGCProg = true
sym, ptrdata = dgcprog(t)
return
}
// dgcptrmask emits and returns the symbol containing a pointer mask for type t.
func dgcptrmask(t *Type) *Sym {
ptrmask := make([]byte, (typeptrdata(t)/int64(Widthptr)+7)/8)
fillptrmask(t, ptrmask)
p := fmt.Sprintf("gcbits.%x", ptrmask)
sym := Pkglookup(p, Runtimepkg)
if sym.Flags&SymUniq == 0 {
sym.Flags |= SymUniq
for i, x := range ptrmask {
duint8(sym, i, x)
}
ggloblsym(sym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
}
return sym
}
// fillptrmask fills in ptrmask with 1s corresponding to the
// word offsets in t that hold pointers.
// ptrmask is assumed to fit at least typeptrdata(t)/Widthptr bits.
func fillptrmask(t *Type, ptrmask []byte) {
for i := range ptrmask {
ptrmask[i] = 0
}
if !haspointers(t) {
return
}
vec := bvalloc(8 * int32(len(ptrmask)))
xoffset := int64(0)
onebitwalktype1(t, &xoffset, vec)
nptr := typeptrdata(t) / int64(Widthptr)
for i := int64(0); i < nptr; i++ {
if vec.Get(int32(i)) {
ptrmask[i/8] |= 1 << (uint(i) % 8)
}
}
}
// dgcprog emits and returns the symbol containing a GC program for type t
// along with the size of the data described by the program (in the range [typeptrdata(t), t.Width]).
// In practice, the size is typeptrdata(t) except for non-trivial arrays.
// For non-trivial arrays, the program describes the full t.Width size.
func dgcprog(t *Type) (*Sym, int64) {
dowidth(t)
if t.Width == BADWIDTH {
Fatalf("dgcprog: %v badwidth", t)
}
sym := typesymprefix(".gcprog", t)
var p GCProg
p.init(sym)
p.emit(t, 0)
offset := p.w.BitIndex() * int64(Widthptr)
p.end()
if ptrdata := typeptrdata(t); offset < ptrdata || offset > t.Width {
Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Width)
}
return sym, offset
}
type GCProg struct {
sym *Sym
symoff int
w gcprog.Writer
}
var Debug_gcprog int // set by -d gcprog
func (p *GCProg) init(sym *Sym) {
p.sym = sym
p.symoff = 4 // first 4 bytes hold program length
p.w.Init(p.writeByte)
if Debug_gcprog > 0 {
fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", sym)
p.w.Debug(os.Stderr)
}
}
func (p *GCProg) writeByte(x byte) {
p.symoff = duint8(p.sym, p.symoff, x)
}
func (p *GCProg) end() {
p.w.End()
duint32(p.sym, 0, uint32(p.symoff-4))
ggloblsym(p.sym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
if Debug_gcprog > 0 {
fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.sym)
}
}
func (p *GCProg) emit(t *Type, offset int64) {
dowidth(t)
if !haspointers(t) {
return
}
if t.Width == int64(Widthptr) {
p.w.Ptr(offset / int64(Widthptr))
return
}
switch t.Etype {
default:
Fatalf("GCProg.emit: unexpected type %v", t)
case TSTRING:
p.w.Ptr(offset / int64(Widthptr))
case TINTER:
p.w.Ptr(offset / int64(Widthptr))
p.w.Ptr(offset/int64(Widthptr) + 1)
case TSLICE:
p.w.Ptr(offset / int64(Widthptr))
case TARRAY:
if t.NumElem() == 0 {
// should have been handled by haspointers check above
Fatalf("GCProg.emit: empty array")
}
// Flatten array-of-array-of-array to just a big array by multiplying counts.
count := t.NumElem()
elem := t.Elem()
for elem.IsArray() {
count *= elem.NumElem()
elem = elem.Elem()
}
if !p.w.ShouldRepeat(elem.Width/int64(Widthptr), count) {
// Cheaper to just emit the bits.
for i := int64(0); i < count; i++ {
p.emit(elem, offset+i*elem.Width)
}
return
}
p.emit(elem, offset)
p.w.ZeroUntil((offset + elem.Width) / int64(Widthptr))
p.w.Repeat(elem.Width/int64(Widthptr), count-1)
case TSTRUCT:
for _, t1 := range t.Fields().Slice() {
p.emit(t1.Type, offset+t1.Offset)
}
}
}
// zeroaddr returns the address of a symbol with at least
// size bytes of zeros.
func zeroaddr(size int64) *Node {
if size >= 1<<31 {
Fatalf("map value too big %d", size)
}
if zerosize < size {
zerosize = size
}
s := Pkglookup("zero", mappkg)
if s.Def == nil {
x := newname(s)
x.Type = Types[TUINT8]
x.Class = PEXTERN
x.Typecheck = 1
s.Def = x
}
z := nod(OADDR, s.Def, nil)
z.Type = ptrto(Types[TUINT8])
z.Addable = true
z.Typecheck = 1
return z
}