Update x86_64-linux-android-4.8 to 4.8.3 (darwin-x86)

See previous commit for build instructions.  Note that
x86_64-linux-android-4.8 is no longer maintained.  We should move on
to x86_64-linux-android-4.9

BUG=18174291

Change-Id: I254cc832ff83dab3eaf3867876480dba68337da1
diff --git a/SOURCES b/SOURCES
index af93983..102ab85 100644
--- a/SOURCES
+++ b/SOURCES
@@ -6,16 +6,16 @@
 toolchain/isl.git                      b05d4572958c5d497da793f3317084bab90c3033 add isl-0.11.1.tar.bz2 needed by GCC 4.8 with graphite
 toolchain/ppl.git                      8ba1875b4c5341d902321761022a6d2a0b5b19a4 add ppl-1.0.tar.bz2
 toolchain/expat.git                    40172a0ae9d40a068f1e1a48ffcf6a1ccf765ed5 expat package for building gdb-7.3
-toolchain/binutils.git                 e0bca373a85fa71b89d9ea42370433b3c0499b9d [2.24] fix MIPS static executable segfault
-toolchain/gcc.git                      5cd97bdbf2d97af4b0e4301f5f2b6c2a4301baf9 Merge "[4.6] Fix missing _U, _L, etc"
-toolchain/gdb.git                      f2bc219a53b01a6c7af0bbc564985dfda0173ca1 [7.3.x] Fix gdb print extreme fp number
+toolchain/binutils.git                 fff40e635995d00e3455f861a97d8cbf3ebb6b4e Merge "Add missing mtc1, mthc1, mfhc1 instructions to Ingenic's MXU patch."
+toolchain/gcc.git                      5e9aa7db94a40a0f2632b13bce2095a008fc34ac Merge "[gcc] Remove "-mstackrealign" option turned on by default on x86."
+toolchain/gdb.git                      24237bc8bc3001a82d6cd9685719c4679f721792 fix some build errors
 toolchain/python.git                   0d4194853e08d3244931523470331c00dfb94863 Fix python build inc_dirs[] and lib_dirs[] for linux/darwin
 toolchain/perl.git                     1121daca35c6c692602621eab28d4de19f0b347d Add -Dcc_as_ld to configure
 toolchain/mclinker.git                 5fca8b9c9c671d6c01f428c00ca131e65042a9fd Merge upstream mclinker 2.7
 toolchain/yasm.git                     87c09baff80ca5bbe938392d8f320e621707f317 test commit
-toolchain/clang.git (release_34)       98b5404931ab99eb6468387b598527764370b133 [3.4] Add -fpic for aarch64-linux-android by default
-toolchain/llvm.git (release_34)        4e3e3137a7d3c271f5190ac9ef8af7848e5f67e2 Fix missing change for expandVAArg.
-toolchain/compiler-rt.git (release_34) b065fccd8ab47b4de4610093fb98514fc5df2362 Alias __aeabi_fcmpun to __unordsf2.
-toolchain/clang.git (release_33)       260f965f1273cd0aa8a1270885519df8e6317062 [ndk] Fix diagnostics for C-style cast to function type.
-toolchain/llvm.git (release_33)        8609a3469a8126eb6fb99ff65906bcc20c272d95 [ndk] Fix createBranchWeights() assertions.
-toolchain/compiler-rt.git (release_33) c880feaaa8829681a025d29a33704c18e21e87e1 Misc fixes for compiler_rt
+toolchain/clang.git (release_35)       e8513044903a3766443ef6d5eab92e376f2eba32 Fix assertion failure on DeferredDeclsToEmit.
+toolchain/llvm.git (release_35)        6797a08398a6b54589c37e8d8f9e9a26b4fb5621 [ndk] Fix inappropriate debug info assertion.
+toolchain/compiler-rt.git (release_35) 58bfd9dc4d03012ed9e59dc21e6b2e098f9476f8 Implement __aeabi_idiv0 and __aeabi_uidiv0.
+toolchain/clang.git (release_34)       a284801985744bd9667b9d14f079b3a2e8b19130 [ndk] Define __USER_LABEL_PREFIX__ to empty string.
+toolchain/llvm.git (release_34)        b2631bf0dc9579ddfb4bc1afdf7998c12fa268af Merge "python: AC_PATH_PROG -> AC_PATH_PROGS and fix search order" into release_34
+toolchain/compiler-rt.git (release_34) 4f9b4718e8d836317c224955a1e87b7bb5252ae1 Update clear_cache to trunk@208591
diff --git a/bin/x86_64-linux-android-addr2line b/bin/x86_64-linux-android-addr2line
index 8c97627..c49408f 100755
--- a/bin/x86_64-linux-android-addr2line
+++ b/bin/x86_64-linux-android-addr2line
Binary files differ
diff --git a/bin/x86_64-linux-android-ar b/bin/x86_64-linux-android-ar
index 9501887..786be38 100755
--- a/bin/x86_64-linux-android-ar
+++ b/bin/x86_64-linux-android-ar
Binary files differ
diff --git a/bin/x86_64-linux-android-as b/bin/x86_64-linux-android-as
index 0126532..97401ae 100755
--- a/bin/x86_64-linux-android-as
+++ b/bin/x86_64-linux-android-as
Binary files differ
diff --git a/bin/x86_64-linux-android-c++filt b/bin/x86_64-linux-android-c++filt
index 181f391..0f86435 100755
--- a/bin/x86_64-linux-android-c++filt
+++ b/bin/x86_64-linux-android-c++filt
Binary files differ
diff --git a/bin/x86_64-linux-android-cpp b/bin/x86_64-linux-android-cpp
index 0b98ad9..8ac38a9 100755
--- a/bin/x86_64-linux-android-cpp
+++ b/bin/x86_64-linux-android-cpp
Binary files differ
diff --git a/bin/x86_64-linux-android-dwp b/bin/x86_64-linux-android-dwp
index 08d6858..19074b1 100755
--- a/bin/x86_64-linux-android-dwp
+++ b/bin/x86_64-linux-android-dwp
Binary files differ
diff --git a/bin/x86_64-linux-android-g++ b/bin/x86_64-linux-android-g++
index f0d6e35..5ca1275 100755
--- a/bin/x86_64-linux-android-g++
+++ b/bin/x86_64-linux-android-g++
Binary files differ
diff --git a/bin/x86_64-linux-android-gcc b/bin/x86_64-linux-android-gcc
index c92828f..e9151ea 100755
--- a/bin/x86_64-linux-android-gcc
+++ b/bin/x86_64-linux-android-gcc
Binary files differ
diff --git a/bin/x86_64-linux-android-gcc-ar b/bin/x86_64-linux-android-gcc-ar
index 280576f..15f0f7a 100755
--- a/bin/x86_64-linux-android-gcc-ar
+++ b/bin/x86_64-linux-android-gcc-ar
Binary files differ
diff --git a/bin/x86_64-linux-android-gcc-nm b/bin/x86_64-linux-android-gcc-nm
index 19d334b..b9d5b65 100755
--- a/bin/x86_64-linux-android-gcc-nm
+++ b/bin/x86_64-linux-android-gcc-nm
Binary files differ
diff --git a/bin/x86_64-linux-android-gcc-ranlib b/bin/x86_64-linux-android-gcc-ranlib
index d0223c9..05637dc 100755
--- a/bin/x86_64-linux-android-gcc-ranlib
+++ b/bin/x86_64-linux-android-gcc-ranlib
Binary files differ
diff --git a/bin/x86_64-linux-android-gcov b/bin/x86_64-linux-android-gcov
index 9bb4e3e..6381d9c 100755
--- a/bin/x86_64-linux-android-gcov
+++ b/bin/x86_64-linux-android-gcov
Binary files differ
diff --git a/bin/x86_64-linux-android-gdb b/bin/x86_64-linux-android-gdb
index a7ff692..0c3d4e5 100755
--- a/bin/x86_64-linux-android-gdb
+++ b/bin/x86_64-linux-android-gdb
Binary files differ
diff --git a/bin/x86_64-linux-android-gprof b/bin/x86_64-linux-android-gprof
index 0fc941e..452517f 100755
--- a/bin/x86_64-linux-android-gprof
+++ b/bin/x86_64-linux-android-gprof
Binary files differ
diff --git a/bin/x86_64-linux-android-ld.bfd b/bin/x86_64-linux-android-ld.bfd
index b39fec8..ed06964 100755
--- a/bin/x86_64-linux-android-ld.bfd
+++ b/bin/x86_64-linux-android-ld.bfd
Binary files differ
diff --git a/bin/x86_64-linux-android-ld.gold b/bin/x86_64-linux-android-ld.gold
index f2a3ef1..2ebf7ff 100755
--- a/bin/x86_64-linux-android-ld.gold
+++ b/bin/x86_64-linux-android-ld.gold
Binary files differ
diff --git a/bin/x86_64-linux-android-nm b/bin/x86_64-linux-android-nm
index 6346694..446f60b 100755
--- a/bin/x86_64-linux-android-nm
+++ b/bin/x86_64-linux-android-nm
Binary files differ
diff --git a/bin/x86_64-linux-android-objcopy b/bin/x86_64-linux-android-objcopy
index f25befb..08a9cf4 100755
--- a/bin/x86_64-linux-android-objcopy
+++ b/bin/x86_64-linux-android-objcopy
Binary files differ
diff --git a/bin/x86_64-linux-android-objdump b/bin/x86_64-linux-android-objdump
index f8dc98a..375ad3d 100755
--- a/bin/x86_64-linux-android-objdump
+++ b/bin/x86_64-linux-android-objdump
Binary files differ
diff --git a/bin/x86_64-linux-android-ranlib b/bin/x86_64-linux-android-ranlib
index 9a05305..6586879 100755
--- a/bin/x86_64-linux-android-ranlib
+++ b/bin/x86_64-linux-android-ranlib
Binary files differ
diff --git a/bin/x86_64-linux-android-readelf b/bin/x86_64-linux-android-readelf
index d43a026..2d0fcef 100755
--- a/bin/x86_64-linux-android-readelf
+++ b/bin/x86_64-linux-android-readelf
Binary files differ
diff --git a/bin/x86_64-linux-android-size b/bin/x86_64-linux-android-size
index c578acd..3fa9633 100755
--- a/bin/x86_64-linux-android-size
+++ b/bin/x86_64-linux-android-size
Binary files differ
diff --git a/bin/x86_64-linux-android-strings b/bin/x86_64-linux-android-strings
index af070af..3c52910 100755
--- a/bin/x86_64-linux-android-strings
+++ b/bin/x86_64-linux-android-strings
Binary files differ
diff --git a/bin/x86_64-linux-android-strip b/bin/x86_64-linux-android-strip
index 88d775e..308b7f1 100755
--- a/bin/x86_64-linux-android-strip
+++ b/bin/x86_64-linux-android-strip
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/crtbegin.o b/lib/gcc/x86_64-linux-android/4.8/32/crtbegin.o
index 0a0dbfd..2ba9dc2 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/crtbegin.o
+++ b/lib/gcc/x86_64-linux-android/4.8/32/crtbegin.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/crtbeginS.o b/lib/gcc/x86_64-linux-android/4.8/32/crtbeginS.o
index a5f335a..d1fcc79 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/crtbeginS.o
+++ b/lib/gcc/x86_64-linux-android/4.8/32/crtbeginS.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/crtbeginT.o b/lib/gcc/x86_64-linux-android/4.8/32/crtbeginT.o
index 0a0dbfd..2ba9dc2 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/crtbeginT.o
+++ b/lib/gcc/x86_64-linux-android/4.8/32/crtbeginT.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/crtfastmath.o b/lib/gcc/x86_64-linux-android/4.8/32/crtfastmath.o
index a614be8..923638f 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/crtfastmath.o
+++ b/lib/gcc/x86_64-linux-android/4.8/32/crtfastmath.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/crtprec32.o b/lib/gcc/x86_64-linux-android/4.8/32/crtprec32.o
index 910c999..ad4d126 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/crtprec32.o
+++ b/lib/gcc/x86_64-linux-android/4.8/32/crtprec32.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/crtprec64.o b/lib/gcc/x86_64-linux-android/4.8/32/crtprec64.o
index da65457..db642f9 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/crtprec64.o
+++ b/lib/gcc/x86_64-linux-android/4.8/32/crtprec64.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/crtprec80.o b/lib/gcc/x86_64-linux-android/4.8/32/crtprec80.o
index 35a26aa..ff98125 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/crtprec80.o
+++ b/lib/gcc/x86_64-linux-android/4.8/32/crtprec80.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/libgcc.a b/lib/gcc/x86_64-linux-android/4.8/32/libgcc.a
index 4f89cbf..d50e7a7 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/libgcc.a
+++ b/lib/gcc/x86_64-linux-android/4.8/32/libgcc.a
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/32/libgcov.a b/lib/gcc/x86_64-linux-android/4.8/32/libgcov.a
index c9b31c1..38ee991 100644
--- a/lib/gcc/x86_64-linux-android/4.8/32/libgcov.a
+++ b/lib/gcc/x86_64-linux-android/4.8/32/libgcov.a
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/crtbegin.o b/lib/gcc/x86_64-linux-android/4.8/crtbegin.o
index daf37da..4982353 100644
--- a/lib/gcc/x86_64-linux-android/4.8/crtbegin.o
+++ b/lib/gcc/x86_64-linux-android/4.8/crtbegin.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/crtbeginS.o b/lib/gcc/x86_64-linux-android/4.8/crtbeginS.o
index ae8761b..a44e714 100644
--- a/lib/gcc/x86_64-linux-android/4.8/crtbeginS.o
+++ b/lib/gcc/x86_64-linux-android/4.8/crtbeginS.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/crtbeginT.o b/lib/gcc/x86_64-linux-android/4.8/crtbeginT.o
index daf37da..4982353 100644
--- a/lib/gcc/x86_64-linux-android/4.8/crtbeginT.o
+++ b/lib/gcc/x86_64-linux-android/4.8/crtbeginT.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/crtfastmath.o b/lib/gcc/x86_64-linux-android/4.8/crtfastmath.o
index 5cc1867..2f71001 100644
--- a/lib/gcc/x86_64-linux-android/4.8/crtfastmath.o
+++ b/lib/gcc/x86_64-linux-android/4.8/crtfastmath.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/crtprec32.o b/lib/gcc/x86_64-linux-android/4.8/crtprec32.o
index fcb7ee1..969b383 100644
--- a/lib/gcc/x86_64-linux-android/4.8/crtprec32.o
+++ b/lib/gcc/x86_64-linux-android/4.8/crtprec32.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/crtprec64.o b/lib/gcc/x86_64-linux-android/4.8/crtprec64.o
index 783d8b9..69092e3 100644
--- a/lib/gcc/x86_64-linux-android/4.8/crtprec64.o
+++ b/lib/gcc/x86_64-linux-android/4.8/crtprec64.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/crtprec80.o b/lib/gcc/x86_64-linux-android/4.8/crtprec80.o
index 305b62c..4813cfa 100644
--- a/lib/gcc/x86_64-linux-android/4.8/crtprec80.o
+++ b/lib/gcc/x86_64-linux-android/4.8/crtprec80.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/include-fixed/stdio.h b/lib/gcc/x86_64-linux-android/4.8/include-fixed/stdio.h
deleted file mode 100644
index 78c7675..0000000
--- a/lib/gcc/x86_64-linux-android/4.8/include-fixed/stdio.h
+++ /dev/null
@@ -1,477 +0,0 @@
-/*  DO NOT EDIT THIS FILE.
-
-    It has been auto-edited by fixincludes from:
-
-	"/tmp/ndk-User/build/toolchain/prefix/sysroot/usr/include/stdio.h"
-
-    This had to be done to correct non-standard usages in the
-    original, manufacturer supplied header file.  */
-
-/*	$OpenBSD: stdio.h,v 1.35 2006/01/13 18:10:09 miod Exp $	*/
-/*	$NetBSD: stdio.h,v 1.18 1996/04/25 18:29:21 jtc Exp $	*/
-
-/*-
- * Copyright (c) 1990 The Regents of the University of California.
- * All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * Chris Torek.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the University nor the names of its contributors
- *    may be used to endorse or promote products derived from this software
- *    without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- *	@(#)stdio.h	5.17 (Berkeley) 6/3/91
- */
-
-#ifndef	_STDIO_H_
-#define	_STDIO_H_
-
-#include <sys/cdefs.h>
-#include <sys/types.h>
-
-#include <stdarg.h>
-#include <stddef.h>
-
-#define __need_NULL
-#include <stddef.h>
-
-#define	_FSTDIO			/* Define for new stdio with functions. */
-
-typedef off_t fpos_t;		/* stdio file position type */
-
-/*
- * NB: to fit things in six character monocase externals, the stdio
- * code uses the prefix `__s' for stdio objects, typically followed
- * by a three-character attempt at a mnemonic.
- */
-
-/* stdio buffers */
-struct __sbuf {
-	unsigned char *_base;
-	int	_size;
-};
-
-/*
- * stdio state variables.
- *
- * The following always hold:
- *
- *	if (_flags&(__SLBF|__SWR)) == (__SLBF|__SWR),
- *		_lbfsize is -_bf._size, else _lbfsize is 0
- *	if _flags&__SRD, _w is 0
- *	if _flags&__SWR, _r is 0
- *
- * This ensures that the getc and putc macros (or inline functions) never
- * try to write or read from a file that is in `read' or `write' mode.
- * (Moreover, they can, and do, automatically switch from read mode to
- * write mode, and back, on "r+" and "w+" files.)
- *
- * _lbfsize is used only to make the inline line-buffered output stream
- * code as compact as possible.
- *
- * _ub, _up, and _ur are used when ungetc() pushes back more characters
- * than fit in the current _bf, or when ungetc() pushes back a character
- * that does not match the previous one in _bf.  When this happens,
- * _ub._base becomes non-nil (i.e., a stream has ungetc() data iff
- * _ub._base!=NULL) and _up and _ur save the current values of _p and _r.
- *
- * NOTE: if you change this structure, you also need to update the
- * std() initializer in findfp.c.
- */
-typedef	struct __sFILE {
-	unsigned char *_p;	/* current position in (some) buffer */
-	int	_r;		/* read space left for getc() */
-	int	_w;		/* write space left for putc() */
-	short	_flags;		/* flags, below; this FILE is free if 0 */
-	short	_file;		/* fileno, if Unix descriptor, else -1 */
-	struct	__sbuf _bf;	/* the buffer (at least 1 byte, if !NULL) */
-	int	_lbfsize;	/* 0 or -_bf._size, for inline putc */
-
-	/* operations */
-	void	*_cookie;	/* cookie passed to io functions */
-	int	(*_close)(void *);
-	int	(*_read)(void *, char *, int);
-	fpos_t	(*_seek)(void *, fpos_t, int);
-	int	(*_write)(void *, const char *, int);
-
-	/* extension data, to avoid further ABI breakage */
-	struct	__sbuf _ext;
-	/* data for long sequences of ungetc() */
-	unsigned char *_up;	/* saved _p when _p is doing ungetc data */
-	int	_ur;		/* saved _r when _r is counting ungetc data */
-
-	/* tricks to meet minimum requirements even when malloc() fails */
-	unsigned char _ubuf[3];	/* guarantee an ungetc() buffer */
-	unsigned char _nbuf[1];	/* guarantee a getc() buffer */
-
-	/* separate buffer for fgetln() when line crosses buffer boundary */
-	struct	__sbuf _lb;	/* buffer for fgetln() */
-
-	/* Unix stdio files get aligned to block boundaries on fseek() */
-	int	_blksize;	/* stat.st_blksize (may be != _bf._size) */
-	fpos_t	_offset;	/* current lseek offset */
-} FILE;
-
-__BEGIN_DECLS
-extern FILE __sF[];
-__END_DECLS
-
-#define	__SLBF	0x0001		/* line buffered */
-#define	__SNBF	0x0002		/* unbuffered */
-#define	__SRD	0x0004		/* OK to read */
-#define	__SWR	0x0008		/* OK to write */
-	/* RD and WR are never simultaneously asserted */
-#define	__SRW	0x0010		/* open for reading & writing */
-#define	__SEOF	0x0020		/* found EOF */
-#define	__SERR	0x0040		/* found error */
-#define	__SMBF	0x0080		/* _buf is from malloc */
-#define	__SAPP	0x0100		/* fdopen()ed in append mode */
-#define	__SSTR	0x0200		/* this is an sprintf/snprintf string */
-#define	__SOPT	0x0400		/* do fseek() optimization */
-#define	__SNPT	0x0800		/* do not do fseek() optimization */
-#define	__SOFF	0x1000		/* set iff _offset is in fact correct */
-#define	__SMOD	0x2000		/* true => fgetln modified _p text */
-#define	__SALC	0x4000		/* allocate string space dynamically */
-#define	__SIGN	0x8000		/* ignore this file in _fwalk */
-
-/*
- * The following three definitions are for ANSI C, which took them
- * from System V, which brilliantly took internal interface macros and
- * made them official arguments to setvbuf(), without renaming them.
- * Hence, these ugly _IOxxx names are *supposed* to appear in user code.
- *
- * Although numbered as their counterparts above, the implementation
- * does not rely on this.
- */
-#define	_IOFBF	0		/* setvbuf should set fully buffered */
-#define	_IOLBF	1		/* setvbuf should set line buffered */
-#define	_IONBF	2		/* setvbuf should set unbuffered */
-
-#define	BUFSIZ	1024		/* size of buffer used by setbuf */
-#define	EOF	(-1)
-
-/*
- * FOPEN_MAX is a minimum maximum, and is the number of streams that
- * stdio can provide without attempting to allocate further resources
- * (which could fail).  Do not use this for anything.
- */
-
-#define	FOPEN_MAX	20	/* must be <= OPEN_MAX <sys/syslimits.h> */
-#define	FILENAME_MAX	1024	/* must be <= PATH_MAX <sys/syslimits.h> */
-
-/* System V/ANSI C; this is the wrong way to do this, do *not* use these. */
-#if __BSD_VISIBLE || __XPG_VISIBLE
-#define	P_tmpdir	"/tmp/"
-#endif
-#define	L_tmpnam	1024	/* XXX must be == PATH_MAX */
-#define	TMP_MAX		308915776
-
-/* Always ensure that these are consistent with <fcntl.h> and <unistd.h>! */
-#ifndef SEEK_SET
-#define	SEEK_SET	0	/* set file offset to offset */
-#endif
-#ifndef SEEK_CUR
-#define	SEEK_CUR	1	/* set file offset to current plus offset */
-#endif
-#ifndef SEEK_END
-#define	SEEK_END	2	/* set file offset to EOF plus offset */
-#endif
-
-#define	stdin	(&__sF[0])
-#define	stdout	(&__sF[1])
-#define	stderr	(&__sF[2])
-
-/*
- * Functions defined in ANSI C standard.
- */
-__BEGIN_DECLS
-void	 clearerr(FILE *);
-int	 fclose(FILE *);
-int	 feof(FILE *);
-int	 ferror(FILE *);
-int	 fflush(FILE *);
-int	 fgetc(FILE *);
-char	*fgets(char * __restrict, int, FILE * __restrict);
-FILE	*fopen(const char * __restrict , const char * __restrict);
-int	 fprintf(FILE * __restrict , const char * __restrict, ...)
-		__printflike(2, 3);
-int	 fputc(int, FILE *);
-int	 fputs(const char * __restrict, FILE * __restrict);
-size_t	 fread(void * __restrict, size_t, size_t, FILE * __restrict);
-FILE	*freopen(const char * __restrict, const char * __restrict,
-	    FILE * __restrict);
-int	 fscanf(FILE * __restrict, const char * __restrict, ...)
-		__scanflike(2, 3);
-int	 fseek(FILE *, long, int);
-long	 ftell(FILE *);
-size_t	 fwrite(const void * __restrict, size_t, size_t, FILE * __restrict);
-int	 getc(FILE *);
-int	 getchar(void);
-ssize_t	 getdelim(char ** __restrict, size_t * __restrict, int,
-	    FILE * __restrict);
-ssize_t	 getline(char ** __restrict, size_t * __restrict, FILE * __restrict);
-
-#if __BSD_VISIBLE && !defined(__SYS_ERRLIST)
-#define __SYS_ERRLIST
-extern int sys_nerr;			/* perror(3) external variables */
-extern char *sys_errlist[];
-#endif
-
-void	 perror(const char *);
-int	 printf(const char * __restrict, ...)
-		__printflike(1, 2);
-int	 putc(int, FILE *);
-int	 putchar(int);
-int	 puts(const char *);
-int	 remove(const char *);
-void	 rewind(FILE *);
-int	 scanf(const char * __restrict, ...)
-		__scanflike(1, 2);
-void	 setbuf(FILE * __restrict, char * __restrict);
-int	 setvbuf(FILE * __restrict, char * __restrict, int, size_t);
-int	 sscanf(const char * __restrict, const char * __restrict, ...)
-		__scanflike(2, 3);
-FILE	*tmpfile(void);
-int	 ungetc(int, FILE *);
-int	 vfprintf(FILE * __restrict, const char * __restrict, __gnuc_va_list)
-		__printflike(2, 0);
-int	 vprintf(const char * __restrict, __gnuc_va_list)
-		__printflike(1, 0);
-
-#ifndef __AUDIT__
-char* gets(char*) __warnattr("gets is very unsafe; consider using fgets");
-int sprintf(char* __restrict, const char* __restrict, ...)
-    __printflike(2, 3); //__warnattr("sprintf is often misused; please use snprintf");
-char* tmpnam(char*) __warnattr("tmpnam possibly used unsafely; consider using mkstemp");
-int vsprintf(char* __restrict, const char* __restrict, __gnuc_va_list)
-    __printflike(2, 0); //__warnattr("vsprintf is often misused; please use vsnprintf");
-#if __XPG_VISIBLE
-char* tempnam(const char*, const char*)
-    __warnattr("tempnam possibly used unsafely; consider using mkstemp");
-#endif
-#endif
-
-extern int rename(const char*, const char*);
-extern int renameat(int, const char*, int, const char*);
-
-int	 fgetpos(FILE * __restrict, fpos_t * __restrict);
-int	 fsetpos(FILE *, const fpos_t *);
-
-int	 fseeko(FILE *, off_t, int);
-off_t	 ftello(FILE *);
-
-#if __ISO_C_VISIBLE >= 1999 || __BSD_VISIBLE
-int	 snprintf(char * __restrict, size_t, const char * __restrict, ...)
-		__printflike(3, 4);
-int	 vfscanf(FILE * __restrict, const char * __restrict, __gnuc_va_list)
-		__scanflike(2, 0);
-int	 vscanf(const char *, __gnuc_va_list)
-		__scanflike(1, 0);
-int	 vsnprintf(char * __restrict, size_t, const char * __restrict, __gnuc_va_list)
-		__printflike(3, 0);
-int	 vsscanf(const char * __restrict, const char * __restrict, __gnuc_va_list)
-		__scanflike(2, 0);
-#endif /* __ISO_C_VISIBLE >= 1999 || __BSD_VISIBLE */
-
-__END_DECLS
-
-
-/*
- * Functions defined in POSIX 1003.1.
- */
-#if __BSD_VISIBLE || __POSIX_VISIBLE || __XPG_VISIBLE
-#define	L_ctermid	1024	/* size for ctermid(); PATH_MAX */
-#define L_cuserid	9	/* size for cuserid(); UT_NAMESIZE + 1 */
-
-__BEGIN_DECLS
-#if 0 /* MISSING FROM BIONIC */
-char	*ctermid(char *);
-char	*cuserid(char *);
-#endif /* MISSING */
-FILE	*fdopen(int, const char *);
-int	 fileno(FILE *);
-
-#if (__POSIX_VISIBLE >= 199209)
-int	 pclose(FILE *);
-FILE	*popen(const char *, const char *);
-#endif
-
-#if __POSIX_VISIBLE >= 199506
-void	 flockfile(FILE *);
-int	 ftrylockfile(FILE *);
-void	 funlockfile(FILE *);
-
-/*
- * These are normally used through macros as defined below, but POSIX
- * requires functions as well.
- */
-int	 getc_unlocked(FILE *);
-int	 getchar_unlocked(void);
-int	 putc_unlocked(int, FILE *);
-int	 putchar_unlocked(int);
-#endif /* __POSIX_VISIBLE >= 199506 */
-
-__END_DECLS
-
-#endif /* __BSD_VISIBLE || __POSIX_VISIBLE || __XPG_VISIBLE */
-
-/*
- * Routines that are purely local.
- */
-#if __BSD_VISIBLE
-__BEGIN_DECLS
-int	 asprintf(char ** __restrict, const char * __restrict, ...)
-		__printflike(2, 3);
-char	*fgetln(FILE * __restrict, size_t * __restrict);
-int	 fpurge(FILE *);
-int	 getw(FILE *);
-int	 putw(int, FILE *);
-void	 setbuffer(FILE *, char *, int);
-int	 setlinebuf(FILE *);
-int	 vasprintf(char ** __restrict, const char * __restrict,
-    __gnuc_va_list)
-		__printflike(2, 0);
-__END_DECLS
-
-/*
- * Stdio function-access interface.
- */
-__BEGIN_DECLS
-FILE	*funopen(const void *,
-		int (*)(void *, char *, int),
-		int (*)(void *, const char *, int),
-		fpos_t (*)(void *, fpos_t, int),
-		int (*)(void *));
-__END_DECLS
-#define	fropen(cookie, fn) funopen(cookie, fn, 0, 0, 0)
-#define	fwopen(cookie, fn) funopen(cookie, 0, fn, 0, 0)
-#endif /* __BSD_VISIBLE */
-
-#ifdef _GNU_SOURCE
-/*
- * glibc defines dprintf(int, const char*, ...), which is poorly named
- * and likely to conflict with locally defined debugging printfs
- * fdprintf is a better name, and some programs that use fdprintf use a
- * #define fdprintf dprintf for compatibility
- */
-__BEGIN_DECLS
-int fdprintf(int, const char*, ...)
-		__printflike(2, 3);
-int vfdprintf(int, const char*, __gnuc_va_list)
-		__printflike(2, 0);
-__END_DECLS
-#endif /* _GNU_SOURCE */
-
-#if defined(__BIONIC_FORTIFY)
-
-__BEGIN_DECLS
-
-__BIONIC_FORTIFY_INLINE
-__printflike(3, 0)
-int vsnprintf(char *dest, size_t size, const char *format, __va_list ap)
-{
-    return __builtin___vsnprintf_chk(dest, size, 0, __bos(dest), format, ap);
-}
-
-__BIONIC_FORTIFY_INLINE
-__printflike(2, 0)
-int vsprintf(char *dest, const char *format, __va_list ap)
-{
-    return __builtin___vsprintf_chk(dest, 0, __bos(dest), format, ap);
-}
-
-#if defined(__clang__)
-  #if !defined(snprintf)
-    #define __wrap_snprintf(dest, size, ...) __builtin___snprintf_chk(dest, size, 0, __bos(dest), __VA_ARGS__)
-    #define snprintf(...) __wrap_snprintf(__VA_ARGS__)
-  #endif
-#else
-__BIONIC_FORTIFY_INLINE
-__printflike(3, 4)
-int snprintf(char *dest, size_t size, const char *format, ...)
-{
-    return __builtin___snprintf_chk(dest, size, 0,
-        __bos(dest), format, __builtin_va_arg_pack());
-}
-#endif
-
-#if defined(__clang__)
-  #if !defined(sprintf)
-    #define __wrap_sprintf(dest, ...) __builtin___sprintf_chk(dest, 0, __bos(dest), __VA_ARGS__)
-    #define sprintf(...) __wrap_sprintf(__VA_ARGS__)
-  #endif
-#else
-__BIONIC_FORTIFY_INLINE
-__printflike(2, 3)
-int sprintf(char *dest, const char *format, ...)
-{
-    return __builtin___sprintf_chk(dest, 0,
-        __bos(dest), format, __builtin_va_arg_pack());
-}
-#endif
-
-extern char* __fgets_chk(char*, int, FILE*, size_t);
-extern char* __fgets_real(char*, int, FILE*) __asm__(__USER_LABEL_PREFIX__ "fgets");
-__errordecl(__fgets_too_big_error, "fgets called with size bigger than buffer");
-__errordecl(__fgets_too_small_error, "fgets called with size less than zero");
-
-#if !defined(__clang__)
-
-__BIONIC_FORTIFY_INLINE
-char *fgets(char* dest, int size, FILE* stream) {
-    size_t bos = __bos(dest);
-
-    // Compiler can prove, at compile time, that the passed in size
-    // is always negative. Force a compiler error.
-    if (__builtin_constant_p(size) && (size < 0)) {
-        __fgets_too_small_error();
-    }
-
-    // Compiler doesn't know destination size. Don't call __fgets_chk
-    if (bos == __BIONIC_FORTIFY_UNKNOWN_SIZE) {
-        return __fgets_real(dest, size, stream);
-    }
-
-    // Compiler can prove, at compile time, that the passed in size
-    // is always <= the actual object size. Don't call __fgets_chk
-    if (__builtin_constant_p(size) && (size <= (int) bos)) {
-        return __fgets_real(dest, size, stream);
-    }
-
-    // Compiler can prove, at compile time, that the passed in size
-    // is always > the actual object size. Force a compiler error.
-    if (__builtin_constant_p(size) && (size > (int) bos)) {
-        __fgets_too_big_error();
-    }
-
-    return __fgets_chk(dest, size, stream, bos);
-}
-
-#endif /* !defined(__clang__) */
-
-__END_DECLS
-
-#endif /* defined(__BIONIC_FORTIFY) */
-
-#endif /* _STDIO_H_ */
diff --git a/lib/gcc/x86_64-linux-android/4.8/include/arm_neon.h b/lib/gcc/x86_64-linux-android/4.8/include/arm_neon.h
new file mode 100644
index 0000000..10944f3
--- /dev/null
+++ b/lib/gcc/x86_64-linux-android/4.8/include/arm_neon.h
@@ -0,0 +1,16622 @@
+//created by Victoria Zhislina, the Senior Application Engineer, Intel Corporation,  victoria.zhislina@intel.com
+
+//*** Copyright (C) 2012-2014 Intel Corporation.  All rights reserved.
+
+//IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+
+//By downloading, copying, installing or using the software you agree to this license.
+//If you do not agree to this license, do not download, install, copy or use the software.
+
+//                              License Agreement
+
+//Permission to use, copy, modify, and/or distribute this software for any
+//purpose with or without fee is hereby granted, provided that the above
+//copyright notice and this permission notice appear in all copies.
+
+//THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
+//REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
+//AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
+//INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
+//LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
+//OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
+//PERFORMANCE OF THIS SOFTWARE.
+
+//*****************************************************************************************
+// This file is intended to simplify ARM->IA32 porting
+// It makes the correspondence between ARM NEON intrinsics (as defined in "arm_neon.h")
+// and x86 SSE(up to SSE4.2) intrinsic functions as defined in headers files below
+// MMX instruction set is not used due to performance overhead and the necessity to use the
+// EMMS instruction (_mm_empty())for mmx-x87 floating point switching
+//*****************************************************************************************
+
+//!!!!!!!  To use this file in your project that uses ARM NEON intinsics just keep arm_neon.h included and complile it as usual.
+//!!!!!!!  Please pay attention at USE_SSE4 below - you need to define it for newest Intel platforms for
+//!!!!!!!  greater performance. It can be done by -msse4.2 compiler switch.
+
+#ifndef NEON2SSE_H
+#define NEON2SSE_H
+
+#ifndef USE_SSE4
+#if defined(__SSE4_2__)
+    #define USE_SSE4
+#endif
+#endif
+
+#include <xmmintrin.h>     //SSE
+#include <emmintrin.h>     //SSE2
+#include <pmmintrin.h>     //SSE3
+#include <tmmintrin.h>     //SSSE3
+#ifdef USE_SSE4
+#include <smmintrin.h> //SSE4.1
+#include <nmmintrin.h> //SSE4.2
+#endif
+
+
+//***************  functions and data attributes, compiler dependent  *********************************
+//***********************************************************************************
+#ifdef __GNUC__
+#define _GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
+#define _NEON2SSE_ALIGN_16  __attribute__((aligned(16)))
+#define _NEON2SSE_INLINE extern inline __attribute__((__gnu_inline__, __always_inline__, __artificial__))
+#if _GCC_VERSION <  40500
+    #define _NEON2SSE_PERFORMANCE_WARNING(function, explanation)   __attribute__((deprecated)) function
+#else
+    #define _NEON2SSE_PERFORMANCE_WARNING(function, explanation)   __attribute__((deprecated(explanation))) function
+#endif
+#if defined(__x86_64__)
+    #define _NEON2SSE_64BIT  __x86_64__
+#endif
+#else
+#define _NEON2SSE_ALIGN_16  __declspec(align(16))
+#define _NEON2SSE_INLINE __inline
+#if defined(_MSC_VER)|| defined (__INTEL_COMPILER)
+    #define _NEON2SSE_PERFORMANCE_WARNING(function, EXPLANATION) __declspec(deprecated(EXPLANATION)) function
+#if defined(_M_X64)
+        #define _NEON2SSE_64BIT  _M_X64
+#endif
+#else
+    #define _NEON2SSE_PERFORMANCE_WARNING(function, explanation)  function
+#endif
+#endif
+
+#if defined  (_NEON2SSE_64BIT) && defined (USE_SSE4)
+    #define _NEON2SSE_64BIT_SSE4
+#endif
+
+/*********************************************************************************************************************/
+//    data types conversion
+/*********************************************************************************************************************/
+#if defined(_MSC_VER) && (_MSC_VER < 1300)
+    typedef signed char int8_t;
+    typedef unsigned char uint8_t;
+    typedef signed short int16_t;
+    typedef unsigned short uint16_t;
+    typedef signed int int32_t;
+    typedef unsigned int uint32_t;
+    typedef signed long long int64_t;
+    typedef unsigned long long uint64_t;
+#elif defined(_MSC_VER)
+    typedef signed __int8 int8_t;
+    typedef unsigned __int8 uint8_t;
+    typedef signed __int16 int16_t;
+    typedef unsigned __int16 uint16_t;
+    typedef signed __int32 int32_t;
+    typedef unsigned __int32 uint32_t;
+
+    typedef signed long long int64_t;
+    typedef unsigned long long uint64_t;
+#else
+#include <stdint.h>
+#include <limits.h>
+#endif
+
+typedef union   __m64_128 {
+    uint64_t m64_u64[1];
+    float m64_f32[2];
+    int8_t m64_i8[8];
+    int16_t m64_i16[4];
+    int32_t m64_i32[2];
+    int64_t m64_i64[1];
+    uint8_t m64_u8[8];
+    uint16_t m64_u16[4];
+    uint32_t m64_u32[2];
+} __m64_128;
+
+typedef __m64_128 int8x8_t;
+typedef __m64_128 uint8x8_t;
+typedef __m64_128 int16x4_t;
+typedef __m64_128 uint16x4_t;
+typedef __m64_128 int32x2_t;
+typedef __m64_128 uint32x2_t;
+typedef __m64_128 int64x1_t;
+typedef __m64_128 uint64x1_t;
+typedef __m64_128 poly8x8_t;
+typedef __m64_128 poly16x4_t;
+
+typedef __m64_128 float32x2_t;
+typedef __m128 float32x4_t;
+
+typedef __m128 float16x4_t; //not supported by IA, for compatibility
+typedef __m128 float16x8_t; //not supported by IA, for compatibility
+
+typedef __m128i int8x16_t;
+typedef __m128i int16x8_t;
+typedef __m128i int32x4_t;
+typedef __m128i int64x2_t;
+typedef __m128i uint8x16_t;
+typedef __m128i uint16x8_t;
+typedef __m128i uint32x4_t;
+typedef __m128i uint64x2_t;
+typedef __m128i poly8x16_t;
+typedef __m128i poly16x8_t;
+
+#if defined(_MSC_VER)
+    #define SINT_MIN     (-2147483647 - 1) /* min signed int value */
+    #define SINT_MAX       2147483647 /* max signed int value */
+#else
+    #define SINT_MIN     INT_MIN /* min signed int value */
+    #define SINT_MAX     INT_MAX /* max signed int value */
+#endif
+
+typedef   float float32_t;
+#if !defined(__clang__)
+typedef   float __fp16;
+#endif
+
+typedef  uint8_t poly8_t;
+typedef  uint16_t poly16_t;
+
+
+//MSVC compilers (tested up to 2012 VS version) doesn't allow using structures or arrays of __m128x type  as functions arguments resulting in
+//error C2719: 'src': formal parameter with __declspec(align('16')) won't be aligned.  To avoid it we need the special trick for functions that use these types
+struct int8x16x2_t {
+    int8x16_t val[2];
+};
+struct int16x8x2_t {
+    int16x8_t val[2];
+};
+struct int32x4x2_t {
+    int32x4_t val[2];
+};
+struct int64x2x2_t {
+    int64x2_t val[2];
+};
+//Unfortunately we are unable to merge two 64-bits in on 128 bit register because user should be able to access val[n] members explicitly!!!
+struct int8x8x2_t {
+    int8x8_t val[2];
+};
+struct int16x4x2_t {
+    int16x4_t val[2];
+};
+struct int32x2x2_t {
+    int32x2_t val[2];
+};
+struct int64x1x2_t {
+    int64x1_t val[2];
+};
+
+typedef struct int8x16x2_t int8x16x2_t; //for C compilers to make them happy
+typedef struct int16x8x2_t int16x8x2_t; //for C compilers to make them happy
+typedef struct int32x4x2_t int32x4x2_t; //for C compilers to make them happy
+typedef struct int64x2x2_t int64x2x2_t; //for C compilers to make them happy
+
+typedef struct int8x8x2_t int8x8x2_t; //for C compilers to make them happy
+typedef struct int16x4x2_t int16x4x2_t; //for C compilers to make them happy
+typedef struct int32x2x2_t int32x2x2_t; //for C compilers to make them happy
+typedef struct int64x1x2_t int64x1x2_t; //for C compilers to make them happy
+
+/* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers structures above */
+typedef struct int8x16x2_t uint8x16x2_t;
+typedef struct int16x8x2_t uint16x8x2_t;
+typedef struct int32x4x2_t uint32x4x2_t;
+typedef struct int64x2x2_t uint64x2x2_t;
+typedef struct int8x16x2_t poly8x16x2_t;
+typedef struct int16x8x2_t poly16x8x2_t;
+
+typedef struct int8x8x2_t uint8x8x2_t;
+typedef struct int16x4x2_t uint16x4x2_t;
+typedef struct int32x2x2_t uint32x2x2_t;
+typedef struct int64x1x2_t uint64x1x2_t;
+typedef struct int8x8x2_t poly8x8x2_t;
+typedef struct int16x4x2_t poly16x4x2_t;
+
+//float
+struct float32x4x2_t {
+    float32x4_t val[2];
+};
+struct float16x8x2_t {
+    float16x8_t val[2];
+};
+struct float32x2x2_t {
+    float32x2_t val[2];
+};
+
+typedef struct float32x4x2_t float32x4x2_t; //for C compilers to make them happy
+typedef struct float16x8x2_t float16x8x2_t; //for C compilers to make them happy
+typedef struct  float32x2x2_t float32x2x2_t; //for C compilers to make them happy
+typedef  float16x8x2_t float16x4x2_t;
+
+//4
+struct int8x16x4_t {
+    int8x16_t val[4];
+};
+struct int16x8x4_t {
+    int16x8_t val[4];
+};
+struct int32x4x4_t {
+    int32x4_t val[4];
+};
+struct int64x2x4_t {
+    int64x2_t val[4];
+};
+
+struct int8x8x4_t {
+    int8x8_t val[4];
+};
+struct int16x4x4_t {
+    int16x4_t val[4];
+};
+struct int32x2x4_t {
+    int32x2_t val[4];
+};
+struct int64x1x4_t {
+    int64x1_t val[4];
+};
+
+typedef struct int8x16x4_t int8x16x4_t; //for C compilers to make them happy
+typedef struct int16x8x4_t int16x8x4_t; //for C compilers to make them happy
+typedef struct int32x4x4_t int32x4x4_t; //for C compilers to make them happy
+typedef struct int64x2x4_t int64x2x4_t; //for C compilers to make them happy
+
+typedef struct int8x8x4_t int8x8x4_t; //for C compilers to make them happy
+typedef struct int16x4x4_t int16x4x4_t; //for C compilers to make them happy
+typedef struct int32x2x4_t int32x2x4_t; //for C compilers to make them happy
+typedef struct int64x1x4_t int64x1x4_t; //for C compilers to make them happy
+
+/* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers dealing structures above:*/
+typedef struct int8x8x4_t uint8x8x4_t;
+typedef struct int16x4x4_t uint16x4x4_t;
+typedef struct int32x2x4_t uint32x2x4_t;
+typedef struct int64x1x4_t uint64x1x4_t;
+typedef struct int8x8x4_t poly8x8x4_t;
+typedef struct int16x4x4_t poly16x4x4_t;
+
+typedef struct int8x16x4_t uint8x16x4_t;
+typedef struct int16x8x4_t uint16x8x4_t;
+typedef struct int32x4x4_t uint32x4x4_t;
+typedef struct int64x2x4_t uint64x2x4_t;
+typedef struct int8x16x4_t poly8x16x4_t;
+typedef struct int16x8x4_t poly16x8x4_t;
+
+struct float32x4x4_t {
+    float32x4_t val[4];
+};
+struct float16x8x4_t {
+    float16x8_t val[4];
+};
+struct float32x2x4_t {
+    float32x2_t val[4];
+};
+
+typedef struct float32x4x4_t float32x4x4_t; //for C compilers to make them happy
+typedef struct float16x8x4_t float16x8x4_t; //for C compilers to make them happy
+typedef struct  float32x2x4_t float32x2x4_t; //for C compilers to make them happy
+typedef  float16x8x4_t float16x4x4_t;
+
+//3
+struct int16x8x3_t {
+    int16x8_t val[3];
+};
+struct int32x4x3_t {
+    int32x4_t val[3];
+};
+struct int64x2x3_t {
+    int64x2_t val[3];
+};
+struct int8x16x3_t {
+    int8x16_t val[3];
+};
+
+struct int16x4x3_t {
+    int16x4_t val[3];
+};
+struct int32x2x3_t {
+    int32x2_t val[3];
+};
+struct int64x1x3_t {
+    int64x1_t val[3];
+};
+struct int8x8x3_t {
+    int8x8_t val[3];
+};
+typedef struct int16x8x3_t int16x8x3_t; //for C compilers to make them happy
+typedef struct int32x4x3_t int32x4x3_t; //for C compilers to make them happy
+typedef struct int64x2x3_t int64x2x3_t; //for C compilers to make them happy
+typedef struct int8x16x3_t int8x16x3_t; //for C compilers to make them happy
+
+typedef struct int8x8x3_t int8x8x3_t; //for C compilers to make them happy
+typedef struct int16x4x3_t int16x4x3_t; //for C compilers to make them happy
+typedef struct int32x2x3_t int32x2x3_t; //for C compilers to make them happy
+typedef struct int64x1x3_t int64x1x3_t; //for C compilers to make them happy
+
+
+/* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers dealing structures above:*/
+typedef struct int8x16x3_t uint8x16x3_t;
+typedef struct int16x8x3_t uint16x8x3_t;
+typedef struct int32x4x3_t uint32x4x3_t;
+typedef struct int64x2x3_t uint64x2x3_t;
+typedef struct int8x16x3_t poly8x16x3_t;
+typedef struct int16x8x3_t poly16x8x3_t;
+typedef struct  int8x8x3_t uint8x8x3_t;
+typedef struct  int16x4x3_t uint16x4x3_t;
+typedef struct  int32x2x3_t uint32x2x3_t;
+typedef struct  int64x1x3_t uint64x1x3_t;
+typedef struct  int8x8x3_t poly8x8x3_t;
+typedef struct  int16x4x3_t poly16x4x3_t;
+
+//float
+struct float32x4x3_t {
+    float32x4_t val[3];
+};
+struct float32x2x3_t {
+    float32x2_t val[3];
+};
+struct float16x8x3_t {
+    float16x8_t val[3];
+};
+
+typedef struct float32x4x3_t float32x4x3_t; //for C compilers to make them happy
+typedef struct float16x8x3_t float16x8x3_t; //for C compilers to make them happy
+typedef struct float32x2x3_t float32x2x3_t; //for C compilers to make them happy
+typedef  float16x8x3_t float16x4x3_t;
+
+
+//****************************************************************************
+//****** Porting auxiliary macros ********************************************
+
+//** floating point related macros **
+#define _M128i(a) _mm_castps_si128(a)
+#define _M128(a) _mm_castsi128_ps(a)
+//here the most performance effective implementation is compiler and 32/64 bits build dependent
+#if defined (_NEON2SSE_64BIT) || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER  >= 1500) )
+
+        #define _pM128i(a) _mm_cvtsi64_si128(*(int64_t*)(&(a)))
+        #define _M64(out, inp) out.m64_i64[0] = _mm_cvtsi128_si64 (inp);
+        #define _M64f(out, inp) out.m64_i64[0] = _mm_cvtsi128_si64 (_M128i(inp));
+#else
+   //for 32bit gcc and Microsoft compilers builds
+    #define _pM128i(a) _mm_loadl_epi64((__m128i*)&(a))
+    #define _M64(out, inp)  _mm_storel_epi64 ((__m128i*)&(out), inp)
+    #define _M64f(out, inp)  _mm_storel_epi64 ((__m128i*)&(out), _M128i(inp))
+#endif
+#define _pM128(a) _mm_castsi128_ps(_pM128i(a))
+
+#define return64(a)  _M64(res64,a); return res64;
+#define return64f(a)  _M64f(res64,a); return res64;
+
+#define _Ui64(a) (*(uint64_t*)&(a))
+#define _UNSIGNED_T(a) u ## a
+
+#define _SIGNBIT64 ((uint64_t)1 << 63)
+#define _SWAP_HI_LOW32  (2 | (3 << 2) | (0 << 4) | (1 << 6))
+#define _INSERTPS_NDX(srcField, dstField) (((srcField) << 6) | ((dstField) << 4) )
+
+#define  _NEON2SSE_REASON_SLOW_SERIAL "The function may be very slow due to the serial implementation, please try to avoid it"
+#define  _NEON2SSE_REASON_SLOW_UNEFFECTIVE "The function may be slow due to inefficient x86 SIMD implementation, please try to avoid it"
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+#define __constrange(min,max)  const
+#define __transfersize(size)
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+
+//*************************************************************************
+//*************************************************************************
+//*********  Functions declarations as declared in original arm_neon.h *****
+//*************************************************************************
+//Vector add: vadd -> Vr[i]:=Va[i]+Vb[i], Vr, Va, Vb have equal lane sizes.
+int8x8_t vadd_s8(int8x8_t a, int8x8_t b); // VADD.I8 d0,d0,d0
+int16x4_t vadd_s16(int16x4_t a, int16x4_t b); // VADD.I16 d0,d0,d0
+int32x2_t vadd_s32(int32x2_t a, int32x2_t b); // VADD.I32 d0,d0,d0
+int64x1_t vadd_s64(int64x1_t a, int64x1_t b); // VADD.I64 d0,d0,d0
+float32x2_t vadd_f32(float32x2_t a, float32x2_t b); // VADD.F32 d0,d0,d0
+uint8x8_t vadd_u8(uint8x8_t a, uint8x8_t b); // VADD.I8 d0,d0,d0
+uint16x4_t vadd_u16(uint16x4_t a, uint16x4_t b); // VADD.I16 d0,d0,d0
+uint32x2_t vadd_u32(uint32x2_t a, uint32x2_t b); // VADD.I32 d0,d0,d0
+uint64x1_t vadd_u64(uint64x1_t a, uint64x1_t b); // VADD.I64 d0,d0,d0
+int8x16_t vaddq_s8(int8x16_t a, int8x16_t b); // VADD.I8 q0,q0,q0
+int16x8_t vaddq_s16(int16x8_t a, int16x8_t b); // VADD.I16 q0,q0,q0
+int32x4_t vaddq_s32(int32x4_t a, int32x4_t b); // VADD.I32 q0,q0,q0
+int64x2_t vaddq_s64(int64x2_t a, int64x2_t b); // VADD.I64 q0,q0,q0
+float32x4_t vaddq_f32(float32x4_t a, float32x4_t b); // VADD.F32 q0,q0,q0
+uint8x16_t vaddq_u8(uint8x16_t a, uint8x16_t b); // VADD.I8 q0,q0,q0
+uint16x8_t vaddq_u16(uint16x8_t a, uint16x8_t b); // VADD.I16 q0,q0,q0
+uint32x4_t vaddq_u32(uint32x4_t a, uint32x4_t b); // VADD.I32 q0,q0,q0
+uint64x2_t vaddq_u64(uint64x2_t a, uint64x2_t b); // VADD.I64 q0,q0,q0
+//Vector long add: vaddl -> Vr[i]:=Va[i]+Vb[i], Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width.
+int16x8_t vaddl_s8(int8x8_t a, int8x8_t b); // VADDL.S8 q0,d0,d0
+int32x4_t vaddl_s16(int16x4_t a, int16x4_t b); // VADDL.S16 q0,d0,d0
+int64x2_t vaddl_s32(int32x2_t a, int32x2_t b); // VADDL.S32 q0,d0,d0
+uint16x8_t vaddl_u8(uint8x8_t a, uint8x8_t b); // VADDL.U8 q0,d0,d0
+uint32x4_t vaddl_u16(uint16x4_t a, uint16x4_t b); // VADDL.U16 q0,d0,d0
+uint64x2_t vaddl_u32(uint32x2_t a, uint32x2_t b); // VADDL.U32 q0,d0,d0
+//Vector wide addw: vadd -> Vr[i]:=Va[i]+Vb[i]
+int16x8_t vaddw_s8(int16x8_t a, int8x8_t b); // VADDW.S8 q0,q0,d0
+int32x4_t vaddw_s16(int32x4_t a, int16x4_t b); // VADDW.S16 q0,q0,d0
+int64x2_t vaddw_s32(int64x2_t a, int32x2_t b); // VADDW.S32 q0,q0,d0
+uint16x8_t vaddw_u8(uint16x8_t a, uint8x8_t b); // VADDW.U8 q0,q0,d0
+uint32x4_t vaddw_u16(uint32x4_t a, uint16x4_t b); // VADDW.U16 q0,q0,d0
+uint64x2_t vaddw_u32(uint64x2_t a, uint32x2_t b); // VADDW.U32 q0,q0,d0
+//Vector halving add: vhadd -> Vr[i]:=(Va[i]+Vb[i])>>1
+int8x8_t vhadd_s8(int8x8_t a, int8x8_t b); // VHADD.S8 d0,d0,d0
+int16x4_t vhadd_s16(int16x4_t a, int16x4_t b); // VHADD.S16 d0,d0,d0
+int32x2_t vhadd_s32(int32x2_t a, int32x2_t b); // VHADD.S32 d0,d0,d0
+uint8x8_t vhadd_u8(uint8x8_t a, uint8x8_t b); // VHADD.U8 d0,d0,d0
+uint16x4_t vhadd_u16(uint16x4_t a, uint16x4_t b); // VHADD.U16 d0,d0,d0
+uint32x2_t vhadd_u32(uint32x2_t a, uint32x2_t b); // VHADD.U32 d0,d0,d0
+int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b); // VHADD.S8 q0,q0,q0
+int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b); // VHADD.S16 q0,q0,q0
+int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b); // VHADD.S32 q0,q0,q0
+uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b); // VHADD.U8 q0,q0,q0
+uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b); // VHADD.U16 q0,q0,q0
+uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b); // VHADD.U32 q0,q0,q0
+//Vector rounding halving add: vrhadd -> Vr[i]:=(Va[i]+Vb[i]+1)>>1
+int8x8_t vrhadd_s8(int8x8_t a, int8x8_t b); // VRHADD.S8 d0,d0,d0
+int16x4_t vrhadd_s16(int16x4_t a, int16x4_t b); // VRHADD.S16 d0,d0,d0
+int32x2_t vrhadd_s32(int32x2_t a, int32x2_t b); // VRHADD.S32 d0,d0,d0
+uint8x8_t vrhadd_u8(uint8x8_t a, uint8x8_t b); // VRHADD.U8 d0,d0,d0
+uint16x4_t vrhadd_u16(uint16x4_t a, uint16x4_t b); // VRHADD.U16 d0,d0,d0
+uint32x2_t vrhadd_u32(uint32x2_t a, uint32x2_t b); // VRHADD.U32 d0,d0,d0
+int8x16_t vrhaddq_s8(int8x16_t a, int8x16_t b); // VRHADD.S8 q0,q0,q0
+int16x8_t vrhaddq_s16(int16x8_t a, int16x8_t b); // VRHADD.S16 q0,q0,q0
+int32x4_t vrhaddq_s32(int32x4_t a, int32x4_t b); // VRHADD.S32 q0,q0,q0
+uint8x16_t vrhaddq_u8(uint8x16_t a, uint8x16_t b); // VRHADD.U8 q0,q0,q0
+uint16x8_t vrhaddq_u16(uint16x8_t a, uint16x8_t b); // VRHADD.U16 q0,q0,q0
+uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b); // VRHADD.U32 q0,q0,q0
+//Vector saturating add: vqadd -> Vr[i]:=sat<size>(Va[i]+Vb[i])
+int8x8_t vqadd_s8(int8x8_t a, int8x8_t b); // VQADD.S8 d0,d0,d0
+int16x4_t vqadd_s16(int16x4_t a, int16x4_t b); // VQADD.S16 d0,d0,d0
+int32x2_t vqadd_s32(int32x2_t a, int32x2_t b); // VQADD.S32 d0,d0,d0
+int64x1_t vqadd_s64(int64x1_t a, int64x1_t b); // VQADD.S64 d0,d0,d0
+uint8x8_t vqadd_u8(uint8x8_t a, uint8x8_t b); // VQADD.U8 d0,d0,d0
+uint16x4_t vqadd_u16(uint16x4_t a, uint16x4_t b); // VQADD.U16 d0,d0,d0
+uint32x2_t vqadd_u32(uint32x2_t a, uint32x2_t b); // VQADD.U32 d0,d0,d0
+uint64x1_t vqadd_u64(uint64x1_t a, uint64x1_t b); // VQADD.U64 d0,d0,d0
+int8x16_t vqaddq_s8(int8x16_t a, int8x16_t b); // VQADD.S8 q0,q0,q0
+int16x8_t vqaddq_s16(int16x8_t a, int16x8_t b); // VQADD.S16 q0,q0,q0
+int32x4_t vqaddq_s32(int32x4_t a, int32x4_t b); // VQADD.S32 q0,q0,q0
+int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b); // VQADD.S64 q0,q0,q0
+uint8x16_t vqaddq_u8(uint8x16_t a, uint8x16_t b); // VQADD.U8 q0,q0,q0
+uint16x8_t vqaddq_u16(uint16x8_t a, uint16x8_t b); // VQADD.U16 q0,q0,q0
+uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b); // VQADD.U32 q0,q0,q0
+uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b); // VQADD.U64 q0,q0,q0
+//Vector add high half: vaddhn-> Vr[i]:=Va[i]+Vb[i]
+int8x8_t vaddhn_s16(int16x8_t a, int16x8_t b); // VADDHN.I16 d0,q0,q0
+int16x4_t vaddhn_s32(int32x4_t a, int32x4_t b); // VADDHN.I32 d0,q0,q0
+int32x2_t vaddhn_s64(int64x2_t a, int64x2_t b); // VADDHN.I64 d0,q0,q0
+uint8x8_t vaddhn_u16(uint16x8_t a, uint16x8_t b); // VADDHN.I16 d0,q0,q0
+uint16x4_t vaddhn_u32(uint32x4_t a, uint32x4_t b); // VADDHN.I32 d0,q0,q0
+uint32x2_t vaddhn_u64(uint64x2_t a, uint64x2_t b); // VADDHN.I64 d0,q0,q0
+//Vector rounding add high half: vraddhn
+int8x8_t vraddhn_s16(int16x8_t a, int16x8_t b); // VRADDHN.I16 d0,q0,q0
+int16x4_t vraddhn_s32(int32x4_t a, int32x4_t b); // VRADDHN.I32 d0,q0,q0
+int32x2_t vraddhn_s64(int64x2_t a, int64x2_t b); // VRADDHN.I64 d0,q0,q0
+uint8x8_t vraddhn_u16(uint16x8_t a, uint16x8_t b); // VRADDHN.I16 d0,q0,q0
+uint16x4_t vraddhn_u32(uint32x4_t a, uint32x4_t b); // VRADDHN.I32 d0,q0,q0
+uint32x2_t vraddhn_u64(uint64x2_t a, uint64x2_t b); // VRADDHN.I64 d0,q0,q0
+//Multiplication
+//Vector multiply: vmul -> Vr[i] := Va[i] * Vb[i]
+int8x8_t vmul_s8(int8x8_t a, int8x8_t b); // VMUL.I8 d0,d0,d0
+int16x4_t vmul_s16(int16x4_t a, int16x4_t b); // VMUL.I16 d0,d0,d0
+int32x2_t vmul_s32(int32x2_t a, int32x2_t b); // VMUL.I32 d0,d0,d0
+float32x2_t vmul_f32(float32x2_t a, float32x2_t b); // VMUL.F32 d0,d0,d0
+uint8x8_t vmul_u8(uint8x8_t a, uint8x8_t b); // VMUL.I8 d0,d0,d0
+uint16x4_t vmul_u16(uint16x4_t a, uint16x4_t b); // VMUL.I16 d0,d0,d0
+uint32x2_t vmul_u32(uint32x2_t a, uint32x2_t b); // VMUL.I32 d0,d0,d0
+poly8x8_t vmul_p8(poly8x8_t a, poly8x8_t b); // VMUL.P8 d0,d0,d0
+int8x16_t vmulq_s8(int8x16_t a, int8x16_t b); // VMUL.I8 q0,q0,q0
+int16x8_t vmulq_s16(int16x8_t a, int16x8_t b); // VMUL.I16 q0,q0,q0
+int32x4_t vmulq_s32(int32x4_t a, int32x4_t b); // VMUL.I32 q0,q0,q0
+float32x4_t vmulq_f32(float32x4_t a, float32x4_t b); // VMUL.F32 q0,q0,q0
+uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b); // VMUL.I8 q0,q0,q0
+uint16x8_t vmulq_u16(uint16x8_t a, uint16x8_t b); // VMUL.I16 q0,q0,q0
+uint32x4_t vmulq_u32(uint32x4_t a, uint32x4_t b); // VMUL.I32 q0,q0,q0
+poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b); // VMUL.P8 q0,q0,q0
+//multiply lane
+int16x4_t vmul_lane_s16 (int16x4_t a, int16x4_t b, __constrange(0,3) int c);
+int32x2_t vmul_lane_s32 (int32x2_t a, int32x2_t b, __constrange(0,1) int c);
+float32x2_t vmul_lane_f32 (float32x2_t a, float32x2_t b, __constrange(0,1) int c);
+uint16x4_t vmul_lane_u16 (uint16x4_t a, uint16x4_t b, __constrange(0,3) int c);
+uint32x2_t vmul_lane_u32 (uint32x2_t a, uint32x2_t b, __constrange(0,1) int c);
+int16x8_t vmulq_lane_s16 (int16x8_t a, int16x4_t b, __constrange(0,3) int c);
+int32x4_t vmulq_lane_s32 (int32x4_t a, int32x2_t b, __constrange(0,1) int c);
+float32x4_t vmulq_lane_f32 (float32x4_t a, float32x2_t b, __constrange(0,1) int c);
+uint16x8_t vmulq_lane_u16 (uint16x8_t a, uint16x4_t b, __constrange(0,3) int c);
+uint32x4_t vmulq_lane_u32 (uint32x4_t a, uint32x2_t b, __constrange(0,1) int c);
+//Vector multiply accumulate: vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i]
+int8x8_t vmla_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLA.I8 d0,d0,d0
+int16x4_t vmla_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VMLA.I16 d0,d0,d0
+int32x2_t vmla_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLA.I32 d0,d0,d0
+float32x2_t vmla_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLA.F32 d0,d0,d0
+uint8x8_t vmla_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLA.I8 d0,d0,d0
+uint16x4_t vmla_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VMLA.I16 d0,d0,d0
+uint32x2_t vmla_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VMLA.I32 d0,d0,d0
+int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLA.I8 q0,q0,q0
+int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLA.I16 q0,q0,q0
+int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLA.I32 q0,q0,q0
+float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLA.F32 q0,q0,q0
+uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLA.I8 q0,q0,q0
+uint16x8_t vmlaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLA.I16 q0,q0,q0
+uint32x4_t vmlaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLA.I32 q0,q0,q0
+//Vector multiply accumulate long: vmlal -> Vr[i] := Va[i] + Vb[i] * Vc[i]
+int16x8_t vmlal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLAL.S8 q0,d0,d0
+int32x4_t vmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLAL.S16 q0,d0,d0
+int64x2_t vmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLAL.S32 q0,d0,d0
+uint16x8_t vmlal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLAL.U8 q0,d0,d0
+uint32x4_t vmlal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLAL.U16 q0,d0,d0
+uint64x2_t vmlal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLAL.U32 q0,d0,d0
+//Vector multiply subtract: vmls -> Vr[i] := Va[i] - Vb[i] * Vc[i]
+int8x8_t vmls_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLS.I8 d0,d0,d0
+int16x4_t vmls_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VMLS.I16 d0,d0,d0
+int32x2_t vmls_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLS.I32 d0,d0,d0
+float32x2_t vmls_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLS.F32 d0,d0,d0
+uint8x8_t vmls_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLS.I8 d0,d0,d0
+uint16x4_t vmls_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VMLS.I16 d0,d0,d0
+uint32x2_t vmls_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VMLS.I32 d0,d0,d0
+int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLS.I8 q0,q0,q0
+int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLS.I16 q0,q0,q0
+int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLS.I32 q0,q0,q0
+float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLS.F32 q0,q0,q0
+uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLS.I8 q0,q0,q0
+uint16x8_t vmlsq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLS.I16 q0,q0,q0
+uint32x4_t vmlsq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLS.I32 q0,q0,q0
+//Vector multiply subtract long
+int16x8_t vmlsl_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLSL.S8 q0,d0,d0
+int32x4_t vmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLSL.S16 q0,d0,d0
+int64x2_t vmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLSL.S32 q0,d0,d0
+uint16x8_t vmlsl_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLSL.U8 q0,d0,d0
+uint32x4_t vmlsl_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLSL.U16 q0,d0,d0
+uint64x2_t vmlsl_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLSL.U32 q0,d0,d0
+//Vector saturating doubling multiply high
+int16x4_t vqdmulh_s16(int16x4_t a, int16x4_t b); // VQDMULH.S16 d0,d0,d0
+int32x2_t vqdmulh_s32(int32x2_t a, int32x2_t b); // VQDMULH.S32 d0,d0,d0
+int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b); // VQDMULH.S16 q0,q0,q0
+int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b); // VQDMULH.S32 q0,q0,q0
+//Vector saturating rounding doubling multiply high
+int16x4_t vqrdmulh_s16(int16x4_t a, int16x4_t b); // VQRDMULH.S16 d0,d0,d0
+int32x2_t vqrdmulh_s32(int32x2_t a, int32x2_t b); // VQRDMULH.S32 d0,d0,d0
+int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b); // VQRDMULH.S16 q0,q0,q0
+int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b); // VQRDMULH.S32 q0,q0,q0
+//Vector saturating doubling multiply accumulate long
+int32x4_t vqdmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLAL.S16 q0,d0,d0
+int64x2_t vqdmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLAL.S32 q0,d0,d0
+//Vector saturating doubling multiply subtract long
+int32x4_t vqdmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLSL.S16 q0,d0,d0
+int64x2_t vqdmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLSL.S32 q0,d0,d0
+//Vector long multiply
+int16x8_t vmull_s8(int8x8_t a, int8x8_t b); // VMULL.S8 q0,d0,d0
+int32x4_t vmull_s16(int16x4_t a, int16x4_t b); // VMULL.S16 q0,d0,d0
+int64x2_t vmull_s32(int32x2_t a, int32x2_t b); // VMULL.S32 q0,d0,d0
+uint16x8_t vmull_u8(uint8x8_t a, uint8x8_t b); // VMULL.U8 q0,d0,d0
+uint32x4_t vmull_u16(uint16x4_t a, uint16x4_t b); // VMULL.U16 q0,d0,d0
+uint64x2_t vmull_u32(uint32x2_t a, uint32x2_t b); // VMULL.U32 q0,d0,d0
+poly16x8_t vmull_p8(poly8x8_t a, poly8x8_t b); // VMULL.P8 q0,d0,d0
+//Vector saturating doubling long multiply
+int32x4_t vqdmull_s16(int16x4_t a, int16x4_t b); // VQDMULL.S16 q0,d0,d0
+int64x2_t vqdmull_s32(int32x2_t a, int32x2_t b); // VQDMULL.S32 q0,d0,d0
+//Subtraction
+//Vector subtract
+int8x8_t vsub_s8(int8x8_t a, int8x8_t b); // VSUB.I8 d0,d0,d0
+int16x4_t vsub_s16(int16x4_t a, int16x4_t b); // VSUB.I16 d0,d0,d0
+int32x2_t vsub_s32(int32x2_t a, int32x2_t b); // VSUB.I32 d0,d0,d0
+int64x1_t vsub_s64(int64x1_t a, int64x1_t b); // VSUB.I64 d0,d0,d0
+float32x2_t vsub_f32(float32x2_t a, float32x2_t b); // VSUB.F32 d0,d0,d0
+uint8x8_t vsub_u8(uint8x8_t a, uint8x8_t b); // VSUB.I8 d0,d0,d0
+uint16x4_t vsub_u16(uint16x4_t a, uint16x4_t b); // VSUB.I16 d0,d0,d0
+uint32x2_t vsub_u32(uint32x2_t a, uint32x2_t b); // VSUB.I32 d0,d0,d0
+uint64x1_t vsub_u64(uint64x1_t a, uint64x1_t b); // VSUB.I64 d0,d0,d0
+int8x16_t vsubq_s8(int8x16_t a, int8x16_t b); // VSUB.I8 q0,q0,q0
+int16x8_t vsubq_s16(int16x8_t a, int16x8_t b); // VSUB.I16 q0,q0,q0
+int32x4_t vsubq_s32(int32x4_t a, int32x4_t b); // VSUB.I32 q0,q0,q0
+int64x2_t vsubq_s64(int64x2_t a, int64x2_t b); // VSUB.I64 q0,q0,q0
+float32x4_t vsubq_f32(float32x4_t a, float32x4_t b); // VSUB.F32 q0,q0,q0
+uint8x16_t vsubq_u8(uint8x16_t a, uint8x16_t b); // VSUB.I8 q0,q0,q0
+uint16x8_t vsubq_u16(uint16x8_t a, uint16x8_t b); // VSUB.I16 q0,q0,q0
+uint32x4_t vsubq_u32(uint32x4_t a, uint32x4_t b); // VSUB.I32 q0,q0,q0
+uint64x2_t vsubq_u64(uint64x2_t a, uint64x2_t b); // VSUB.I64 q0,q0,q0
+//Vector long subtract: vsub -> Vr[i]:=Va[i]+Vb[i]
+int16x8_t vsubl_s8(int8x8_t a, int8x8_t b); // VSUBL.S8 q0,d0,d0
+int32x4_t vsubl_s16(int16x4_t a, int16x4_t b); // VSUBL.S16 q0,d0,d0
+int64x2_t vsubl_s32(int32x2_t a, int32x2_t b); // VSUBL.S32 q0,d0,d0
+uint16x8_t vsubl_u8(uint8x8_t a, uint8x8_t b); // VSUBL.U8 q0,d0,d0
+uint32x4_t vsubl_u16(uint16x4_t a, uint16x4_t b); // VSUBL.U16 q0,d0,d0
+uint64x2_t vsubl_u32(uint32x2_t a, uint32x2_t b); // VSUBL.U32 q0,d0,d0
+//Vector wide subtract: vsub -> Vr[i]:=Va[i]+Vb[i]
+int16x8_t vsubw_s8(int16x8_t a, int8x8_t b); // VSUBW.S8 q0,q0,d0
+int32x4_t vsubw_s16(int32x4_t a, int16x4_t b); // VSUBW.S16 q0,q0,d0
+int64x2_t vsubw_s32(int64x2_t a, int32x2_t b); // VSUBW.S32 q0,q0,d0
+uint16x8_t vsubw_u8(uint16x8_t a, uint8x8_t b); // VSUBW.U8 q0,q0,d0
+uint32x4_t vsubw_u16(uint32x4_t a, uint16x4_t b); // VSUBW.U16 q0,q0,d0
+uint64x2_t vsubw_u32(uint64x2_t a, uint32x2_t b); // VSUBW.U32 q0,q0,d0
+//Vector saturating subtract
+int8x8_t vqsub_s8(int8x8_t a, int8x8_t b); // VQSUB.S8 d0,d0,d0
+int16x4_t vqsub_s16(int16x4_t a, int16x4_t b); // VQSUB.S16 d0,d0,d0
+int32x2_t vqsub_s32(int32x2_t a, int32x2_t b); // VQSUB.S32 d0,d0,d0
+int64x1_t vqsub_s64(int64x1_t a, int64x1_t b); // VQSUB.S64 d0,d0,d0
+uint8x8_t vqsub_u8(uint8x8_t a, uint8x8_t b); // VQSUB.U8 d0,d0,d0
+uint16x4_t vqsub_u16(uint16x4_t a, uint16x4_t b); // VQSUB.U16 d0,d0,d0
+uint32x2_t vqsub_u32(uint32x2_t a, uint32x2_t b); // VQSUB.U32 d0,d0,d0
+uint64x1_t vqsub_u64(uint64x1_t a, uint64x1_t b); // VQSUB.U64 d0,d0,d0
+int8x16_t vqsubq_s8(int8x16_t a, int8x16_t b); // VQSUB.S8 q0,q0,q0
+int16x8_t vqsubq_s16(int16x8_t a, int16x8_t b); // VQSUB.S16 q0,q0,q0
+int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b); // VQSUB.S32 q0,q0,q0
+int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b); // VQSUB.S64 q0,q0,q0
+uint8x16_t vqsubq_u8(uint8x16_t a, uint8x16_t b); // VQSUB.U8 q0,q0,q0
+uint16x8_t vqsubq_u16(uint16x8_t a, uint16x8_t b); // VQSUB.U16 q0,q0,q0
+uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b); // VQSUB.U32 q0,q0,q0
+uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b); // VQSUB.U64 q0,q0,q0
+//Vector halving subtract
+int8x8_t vhsub_s8(int8x8_t a, int8x8_t b); // VHSUB.S8 d0,d0,d0
+int16x4_t vhsub_s16(int16x4_t a, int16x4_t b); // VHSUB.S16 d0,d0,d0
+int32x2_t vhsub_s32(int32x2_t a, int32x2_t b); // VHSUB.S32 d0,d0,d0
+uint8x8_t vhsub_u8(uint8x8_t a, uint8x8_t b); // VHSUB.U8 d0,d0,d0
+uint16x4_t vhsub_u16(uint16x4_t a, uint16x4_t b); // VHSUB.U16 d0,d0,d0
+uint32x2_t vhsub_u32(uint32x2_t a, uint32x2_t b); // VHSUB.U32 d0,d0,d0
+int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b); // VHSUB.S8 q0,q0,q0
+int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b); // VHSUB.S16 q0,q0,q0
+int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b); // VHSUB.S32 q0,q0,q0
+uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b); // VHSUB.U8 q0,q0,q0
+uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b); // VHSUB.U16 q0,q0,q0
+uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b); // VHSUB.U32 q0,q0,q0
+//Vector subtract high half
+int8x8_t vsubhn_s16(int16x8_t a, int16x8_t b); // VSUBHN.I16 d0,q0,q0
+int16x4_t vsubhn_s32(int32x4_t a, int32x4_t b); // VSUBHN.I32 d0,q0,q0
+int32x2_t vsubhn_s64(int64x2_t a, int64x2_t b); // VSUBHN.I64 d0,q0,q0
+uint8x8_t vsubhn_u16(uint16x8_t a, uint16x8_t b); // VSUBHN.I16 d0,q0,q0
+uint16x4_t vsubhn_u32(uint32x4_t a, uint32x4_t b); // VSUBHN.I32 d0,q0,q0
+uint32x2_t vsubhn_u64(uint64x2_t a, uint64x2_t b); // VSUBHN.I64 d0,q0,q0
+//Vector rounding subtract high half
+int8x8_t vrsubhn_s16(int16x8_t a, int16x8_t b); // VRSUBHN.I16 d0,q0,q0
+int16x4_t vrsubhn_s32(int32x4_t a, int32x4_t b); // VRSUBHN.I32 d0,q0,q0
+int32x2_t vrsubhn_s64(int64x2_t a, int64x2_t b); // VRSUBHN.I64 d0,q0,q0
+uint8x8_t vrsubhn_u16(uint16x8_t a, uint16x8_t b); // VRSUBHN.I16 d0,q0,q0
+uint16x4_t vrsubhn_u32(uint32x4_t a, uint32x4_t b); // VRSUBHN.I32 d0,q0,q0
+uint32x2_t vrsubhn_u64(uint64x2_t a, uint64x2_t b); // VRSUBHN.I64 d0,q0,q0
+//Comparison
+//Vector compare equal
+uint8x8_t vceq_s8(int8x8_t a, int8x8_t b); // VCEQ.I8 d0, d0, d0
+uint16x4_t vceq_s16(int16x4_t a, int16x4_t b); // VCEQ.I16 d0, d0, d0
+uint32x2_t vceq_s32(int32x2_t a, int32x2_t b); // VCEQ.I32 d0, d0, d0
+uint32x2_t vceq_f32(float32x2_t a, float32x2_t b); // VCEQ.F32 d0, d0, d0
+uint8x8_t vceq_u8(uint8x8_t a, uint8x8_t b); // VCEQ.I8 d0, d0, d0
+uint16x4_t vceq_u16(uint16x4_t a, uint16x4_t b); // VCEQ.I16 d0, d0, d0
+uint32x2_t vceq_u32(uint32x2_t a, uint32x2_t b); // VCEQ.I32 d0, d0, d0
+uint8x8_t vceq_p8(poly8x8_t a, poly8x8_t b); // VCEQ.I8 d0, d0, d0
+uint8x16_t vceqq_s8(int8x16_t a, int8x16_t b); // VCEQ.I8 q0, q0, q0
+uint16x8_t vceqq_s16(int16x8_t a, int16x8_t b); // VCEQ.I16 q0, q0, q0
+uint32x4_t vceqq_s32(int32x4_t a, int32x4_t b); // VCEQ.I32 q0, q0, q0
+uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b); // VCEQ.F32 q0, q0, q0
+uint8x16_t vceqq_u8(uint8x16_t a, uint8x16_t b); // VCEQ.I8 q0, q0, q0
+uint16x8_t vceqq_u16(uint16x8_t a, uint16x8_t b); // VCEQ.I16 q0, q0, q0
+uint32x4_t vceqq_u32(uint32x4_t a, uint32x4_t b); // VCEQ.I32 q0, q0, q0
+uint8x16_t vceqq_p8(poly8x16_t a, poly8x16_t b); // VCEQ.I8 q0, q0, q0
+//Vector compare greater-than or equal
+uint8x8_t vcge_s8(int8x8_t a, int8x8_t b); // VCGE.S8 d0, d0, d0
+uint16x4_t vcge_s16(int16x4_t a, int16x4_t b); // VCGE.S16 d0, d0, d0
+uint32x2_t vcge_s32(int32x2_t a, int32x2_t b); // VCGE.S32 d0, d0, d0
+uint32x2_t vcge_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0
+uint8x8_t vcge_u8(uint8x8_t a, uint8x8_t b); // VCGE.U8 d0, d0, d0
+uint16x4_t vcge_u16(uint16x4_t a, uint16x4_t b); // VCGE.U16 d0, d0, d0
+uint32x2_t vcge_u32(uint32x2_t a, uint32x2_t b); // VCGE.U32 d0, d0, d0
+uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0
+uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0
+uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0
+uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0
+uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0
+uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b); // VCGE.U16 q0, q0, q0
+uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0
+//Vector compare less-than or equal
+uint8x8_t vcle_s8(int8x8_t a, int8x8_t b); // VCGE.S8 d0, d0, d0
+uint16x4_t vcle_s16(int16x4_t a, int16x4_t b); // VCGE.S16 d0, d0, d0
+uint32x2_t vcle_s32(int32x2_t a, int32x2_t b); // VCGE.S32 d0, d0, d0
+uint32x2_t vcle_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0
+uint8x8_t vcle_u8(uint8x8_t a, uint8x8_t b); // VCGE.U8 d0, d0, d0
+uint16x4_t vcle_u16(uint16x4_t a, uint16x4_t b); // VCGE.U16 d0, d0, d0
+uint32x2_t vcle_u32(uint32x2_t a, uint32x2_t b); // VCGE.U32 d0, d0, d0
+uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0
+uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0
+uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0
+uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0
+uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0
+uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b); // VCGE.U16 q0, q0, q0
+uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0
+//Vector compare greater-than
+uint8x8_t vcgt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0
+uint16x4_t vcgt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0
+uint32x2_t vcgt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0
+uint32x2_t vcgt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0
+uint8x8_t vcgt_u8(uint8x8_t a, uint8x8_t b); // VCGT.U8 d0, d0, d0
+uint16x4_t vcgt_u16(uint16x4_t a, uint16x4_t b); // VCGT.U16 d0, d0, d0
+uint32x2_t vcgt_u32(uint32x2_t a, uint32x2_t b); // VCGT.U32 d0, d0, d0
+uint8x16_t vcgtq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0
+uint16x8_t vcgtq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0
+uint32x4_t vcgtq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0
+uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0
+uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0
+uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b); // VCGT.U16 q0, q0, q0
+uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0
+//Vector compare less-than
+uint8x8_t vclt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0
+uint16x4_t vclt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0
+uint32x2_t vclt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0
+uint32x2_t vclt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0
+uint8x8_t vclt_u8(uint8x8_t a, uint8x8_t b); // VCGT.U8 d0, d0, d0
+uint16x4_t vclt_u16(uint16x4_t a, uint16x4_t b); // VCGT.U16 d0, d0, d0
+uint32x2_t vclt_u32(uint32x2_t a, uint32x2_t b); // VCGT.U32 d0, d0, d0
+uint8x16_t vcltq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0
+uint16x8_t vcltq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0
+uint32x4_t vcltq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0
+uint32x4_t vcltq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0
+uint8x16_t vcltq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0
+uint16x8_t vcltq_u16(uint16x8_t a, uint16x8_t b); // VCGT.U16 q0, q0, q0
+uint32x4_t vcltq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0
+//Vector compare absolute greater-than or equal
+uint32x2_t vcage_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0
+uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0
+//Vector compare absolute less-than or equal
+uint32x2_t vcale_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0
+uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0
+//Vector compare absolute greater-than
+uint32x2_t vcagt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0
+uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0
+//Vector compare absolute less-than
+uint32x2_t vcalt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0
+uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0
+//Vector test bits
+uint8x8_t vtst_s8(int8x8_t a, int8x8_t b); // VTST.8 d0, d0, d0
+uint16x4_t vtst_s16(int16x4_t a, int16x4_t b); // VTST.16 d0, d0, d0
+uint32x2_t vtst_s32(int32x2_t a, int32x2_t b); // VTST.32 d0, d0, d0
+uint8x8_t vtst_u8(uint8x8_t a, uint8x8_t b); // VTST.8 d0, d0, d0
+uint16x4_t vtst_u16(uint16x4_t a, uint16x4_t b); // VTST.16 d0, d0, d0
+uint32x2_t vtst_u32(uint32x2_t a, uint32x2_t b); // VTST.32 d0, d0, d0
+uint8x8_t vtst_p8(poly8x8_t a, poly8x8_t b); // VTST.8 d0, d0, d0
+uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b); // VTST.8 q0, q0, q0
+uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b); // VTST.16 q0, q0, q0
+uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b); // VTST.32 q0, q0, q0
+uint8x16_t vtstq_u8(uint8x16_t a, uint8x16_t b); // VTST.8 q0, q0, q0
+uint16x8_t vtstq_u16(uint16x8_t a, uint16x8_t b); // VTST.16 q0, q0, q0
+uint32x4_t vtstq_u32(uint32x4_t a, uint32x4_t b); // VTST.32 q0, q0, q0
+uint8x16_t vtstq_p8(poly8x16_t a, poly8x16_t b); // VTST.8 q0, q0, q0
+//Absolute difference
+//Absolute difference between the arguments: Vr[i] = | Va[i] - Vb[i] |
+int8x8_t vabd_s8(int8x8_t a, int8x8_t b); // VABD.S8 d0,d0,d0
+int16x4_t vabd_s16(int16x4_t a, int16x4_t b); // VABD.S16 d0,d0,d0
+int32x2_t vabd_s32(int32x2_t a, int32x2_t b); // VABD.S32 d0,d0,d0
+uint8x8_t vabd_u8(uint8x8_t a, uint8x8_t b); // VABD.U8 d0,d0,d0
+uint16x4_t vabd_u16(uint16x4_t a, uint16x4_t b); // VABD.U16 d0,d0,d0
+uint32x2_t vabd_u32(uint32x2_t a, uint32x2_t b); // VABD.U32 d0,d0,d0
+float32x2_t vabd_f32(float32x2_t a, float32x2_t b); // VABD.F32 d0,d0,d0
+int8x16_t vabdq_s8(int8x16_t a, int8x16_t b); // VABD.S8 q0,q0,q0
+int16x8_t vabdq_s16(int16x8_t a, int16x8_t b); // VABD.S16 q0,q0,q0
+int32x4_t vabdq_s32(int32x4_t a, int32x4_t b); // VABD.S32 q0,q0,q0
+uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b); // VABD.U8 q0,q0,q0
+uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b); // VABD.U16 q0,q0,q0
+uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b); // VABD.U32 q0,q0,q0
+float32x4_t vabdq_f32(float32x4_t a, float32x4_t b); // VABD.F32 q0,q0,q0
+//Absolute difference - long
+int16x8_t vabdl_s8(int8x8_t a, int8x8_t b); // VABDL.S8 q0,d0,d0
+int32x4_t vabdl_s16(int16x4_t a, int16x4_t b); // VABDL.S16 q0,d0,d0
+int64x2_t vabdl_s32(int32x2_t a, int32x2_t b); // VABDL.S32 q0,d0,d0
+uint16x8_t vabdl_u8(uint8x8_t a, uint8x8_t b); // VABDL.U8 q0,d0,d0
+uint32x4_t vabdl_u16(uint16x4_t a, uint16x4_t b); // VABDL.U16 q0,d0,d0
+uint64x2_t vabdl_u32(uint32x2_t a, uint32x2_t b); // VABDL.U32 q0,d0,d0
+//Absolute difference and accumulate: Vr[i] = Va[i] + | Vb[i] - Vc[i] |
+int8x8_t vaba_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VABA.S8 d0,d0,d0
+int16x4_t vaba_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VABA.S16 d0,d0,d0
+int32x2_t vaba_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VABA.S32 d0,d0,d0
+uint8x8_t vaba_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VABA.U8 d0,d0,d0
+uint16x4_t vaba_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VABA.U16 d0,d0,d0
+uint32x2_t vaba_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VABA.U32 d0,d0,d0
+int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VABA.S8 q0,q0,q0
+int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VABA.S16 q0,q0,q0
+int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VABA.S32 q0,q0,q0
+uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VABA.U8 q0,q0,q0
+uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VABA.U16 q0,q0,q0
+uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VABA.U32 q0,q0,q0
+//Absolute difference and accumulate - long
+int16x8_t vabal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VABAL.S8 q0,d0,d0
+int32x4_t vabal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VABAL.S16 q0,d0,d0
+int64x2_t vabal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VABAL.S32 q0,d0,d0
+uint16x8_t vabal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VABAL.U8 q0,d0,d0
+uint32x4_t vabal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VABAL.U16 q0,d0,d0
+uint64x2_t vabal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VABAL.U32 q0,d0,d0
+//Max/Min
+//vmax -> Vr[i] := (Va[i] >= Vb[i]) ? Va[i] : Vb[i]
+int8x8_t vmax_s8(int8x8_t a, int8x8_t b); // VMAX.S8 d0,d0,d0
+int16x4_t vmax_s16(int16x4_t a, int16x4_t b); // VMAX.S16 d0,d0,d0
+int32x2_t vmax_s32(int32x2_t a, int32x2_t b); // VMAX.S32 d0,d0,d0
+uint8x8_t vmax_u8(uint8x8_t a, uint8x8_t b); // VMAX.U8 d0,d0,d0
+uint16x4_t vmax_u16(uint16x4_t a, uint16x4_t b); // VMAX.U16 d0,d0,d0
+uint32x2_t vmax_u32(uint32x2_t a, uint32x2_t b); // VMAX.U32 d0,d0,d0
+float32x2_t vmax_f32(float32x2_t a, float32x2_t b); // VMAX.F32 d0,d0,d0
+int8x16_t vmaxq_s8(int8x16_t a, int8x16_t b); // VMAX.S8 q0,q0,q0
+int16x8_t vmaxq_s16(int16x8_t a, int16x8_t b); // VMAX.S16 q0,q0,q0
+int32x4_t vmaxq_s32(int32x4_t a, int32x4_t b); // VMAX.S32 q0,q0,q0
+uint8x16_t vmaxq_u8(uint8x16_t a, uint8x16_t b); // VMAX.U8 q0,q0,q0
+uint16x8_t vmaxq_u16(uint16x8_t a, uint16x8_t b); // VMAX.U16 q0,q0,q0
+uint32x4_t vmaxq_u32(uint32x4_t a, uint32x4_t b); // VMAX.U32 q0,q0,q0
+float32x4_t vmaxq_f32(float32x4_t a, float32x4_t b); // VMAX.F32 q0,q0,q0
+//vmin -> Vr[i] := (Va[i] >= Vb[i]) ? Vb[i] : Va[i]
+int8x8_t vmin_s8(int8x8_t a, int8x8_t b); // VMIN.S8 d0,d0,d0
+int16x4_t vmin_s16(int16x4_t a, int16x4_t b); // VMIN.S16 d0,d0,d0
+int32x2_t vmin_s32(int32x2_t a, int32x2_t b); // VMIN.S32 d0,d0,d0
+uint8x8_t vmin_u8(uint8x8_t a, uint8x8_t b); // VMIN.U8 d0,d0,d0
+uint16x4_t vmin_u16(uint16x4_t a, uint16x4_t b); // VMIN.U16 d0,d0,d0
+uint32x2_t vmin_u32(uint32x2_t a, uint32x2_t b); // VMIN.U32 d0,d0,d0
+float32x2_t vmin_f32(float32x2_t a, float32x2_t b); // VMIN.F32 d0,d0,d0
+int8x16_t vminq_s8(int8x16_t a, int8x16_t b); // VMIN.S8 q0,q0,q0
+int16x8_t vminq_s16(int16x8_t a, int16x8_t b); // VMIN.S16 q0,q0,q0
+int32x4_t vminq_s32(int32x4_t a, int32x4_t b); // VMIN.S32 q0,q0,q0
+uint8x16_t vminq_u8(uint8x16_t a, uint8x16_t b); // VMIN.U8 q0,q0,q0
+uint16x8_t vminq_u16(uint16x8_t a, uint16x8_t b); // VMIN.U16 q0,q0,q0
+uint32x4_t vminq_u32(uint32x4_t a, uint32x4_t b); // VMIN.U32 q0,q0,q0
+float32x4_t vminq_f32(float32x4_t a, float32x4_t b); // VMIN.F32 q0,q0,q0
+//Pairwise addition
+//Pairwise add
+int8x8_t vpadd_s8(int8x8_t a, int8x8_t b); // VPADD.I8 d0,d0,d0
+int16x4_t vpadd_s16(int16x4_t a, int16x4_t b); // VPADD.I16 d0,d0,d0
+int32x2_t vpadd_s32(int32x2_t a, int32x2_t b); // VPADD.I32 d0,d0,d0
+uint8x8_t vpadd_u8(uint8x8_t a, uint8x8_t b); // VPADD.I8 d0,d0,d0
+uint16x4_t vpadd_u16(uint16x4_t a, uint16x4_t b); // VPADD.I16 d0,d0,d0
+uint32x2_t vpadd_u32(uint32x2_t a, uint32x2_t b); // VPADD.I32 d0,d0,d0
+float32x2_t vpadd_f32(float32x2_t a, float32x2_t b); // VPADD.F32 d0,d0,d0
+//Long pairwise add
+int16x4_t vpaddl_s8(int8x8_t a); // VPADDL.S8 d0,d0
+int32x2_t vpaddl_s16(int16x4_t a); // VPADDL.S16 d0,d0
+int64x1_t vpaddl_s32(int32x2_t a); // VPADDL.S32 d0,d0
+uint16x4_t vpaddl_u8(uint8x8_t a); // VPADDL.U8 d0,d0
+uint32x2_t vpaddl_u16(uint16x4_t a); // VPADDL.U16 d0,d0
+uint64x1_t vpaddl_u32(uint32x2_t a); // VPADDL.U32 d0,d0
+int16x8_t vpaddlq_s8(int8x16_t a); // VPADDL.S8 q0,q0
+int32x4_t vpaddlq_s16(int16x8_t a); // VPADDL.S16 q0,q0
+int64x2_t vpaddlq_s32(int32x4_t a); // VPADDL.S32 q0,q0
+uint16x8_t vpaddlq_u8(uint8x16_t a); // VPADDL.U8 q0,q0
+uint32x4_t vpaddlq_u16(uint16x8_t a); // VPADDL.U16 q0,q0
+uint64x2_t vpaddlq_u32(uint32x4_t a); // VPADDL.U32 q0,q0
+//Long pairwise add and accumulate
+int16x4_t vpadal_s8(int16x4_t a, int8x8_t b); // VPADAL.S8 d0,d0
+int32x2_t vpadal_s16(int32x2_t a, int16x4_t b); // VPADAL.S16 d0,d0
+int64x1_t vpadal_s32(int64x1_t a, int32x2_t b); // VPADAL.S32 d0,d0
+uint16x4_t vpadal_u8(uint16x4_t a, uint8x8_t b); // VPADAL.U8 d0,d0
+uint32x2_t vpadal_u16(uint32x2_t a, uint16x4_t b); // VPADAL.U16 d0,d0
+uint64x1_t vpadal_u32(uint64x1_t a, uint32x2_t b); // VPADAL.U32 d0,d0
+int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b); // VPADAL.S8 q0,q0
+int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b); // VPADAL.S16 q0,q0
+int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b); // VPADAL.S32 q0,q0
+uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b); // VPADAL.U8 q0,q0
+uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b); // VPADAL.U16 q0,q0
+uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b); // VPADAL.U32 q0,q0
+//Folding maximum vpmax -> takes maximum of adjacent pairs
+int8x8_t vpmax_s8(int8x8_t a, int8x8_t b); // VPMAX.S8 d0,d0,d0
+int16x4_t vpmax_s16(int16x4_t a, int16x4_t b); // VPMAX.S16 d0,d0,d0
+int32x2_t vpmax_s32(int32x2_t a, int32x2_t b); // VPMAX.S32 d0,d0,d0
+uint8x8_t vpmax_u8(uint8x8_t a, uint8x8_t b); // VPMAX.U8 d0,d0,d0
+uint16x4_t vpmax_u16(uint16x4_t a, uint16x4_t b); // VPMAX.U16 d0,d0,d0
+uint32x2_t vpmax_u32(uint32x2_t a, uint32x2_t b); // VPMAX.U32 d0,d0,d0
+float32x2_t vpmax_f32(float32x2_t a, float32x2_t b); // VPMAX.F32 d0,d0,d0
+//Folding minimum vpmin -> takes minimum of adjacent pairs
+int8x8_t vpmin_s8(int8x8_t a, int8x8_t b); // VPMIN.S8 d0,d0,d0
+int16x4_t vpmin_s16(int16x4_t a, int16x4_t b); // VPMIN.S16 d0,d0,d0
+int32x2_t vpmin_s32(int32x2_t a, int32x2_t b); // VPMIN.S32 d0,d0,d0
+uint8x8_t vpmin_u8(uint8x8_t a, uint8x8_t b); // VPMIN.U8 d0,d0,d0
+uint16x4_t vpmin_u16(uint16x4_t a, uint16x4_t b); // VPMIN.U16 d0,d0,d0
+uint32x2_t vpmin_u32(uint32x2_t a, uint32x2_t b); // VPMIN.U32 d0,d0,d0
+float32x2_t vpmin_f32(float32x2_t a, float32x2_t b); // VPMIN.F32 d0,d0,d0
+//Reciprocal/Sqrt
+float32x2_t vrecps_f32(float32x2_t a, float32x2_t b); // VRECPS.F32 d0, d0, d0
+float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b); // VRECPS.F32 q0, q0, q0
+float32x2_t vrsqrts_f32(float32x2_t a, float32x2_t b); // VRSQRTS.F32 d0, d0, d0
+float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b); // VRSQRTS.F32 q0, q0, q0
+//Shifts by signed variable
+//Vector shift left: Vr[i] := Va[i] << Vb[i] (negative values shift right)
+int8x8_t vshl_s8(int8x8_t a, int8x8_t b); // VSHL.S8 d0,d0,d0
+int16x4_t vshl_s16(int16x4_t a, int16x4_t b); // VSHL.S16 d0,d0,d0
+int32x2_t vshl_s32(int32x2_t a, int32x2_t b); // VSHL.S32 d0,d0,d0
+int64x1_t vshl_s64(int64x1_t a, int64x1_t b); // VSHL.S64 d0,d0,d0
+uint8x8_t vshl_u8(uint8x8_t a, int8x8_t b); // VSHL.U8 d0,d0,d0
+uint16x4_t vshl_u16(uint16x4_t a, int16x4_t b); // VSHL.U16 d0,d0,d0
+uint32x2_t vshl_u32(uint32x2_t a, int32x2_t b); // VSHL.U32 d0,d0,d0
+uint64x1_t vshl_u64(uint64x1_t a, int64x1_t b); // VSHL.U64 d0,d0,d0
+int8x16_t vshlq_s8(int8x16_t a, int8x16_t b); // VSHL.S8 q0,q0,q0
+int16x8_t vshlq_s16(int16x8_t a, int16x8_t b); // VSHL.S16 q0,q0,q0
+int32x4_t vshlq_s32(int32x4_t a, int32x4_t b); // VSHL.S32 q0,q0,q0
+int64x2_t vshlq_s64(int64x2_t a, int64x2_t b); // VSHL.S64 q0,q0,q0
+uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b); // VSHL.U8 q0,q0,q0
+uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b); // VSHL.U16 q0,q0,q0
+uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b); // VSHL.U32 q0,q0,q0
+uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b); // VSHL.U64 q0,q0,q0
+//Vector saturating shift left: (negative values shift right)
+int8x8_t vqshl_s8(int8x8_t a, int8x8_t b); // VQSHL.S8 d0,d0,d0
+int16x4_t vqshl_s16(int16x4_t a, int16x4_t b); // VQSHL.S16 d0,d0,d0
+int32x2_t vqshl_s32(int32x2_t a, int32x2_t b); // VQSHL.S32 d0,d0,d0
+int64x1_t vqshl_s64(int64x1_t a, int64x1_t b); // VQSHL.S64 d0,d0,d0
+uint8x8_t vqshl_u8(uint8x8_t a, int8x8_t b); // VQSHL.U8 d0,d0,d0
+uint16x4_t vqshl_u16(uint16x4_t a, int16x4_t b); // VQSHL.U16 d0,d0,d0
+uint32x2_t vqshl_u32(uint32x2_t a, int32x2_t b); // VQSHL.U32 d0,d0,d0
+uint64x1_t vqshl_u64(uint64x1_t a, int64x1_t b); // VQSHL.U64 d0,d0,d0
+int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b); // VQSHL.S8 q0,q0,q0
+int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b); // VQSHL.S16 q0,q0,q0
+int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b); // VQSHL.S32 q0,q0,q0
+int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b); // VQSHL.S64 q0,q0,q0
+uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b); // VQSHL.U8 q0,q0,q0
+uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b); // VQSHL.U16 q0,q0,q0
+uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b); // VQSHL.U32 q0,q0,q0
+uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b); // VQSHL.U64 q0,q0,q0
+//Vector rounding shift left: (negative values shift right)
+int8x8_t vrshl_s8(int8x8_t a, int8x8_t b); // VRSHL.S8 d0,d0,d0
+int16x4_t vrshl_s16(int16x4_t a, int16x4_t b); // VRSHL.S16 d0,d0,d0
+int32x2_t vrshl_s32(int32x2_t a, int32x2_t b); // VRSHL.S32 d0,d0,d0
+int64x1_t vrshl_s64(int64x1_t a, int64x1_t b); // VRSHL.S64 d0,d0,d0
+uint8x8_t vrshl_u8(uint8x8_t a, int8x8_t b); // VRSHL.U8 d0,d0,d0
+uint16x4_t vrshl_u16(uint16x4_t a, int16x4_t b); // VRSHL.U16 d0,d0,d0
+uint32x2_t vrshl_u32(uint32x2_t a, int32x2_t b); // VRSHL.U32 d0,d0,d0
+uint64x1_t vrshl_u64(uint64x1_t a, int64x1_t b); // VRSHL.U64 d0,d0,d0
+int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b); // VRSHL.S8 q0,q0,q0
+int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b); // VRSHL.S16 q0,q0,q0
+int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b); // VRSHL.S32 q0,q0,q0
+int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b); // VRSHL.S64 q0,q0,q0
+uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b); // VRSHL.U8 q0,q0,q0
+uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b); // VRSHL.U16 q0,q0,q0
+uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b); // VRSHL.U32 q0,q0,q0
+uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b); // VRSHL.U64 q0,q0,q0
+//Vector saturating rounding shift left: (negative values shift right)
+int8x8_t vqrshl_s8(int8x8_t a, int8x8_t b); // VQRSHL.S8 d0,d0,d0
+int16x4_t vqrshl_s16(int16x4_t a, int16x4_t b); // VQRSHL.S16 d0,d0,d0
+int32x2_t vqrshl_s32(int32x2_t a, int32x2_t b); // VQRSHL.S32 d0,d0,d0
+int64x1_t vqrshl_s64(int64x1_t a, int64x1_t b); // VQRSHL.S64 d0,d0,d0
+uint8x8_t vqrshl_u8(uint8x8_t a, int8x8_t b); // VQRSHL.U8 d0,d0,d0
+uint16x4_t vqrshl_u16(uint16x4_t a, int16x4_t b); // VQRSHL.U16 d0,d0,d0
+uint32x2_t vqrshl_u32(uint32x2_t a, int32x2_t b); // VQRSHL.U32 d0,d0,d0
+uint64x1_t vqrshl_u64(uint64x1_t a, int64x1_t b); // VQRSHL.U64 d0,d0,d0
+int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b); // VQRSHL.S8 q0,q0,q0
+int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b); // VQRSHL.S16 q0,q0,q0
+int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b); // VQRSHL.S32 q0,q0,q0
+int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b); // VQRSHL.S64 q0,q0,q0
+uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b); // VQRSHL.U8 q0,q0,q0
+uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b); // VQRSHL.U16 q0,q0,q0
+uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b); // VQRSHL.U32 q0,q0,q0
+uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b); // VQRSHL.U64 q0,q0,q0
+//Shifts by a constant
+//Vector shift right by constant
+int8x8_t vshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VSHR.S8 d0,d0,#8
+int16x4_t vshr_n_s16(int16x4_t a, __constrange(1,16) int b); // VSHR.S16 d0,d0,#16
+int32x2_t vshr_n_s32(int32x2_t a, __constrange(1,32) int b); // VSHR.S32 d0,d0,#32
+int64x1_t vshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VSHR.S64 d0,d0,#64
+uint8x8_t vshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VSHR.U8 d0,d0,#8
+uint16x4_t vshr_n_u16(uint16x4_t a, __constrange(1,16) int b); // VSHR.U16 d0,d0,#16
+uint32x2_t vshr_n_u32(uint32x2_t a, __constrange(1,32) int b); // VSHR.U32 d0,d0,#32
+uint64x1_t vshr_n_u64(uint64x1_t a, __constrange(1,64) int b); // VSHR.U64 d0,d0,#64
+int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VSHR.S8 q0,q0,#8
+int16x8_t vshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VSHR.S16 q0,q0,#16
+int32x4_t vshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VSHR.S32 q0,q0,#32
+int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VSHR.S64 q0,q0,#64
+uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VSHR.U8 q0,q0,#8
+uint16x8_t vshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VSHR.U16 q0,q0,#16
+uint32x4_t vshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VSHR.U32 q0,q0,#32
+uint64x2_t vshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VSHR.U64 q0,q0,#64
+//Vector shift left by constant
+int8x8_t vshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0
+int16x4_t vshl_n_s16(int16x4_t a, __constrange(0,15) int b); // VSHL.I16 d0,d0,#0
+int32x2_t vshl_n_s32(int32x2_t a, __constrange(0,31) int b); // VSHL.I32 d0,d0,#0
+int64x1_t vshl_n_s64(int64x1_t a, __constrange(0,63) int b); // VSHL.I64 d0,d0,#0
+uint8x8_t vshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0
+uint16x4_t vshl_n_u16(uint16x4_t a, __constrange(0,15) int b); // VSHL.I16 d0,d0,#0
+uint32x2_t vshl_n_u32(uint32x2_t a, __constrange(0,31) int b); // VSHL.I32 d0,d0,#0
+uint64x1_t vshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VSHL.I64 d0,d0,#0
+int8x16_t vshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0
+int16x8_t vshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0
+int32x4_t vshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0
+int64x2_t vshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0
+uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0
+uint16x8_t vshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0
+uint32x4_t vshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0
+uint64x2_t vshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0
+//Vector rounding shift right by constant
+int8x8_t vrshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VRSHR.S8 d0,d0,#8
+int16x4_t vrshr_n_s16(int16x4_t a, __constrange(1,16) int b); // VRSHR.S16 d0,d0,#16
+int32x2_t vrshr_n_s32(int32x2_t a, __constrange(1,32) int b); // VRSHR.S32 d0,d0,#32
+int64x1_t vrshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VRSHR.S64 d0,d0,#64
+uint8x8_t vrshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VRSHR.U8 d0,d0,#8
+uint16x4_t vrshr_n_u16(uint16x4_t a, __constrange(1,16) int b); // VRSHR.U16 d0,d0,#16
+uint32x2_t vrshr_n_u32(uint32x2_t a, __constrange(1,32) int b); // VRSHR.U32 d0,d0,#32
+uint64x1_t vrshr_n_u64(uint64x1_t a, __constrange(1,64) int b); // VRSHR.U64 d0,d0,#64
+int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VRSHR.S8 q0,q0,#8
+int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VRSHR.S16 q0,q0,#16
+int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VRSHR.S32 q0,q0,#32
+int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VRSHR.S64 q0,q0,#64
+uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VRSHR.U8 q0,q0,#8
+uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VRSHR.U16 q0,q0,#16
+uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VRSHR.U32 q0,q0,#32
+uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VRSHR.U64 q0,q0,#64
+//Vector shift right by constant and accumulate
+int8x8_t vsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VSRA.S8 d0,d0,#8
+int16x4_t vsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VSRA.S16 d0,d0,#16
+int32x2_t vsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VSRA.S32 d0,d0,#32
+int64x1_t vsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRA.S64 d0,d0,#64
+uint8x8_t vsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VSRA.U8 d0,d0,#8
+uint16x4_t vsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VSRA.U16 d0,d0,#16
+uint32x2_t vsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VSRA.U32 d0,d0,#32
+uint64x1_t vsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRA.U64 d0,d0,#64
+int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRA.S8 q0,q0,#8
+int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRA.S16 q0,q0,#16
+int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRA.S32 q0,q0,#32
+int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRA.S64 q0,q0,#64
+uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRA.U8 q0,q0,#8
+uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRA.U16 q0,q0,#16
+uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRA.U32 q0,q0,#32
+uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRA.U64 q0,q0,#64
+//Vector rounding shift right by constant and accumulate
+int8x8_t vrsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VRSRA.S8 d0,d0,#8
+int16x4_t vrsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VRSRA.S16 d0,d0,#16
+int32x2_t vrsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VRSRA.S32 d0,d0,#32
+int64x1_t vrsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VRSRA.S64 d0,d0,#64
+uint8x8_t vrsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VRSRA.U8 d0,d0,#8
+uint16x4_t vrsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VRSRA.U16 d0,d0,#16
+uint32x2_t vrsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VRSRA.U32 d0,d0,#32
+uint64x1_t vrsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VRSRA.U64 d0,d0,#64
+int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VRSRA.S8 q0,q0,#8
+int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VRSRA.S16 q0,q0,#16
+int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VRSRA.S32 q0,q0,#32
+int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VRSRA.S64 q0,q0,#64
+uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VRSRA.U8 q0,q0,#8
+uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VRSRA.U16 q0,q0,#16
+uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VRSRA.U32 q0,q0,#32
+uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VRSRA.U64 q0,q0,#64
+//Vector saturating shift left by constant
+int8x8_t vqshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHL.S8 d0,d0,#0
+int16x4_t vqshl_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHL.S16 d0,d0,#0
+int32x2_t vqshl_n_s32(int32x2_t a, __constrange(0,31) int b); // VQSHL.S32 d0,d0,#0
+int64x1_t vqshl_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHL.S64 d0,d0,#0
+uint8x8_t vqshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VQSHL.U8 d0,d0,#0
+uint16x4_t vqshl_n_u16(uint16x4_t a, __constrange(0,15) int b); // VQSHL.U16 d0,d0,#0
+uint32x2_t vqshl_n_u32(uint32x2_t a, __constrange(0,31) int b); // VQSHL.U32 d0,d0,#0
+uint64x1_t vqshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VQSHL.U64 d0,d0,#0
+int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHL.S8 q0,q0,#0
+int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHL.S16 q0,q0,#0
+int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHL.S32 q0,q0,#0
+int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHL.S64 q0,q0,#0
+uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VQSHL.U8 q0,q0,#0
+uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VQSHL.U16 q0,q0,#0
+uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VQSHL.U32 q0,q0,#0
+uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VQSHL.U64 q0,q0,#0
+//Vector signed->unsigned saturating shift left by constant
+uint8x8_t vqshlu_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHLU.S8 d0,d0,#0
+uint16x4_t vqshlu_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHLU.S16 d0,d0,#0
+uint32x2_t vqshlu_n_s32(int32x2_t a, __constrange(0,31) int b); // VQSHLU.S32 d0,d0,#0
+uint64x1_t vqshlu_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHLU.S64 d0,d0,#0
+uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHLU.S8 q0,q0,#0
+uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHLU.S16 q0,q0,#0
+uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHLU.S32 q0,q0,#0
+uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHLU.S64 q0,q0,#0
+//Vector narrowing shift right by constant
+int8x8_t vshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8
+int16x4_t vshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16
+int32x2_t vshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32
+uint8x8_t vshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8
+uint16x4_t vshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16
+uint32x2_t vshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32
+//Vector signed->unsigned narrowing saturating shift right by constant
+uint8x8_t vqshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRUN.S16 d0,q0,#8
+uint16x4_t vqshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRUN.S32 d0,q0,#16
+uint32x2_t vqshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRUN.S64 d0,q0,#32
+//Vector signed->unsigned rounding narrowing saturating shift right by constant
+uint8x8_t vqrshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRUN.S16 d0,q0,#8
+uint16x4_t vqrshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRUN.S32 d0,q0,#16
+uint32x2_t vqrshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRUN.S64 d0,q0,#32
+//Vector narrowing saturating shift right by constant
+int8x8_t vqshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRN.S16 d0,q0,#8
+int16x4_t vqshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRN.S32 d0,q0,#16
+int32x2_t vqshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRN.S64 d0,q0,#32
+uint8x8_t vqshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQSHRN.U16 d0,q0,#8
+uint16x4_t vqshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQSHRN.U32 d0,q0,#16
+uint32x2_t vqshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQSHRN.U64 d0,q0,#32
+//Vector rounding narrowing shift right by constant
+int8x8_t vrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8
+int16x4_t vrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16
+int32x2_t vrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32
+uint8x8_t vrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8
+uint16x4_t vrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16
+uint32x2_t vrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32
+//Vector rounding narrowing saturating shift right by constant
+int8x8_t vqrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRN.S16 d0,q0,#8
+int16x4_t vqrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRN.S32 d0,q0,#16
+int32x2_t vqrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRN.S64 d0,q0,#32
+uint8x8_t vqrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQRSHRN.U16 d0,q0,#8
+uint16x4_t vqrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQRSHRN.U32 d0,q0,#16
+uint32x2_t vqrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQRSHRN.U64 d0,q0,#32
+//Vector widening shift left by constant
+int16x8_t vshll_n_s8(int8x8_t a, __constrange(0,8) int b); // VSHLL.S8 q0,d0,#0
+int32x4_t vshll_n_s16(int16x4_t a, __constrange(0,16) int b); // VSHLL.S16 q0,d0,#0
+int64x2_t vshll_n_s32(int32x2_t a, __constrange(0,32) int b); // VSHLL.S32 q0,d0,#0
+uint16x8_t vshll_n_u8(uint8x8_t a, __constrange(0,8) int b); // VSHLL.U8 q0,d0,#0
+uint32x4_t vshll_n_u16(uint16x4_t a, __constrange(0,16) int b); // VSHLL.U16 q0,d0,#0
+uint64x2_t vshll_n_u32(uint32x2_t a, __constrange(0,32) int b); // VSHLL.U32 q0,d0,#0
+//Shifts with insert
+//Vector shift right and insert
+int8x8_t vsri_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8
+int16x4_t vsri_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16
+int32x2_t vsri_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32
+int64x1_t vsri_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64
+uint8x8_t vsri_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8
+uint16x4_t vsri_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16
+uint32x2_t vsri_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32
+uint64x1_t vsri_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64
+poly8x8_t vsri_n_p8(poly8x8_t a, poly8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8
+poly16x4_t vsri_n_p16(poly16x4_t a, poly16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16
+int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8
+int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16
+int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32
+int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64
+uint8x16_t vsriq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8
+uint16x8_t vsriq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16
+uint32x4_t vsriq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32
+uint64x2_t vsriq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64
+poly8x16_t vsriq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8
+poly16x8_t vsriq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16
+//Vector shift left and insert
+int8x8_t vsli_n_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0
+int16x4_t vsli_n_s16(int16x4_t a, int16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0
+int32x2_t vsli_n_s32(int32x2_t a, int32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0
+int64x1_t vsli_n_s64(int64x1_t a, int64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0
+uint8x8_t vsli_n_u8(uint8x8_t a, uint8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0
+uint16x4_t vsli_n_u16(uint16x4_t a, uint16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0
+uint32x2_t vsli_n_u32(uint32x2_t a, uint32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0
+uint64x1_t vsli_n_u64(uint64x1_t a, uint64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0
+poly8x8_t vsli_n_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0
+poly16x4_t vsli_n_p16(poly16x4_t a, poly16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0
+int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0
+int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0
+int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0
+int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0
+uint8x16_t vsliq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0
+uint16x8_t vsliq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0
+uint32x4_t vsliq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0
+uint64x2_t vsliq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0
+poly8x16_t vsliq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0
+poly16x8_t vsliq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0
+//Loads of a single vector or lane. Perform loads and stores of a single vector of some type.
+//Load a single vector from memory
+uint8x16_t vld1q_u8(__transfersize(16) uint8_t const * ptr); // VLD1.8 {d0, d1}, [r0]
+uint16x8_t vld1q_u16(__transfersize(8) uint16_t const * ptr); // VLD1.16 {d0, d1}, [r0]
+uint32x4_t vld1q_u32(__transfersize(4) uint32_t const * ptr); // VLD1.32 {d0, d1}, [r0]
+uint64x2_t vld1q_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+int8x16_t vld1q_s8(__transfersize(16) int8_t const * ptr); // VLD1.8 {d0, d1}, [r0]
+int16x8_t vld1q_s16(__transfersize(8) int16_t const * ptr); // VLD1.16 {d0, d1}, [r0]
+int32x4_t vld1q_s32(__transfersize(4) int32_t const * ptr); // VLD1.32 {d0, d1}, [r0]
+int64x2_t vld1q_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr); // VLD1.16 {d0, d1}, [r0]
+float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr); // VLD1.32 {d0, d1}, [r0]
+poly8x16_t vld1q_p8(__transfersize(16) poly8_t const * ptr); // VLD1.8 {d0, d1}, [r0]
+poly16x8_t vld1q_p16(__transfersize(8) poly16_t const * ptr); // VLD1.16 {d0, d1}, [r0]
+uint8x8_t vld1_u8(__transfersize(8) uint8_t const * ptr); // VLD1.8 {d0}, [r0]
+uint16x4_t vld1_u16(__transfersize(4) uint16_t const * ptr); // VLD1.16 {d0}, [r0]
+uint32x2_t vld1_u32(__transfersize(2) uint32_t const * ptr); // VLD1.32 {d0}, [r0]
+uint64x1_t vld1_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0]
+int8x8_t vld1_s8(__transfersize(8) int8_t const * ptr); // VLD1.8 {d0}, [r0]
+int16x4_t vld1_s16(__transfersize(4) int16_t const * ptr); // VLD1.16 {d0}, [r0]
+int32x2_t vld1_s32(__transfersize(2) int32_t const * ptr); // VLD1.32 {d0}, [r0]
+int64x1_t vld1_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0]
+float16x4_t vld1_f16(__transfersize(4) __fp16 const * ptr); // VLD1.16 {d0}, [r0]
+float32x2_t vld1_f32(__transfersize(2) float32_t const * ptr); // VLD1.32 {d0}, [r0]
+poly8x8_t vld1_p8(__transfersize(8) poly8_t const * ptr); // VLD1.8 {d0}, [r0]
+poly16x4_t vld1_p16(__transfersize(4) poly16_t const * ptr); // VLD1.16 {d0}, [r0]
+//Load a single lane from memory
+uint8x16_t vld1q_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0]
+uint16x8_t vld1q_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0]
+uint32x4_t vld1q_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0]
+uint64x2_t vld1q_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0]
+int8x16_t vld1q_lane_s8(__transfersize(1) int8_t const * ptr, int8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0]
+int16x8_t vld1q_lane_s16(__transfersize(1) int16_t const * ptr, int16x8_t vec, __constrange(0,7) int lane); //VLD1.16 {d0[0]}, [r0]
+int32x4_t vld1q_lane_s32(__transfersize(1) int32_t const * ptr, int32x4_t vec, __constrange(0,3) int lane); //VLD1.32 {d0[0]}, [r0]
+float16x8_t vld1q_lane_f16(__transfersize(1) __fp16 const * ptr, float16x8_t vec, __constrange(0,7) int lane); //VLD1.16 {d0[0]}, [r0]
+float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0]
+int64x2_t vld1q_lane_s64(__transfersize(1) int64_t const * ptr, int64x2_t vec, __constrange(0,1) int lane); //VLD1.64 {d0}, [r0]
+poly8x16_t vld1q_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0]
+poly16x8_t vld1q_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0]
+uint8x8_t vld1_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x8_t vec, __constrange(0,7) int lane); //VLD1.8 {d0[0]}, [r0]
+uint16x4_t vld1_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0]
+uint32x2_t vld1_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x2_t vec, __constrange(0,1) int lane); //VLD1.32 {d0[0]}, [r0]
+uint64x1_t vld1_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x1_t vec, __constrange(0,0) int lane); //VLD1.64 {d0}, [r0]
+int8x8_t vld1_lane_s8(__transfersize(1) int8_t const * ptr, int8x8_t vec, __constrange(0,7) int lane); // VLD1.8{d0[0]}, [r0]
+int16x4_t vld1_lane_s16(__transfersize(1) int16_t const * ptr, int16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0]
+int32x2_t vld1_lane_s32(__transfersize(1) int32_t const * ptr, int32x2_t vec, __constrange(0,1) int lane); //VLD1.32 {d0[0]}, [r0]
+float16x4_t vld1q_lane_f16(__transfersize(1) __fp16 const * ptr, float16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0]
+float32x2_t vld1_lane_f32(__transfersize(1) float32_t const * ptr, float32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0]
+int64x1_t vld1_lane_s64(__transfersize(1) int64_t const * ptr, int64x1_t vec, __constrange(0,0) int lane); //VLD1.64 {d0}, [r0]
+poly8x8_t vld1_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x8_t vec, __constrange(0,7) int lane); //VLD1.8 {d0[0]}, [r0]
+poly16x4_t vld1_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0]
+//Load all lanes of vector with same value from memory
+uint8x16_t vld1q_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+uint16x8_t vld1q_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+uint32x4_t vld1q_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0]
+int8x16_t vld1q_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+int16x8_t vld1q_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+int32x4_t vld1q_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+int64x2_t vld1q_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0]
+float16x8_t vld1q_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0]
+float32x4_t vld1q_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+poly8x16_t vld1q_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+poly16x8_t vld1q_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+uint8x8_t vld1_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+uint16x4_t vld1_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+uint32x2_t vld1_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+uint64x1_t vld1_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0]
+int8x8_t vld1_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+int16x4_t vld1_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+int32x2_t vld1_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+int64x1_t vld1_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0]
+float16x4_t vld1_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0]
+float32x2_t vld1_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+poly8x8_t vld1_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+poly16x4_t vld1_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+//Store a single vector or lane. Stores all lanes or a single lane of a vector.
+//Store a single vector into memory
+void vst1q_u8(__transfersize(16) uint8_t * ptr, uint8x16_t val); // VST1.8 {d0, d1}, [r0]
+void vst1q_u16(__transfersize(8) uint16_t * ptr, uint16x8_t val); // VST1.16 {d0, d1}, [r0]
+void vst1q_u32(__transfersize(4) uint32_t * ptr, uint32x4_t val); // VST1.32 {d0, d1}, [r0]
+void vst1q_u64(__transfersize(2) uint64_t * ptr, uint64x2_t val); // VST1.64 {d0, d1}, [r0]
+void vst1q_s8(__transfersize(16) int8_t * ptr, int8x16_t val); // VST1.8 {d0, d1}, [r0]
+void vst1q_s16(__transfersize(8) int16_t * ptr, int16x8_t val); // VST1.16 {d0, d1}, [r0]
+void vst1q_s32(__transfersize(4) int32_t * ptr, int32x4_t val); // VST1.32 {d0, d1}, [r0]
+void vst1q_s64(__transfersize(2) int64_t * ptr, int64x2_t val); // VST1.64 {d0, d1}, [r0]
+void vst1q_f16(__transfersize(8) __fp16 * ptr, float16x8_t val); // VST1.16 {d0, d1}, [r0]
+void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val); // VST1.32 {d0, d1}, [r0]
+void vst1q_p8(__transfersize(16) poly8_t * ptr, poly8x16_t val); // VST1.8 {d0, d1}, [r0]
+void vst1q_p16(__transfersize(8) poly16_t * ptr, poly16x8_t val); // VST1.16 {d0, d1}, [r0]
+void vst1_u8(__transfersize(8) uint8_t * ptr, uint8x8_t val); // VST1.8 {d0}, [r0]
+void vst1_u16(__transfersize(4) uint16_t * ptr, uint16x4_t val); // VST1.16 {d0}, [r0]
+void vst1_u32(__transfersize(2) uint32_t * ptr, uint32x2_t val); // VST1.32 {d0}, [r0]
+void vst1_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val); // VST1.64 {d0}, [r0]
+void vst1_s8(__transfersize(8) int8_t * ptr, int8x8_t val); // VST1.8 {d0}, [r0]
+void vst1_s16(__transfersize(4) int16_t * ptr, int16x4_t val); // VST1.16 {d0}, [r0]
+void vst1_s32(__transfersize(2) int32_t * ptr, int32x2_t val); // VST1.32 {d0}, [r0]
+void vst1_s64(__transfersize(1) int64_t * ptr, int64x1_t val); // VST1.64 {d0}, [r0]
+void vst1_f16(__transfersize(4) __fp16 * ptr, float16x4_t val); // VST1.16 {d0}, [r0]
+void vst1_f32(__transfersize(2) float32_t * ptr, float32x2_t val); // VST1.32 {d0}, [r0]
+void vst1_p8(__transfersize(8) poly8_t * ptr, poly8x8_t val); // VST1.8 {d0}, [r0]
+void vst1_p16(__transfersize(4) poly16_t * ptr, poly16x4_t val); // VST1.16 {d0}, [r0]
+//Store a lane of a vector into memory
+//Loads of an N-element structure
+//Load N-element structure from memory
+uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr); // VLD2.8 {d0, d2}, [r0]
+uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr); // VLD2.16 {d0, d2}, [r0]
+uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr); // VLD2.32 {d0, d2}, [r0]
+int8x16x2_t vld2q_s8(__transfersize(32) int8_t const * ptr); // VLD2.8 {d0, d2}, [r0]
+int16x8x2_t vld2q_s16(__transfersize(16) int16_t const * ptr); // VLD2.16 {d0, d2}, [r0]
+int32x4x2_t vld2q_s32(__transfersize(8) int32_t const * ptr); // VLD2.32 {d0, d2}, [r0]
+float16x8x2_t vld2q_f16(__transfersize(16) __fp16 const * ptr); // VLD2.16 {d0, d2}, [r0]
+float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr); // VLD2.32 {d0, d2}, [r0]
+poly8x16x2_t vld2q_p8(__transfersize(32) poly8_t const * ptr); // VLD2.8 {d0, d2}, [r0]
+poly16x8x2_t vld2q_p16(__transfersize(16) poly16_t const * ptr); // VLD2.16 {d0, d2}, [r0]
+uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr); // VLD2.8 {d0, d1}, [r0]
+uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr); // VLD2.16 {d0, d1}, [r0]
+uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr); // VLD2.32 {d0, d1}, [r0]
+uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+int8x8x2_t vld2_s8(__transfersize(16) int8_t const * ptr); // VLD2.8 {d0, d1}, [r0]
+int16x4x2_t vld2_s16(__transfersize(8) int16_t const * ptr); // VLD2.16 {d0, d1}, [r0]
+int32x2x2_t vld2_s32(__transfersize(4) int32_t const * ptr); // VLD2.32 {d0, d1}, [r0]
+int64x1x2_t vld2_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+//float16x4x2_t vld2_f16(__transfersize(8) __fp16 const * ptr); // VLD2.16 {d0, d1}, [r0]
+float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr); // VLD2.32 {d0, d1}, [r0]
+poly8x8x2_t vld2_p8(__transfersize(16) poly8_t const * ptr); // VLD2.8 {d0, d1}, [r0]
+poly16x4x2_t vld2_p16(__transfersize(8) poly16_t const * ptr); // VLD2.16 {d0, d1}, [r0]
+uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0]
+uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0]
+int8x16x3_t vld3q_s8(__transfersize(48) int8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0]
+int16x8x3_t vld3q_s16(__transfersize(24) int16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+int32x4x3_t vld3q_s32(__transfersize(12) int32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0]
+float16x8x3_t vld3q_f16(__transfersize(24) __fp16 const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0]
+poly8x16x3_t vld3q_p8(__transfersize(48) poly8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0]
+poly16x8x3_t vld3q_p16(__transfersize(24) poly16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0]
+uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0]
+uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+int8x8x3_t vld3_s8(__transfersize(24) int8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0]
+int16x4x3_t vld3_s16(__transfersize(12) int16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+int32x2x3_t vld3_s32(__transfersize(6) int32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0]
+int64x1x3_t vld3_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+float16x4x3_t vld3_f16(__transfersize(12) __fp16 const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0]
+poly8x8x3_t vld3_p8(__transfersize(24) poly8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0]
+poly16x4x3_t vld3_p16(__transfersize(12) poly16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0]
+uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0]
+int8x16x4_t vld4q_s8(__transfersize(64) int8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0]
+int16x8x4_t vld4q_s16(__transfersize(32) int16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+int32x4x4_t vld4q_s32(__transfersize(16) int32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0]
+float16x8x4_t vld4q_f16(__transfersize(32) __fp16 const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0]
+poly8x16x4_t vld4q_p8(__transfersize(64) poly8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0]
+poly16x8x4_t vld4q_p16(__transfersize(32) poly16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0]
+uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0]
+uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+int8x8x4_t vld4_s8(__transfersize(32) int8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0]
+int16x4x4_t vld4_s16(__transfersize(16) int16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+int32x2x4_t vld4_s32(__transfersize(8) int32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0]
+int64x1x4_t vld4_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+float16x4x4_t vld4_f16(__transfersize(16) __fp16 const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0]
+poly8x8x4_t vld4_p8(__transfersize(32) poly8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0]
+poly16x4x4_t vld4_p16(__transfersize(16) poly16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+//Load all lanes of N-element structure with same value from memory
+uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0]
+uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0]
+uint64x1x2_t vld2_dup_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+int8x8x2_t vld2_dup_s8(__transfersize(2) int8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0]
+int16x4x2_t vld2_dup_s16(__transfersize(2) int16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+int32x2x2_t vld2_dup_s32(__transfersize(2) int32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0]
+int64x1x2_t vld2_dup_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+//float16x4x2_t vld2_dup_f16(__transfersize(2) __fp16 const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0]
+poly8x8x2_t vld2_dup_p8(__transfersize(2) poly8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0]
+poly16x4x2_t vld2_dup_p16(__transfersize(2) poly16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0]
+uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0]
+uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+int8x8x3_t vld3_dup_s8(__transfersize(3) int8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0]
+int16x4x3_t vld3_dup_s16(__transfersize(3) int16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+int32x2x3_t vld3_dup_s32(__transfersize(3) int32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0]
+int64x1x3_t vld3_dup_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+float16x4x3_t vld3_dup_f16(__transfersize(3) __fp16 const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0]
+poly8x8x3_t vld3_dup_p8(__transfersize(3) poly8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0]
+poly16x4x3_t vld3_dup_p16(__transfersize(3) poly16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0]
+uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+int8x8x4_t vld4_dup_s8(__transfersize(4) int8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0]
+int16x4x4_t vld4_dup_s16(__transfersize(4) int16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+int32x2x4_t vld4_dup_s32(__transfersize(4) int32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+int64x1x4_t vld4_dup_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+float16x4x4_t vld4_dup_f16(__transfersize(4) __fp16 const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+poly8x8x4_t vld4_dup_p8(__transfersize(4) poly8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0]
+poly16x4x4_t vld4_dup_p16(__transfersize(4) poly16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+//Load a single lane of N-element structure from memory
+//the functions below are modified to deal with the error C2719: 'src': formal parameter with __declspec(align('16')) won't be aligned
+uint16x8x2_t vld2q_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0]
+uint32x4x2_t vld2q_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0]
+int16x8x2_t vld2q_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0]
+int32x4x2_t vld2q_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0]
+float16x8x2_t vld2q_lane_f16_ptr(__transfersize(2) __fp16 const * ptr, float16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0]
+float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0]
+poly16x8x2_t vld2q_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0]
+uint8x8x2_t vld2_lane_u8_ptr(__transfersize(2) uint8_t const * ptr, uint8x8x2_t * src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0]
+uint16x4x2_t vld2_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0]
+uint32x2x2_t vld2_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x2x2_t * src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0]
+int8x8x2_t vld2_lane_s8_ptr(__transfersize(2) int8_t const * ptr, int8x8x2_t * src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0]
+int16x4x2_t vld2_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x4x2_t * src, __constrange(0,3) int lane); //VLD2.16 {d0[0], d1[0]}, [r0]
+int32x2x2_t vld2_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x2x2_t * src, __constrange(0,1) int lane); //VLD2.32 {d0[0], d1[0]}, [r0]
+//float16x4x2_t vld2_lane_f16_ptr(__transfersize(2) __fp16 const * ptr, float16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0]
+float32x2x2_t vld2_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x2x2_t * src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0]
+poly8x8x2_t vld2_lane_p8_ptr(__transfersize(2) poly8_t const * ptr, poly8x8x2_t * src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0]
+poly16x4x2_t vld2_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0]
+uint16x8x3_t vld3q_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+uint32x4x3_t vld3q_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+int16x8x3_t vld3q_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+int32x4x3_t vld3q_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+float16x8x3_t vld3q_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+float32x4x3_t vld3q_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+poly16x8x3_t vld3q_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+uint8x8x3_t vld3_lane_u8_ptr(__transfersize(3) uint8_t const * ptr, uint8x8x3_t * src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0]
+uint16x4x3_t vld3_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+uint32x2x3_t vld3_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x2x3_t * src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+int8x8x3_t vld3_lane_s8_ptr(__transfersize(3) int8_t const * ptr, int8x8x3_t * src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0]
+int16x4x3_t vld3_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x4x3_t * src, __constrange(0,3) int lane); //VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+int32x2x3_t vld3_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x2x3_t * src, __constrange(0,1) int lane); //VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+float16x4x3_t vld3_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+float32x2x3_t vld3_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x2x3_t * src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+poly8x8x3_t vld3_lane_p8_ptr(__transfersize(3) poly8_t const * ptr, poly8x8x3_t * src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0]
+poly16x4x3_t vld3_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+uint16x8x4_t vld4q_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+uint32x4x4_t vld4q_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+int16x8x4_t vld4q_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+int32x4x4_t vld4q_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+float16x8x4_t vld4q_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+float32x4x4_t vld4q_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+poly16x8x4_t vld4q_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+uint8x8x4_t vld4_lane_u8_ptr(__transfersize(4) uint8_t const * ptr, uint8x8x4_t * src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+uint16x4x4_t vld4_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x4x4_t * src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+uint32x2x4_t vld4_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x2x4_t * src, __constrange(0,1) int lane); // VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+int8x8x4_t vld4_lane_s8_ptr(__transfersize(4) int8_t const * ptr, int8x8x4_t * src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+int16x4x4_t vld4_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x4x4_t * src, __constrange(0,3) int lane); //VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+int32x2x4_t vld4_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x2x4_t * src, __constrange(0,1) int lane); //VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+float16x4x4_t vld4_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x4x4_t * src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+float32x2x4_t vld4_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x2x4_t * src, __constrange(0,1) int lane); // VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+poly8x8x4_t vld4_lane_p8_ptr(__transfersize(4) poly8_t const * ptr, poly8x8x4_t * src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+poly16x4x4_t vld4_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x4x4_t * src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+//Store N-element structure to memory
+void vst2q_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x16x2_t * val); // VST2.8 {d0, d2}, [r0]
+void vst2q_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x8x2_t * val); // VST2.16 {d0, d2}, [r0]
+void vst2q_u32_ptr(__transfersize(8) uint32_t * ptr, uint32x4x2_t * val); // VST2.32 {d0, d2}, [r0]
+void vst2q_s8_ptr(__transfersize(32) int8_t * ptr, int8x16x2_t * val); // VST2.8 {d0, d2}, [r0]
+void vst2q_s16_ptr(__transfersize(16) int16_t * ptr, int16x8x2_t * val); // VST2.16 {d0, d2}, [r0]
+void vst2q_s32_ptr(__transfersize(8) int32_t * ptr, int32x4x2_t * val); // VST2.32 {d0, d2}, [r0]
+void vst2q_f16_ptr(__transfersize(16) __fp16 * ptr, float16x8x2_t * val); // VST2.16 {d0, d2}, [r0]
+void vst2q_f32_ptr(__transfersize(8) float32_t * ptr, float32x4x2_t * val); // VST2.32 {d0, d2}, [r0]
+void vst2q_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x16x2_t * val); // VST2.8 {d0, d2}, [r0]
+void vst2q_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x8x2_t * val); // VST2.16 {d0, d2}, [r0]
+void vst2_u8_ptr(__transfersize(16) uint8_t * ptr, uint8x8x2_t * val); // VST2.8 {d0, d1}, [r0]
+void vst2_u16_ptr(__transfersize(8) uint16_t * ptr, uint16x4x2_t * val); // VST2.16 {d0, d1}, [r0]
+void vst2_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x2_t * val); // VST2.32 {d0, d1}, [r0]
+void vst2_u64_ptr(__transfersize(2) uint64_t * ptr, uint64x1x2_t * val); // VST1.64 {d0, d1}, [r0]
+void vst2_s8_ptr(__transfersize(16) int8_t * ptr, int8x8x2_t * val); // VST2.8 {d0, d1}, [r0]
+void vst2_s16_ptr(__transfersize(8) int16_t * ptr, int16x4x2_t * val); // VST2.16 {d0, d1}, [r0]
+void vst2_s32_ptr(__transfersize(4) int32_t * ptr, int32x2x2_t * val); // VST2.32 {d0, d1}, [r0]
+void vst2_s64_ptr(__transfersize(2) int64_t * ptr, int64x1x2_t * val); // VST1.64 {d0, d1}, [r0]
+//void vst2_f16_ptr(__transfersize(8) __fp16 * ptr, float16x4x2_t * val); // VST2.16 {d0, d1}, [r0]
+void vst2_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x2_t * val); // VST2.32 {d0, d1}, [r0]
+void vst2_p8_ptr(__transfersize(16) poly8_t * ptr, poly8x8x2_t * val); // VST2.8 {d0, d1}, [r0]
+void vst2_p16_ptr(__transfersize(8) poly16_t * ptr, poly16x4x2_t * val); // VST2.16 {d0, d1}, [r0]
+void vst3q_u8_ptr(__transfersize(48) uint8_t * ptr, uint8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0]
+void vst3q_u16_ptr(__transfersize(24) uint16_t * ptr, uint16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0]
+void vst3q_u32_ptr(__transfersize(12) uint32_t * ptr, uint32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0]
+void vst3q_s8_ptr(__transfersize(48) int8_t * ptr, int8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0]
+void vst3q_s16_ptr(__transfersize(24) int16_t * ptr, int16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0]
+void vst3q_s32_ptr(__transfersize(12) int32_t * ptr, int32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0]
+void vst3q_f16_ptr(__transfersize(24) __fp16 * ptr, float16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0]
+void vst3q_f32_ptr(__transfersize(12) float32_t * ptr, float32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0]
+void vst3q_p8_ptr(__transfersize(48) poly8_t * ptr, poly8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0]
+void vst3q_p16_ptr(__transfersize(24) poly16_t * ptr, poly16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0]
+void vst3_u8_ptr(__transfersize(24) uint8_t * ptr, uint8x8x3_t * val); // VST3.8 {d0, d1, d2}, [r0]
+void vst3_u16_ptr(__transfersize(12) uint16_t * ptr, uint16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0]
+void vst3_u32_ptr(__transfersize(6) uint32_t * ptr, uint32x2x3_t * val); // VST3.32 {d0, d1, d2}, [r0]
+void vst3_u64_ptr(__transfersize(3) uint64_t * ptr, uint64x1x3_t * val); // VST1.64 {d0, d1, d2}, [r0]
+void vst3_s8_ptr(__transfersize(24) int8_t * ptr, int8x8x3_t * val); // VST3.8 {d0, d1, d2}, [r0]
+void vst3_s16_ptr(__transfersize(12) int16_t * ptr, int16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0]
+void vst3_s32_ptr(__transfersize(6) int32_t * ptr, int32x2x3_t * val); // VST3.32 {d0, d1, d2}, [r0]
+void vst3_s64_ptr(__transfersize(3) int64_t * ptr, int64x1x3_t * val); // VST1.64 {d0, d1, d2}, [r0]
+void vst3_f16_ptr(__transfersize(12) __fp16 * ptr, float16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0]
+void vst3_f32_ptr(__transfersize(6) float32_t * ptr, float32x2x3_t * val); // VST3.32 {d0, d1, d2}, [r0]
+void vst3_p8_ptr(__transfersize(24) poly8_t * ptr, poly8x8x3_t * val); // VST3.8 {d0, d1, d2}, [r0]
+void vst3_p16_ptr(__transfersize(12) poly16_t * ptr, poly16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0]
+void vst4q_u8_ptr(__transfersize(64) uint8_t * ptr, uint8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0]
+void vst4q_u16_ptr(__transfersize(32) uint16_t * ptr, uint16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0]
+void vst4q_u32_ptr(__transfersize(16) uint32_t * ptr, uint32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0]
+void vst4q_s8_ptr(__transfersize(64) int8_t * ptr, int8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0]
+void vst4q_s16_ptr(__transfersize(32) int16_t * ptr, int16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0]
+void vst4q_s32_ptr(__transfersize(16) int32_t * ptr, int32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0]
+void vst4q_f16_ptr(__transfersize(32) __fp16 * ptr, float16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0]
+void vst4q_f32_ptr(__transfersize(16) float32_t * ptr, float32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0]
+void vst4q_p8_ptr(__transfersize(64) poly8_t * ptr, poly8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0]
+void vst4q_p16_ptr(__transfersize(32) poly16_t * ptr, poly16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0]
+void vst4_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x8x4_t * val); // VST4.8 {d0, d1, d2, d3}, [r0]
+void vst4_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0]
+void vst4_u32_ptr(__transfersize(8) uint32_t * ptr, uint32x2x4_t * val); // VST4.32 {d0, d1, d2, d3}, [r0]
+void vst4_u64_ptr(__transfersize(4) uint64_t * ptr, uint64x1x4_t * val); // VST1.64 {d0, d1, d2, d3}, [r0]
+void vst4_s8_ptr(__transfersize(32) int8_t * ptr, int8x8x4_t * val); // VST4.8 {d0, d1, d2, d3}, [r0]
+void vst4_s16_ptr(__transfersize(16) int16_t * ptr, int16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0]
+void vst4_s32_ptr(__transfersize(8) int32_t * ptr, int32x2x4_t * val); // VST4.32 {d0, d1, d2, d3}, [r0]
+void vst4_s64_ptr(__transfersize(4) int64_t * ptr, int64x1x4_t * val); // VST1.64 {d0, d1, d2, d3}, [r0]
+void vst4_f16_ptr(__transfersize(16) __fp16 * ptr, float16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0]
+void vst4_f32_ptr(__transfersize(8) float32_t * ptr, float32x2x4_t * val); // VST4.32 {d0, d1, d2, d3}, [r0]
+void vst4_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x8x4_t * val); // VST4.8 {d0, d1, d2, d3}, [r0]
+void vst4_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0]
+//Store a single lane of N-element structure to memory
+void vst2q_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0]
+void vst2q_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x4x2_t * val, __constrange(0,3) int lane); // VST2.32{d0[0], d2[0]}, [r0]
+void vst2q_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0]
+void vst2q_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x4x2_t * val, __constrange(0,3) int lane); // VST2.32{d0[0], d2[0]}, [r0]
+void vst2q_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0]
+void vst2q_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x4x2_t * val, __constrange(0,3) int lane); //VST2.32 {d0[0], d2[0]}, [r0]
+void vst2q_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0]
+void vst2_lane_u8_ptr(__transfersize(2) uint8_t * ptr, uint8x8x2_t * val, __constrange(0,7) int lane); // VST2.8{d0[0], d1[0]}, [r0]
+void vst2_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0]
+void vst2_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x2x2_t * val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0]
+void vst2_lane_s8_ptr(__transfersize(2) int8_t * ptr, int8x8x2_t * val, __constrange(0,7) int lane); // VST2.8 {d0[0],d1[0]}, [r0]
+void vst2_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0]
+void vst2_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x2x2_t * val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0]
+void vst2_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0]
+void vst2_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x2x2_t * val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0]
+void vst2_lane_p8_ptr(__transfersize(2) poly8_t * ptr, poly8x8x2_t * val, __constrange(0,7) int lane); // VST2.8{d0[0], d1[0]}, [r0]
+void vst2_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0]
+void vst3q_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x4x3_t * val, __constrange(0,3) int lane); // VST3.32{d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x4x3_t * val, __constrange(0,3) int lane); // VST3.32{d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x4x3_t * val, __constrange(0,3) int lane); //VST3.32 {d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0]
+void vst3_lane_u8_ptr(__transfersize(3) uint8_t * ptr, uint8x8x3_t * val, __constrange(0,7) int lane); // VST3.8{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x2x3_t * val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_s8_ptr(__transfersize(3) int8_t * ptr, int8x8x3_t * val, __constrange(0,7) int lane); // VST3.8 {d0[0],d1[0], d2[0]}, [r0]
+void vst3_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x2x3_t * val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x2x3_t * val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_p8_ptr(__transfersize(3) poly8_t * ptr, poly8x8x3_t * val, __constrange(0,7) int lane); // VST3.8{d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0]
+void vst4q_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x4x4_t * val, __constrange(0,3) int lane); // VST4.32{d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x4x4_t * val, __constrange(0,3) int lane); // VST4.32{d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x4x4_t * val, __constrange(0,3) int lane); //VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4_lane_u8_ptr(__transfersize(4) uint8_t * ptr, uint8x8x4_t * val, __constrange(0,7) int lane); // VST4.8{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x4_t * val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_s8_ptr(__transfersize(4) int8_t * ptr, int8x8x4_t * val, __constrange(0,7) int lane); // VST4.8 {d0[0],d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x2x4_t * val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x4_t * val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_p8_ptr(__transfersize(4) poly8_t * ptr, poly8x8x4_t * val, __constrange(0,7) int lane); // VST4.8{d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0]
+//Extract lanes from a vector and put into a register. These intrinsics extract a single lane (element) from a vector.
+uint8_t vget_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0]
+uint16_t vget_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VMOV.U16 r0, d0[0]
+uint32_t vget_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0]
+int8_t vget_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VMOV.S8 r0, d0[0]
+int16_t vget_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VMOV.S16 r0, d0[0]
+int32_t vget_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0]
+poly8_t vget_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0]
+poly16_t vget_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VMOV.U16 r0, d0[0]
+float32_t vget_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0]
+uint8_t vgetq_lane_u8(uint8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0]
+uint16_t vgetq_lane_u16(uint16x8_t vec, __constrange(0,7) int lane); // VMOV.U16 r0, d0[0]
+uint32_t vgetq_lane_u32(uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0]
+int8_t vgetq_lane_s8(int8x16_t vec, __constrange(0,15) int lane); // VMOV.S8 r0, d0[0]
+int16_t vgetq_lane_s16(int16x8_t vec, __constrange(0,7) int lane); // VMOV.S16 r0, d0[0]
+int32_t vgetq_lane_s32(int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0]
+poly8_t vgetq_lane_p8(poly8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0]
+poly16_t vgetq_lane_p16(poly16x8_t vec, __constrange(0,7) int lane); // VMOV.U16 r0, d0[0]
+float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0]
+int64_t vget_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0
+uint64_t vget_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0
+int64_t vgetq_lane_s64(int64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0
+uint64_t vgetq_lane_u64(uint64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0
+//Load a single lane of a vector from a literal. These intrinsics set a single lane (element) within a vector.
+uint8x8_t vset_lane_u8(uint8_t value, uint8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0
+uint16x4_t vset_lane_u16(uint16_t value, uint16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0
+uint32x2_t vset_lane_u32(uint32_t value, uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0
+int8x8_t vset_lane_s8(int8_t value, int8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0
+int16x4_t vset_lane_s16(int16_t value, int16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0
+int32x2_t vset_lane_s32(int32_t value, int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0
+poly8x8_t vset_lane_p8(poly8_t value, poly8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0
+poly16x4_t vset_lane_p16(poly16_t value, poly16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0
+float32x2_t vset_lane_f32(float32_t value, float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0
+uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0
+uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0
+uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0
+int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0
+int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0
+int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0
+poly8x16_t vsetq_lane_p8(poly8_t value, poly8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0
+poly16x8_t vsetq_lane_p16(poly16_t value, poly16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0
+float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0
+int64x1_t vset_lane_s64(int64_t value, int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0
+uint64x1_t vset_lane_u64(uint64_t value, uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0
+int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0
+uint64x2_t vsetq_lane_u64(uint64_t value, uint64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0
+//Initialize a vector from a literal bit pattern.
+int8x8_t vcreate_s8(uint64_t a); // VMOV d0,r0,r0
+int16x4_t vcreate_s16(uint64_t a); // VMOV d0,r0,r0
+int32x2_t vcreate_s32(uint64_t a); // VMOV d0,r0,r0
+float16x4_t vcreate_f16(uint64_t a); // VMOV d0,r0,r0
+float32x2_t vcreate_f32(uint64_t a); // VMOV d0,r0,r0
+uint8x8_t vcreate_u8(uint64_t a); // VMOV d0,r0,r0
+uint16x4_t vcreate_u16(uint64_t a); // VMOV d0,r0,r0
+uint32x2_t vcreate_u32(uint64_t a); // VMOV d0,r0,r0
+uint64x1_t vcreate_u64(uint64_t a); // VMOV d0,r0,r0
+poly8x8_t vcreate_p8(uint64_t a); // VMOV d0,r0,r0
+poly16x4_t vcreate_p16(uint64_t a); // VMOV d0,r0,r0
+int64x1_t vcreate_s64(uint64_t a); // VMOV d0,r0,r0
+//Set all lanes to same value
+//Load all lanes of vector to the same literal value
+uint8x8_t vdup_n_u8(uint8_t value); // VDUP.8 d0,r0
+uint16x4_t vdup_n_u16(uint16_t value); // VDUP.16 d0,r0
+uint32x2_t vdup_n_u32(uint32_t value); // VDUP.32 d0,r0
+int8x8_t vdup_n_s8(int8_t value); // VDUP.8 d0,r0
+int16x4_t vdup_n_s16(int16_t value); // VDUP.16 d0,r0
+int32x2_t vdup_n_s32(int32_t value); // VDUP.32 d0,r0
+poly8x8_t vdup_n_p8(poly8_t value); // VDUP.8 d0,r0
+poly16x4_t vdup_n_p16(poly16_t value); // VDUP.16 d0,r0
+float32x2_t vdup_n_f32(float32_t value); // VDUP.32 d0,r0
+uint8x16_t vdupq_n_u8(uint8_t value); // VDUP.8 q0,r0
+uint16x8_t vdupq_n_u16(uint16_t value); // VDUP.16 q0,r0
+uint32x4_t vdupq_n_u32(uint32_t value); // VDUP.32 q0,r0
+int8x16_t vdupq_n_s8(int8_t value); // VDUP.8 q0,r0
+int16x8_t vdupq_n_s16(int16_t value); // VDUP.16 q0,r0
+int32x4_t vdupq_n_s32(int32_t value); // VDUP.32 q0,r0
+poly8x16_t vdupq_n_p8(poly8_t value); // VDUP.8 q0,r0
+poly16x8_t vdupq_n_p16(poly16_t value); // VDUP.16 q0,r0
+float32x4_t vdupq_n_f32(float32_t value); // VDUP.32 q0,r0
+int64x1_t vdup_n_s64(int64_t value); // VMOV d0,r0,r0
+uint64x1_t vdup_n_u64(uint64_t value); // VMOV d0,r0,r0
+int64x2_t vdupq_n_s64(int64_t value); // VMOV d0,r0,r0
+uint64x2_t vdupq_n_u64(uint64_t value); // VMOV d0,r0,r0
+uint8x8_t vmov_n_u8(uint8_t value); // VDUP.8 d0,r0
+uint16x4_t vmov_n_u16(uint16_t value); // VDUP.16 d0,r0
+uint32x2_t vmov_n_u32(uint32_t value); // VDUP.32 d0,r0
+int8x8_t vmov_n_s8(int8_t value); // VDUP.8 d0,r0
+int16x4_t vmov_n_s16(int16_t value); // VDUP.16 d0,r0
+int32x2_t vmov_n_s32(int32_t value); // VDUP.32 d0,r0
+poly8x8_t vmov_n_p8(poly8_t value); // VDUP.8 d0,r0
+poly16x4_t vmov_n_p16(poly16_t value); // VDUP.16 d0,r0
+float32x2_t vmov_n_f32(float32_t value); // VDUP.32 d0,r0
+uint8x16_t vmovq_n_u8(uint8_t value); // VDUP.8 q0,r0
+uint16x8_t vmovq_n_u16(uint16_t value); // VDUP.16 q0,r0
+uint32x4_t vmovq_n_u32(uint32_t value); // VDUP.32 q0,r0
+int8x16_t vmovq_n_s8(int8_t value); // VDUP.8 q0,r0
+int16x8_t vmovq_n_s16(int16_t value); // VDUP.16 q0,r0
+int32x4_t vmovq_n_s32(int32_t value); // VDUP.32 q0,r0
+poly8x16_t vmovq_n_p8(poly8_t value); // VDUP.8 q0,r0
+poly16x8_t vmovq_n_p16(poly16_t value); // VDUP.16 q0,r0
+float32x4_t vmovq_n_f32(float32_t value); // VDUP.32 q0,r0
+int64x1_t vmov_n_s64(int64_t value); // VMOV d0,r0,r0
+uint64x1_t vmov_n_u64(uint64_t value); // VMOV d0,r0,r0
+int64x2_t vmovq_n_s64(int64_t value); // VMOV d0,r0,r0
+uint64x2_t vmovq_n_u64(uint64_t value); // VMOV d0,r0,r0
+//Load all lanes of the vector to the value of a lane of a vector
+uint8x8_t vdup_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0]
+uint16x4_t vdup_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0]
+uint32x2_t vdup_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0]
+int8x8_t vdup_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0]
+int16x4_t vdup_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0]
+int32x2_t vdup_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0]
+poly8x8_t vdup_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0]
+poly16x4_t vdup_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0]
+float32x2_t vdup_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0]
+uint8x16_t vdupq_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0]
+uint16x8_t vdupq_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0]
+uint32x4_t vdupq_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0]
+int8x16_t vdupq_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0]
+int16x8_t vdupq_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0]
+int32x4_t vdupq_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0]
+poly8x16_t vdupq_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0]
+poly16x8_t vdupq_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0]
+float32x4_t vdupq_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0]
+int64x1_t vdup_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0
+uint64x1_t vdup_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0
+int64x2_t vdupq_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0
+uint64x2_t vdupq_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0
+//Combining vectors. These intrinsics join two 64 bit vectors into a single 128bit vector.
+int8x16_t vcombine_s8(int8x8_t low, int8x8_t high); // VMOV d0,d0
+int16x8_t vcombine_s16(int16x4_t low, int16x4_t high); // VMOV d0,d0
+int32x4_t vcombine_s32(int32x2_t low, int32x2_t high); // VMOV d0,d0
+int64x2_t vcombine_s64(int64x1_t low, int64x1_t high); // VMOV d0,d0
+float16x8_t vcombine_f16(float16x4_t low, float16x4_t high); // VMOV d0,d0
+float32x4_t vcombine_f32(float32x2_t low, float32x2_t high); // VMOV d0,d0
+uint8x16_t vcombine_u8(uint8x8_t low, uint8x8_t high); // VMOV d0,d0
+uint16x8_t vcombine_u16(uint16x4_t low, uint16x4_t high); // VMOV d0,d0
+uint32x4_t vcombine_u32(uint32x2_t low, uint32x2_t high); // VMOV d0,d0
+uint64x2_t vcombine_u64(uint64x1_t low, uint64x1_t high); // VMOV d0,d0
+poly8x16_t vcombine_p8(poly8x8_t low, poly8x8_t high); // VMOV d0,d0
+poly16x8_t vcombine_p16(poly16x4_t low, poly16x4_t high); // VMOV d0,d0
+//Splitting vectors. These intrinsics split a 128 bit vector into 2 component 64 bit vectors
+int8x8_t vget_high_s8(int8x16_t a); // VMOV d0,d0
+int16x4_t vget_high_s16(int16x8_t a); // VMOV d0,d0
+int32x2_t vget_high_s32(int32x4_t a); // VMOV d0,d0
+int64x1_t vget_high_s64(int64x2_t a); // VMOV d0,d0
+float16x4_t vget_high_f16(float16x8_t a); // VMOV d0,d0
+float32x2_t vget_high_f32(float32x4_t a); // VMOV d0,d0
+uint8x8_t vget_high_u8(uint8x16_t a); // VMOV d0,d0
+uint16x4_t vget_high_u16(uint16x8_t a); // VMOV d0,d0
+uint32x2_t vget_high_u32(uint32x4_t a); // VMOV d0,d0
+uint64x1_t vget_high_u64(uint64x2_t a); // VMOV d0,d0
+poly8x8_t vget_high_p8(poly8x16_t a); // VMOV d0,d0
+poly16x4_t vget_high_p16(poly16x8_t a); // VMOV d0,d0
+int8x8_t vget_low_s8(int8x16_t a); // VMOV d0,d0
+int16x4_t vget_low_s16(int16x8_t a); // VMOV d0,d0
+int32x2_t vget_low_s32(int32x4_t a); // VMOV d0,d0
+int64x1_t vget_low_s64(int64x2_t a); // VMOV d0,d0
+float16x4_t vget_low_f16(float16x8_t a); // VMOV d0,d0
+float32x2_t vget_low_f32(float32x4_t a); // VMOV d0,d0
+uint8x8_t vget_low_u8(uint8x16_t a); // VMOV d0,d0
+uint16x4_t vget_low_u16(uint16x8_t a); // VMOV d0,d0
+uint32x2_t vget_low_u32(uint32x4_t a); // VMOV d0,d0
+uint64x1_t vget_low_u64(uint64x2_t a); // VMOV d0,d0
+poly8x8_t vget_low_p8(poly8x16_t a); // VMOV d0,d0
+poly16x4_t vget_low_p16(poly16x8_t a); // VMOV d0,d0
+//Converting vectors. These intrinsics are used to convert vectors.
+//Convert from float
+int32x2_t vcvt_s32_f32(float32x2_t a); // VCVT.S32.F32 d0, d0
+uint32x2_t vcvt_u32_f32(float32x2_t a); // VCVT.U32.F32 d0, d0
+int32x4_t vcvtq_s32_f32(float32x4_t a); // VCVT.S32.F32 q0, q0
+uint32x4_t vcvtq_u32_f32(float32x4_t a); // VCVT.U32.F32 q0, q0
+int32x2_t vcvt_n_s32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.S32.F32 d0, d0, #32
+uint32x2_t vcvt_n_u32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.U32.F32 d0, d0, #32
+int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.S32.F32 q0, q0, #32
+uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.U32.F32 q0, q0, #32
+//Convert to float
+float32x2_t vcvt_f32_s32(int32x2_t a); // VCVT.F32.S32 d0, d0
+float32x2_t vcvt_f32_u32(uint32x2_t a); // VCVT.F32.U32 d0, d0
+float32x4_t vcvtq_f32_s32(int32x4_t a); // VCVT.F32.S32 q0, q0
+float32x4_t vcvtq_f32_u32(uint32x4_t a); // VCVT.F32.U32 q0, q0
+float32x2_t vcvt_n_f32_s32(int32x2_t a, __constrange(1,32) int b); // VCVT.F32.S32 d0, d0, #32
+float32x2_t vcvt_n_f32_u32(uint32x2_t a, __constrange(1,32) int b); // VCVT.F32.U32 d0, d0, #32
+float32x4_t vcvtq_n_f32_s32(int32x4_t a, __constrange(1,32) int b); // VCVT.F32.S32 q0, q0, #32
+float32x4_t vcvtq_n_f32_u32(uint32x4_t a, __constrange(1,32) int b); // VCVT.F32.U32 q0, q0, #32
+//Convert between floats
+float16x4_t vcvt_f16_f32(float32x4_t a); // VCVT.F16.F32 d0, q0
+float32x4_t vcvt_f32_f16(float16x4_t a); // VCVT.F32.F16 q0, d0
+//Vector narrow integer
+int8x8_t vmovn_s16(int16x8_t a); // VMOVN.I16 d0,q0
+int16x4_t vmovn_s32(int32x4_t a); // VMOVN.I32 d0,q0
+int32x2_t vmovn_s64(int64x2_t a); // VMOVN.I64 d0,q0
+uint8x8_t vmovn_u16(uint16x8_t a); // VMOVN.I16 d0,q0
+uint16x4_t vmovn_u32(uint32x4_t a); // VMOVN.I32 d0,q0
+uint32x2_t vmovn_u64(uint64x2_t a); // VMOVN.I64 d0,q0
+//Vector long move
+int16x8_t vmovl_s8(int8x8_t a); // VMOVL.S8 q0,d0
+int32x4_t vmovl_s16(int16x4_t a); // VMOVL.S16 q0,d0
+int64x2_t vmovl_s32(int32x2_t a); // VMOVL.S32 q0,d0
+uint16x8_t vmovl_u8(uint8x8_t a); // VMOVL.U8 q0,d0
+uint32x4_t vmovl_u16(uint16x4_t a); // VMOVL.U16 q0,d0
+uint64x2_t vmovl_u32(uint32x2_t a); // VMOVL.U32 q0,d0
+//Vector saturating narrow integer
+int8x8_t vqmovn_s16(int16x8_t a); // VQMOVN.S16 d0,q0
+int16x4_t vqmovn_s32(int32x4_t a); // VQMOVN.S32 d0,q0
+int32x2_t vqmovn_s64(int64x2_t a); // VQMOVN.S64 d0,q0
+uint8x8_t vqmovn_u16(uint16x8_t a); // VQMOVN.U16 d0,q0
+uint16x4_t vqmovn_u32(uint32x4_t a); // VQMOVN.U32 d0,q0
+uint32x2_t vqmovn_u64(uint64x2_t a); // VQMOVN.U64 d0,q0
+//Vector saturating narrow integer signed->unsigned
+uint8x8_t vqmovun_s16(int16x8_t a); // VQMOVUN.S16 d0,q0
+uint16x4_t vqmovun_s32(int32x4_t a); // VQMOVUN.S32 d0,q0
+uint32x2_t vqmovun_s64(int64x2_t a); // VQMOVUN.S64 d0,q0
+//Table look up
+uint8x8_t vtbl1_u8(uint8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0
+int8x8_t vtbl1_s8(int8x8_t a, int8x8_t b); // VTBL.8 d0, {d0}, d0
+poly8x8_t vtbl1_p8(poly8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0
+uint8x8_t vtbl2_u8_ptr(uint8x8x2_t *a, uint8x8_t b); // VTBL.8 d0, {d0, d1}, d0
+int8x8_t vtbl2_s8_ptr(int8x8x2_t *a, int8x8_t b); // VTBL.8 d0, {d0, d1}, d0
+poly8x8_t vtbl2_p8_ptr(poly8x8x2_t *a, uint8x8_t b); // VTBL.8 d0, {d0, d1}, d0
+uint8x8_t vtbl3_u8_ptr(uint8x8x3_t *a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+int8x8_t vtbl3_s8_ptr(int8x8x3_t *a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+poly8x8_t vtbl3_p8_ptr(poly8x8x3_t *a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+uint8x8_t vtbl4_u8_ptr(uint8x8x4_t *a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+int8x8_t vtbl4_s8_ptr(int8x8x4_t *a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+poly8x8_t vtbl4_p8_ptr(poly8x8x4_t *a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+//Extended table look up intrinsics
+uint8x8_t vtbx1_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0
+int8x8_t vtbx1_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VTBX.8 d0, {d0}, d0
+poly8x8_t vtbx1_p8(poly8x8_t a, poly8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0
+uint8x8_t vtbx2_u8_ptr(uint8x8_t a, uint8x8x2_t *b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0
+int8x8_t vtbx2_s8_ptr(int8x8_t a, int8x8x2_t *b, int8x8_t c); // VTBX.8 d0, {d0, d1}, d0
+poly8x8_t vtbx2_p8_ptr(poly8x8_t a, poly8x8x2_t *b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0
+uint8x8_t vtbx3_u8_ptr(uint8x8_t a, uint8x8x3_t *b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0
+int8x8_t vtbx3_s8_ptr(int8x8_t a, int8x8x3_t *b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0
+poly8x8_t vtbx3_p8_ptr(poly8x8_t a, poly8x8x3_t *b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0
+uint8x8_t vtbx4_u8_ptr(uint8x8_t a, uint8x8x4_t *b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0
+int8x8_t vtbx4_s8_ptr(int8x8_t a, int8x8x4_t *b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0
+poly8x8_t vtbx4_p8_ptr(poly8x8_t a, poly8x8x4_t *b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0
+//Operations with a scalar value
+//Vector multiply accumulate with scalar
+int16x4_t vmla_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0,d0[0]
+int32x2_t vmla_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0,d0[0]
+uint16x4_t vmla_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0,d0[0]
+uint32x2_t vmla_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0,d0[0]
+float32x2_t vmla_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 d0,d0, d0[0]
+int16x8_t vmlaq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0,d0[0]
+int32x4_t vmlaq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0,d0[0]
+uint16x8_t vmlaq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0,q0, d0[0]
+uint32x4_t vmlaq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0,q0, d0[0]
+float32x4_t vmlaq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 q0,q0, d0[0]
+//Vector widening multiply accumulate with scalar
+int32x4_t vmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); //VMLAL.S16 q0, d0,d0[0]
+int64x2_t vmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); //VMLAL.S32 q0, d0,d0[0]
+uint32x4_t vmlal_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLAL.U16 q0,d0, d0[0]
+uint64x2_t vmlal_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLAL.U32 q0,d0, d0[0]
+//Vector widening saturating doubling multiply accumulate with scalar
+int32x4_t vqdmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLAL.S16 q0,d0, d0[0]
+int64x2_t vqdmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLAL.S32 q0,d0, d0[0]
+//Vector multiply subtract with scalar
+int16x4_t vmls_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0,d0[0]
+int32x2_t vmls_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0,d0[0]
+uint16x4_t vmls_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0,d0[0]
+uint32x2_t vmls_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0,d0[0]
+float32x2_t vmls_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLS.F32 d0,d0, d0[0]
+int16x8_t vmlsq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 q0, q0,d0[0]
+int32x4_t vmlsq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 q0, q0,d0[0]
+uint16x8_t vmlsq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLS.I16 q0,q0, d0[0]
+uint32x4_t vmlsq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLS.I32 q0,q0, d0[0]
+float32x4_t vmlsq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLS.F32 q0,q0, d0[0]
+//Vector widening multiply subtract with scalar
+int32x4_t vmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLSL.S16 q0, d0,d0[0]
+int64x2_t vmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLSL.S32 q0, d0,d0[0]
+uint32x4_t vmlsl_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLSL.U16 q0,d0, d0[0]
+uint64x2_t vmlsl_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLSL.U32 q0,d0, d0[0]
+//Vector widening saturating doubling multiply subtract with scalar
+int32x4_t vqdmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLSL.S16 q0,d0, d0[0]
+int64x2_t vqdmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLSL.S32 q0,d0, d0[0]
+//Vector multiply by scalar
+int16x4_t vmul_n_s16(int16x4_t a, int16_t b); // VMUL.I16 d0,d0,d0[0]
+int32x2_t vmul_n_s32(int32x2_t a, int32_t b); // VMUL.I32 d0,d0,d0[0]
+float32x2_t vmul_n_f32(float32x2_t a, float32_t b); // VMUL.F32 d0,d0,d0[0]
+uint16x4_t vmul_n_u16(uint16x4_t a, uint16_t b); // VMUL.I16 d0,d0,d0[0]
+uint32x2_t vmul_n_u32(uint32x2_t a, uint32_t b); // VMUL.I32 d0,d0,d0[0]
+int16x8_t vmulq_n_s16(int16x8_t a, int16_t b); // VMUL.I16 q0,q0,d0[0]
+int32x4_t vmulq_n_s32(int32x4_t a, int32_t b); // VMUL.I32 q0,q0,d0[0]
+float32x4_t vmulq_n_f32(float32x4_t a, float32_t b); // VMUL.F32 q0,q0,d0[0]
+uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b); // VMUL.I16 q0,q0,d0[0]
+uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b); // VMUL.I32 q0,q0,d0[0]
+//Vector long multiply with scalar
+int32x4_t vmull_n_s16(int16x4_t vec1, int16_t val2); // VMULL.S16 q0,d0,d0[0]
+int64x2_t vmull_n_s32(int32x2_t vec1, int32_t val2); // VMULL.S32 q0,d0,d0[0]
+uint32x4_t vmull_n_u16(uint16x4_t vec1, uint16_t val2); // VMULL.U16 q0,d0,d0[0]
+uint64x2_t vmull_n_u32(uint32x2_t vec1, uint32_t val2); // VMULL.U32 q0,d0,d0[0]
+//Vector long multiply by scalar
+int32x4_t vmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VMULL.S16 q0,d0,d0[0]
+int64x2_t vmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VMULL.S32 q0,d0,d0[0]
+uint32x4_t vmull_lane_u16(uint16x4_t vec1, uint16x4_t val2, __constrange(0, 3) int val3); // VMULL.U16 q0,d0,d0[0]
+uint64x2_t vmull_lane_u32(uint32x2_t vec1, uint32x2_t val2, __constrange(0, 1) int val3); // VMULL.U32 q0,d0,d0[0]
+//Vector saturating doubling long multiply with scalar
+int32x4_t vqdmull_n_s16(int16x4_t vec1, int16_t val2); // VQDMULL.S16 q0,d0,d0[0]
+int64x2_t vqdmull_n_s32(int32x2_t vec1, int32_t val2); // VQDMULL.S32 q0,d0,d0[0]
+//Vector saturating doubling long multiply by scalar
+int32x4_t vqdmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULL.S16 q0,d0,d0[0]
+int64x2_t vqdmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULL.S32 q0,d0,d0[0]
+//Vector saturating doubling multiply high with scalar
+int16x4_t vqdmulh_n_s16(int16x4_t vec1, int16_t val2); // VQDMULH.S16 d0,d0,d0[0]
+int32x2_t vqdmulh_n_s32(int32x2_t vec1, int32_t val2); // VQDMULH.S32 d0,d0,d0[0]
+int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQDMULH.S16 q0,q0,d0[0]
+int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQDMULH.S32 q0,q0,d0[0]
+//Vector saturating doubling multiply high by scalar
+int16x4_t vqdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULH.S16 d0,d0,d0[0]
+int32x2_t vqdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULH.S32 d0,d0,d0[0]
+int16x8_t vqdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULH.S16 q0,q0,d0[0]
+int32x4_t vqdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULH.S32 q0,q0,d0[0]
+//Vector saturating rounding doubling multiply high with scalar
+int16x4_t vqrdmulh_n_s16(int16x4_t vec1, int16_t val2); // VQRDMULH.S16 d0,d0,d0[0]
+int32x2_t vqrdmulh_n_s32(int32x2_t vec1, int32_t val2); // VQRDMULH.S32 d0,d0,d0[0]
+int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQRDMULH.S16 q0,q0,d0[0]
+int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQRDMULH.S32 q0,q0,d0[0]
+//Vector rounding saturating doubling multiply high by scalar
+int16x4_t vqrdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 d0,d0,d0[0]
+int32x2_t vqrdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 d0,d0,d0[0]
+int16x8_t vqrdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 q0,q0,d0[0]
+int32x4_t vqrdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 q0,q0,d0[0]
+//Vector multiply accumulate with scalar
+int16x4_t vmla_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLA.I16 d0, d0, d0[0]
+int32x2_t vmla_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLA.I32 d0, d0, d0[0]
+uint16x4_t vmla_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c); // VMLA.I16 d0, d0, d0[0]
+uint32x2_t vmla_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c); // VMLA.I32 d0, d0, d0[0]
+float32x2_t vmla_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLA.F32 d0, d0, d0[0]
+int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLA.I16 q0, q0, d0[0]
+int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLA.I32 q0, q0, d0[0]
+uint16x8_t vmlaq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLA.I16 q0, q0, d0[0]
+uint32x4_t vmlaq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLA.I32 q0, q0, d0[0]
+float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLA.F32 q0, q0, d0[0]
+//Vector widening multiply accumulate with scalar
+int32x4_t vmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLAL.S16 q0, d0, d0[0]
+int64x2_t vmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLAL.S32 q0, d0, d0[0]
+uint32x4_t vmlal_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLAL.U16 q0, d0, d0[0]
+uint64x2_t vmlal_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLAL.U32 q0, d0, d0[0]
+//Vector widening saturating doubling multiply accumulate with scalar
+int32x4_t vqdmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLAL.S16 q0, d0, d0[0]
+int64x2_t vqdmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLAL.S32 q0, d0, d0[0]
+//Vector multiply subtract with scalar
+int16x4_t vmls_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLS.I16 d0, d0, d0[0]
+int32x2_t vmls_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLS.I32 d0, d0, d0[0]
+uint16x4_t vmls_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c); // VMLS.I16 d0, d0, d0[0]
+uint32x2_t vmls_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c); // VMLS.I32 d0, d0, d0[0]
+float32x2_t vmls_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLS.F32 d0, d0, d0[0]
+int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLS.I16 q0, q0, d0[0]
+int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLS.I32 q0, q0, d0[0]
+uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLS.I16 q0, q0, d0[0]
+uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLS.I32 q0, q0, d0[0]
+float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLS.F32 q0, q0, d0[0]
+//Vector widening multiply subtract with scalar
+int32x4_t vmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLSL.S16 q0, d0, d0[0]
+int64x2_t vmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLSL.S32 q0, d0, d0[0]
+uint32x4_t vmlsl_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLSL.U16 q0, d0, d0[0]
+uint64x2_t vmlsl_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLSL.U32 q0, d0, d0[0]
+//Vector widening saturating doubling multiply subtract with scalar
+int32x4_t vqdmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLSL.S16 q0, d0, d0[0]
+int64x2_t vqdmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLSL.S32 q0, d0, d0[0]
+//Vector extract
+int8x8_t vext_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0
+uint8x8_t vext_u8(uint8x8_t a, uint8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0
+poly8x8_t vext_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0
+int16x4_t vext_s16(int16x4_t a, int16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0
+uint16x4_t vext_u16(uint16x4_t a, uint16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0
+poly16x4_t vext_p16(poly16x4_t a, poly16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0
+int32x2_t vext_s32(int32x2_t a, int32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0
+uint32x2_t vext_u32(uint32x2_t a, uint32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0
+int64x1_t vext_s64(int64x1_t a, int64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0
+uint64x1_t vext_u64(uint64x1_t a, uint64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0
+float32x2_t vext_f32(float32x2_t a, float32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0
+int8x16_t vextq_s8(int8x16_t a, int8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0
+uint8x16_t vextq_u8(uint8x16_t a, uint8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0
+poly8x16_t vextq_p8(poly8x16_t a, poly8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0
+int16x8_t vextq_s16(int16x8_t a, int16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0
+uint16x8_t vextq_u16(uint16x8_t a, uint16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0
+poly16x8_t vextq_p16(poly16x8_t a, poly16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0
+int32x4_t vextq_s32(int32x4_t a, int32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0
+uint32x4_t vextq_u32(uint32x4_t a, uint32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0
+int64x2_t vextq_s64(int64x2_t a, int64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0
+uint64x2_t vextq_u64(uint64x2_t a, uint64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0
+float32x4_t vextq_f32(float32x4_t a, float32x4_t b, __constrange(0,3) float c); // VEXT.32 q0,q0,q0,#0
+//Reverse vector elements (swap endianness). VREVn.m reverses the order of the m-bit lanes within a set that is n bits wide.
+int8x8_t vrev64_s8(int8x8_t vec); // VREV64.8 d0,d0
+int16x4_t vrev64_s16(int16x4_t vec); // VREV64.16 d0,d0
+int32x2_t vrev64_s32(int32x2_t vec); // VREV64.32 d0,d0
+uint8x8_t vrev64_u8(uint8x8_t vec); // VREV64.8 d0,d0
+uint16x4_t vrev64_u16(uint16x4_t vec); // VREV64.16 d0,d0
+uint32x2_t vrev64_u32(uint32x2_t vec); // VREV64.32 d0,d0
+poly8x8_t vrev64_p8(poly8x8_t vec); // VREV64.8 d0,d0
+poly16x4_t vrev64_p16(poly16x4_t vec); // VREV64.16 d0,d0
+float32x2_t vrev64_f32(float32x2_t vec); // VREV64.32 d0,d0
+int8x16_t vrev64q_s8(int8x16_t vec); // VREV64.8 q0,q0
+int16x8_t vrev64q_s16(int16x8_t vec); // VREV64.16 q0,q0
+int32x4_t vrev64q_s32(int32x4_t vec); // VREV64.32 q0,q0
+uint8x16_t vrev64q_u8(uint8x16_t vec); // VREV64.8 q0,q0
+uint16x8_t vrev64q_u16(uint16x8_t vec); // VREV64.16 q0,q0
+uint32x4_t vrev64q_u32(uint32x4_t vec); // VREV64.32 q0,q0
+poly8x16_t vrev64q_p8(poly8x16_t vec); // VREV64.8 q0,q0
+poly16x8_t vrev64q_p16(poly16x8_t vec); // VREV64.16 q0,q0
+float32x4_t vrev64q_f32(float32x4_t vec); // VREV64.32 q0,q0
+int8x8_t vrev32_s8(int8x8_t vec); // VREV32.8 d0,d0
+int16x4_t vrev32_s16(int16x4_t vec); // VREV32.16 d0,d0
+uint8x8_t vrev32_u8(uint8x8_t vec); // VREV32.8 d0,d0
+uint16x4_t vrev32_u16(uint16x4_t vec); // VREV32.16 d0,d0
+poly8x8_t vrev32_p8(poly8x8_t vec); // VREV32.8 d0,d0
+poly16x4_t vrev32_p16(poly16x4_t vec); // VREV32.16 d0,d0
+int8x16_t vrev32q_s8(int8x16_t vec); // VREV32.8 q0,q0
+int16x8_t vrev32q_s16(int16x8_t vec); // VREV32.16 q0,q0
+uint8x16_t vrev32q_u8(uint8x16_t vec); // VREV32.8 q0,q0
+uint16x8_t vrev32q_u16(uint16x8_t vec); // VREV32.16 q0,q0
+poly8x16_t vrev32q_p8(poly8x16_t vec); // VREV32.8 q0,q0
+poly16x8_t vrev32q_p16(poly16x8_t vec); // VREV32.16 q0,q0
+int8x8_t vrev16_s8(int8x8_t vec); // VREV16.8 d0,d0
+uint8x8_t vrev16_u8(uint8x8_t vec); // VREV16.8 d0,d0
+poly8x8_t vrev16_p8(poly8x8_t vec); // VREV16.8 d0,d0
+int8x16_t vrev16q_s8(int8x16_t vec); // VREV16.8 q0,q0
+uint8x16_t vrev16q_u8(uint8x16_t vec); // VREV16.8 q0,q0
+poly8x16_t vrev16q_p8(poly8x16_t vec); // VREV16.8 q0,q0
+//Other single operand arithmetic
+//Absolute: Vd[i] = |Va[i]|
+int8x8_t vabs_s8(int8x8_t a); // VABS.S8 d0,d0
+int16x4_t vabs_s16(int16x4_t a); // VABS.S16 d0,d0
+int32x2_t vabs_s32(int32x2_t a); // VABS.S32 d0,d0
+float32x2_t vabs_f32(float32x2_t a); // VABS.F32 d0,d0
+int8x16_t vabsq_s8(int8x16_t a); // VABS.S8 q0,q0
+int16x8_t vabsq_s16(int16x8_t a); // VABS.S16 q0,q0
+int32x4_t vabsq_s32(int32x4_t a); // VABS.S32 q0,q0
+float32x4_t vabsq_f32(float32x4_t a); // VABS.F32 q0,q0
+//Saturating absolute: Vd[i] = sat(|Va[i]|)
+int8x8_t vqabs_s8(int8x8_t a); // VQABS.S8 d0,d0
+int16x4_t vqabs_s16(int16x4_t a); // VQABS.S16 d0,d0
+int32x2_t vqabs_s32(int32x2_t a); // VQABS.S32 d0,d0
+int8x16_t vqabsq_s8(int8x16_t a); // VQABS.S8 q0,q0
+int16x8_t vqabsq_s16(int16x8_t a); // VQABS.S16 q0,q0
+int32x4_t vqabsq_s32(int32x4_t a); // VQABS.S32 q0,q0
+//Negate: Vd[i] = - Va[i]
+int8x8_t vneg_s8(int8x8_t a); // VNE//d0,d0
+int16x4_t vneg_s16(int16x4_t a); // VNE//d0,d0
+int32x2_t vneg_s32(int32x2_t a); // VNE//d0,d0
+float32x2_t vneg_f32(float32x2_t a); // VNE//d0,d0
+int8x16_t vnegq_s8(int8x16_t a); // VNE//q0,q0
+int16x8_t vnegq_s16(int16x8_t a); // VNE//q0,q0
+int32x4_t vnegq_s32(int32x4_t a); // VNE//q0,q0
+float32x4_t vnegq_f32(float32x4_t a); // VNE//q0,q0
+//Saturating Negate: sat(Vd[i] = - Va[i])
+int8x8_t vqneg_s8(int8x8_t a); // VQNE//d0,d0
+int16x4_t vqneg_s16(int16x4_t a); // VQNE//d0,d0
+int32x2_t vqneg_s32(int32x2_t a); // VQNE//d0,d0
+int8x16_t vqnegq_s8(int8x16_t a); // VQNE//q0,q0
+int16x8_t vqnegq_s16(int16x8_t a); // VQNE//q0,q0
+int32x4_t vqnegq_s32(int32x4_t a); // VQNE//q0,q0
+//Count leading sign bits
+int8x8_t vcls_s8(int8x8_t a); // VCLS.S8 d0,d0
+int16x4_t vcls_s16(int16x4_t a); // VCLS.S16 d0,d0
+int32x2_t vcls_s32(int32x2_t a); // VCLS.S32 d0,d0
+int8x16_t vclsq_s8(int8x16_t a); // VCLS.S8 q0,q0
+int16x8_t vclsq_s16(int16x8_t a); // VCLS.S16 q0,q0
+int32x4_t vclsq_s32(int32x4_t a); // VCLS.S32 q0,q0
+//Count leading zeros
+int8x8_t vclz_s8(int8x8_t a); // VCLZ.I8 d0,d0
+int16x4_t vclz_s16(int16x4_t a); // VCLZ.I16 d0,d0
+int32x2_t vclz_s32(int32x2_t a); // VCLZ.I32 d0,d0
+uint8x8_t vclz_u8(uint8x8_t a); // VCLZ.I8 d0,d0
+uint16x4_t vclz_u16(uint16x4_t a); // VCLZ.I16 d0,d0
+uint32x2_t vclz_u32(uint32x2_t a); // VCLZ.I32 d0,d0
+int8x16_t vclzq_s8(int8x16_t a); // VCLZ.I8 q0,q0
+int16x8_t vclzq_s16(int16x8_t a); // VCLZ.I16 q0,q0
+int32x4_t vclzq_s32(int32x4_t a); // VCLZ.I32 q0,q0
+uint8x16_t vclzq_u8(uint8x16_t a); // VCLZ.I8 q0,q0
+uint16x8_t vclzq_u16(uint16x8_t a); // VCLZ.I16 q0,q0
+uint32x4_t vclzq_u32(uint32x4_t a); // VCLZ.I32 q0,q0
+//Count number of set bits
+uint8x8_t vcnt_u8(uint8x8_t a); // VCNT.8 d0,d0
+int8x8_t vcnt_s8(int8x8_t a); // VCNT.8 d0,d0
+poly8x8_t vcnt_p8(poly8x8_t a); // VCNT.8 d0,d0
+uint8x16_t vcntq_u8(uint8x16_t a); // VCNT.8 q0,q0
+int8x16_t vcntq_s8(int8x16_t a); // VCNT.8 q0,q0
+poly8x16_t vcntq_p8(poly8x16_t a); // VCNT.8 q0,q0
+//Reciprocal estimate
+float32x2_t vrecpe_f32(float32x2_t a); // VRECPE.F32 d0,d0
+uint32x2_t vrecpe_u32(uint32x2_t a); // VRECPE.U32 d0,d0
+float32x4_t vrecpeq_f32(float32x4_t a); // VRECPE.F32 q0,q0
+uint32x4_t vrecpeq_u32(uint32x4_t a); // VRECPE.U32 q0,q0
+//Reciprocal square root estimate
+float32x2_t vrsqrte_f32(float32x2_t a); // VRSQRTE.F32 d0,d0
+uint32x2_t vrsqrte_u32(uint32x2_t a); // VRSQRTE.U32 d0,d0
+float32x4_t vrsqrteq_f32(float32x4_t a); // VRSQRTE.F32 q0,q0
+uint32x4_t vrsqrteq_u32(uint32x4_t a); // VRSQRTE.U32 q0,q0
+//Logical operations
+//Bitwise not
+int8x8_t vmvn_s8(int8x8_t a); // VMVN d0,d0
+int16x4_t vmvn_s16(int16x4_t a); // VMVN d0,d0
+int32x2_t vmvn_s32(int32x2_t a); // VMVN d0,d0
+uint8x8_t vmvn_u8(uint8x8_t a); // VMVN d0,d0
+uint16x4_t vmvn_u16(uint16x4_t a); // VMVN d0,d0
+uint32x2_t vmvn_u32(uint32x2_t a); // VMVN d0,d0
+poly8x8_t vmvn_p8(poly8x8_t a); // VMVN d0,d0
+int8x16_t vmvnq_s8(int8x16_t a); // VMVN q0,q0
+int16x8_t vmvnq_s16(int16x8_t a); // VMVN q0,q0
+int32x4_t vmvnq_s32(int32x4_t a); // VMVN q0,q0
+uint8x16_t vmvnq_u8(uint8x16_t a); // VMVN q0,q0
+uint16x8_t vmvnq_u16(uint16x8_t a); // VMVN q0,q0
+uint32x4_t vmvnq_u32(uint32x4_t a); // VMVN q0,q0
+poly8x16_t vmvnq_p8(poly8x16_t a); // VMVN q0,q0
+//Bitwise and
+int8x8_t vand_s8(int8x8_t a, int8x8_t b); // VAND d0,d0,d0
+int16x4_t vand_s16(int16x4_t a, int16x4_t b); // VAND d0,d0,d0
+int32x2_t vand_s32(int32x2_t a, int32x2_t b); // VAND d0,d0,d0
+int64x1_t vand_s64(int64x1_t a, int64x1_t b); // VAND d0,d0,d0
+uint8x8_t vand_u8(uint8x8_t a, uint8x8_t b); // VAND d0,d0,d0
+uint16x4_t vand_u16(uint16x4_t a, uint16x4_t b); // VAND d0,d0,d0
+uint32x2_t vand_u32(uint32x2_t a, uint32x2_t b); // VAND d0,d0,d0
+uint64x1_t vand_u64(uint64x1_t a, uint64x1_t b); // VAND d0,d0,d0
+int8x16_t vandq_s8(int8x16_t a, int8x16_t b); // VAND q0,q0,q0
+int16x8_t vandq_s16(int16x8_t a, int16x8_t b); // VAND q0,q0,q0
+int32x4_t vandq_s32(int32x4_t a, int32x4_t b); // VAND q0,q0,q0
+int64x2_t vandq_s64(int64x2_t a, int64x2_t b); // VAND q0,q0,q0
+uint8x16_t vandq_u8(uint8x16_t a, uint8x16_t b); // VAND q0,q0,q0
+uint16x8_t vandq_u16(uint16x8_t a, uint16x8_t b); // VAND q0,q0,q0
+uint32x4_t vandq_u32(uint32x4_t a, uint32x4_t b); // VAND q0,q0,q0
+uint64x2_t vandq_u64(uint64x2_t a, uint64x2_t b); // VAND q0,q0,q0
+//Bitwise or
+int8x8_t vorr_s8(int8x8_t a, int8x8_t b); // VORR d0,d0,d0
+int16x4_t vorr_s16(int16x4_t a, int16x4_t b); // VORR d0,d0,d0
+int32x2_t vorr_s32(int32x2_t a, int32x2_t b); // VORR d0,d0,d0
+int64x1_t vorr_s64(int64x1_t a, int64x1_t b); // VORR d0,d0,d0
+uint8x8_t vorr_u8(uint8x8_t a, uint8x8_t b); // VORR d0,d0,d0
+uint16x4_t vorr_u16(uint16x4_t a, uint16x4_t b); // VORR d0,d0,d0
+uint32x2_t vorr_u32(uint32x2_t a, uint32x2_t b); // VORR d0,d0,d0
+uint64x1_t vorr_u64(uint64x1_t a, uint64x1_t b); // VORR d0,d0,d0
+int8x16_t vorrq_s8(int8x16_t a, int8x16_t b); // VORR q0,q0,q0
+int16x8_t vorrq_s16(int16x8_t a, int16x8_t b); // VORR q0,q0,q0
+int32x4_t vorrq_s32(int32x4_t a, int32x4_t b); // VORR q0,q0,q0
+int64x2_t vorrq_s64(int64x2_t a, int64x2_t b); // VORR q0,q0,q0
+uint8x16_t vorrq_u8(uint8x16_t a, uint8x16_t b); // VORR q0,q0,q0
+uint16x8_t vorrq_u16(uint16x8_t a, uint16x8_t b); // VORR q0,q0,q0
+uint32x4_t vorrq_u32(uint32x4_t a, uint32x4_t b); // VORR q0,q0,q0
+uint64x2_t vorrq_u64(uint64x2_t a, uint64x2_t b); // VORR q0,q0,q0
+//Bitwise exclusive or (EOR or XOR)
+int8x8_t veor_s8(int8x8_t a, int8x8_t b); // VEOR d0,d0,d0
+int16x4_t veor_s16(int16x4_t a, int16x4_t b); // VEOR d0,d0,d0
+int32x2_t veor_s32(int32x2_t a, int32x2_t b); // VEOR d0,d0,d0
+int64x1_t veor_s64(int64x1_t a, int64x1_t b); // VEOR d0,d0,d0
+uint8x8_t veor_u8(uint8x8_t a, uint8x8_t b); // VEOR d0,d0,d0
+uint16x4_t veor_u16(uint16x4_t a, uint16x4_t b); // VEOR d0,d0,d0
+uint32x2_t veor_u32(uint32x2_t a, uint32x2_t b); // VEOR d0,d0,d0
+uint64x1_t veor_u64(uint64x1_t a, uint64x1_t b); // VEOR d0,d0,d0
+int8x16_t veorq_s8(int8x16_t a, int8x16_t b); // VEOR q0,q0,q0
+int16x8_t veorq_s16(int16x8_t a, int16x8_t b); // VEOR q0,q0,q0
+int32x4_t veorq_s32(int32x4_t a, int32x4_t b); // VEOR q0,q0,q0
+int64x2_t veorq_s64(int64x2_t a, int64x2_t b); // VEOR q0,q0,q0
+uint8x16_t veorq_u8(uint8x16_t a, uint8x16_t b); // VEOR q0,q0,q0
+uint16x8_t veorq_u16(uint16x8_t a, uint16x8_t b); // VEOR q0,q0,q0
+uint32x4_t veorq_u32(uint32x4_t a, uint32x4_t b); // VEOR q0,q0,q0
+uint64x2_t veorq_u64(uint64x2_t a, uint64x2_t b); // VEOR q0,q0,q0
+//Bit Clear
+int8x8_t vbic_s8(int8x8_t a, int8x8_t b); // VBIC d0,d0,d0
+int16x4_t vbic_s16(int16x4_t a, int16x4_t b); // VBIC d0,d0,d0
+int32x2_t vbic_s32(int32x2_t a, int32x2_t b); // VBIC d0,d0,d0
+int64x1_t vbic_s64(int64x1_t a, int64x1_t b); // VBIC d0,d0,d0
+uint8x8_t vbic_u8(uint8x8_t a, uint8x8_t b); // VBIC d0,d0,d0
+uint16x4_t vbic_u16(uint16x4_t a, uint16x4_t b); // VBIC d0,d0,d0
+uint32x2_t vbic_u32(uint32x2_t a, uint32x2_t b); // VBIC d0,d0,d0
+uint64x1_t vbic_u64(uint64x1_t a, uint64x1_t b); // VBIC d0,d0,d0
+int8x16_t vbicq_s8(int8x16_t a, int8x16_t b); // VBIC q0,q0,q0
+int16x8_t vbicq_s16(int16x8_t a, int16x8_t b); // VBIC q0,q0,q0
+int32x4_t vbicq_s32(int32x4_t a, int32x4_t b); // VBIC q0,q0,q0
+int64x2_t vbicq_s64(int64x2_t a, int64x2_t b); // VBIC q0,q0,q0
+uint8x16_t vbicq_u8(uint8x16_t a, uint8x16_t b); // VBIC q0,q0,q0
+uint16x8_t vbicq_u16(uint16x8_t a, uint16x8_t b); // VBIC q0,q0,q0
+uint32x4_t vbicq_u32(uint32x4_t a, uint32x4_t b); // VBIC q0,q0,q0
+uint64x2_t vbicq_u64(uint64x2_t a, uint64x2_t b); // VBIC q0,q0,q0
+//Bitwise OR complement
+int8x8_t vorn_s8(int8x8_t a, int8x8_t b); // VORN d0,d0,d0
+int16x4_t vorn_s16(int16x4_t a, int16x4_t b); // VORN d0,d0,d0
+int32x2_t vorn_s32(int32x2_t a, int32x2_t b); // VORN d0,d0,d0
+int64x1_t vorn_s64(int64x1_t a, int64x1_t b); // VORN d0,d0,d0
+uint8x8_t vorn_u8(uint8x8_t a, uint8x8_t b); // VORN d0,d0,d0
+uint16x4_t vorn_u16(uint16x4_t a, uint16x4_t b); // VORN d0,d0,d0
+uint32x2_t vorn_u32(uint32x2_t a, uint32x2_t b); // VORN d0,d0,d0
+uint64x1_t vorn_u64(uint64x1_t a, uint64x1_t b); // VORN d0,d0,d0
+int8x16_t vornq_s8(int8x16_t a, int8x16_t b); // VORN q0,q0,q0
+int16x8_t vornq_s16(int16x8_t a, int16x8_t b); // VORN q0,q0,q0
+int32x4_t vornq_s32(int32x4_t a, int32x4_t b); // VORN q0,q0,q0
+int64x2_t vornq_s64(int64x2_t a, int64x2_t b); // VORN q0,q0,q0
+uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b); // VORN q0,q0,q0
+uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b); // VORN q0,q0,q0
+uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b); // VORN q0,q0,q0
+uint64x2_t vornq_u64(uint64x2_t a, uint64x2_t b); // VORN q0,q0,q0
+//Bitwise Select
+int8x8_t vbsl_s8(uint8x8_t a, int8x8_t b, int8x8_t c); // VBSL d0,d0,d0
+int16x4_t vbsl_s16(uint16x4_t a, int16x4_t b, int16x4_t c); // VBSL d0,d0,d0
+int32x2_t vbsl_s32(uint32x2_t a, int32x2_t b, int32x2_t c); // VBSL d0,d0,d0
+int64x1_t vbsl_s64(uint64x1_t a, int64x1_t b, int64x1_t c); // VBSL d0,d0,d0
+uint8x8_t vbsl_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VBSL d0,d0,d0
+uint16x4_t vbsl_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VBSL d0,d0,d0
+uint32x2_t vbsl_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VBSL d0,d0,d0
+uint64x1_t vbsl_u64(uint64x1_t a, uint64x1_t b, uint64x1_t c); // VBSL d0,d0,d0
+float32x2_t vbsl_f32(uint32x2_t a, float32x2_t b, float32x2_t c); // VBSL d0,d0,d0
+poly8x8_t vbsl_p8(uint8x8_t a, poly8x8_t b, poly8x8_t c); // VBSL d0,d0,d0
+poly16x4_t vbsl_p16(uint16x4_t a, poly16x4_t b, poly16x4_t c); // VBSL d0,d0,d0
+int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c); // VBSL q0,q0,q0
+int16x8_t vbslq_s16(uint16x8_t a, int16x8_t b, int16x8_t c); // VBSL q0,q0,q0
+int32x4_t vbslq_s32(uint32x4_t a, int32x4_t b, int32x4_t c); // VBSL q0,q0,q0
+int64x2_t vbslq_s64(uint64x2_t a, int64x2_t b, int64x2_t c); // VBSL q0,q0,q0
+uint8x16_t vbslq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VBSL q0,q0,q0
+uint16x8_t vbslq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VBSL q0,q0,q0
+uint32x4_t vbslq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VBSL q0,q0,q0
+uint64x2_t vbslq_u64(uint64x2_t a, uint64x2_t b, uint64x2_t c); // VBSL q0,q0,q0
+float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c); // VBSL q0,q0,q0
+poly8x16_t vbslq_p8(uint8x16_t a, poly8x16_t b, poly8x16_t c); // VBSL q0,q0,q0
+poly16x8_t vbslq_p16(uint16x8_t a, poly16x8_t b, poly16x8_t c); // VBSL q0,q0,q0
+//Transposition operations
+//Transpose elements
+int8x8x2_t vtrn_s8(int8x8_t a, int8x8_t b); // VTRN.8 d0,d0
+int16x4x2_t vtrn_s16(int16x4_t a, int16x4_t b); // VTRN.16 d0,d0
+int32x2x2_t vtrn_s32(int32x2_t a, int32x2_t b); // VTRN.32 d0,d0
+uint8x8x2_t vtrn_u8(uint8x8_t a, uint8x8_t b); // VTRN.8 d0,d0
+uint16x4x2_t vtrn_u16(uint16x4_t a, uint16x4_t b); // VTRN.16 d0,d0
+uint32x2x2_t vtrn_u32(uint32x2_t a, uint32x2_t b); // VTRN.32 d0,d0
+float32x2x2_t vtrn_f32(float32x2_t a, float32x2_t b); // VTRN.32 d0,d0
+poly8x8x2_t vtrn_p8(poly8x8_t a, poly8x8_t b); // VTRN.8 d0,d0
+poly16x4x2_t vtrn_p16(poly16x4_t a, poly16x4_t b); // VTRN.16 d0,d0
+int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b); // VTRN.8 q0,q0
+int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b); // VTRN.16 q0,q0
+int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b); // VTRN.32 q0,q0
+uint8x16x2_t vtrnq_u8(uint8x16_t a, uint8x16_t b); // VTRN.8 q0,q0
+uint16x8x2_t vtrnq_u16(uint16x8_t a, uint16x8_t b); // VTRN.16 q0,q0
+uint32x4x2_t vtrnq_u32(uint32x4_t a, uint32x4_t b); // VTRN.32 q0,q0
+float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b); // VTRN.32 q0,q0
+poly8x16x2_t vtrnq_p8(poly8x16_t a, poly8x16_t b); // VTRN.8 q0,q0
+poly16x8x2_t vtrnq_p16(poly16x8_t a, poly16x8_t b); // VTRN.16 q0,q0
+//Interleave elements
+int8x8x2_t vzip_s8(int8x8_t a, int8x8_t b); // VZIP.8 d0,d0
+int16x4x2_t vzip_s16(int16x4_t a, int16x4_t b); // VZIP.16 d0,d0
+int32x2x2_t vzip_s32(int32x2_t a, int32x2_t b); // VZIP.32 d0,d0
+uint8x8x2_t vzip_u8(uint8x8_t a, uint8x8_t b); // VZIP.8 d0,d0
+uint16x4x2_t vzip_u16(uint16x4_t a, uint16x4_t b); // VZIP.16 d0,d0
+uint32x2x2_t vzip_u32(uint32x2_t a, uint32x2_t b); // VZIP.32 d0,d0
+float32x2x2_t vzip_f32(float32x2_t a, float32x2_t b); // VZIP.32 d0,d0
+poly8x8x2_t vzip_p8(poly8x8_t a, poly8x8_t b); // VZIP.8 d0,d0
+poly16x4x2_t vzip_p16(poly16x4_t a, poly16x4_t b); // VZIP.16 d0,d0
+int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b); // VZIP.8 q0,q0
+int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b); // VZIP.16 q0,q0
+int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b); // VZIP.32 q0,q0
+uint8x16x2_t vzipq_u8(uint8x16_t a, uint8x16_t b); // VZIP.8 q0,q0
+uint16x8x2_t vzipq_u16(uint16x8_t a, uint16x8_t b); // VZIP.16 q0,q0
+uint32x4x2_t vzipq_u32(uint32x4_t a, uint32x4_t b); // VZIP.32 q0,q0
+float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b); // VZIP.32 q0,q0
+poly8x16x2_t vzipq_p8(poly8x16_t a, poly8x16_t b); // VZIP.8 q0,q0
+poly16x8x2_t vzipq_p16(poly16x8_t a, poly16x8_t b); // VZIP.16 q0,q0
+//De-Interleave elements
+int8x8x2_t vuzp_s8(int8x8_t a, int8x8_t b); // VUZP.8 d0,d0
+int16x4x2_t vuzp_s16(int16x4_t a, int16x4_t b); // VUZP.16 d0,d0
+int32x2x2_t vuzp_s32(int32x2_t a, int32x2_t b); // VUZP.32 d0,d0
+uint8x8x2_t vuzp_u8(uint8x8_t a, uint8x8_t b); // VUZP.8 d0,d0
+uint16x4x2_t vuzp_u16(uint16x4_t a, uint16x4_t b); // VUZP.16 d0,d0
+uint32x2x2_t vuzp_u32(uint32x2_t a, uint32x2_t b); // VUZP.32 d0,d0
+float32x2x2_t vuzp_f32(float32x2_t a, float32x2_t b); // VUZP.32 d0,d0
+poly8x8x2_t vuzp_p8(poly8x8_t a, poly8x8_t b); // VUZP.8 d0,d0
+poly16x4x2_t vuzp_p16(poly16x4_t a, poly16x4_t b); // VUZP.16 d0,d0
+int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b); // VUZP.8 q0,q0
+int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b); // VUZP.16 q0,q0
+int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b); // VUZP.32 q0,q0
+uint8x16x2_t vuzpq_u8(uint8x16_t a, uint8x16_t b); // VUZP.8 q0,q0
+uint16x8x2_t vuzpq_u16(uint16x8_t a, uint16x8_t b); // VUZP.16 q0,q0
+uint32x4x2_t vuzpq_u32(uint32x4_t a, uint32x4_t b); // VUZP.32 q0,q0
+float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b); // VUZP.32 q0,q0
+poly8x16x2_t vuzpq_p8(poly8x16_t a, poly8x16_t b); // VUZP.8 q0,q0
+poly16x8x2_t vuzpq_p16(poly16x8_t a, poly16x8_t b); // VUZP.16 q0,q0
+
+
+//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+// the following macros solve the problem of the "immediate parameters requirement" for some x86 intrinsics. While for release build it is not a must,
+//for debug build we need it to compile the code unless the "Intrinsic parameter must be an immediate value" error is our goal
+//
+#if ( ((defined _MSC_VER) && (_MSC_VER > 1600)) || defined (__INTEL_COMPILER) )&& defined NDEBUG     //if it is a release build, we also need it to fix the issue for VS2010 and earlier compilers.
+
+    #define _MM_ALIGNR_EPI8 _mm_alignr_epi8
+
+    #define _MM_EXTRACT_EPI16  _mm_extract_epi16
+    #define _MM_INSERT_EPI16 _mm_insert_epi16
+#ifdef USE_SSE4
+        #define _MM_EXTRACT_EPI8  _mm_extract_epi8
+        #define _MM_EXTRACT_EPI32  _mm_extract_epi32
+        #define _MM_EXTRACT_PS  _mm_extract_ps
+
+        #define _MM_INSERT_EPI8  _mm_insert_epi8
+        #define _MM_INSERT_EPI32 _mm_insert_epi32
+        #define _MM_INSERT_PS    _mm_insert_ps
+#ifdef  _NEON2SSE_64BIT
+            #define _MM_INSERT_EPI64 _mm_insert_epi64
+            #define _MM_EXTRACT_EPI64 _mm_extract_epi64
+#endif
+#endif //SSE4
+#else
+    #define _NEON2SSE_COMMA ,
+    #define _NEON2SSE_SWITCH16(NAME, a, b, LANE) \
+            switch(LANE)         \
+        {                \
+        case 0:     return NAME(a b, 0); \
+        case 1:     return NAME(a b, 1); \
+        case 2:     return NAME(a b, 2); \
+        case 3:     return NAME(a b, 3); \
+        case 4:     return NAME(a b, 4); \
+        case 5:     return NAME(a b, 5); \
+        case 6:     return NAME(a b, 6); \
+        case 7:     return NAME(a b, 7); \
+        case 8:     return NAME(a b, 8); \
+        case 9:     return NAME(a b, 9); \
+        case 10:    return NAME(a b, 10); \
+        case 11:    return NAME(a b, 11); \
+        case 12:    return NAME(a b, 12); \
+        case 13:    return NAME(a b, 13); \
+        case 14:    return NAME(a b, 14); \
+        case 15:    return NAME(a b, 15); \
+        default:    return NAME(a b, 0); \
+        }
+
+    #define _NEON2SSE_SWITCH8(NAME, vec, LANE, p) \
+            switch(LANE)              \
+        {                          \
+        case 0:  return NAME(vec p,0); \
+        case 1:  return NAME(vec p,1); \
+        case 2:  return NAME(vec p,2); \
+        case 3:  return NAME(vec p,3); \
+        case 4:  return NAME(vec p,4); \
+        case 5:  return NAME(vec p,5); \
+        case 6:  return NAME(vec p,6); \
+        case 7:  return NAME(vec p,7); \
+        default: return NAME(vec p,0); \
+        }
+
+    #define _NEON2SSE_SWITCH4(NAME, case0, case1, case2, case3, vec, LANE, p) \
+            switch(LANE)              \
+        {                          \
+        case case0:  return NAME(vec p,case0); \
+        case case1:  return NAME(vec p,case1); \
+        case case2:  return NAME(vec p,case2); \
+        case case3:  return NAME(vec p,case3); \
+        default:     return NAME(vec p,case0); \
+        }
+
+    _NEON2SSE_INLINE __m128i _MM_ALIGNR_EPI8(__m128i a, __m128i b, int LANE)
+    {
+        _NEON2SSE_SWITCH16(_mm_alignr_epi8, a, _NEON2SSE_COMMA b, LANE)
+    }
+
+    _NEON2SSE_INLINE __m128i  _MM_INSERT_EPI16(__m128i vec, int p, const int LANE)
+    {
+        _NEON2SSE_SWITCH8(_mm_insert_epi16, vec, LANE, _NEON2SSE_COMMA p)
+    }
+
+    _NEON2SSE_INLINE int _MM_EXTRACT_EPI16(__m128i vec, const int LANE)
+    {
+        _NEON2SSE_SWITCH8(_mm_extract_epi16, vec, LANE,)
+    }
+
+#ifdef USE_SSE4
+        _NEON2SSE_INLINE int _MM_EXTRACT_EPI32(__m128i vec, const int LANE)
+        {
+            _NEON2SSE_SWITCH4(_mm_extract_epi32, 0,1,2,3, vec, LANE,)
+        }
+
+        _NEON2SSE_INLINE int _MM_EXTRACT_PS(__m128 vec, const int LANE)
+        {
+            _NEON2SSE_SWITCH4(_mm_extract_ps, 0,1,2,3, vec, LANE,)
+        }
+
+        _NEON2SSE_INLINE int _MM_EXTRACT_EPI8(__m128i vec, const int LANE)
+        {
+            _NEON2SSE_SWITCH16(_mm_extract_epi8, vec, , LANE)
+        }
+
+        _NEON2SSE_INLINE __m128i  _MM_INSERT_EPI32(__m128i vec, int p, const int LANE)
+        {
+            _NEON2SSE_SWITCH4(_mm_insert_epi32, 0, 1, 2, 3, vec, LANE, _NEON2SSE_COMMA p)
+        }
+
+        _NEON2SSE_INLINE __m128i  _MM_INSERT_EPI8(__m128i vec, int p, const int LANE)
+        {
+            _NEON2SSE_SWITCH16(_mm_insert_epi8, vec, _NEON2SSE_COMMA p, LANE)
+        }
+
+#ifdef  _NEON2SSE_64BIT
+            //the special case of functions available only for SSE4 and 64-bit build.
+            _NEON2SSE_INLINE __m128i  _MM_INSERT_EPI64(__m128i vec, int p, const int LANE)
+            {
+                switch(LANE) {
+                case 0:
+                    return _mm_insert_epi64(vec,  p, 0);
+                case 1:
+                    return _mm_insert_epi64(vec,  p, 1);
+                default:
+                    return _mm_insert_epi64(vec,  p, 0);
+                }
+            }
+
+            _NEON2SSE_INLINE int64_t _MM_EXTRACT_EPI64(__m128i val, const int LANE)
+            {
+                if (LANE ==0) return _mm_extract_epi64(val, 0);
+                else return _mm_extract_epi64(val, 1);
+            }
+#endif
+
+        _NEON2SSE_INLINE __m128 _MM_INSERT_PS(__m128 vec, __m128 p, const int LANE)
+        {
+            _NEON2SSE_SWITCH4(_mm_insert_ps, 0, 16, 32, 48, vec, LANE, _NEON2SSE_COMMA p)
+        }
+
+#endif //USE_SSE4
+
+#endif     //#ifdef NDEBUG
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Below are some helper functions used either for SSE4 intrinsics "emulation" for SSSE3 limited devices
+// or for some specific commonly used operations implementation missing in SSE
+#ifdef USE_SSE4
+    #define _MM_CVTEPU8_EPI16  _mm_cvtepu8_epi16
+    #define _MM_CVTEPU16_EPI32 _mm_cvtepu16_epi32
+    #define _MM_CVTEPU32_EPI64  _mm_cvtepu32_epi64
+
+    #define _MM_CVTEPI8_EPI16  _mm_cvtepi8_epi16
+    #define _MM_CVTEPI16_EPI32 _mm_cvtepi16_epi32
+    #define _MM_CVTEPI32_EPI64  _mm_cvtepi32_epi64
+
+    #define _MM_MAX_EPI8  _mm_max_epi8
+    #define _MM_MAX_EPI32 _mm_max_epi32
+    #define _MM_MAX_EPU16 _mm_max_epu16
+    #define _MM_MAX_EPU32 _mm_max_epu32
+
+    #define _MM_MIN_EPI8  _mm_min_epi8
+    #define _MM_MIN_EPI32 _mm_min_epi32
+    #define _MM_MIN_EPU16 _mm_min_epu16
+    #define _MM_MIN_EPU32 _mm_min_epu32
+
+    #define _MM_BLENDV_EPI8 _mm_blendv_epi8
+    #define _MM_PACKUS_EPI32 _mm_packus_epi32
+    #define _MM_PACKUS1_EPI32(a) _mm_packus_epi32(a, a)
+
+    #define _MM_MULLO_EPI32 _mm_mullo_epi32
+    #define _MM_MUL_EPI32  _mm_mul_epi32
+
+    #define _MM_CMPEQ_EPI64 _mm_cmpeq_epi64
+#else     //no SSE4 !!!!!!
+    _NEON2SSE_INLINE __m128i _MM_CVTEPU8_EPI16(__m128i a)
+    {
+        __m128i zero = _mm_setzero_si128();
+        return _mm_unpacklo_epi8(a, zero);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_CVTEPU16_EPI32(__m128i a)
+    {
+        __m128i zero = _mm_setzero_si128();
+        return _mm_unpacklo_epi16(a, zero);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_CVTEPU32_EPI64(__m128i a)
+    {
+        __m128i zero = _mm_setzero_si128();
+        return _mm_unpacklo_epi32(a, zero);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_CVTEPI8_EPI16(__m128i a)
+    {
+        __m128i zero = _mm_setzero_si128();
+        __m128i sign = _mm_cmpgt_epi8(zero, a);
+        return _mm_unpacklo_epi8(a, sign);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_CVTEPI16_EPI32(__m128i a)
+    {
+        __m128i zero = _mm_setzero_si128();
+        __m128i sign = _mm_cmpgt_epi16(zero, a);
+        return _mm_unpacklo_epi16(a, sign);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_CVTEPI32_EPI64(__m128i a)
+    {
+        __m128i zero = _mm_setzero_si128();
+        __m128i sign = _mm_cmpgt_epi32(zero, a);
+        return _mm_unpacklo_epi32(a, sign);
+    }
+
+    _NEON2SSE_INLINE int _MM_EXTRACT_EPI32(__m128i vec, const int LANE)
+    {
+        _NEON2SSE_ALIGN_16 int32_t tmp[4];
+        _mm_store_si128((__m128i*)tmp, vec);
+        return tmp[LANE];
+    }
+
+    _NEON2SSE_INLINE int _MM_EXTRACT_EPI8(__m128i vec, const int LANE)
+    {
+        _NEON2SSE_ALIGN_16 int8_t tmp[16];
+        _mm_store_si128((__m128i*)tmp, vec);
+        return (int)tmp[LANE];
+    }
+
+    _NEON2SSE_INLINE int _MM_EXTRACT_PS(__m128 vec, const int LANE)
+    {
+        _NEON2SSE_ALIGN_16 int32_t tmp[4];
+        _mm_store_si128((__m128i*)tmp, _M128i(vec));
+        return tmp[LANE];
+    }
+
+    _NEON2SSE_INLINE __m128i  _MM_INSERT_EPI32(__m128i vec, int p, const int LANE)
+    {
+        _NEON2SSE_ALIGN_16 int32_t pvec[4] = {0,0,0,0};
+        _NEON2SSE_ALIGN_16 uint32_t mask[4] = {0xffffffff,0xffffffff,0xffffffff,0xffffffff};
+        __m128i vec_masked, p_masked;
+        pvec[LANE] = p;
+        mask[LANE] = 0x0;
+        vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p
+        p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec
+        return _mm_or_si128(vec_masked, p_masked);
+    }
+
+    _NEON2SSE_INLINE __m128i  _MM_INSERT_EPI8(__m128i vec, int p, const int LANE)
+    {
+        _NEON2SSE_ALIGN_16 int8_t pvec[16] = {0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};
+        _NEON2SSE_ALIGN_16 uint8_t mask[16] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
+        __m128i vec_masked, p_masked;
+        pvec[LANE] = (int8_t)p;
+        mask[LANE] = 0x0;
+        vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p
+        p_masked = _mm_andnot_si128  (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec
+        return _mm_or_si128(vec_masked, p_masked);
+    }
+
+    _NEON2SSE_INLINE __m128 _MM_INSERT_PS(__m128 vec, __m128 p, const int LANE)
+    {
+        _NEON2SSE_ALIGN_16 int32_t mask[4] = {0xffffffff,0xffffffff,0xffffffff,0xffffffff};
+        __m128 tmp, vec_masked, p_masked;
+        mask[LANE >> 4] = 0x0; //here the LANE is not actural lane, need to deal with it
+        vec_masked = _mm_and_ps (*(__m128*)mask,vec); //ready for p
+        p_masked = _mm_andnot_ps (*(__m128*)mask, p); //ready for vec
+        tmp = _mm_or_ps(vec_masked, p_masked);
+        return tmp;
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MAX_EPI8(__m128i a, __m128i b)
+    {
+        __m128i cmp, resa, resb;
+        cmp = _mm_cmpgt_epi8 (a, b);
+        resa = _mm_and_si128 (cmp, a);
+        resb = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(resa, resb);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MAX_EPI32(__m128i a, __m128i b)
+    {
+        __m128i cmp, resa, resb;
+        cmp = _mm_cmpgt_epi32(a, b);
+        resa = _mm_and_si128 (cmp, a);
+        resb = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(resa, resb);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MAX_EPU16(__m128i a, __m128i b)
+    {
+        __m128i c8000, b_s, a_s, cmp;
+        c8000 = _mm_cmpeq_epi16 (a,a); //0xffff
+        c8000 = _mm_slli_epi16 (c8000, 15); //0x8000
+        b_s = _mm_sub_epi16 (b, c8000);
+        a_s = _mm_sub_epi16 (a, c8000);
+        cmp = _mm_cmpgt_epi16 (a_s, b_s); //no unsigned comparison, need to go to signed
+        a_s = _mm_and_si128 (cmp,a);
+        b_s = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(a_s, b_s);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MAX_EPU32(__m128i a, __m128i b)
+    {
+        __m128i c80000000, b_s, a_s, cmp;
+        c80000000 = _mm_cmpeq_epi32 (a,a); //0xffffffff
+        c80000000 = _mm_slli_epi32 (c80000000, 31); //0x80000000
+        b_s = _mm_sub_epi32 (b, c80000000);
+        a_s = _mm_sub_epi32 (a, c80000000);
+        cmp = _mm_cmpgt_epi32 (a_s, b_s); //no unsigned comparison, need to go to signed
+        a_s = _mm_and_si128 (cmp,a);
+        b_s = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(a_s, b_s);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MIN_EPI8(__m128i a, __m128i b)
+    {
+        __m128i cmp, resa, resb;
+        cmp = _mm_cmpgt_epi8 (b, a);
+        resa = _mm_and_si128 (cmp, a);
+        resb = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(resa, resb);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MIN_EPI32(__m128i a, __m128i b)
+    {
+        __m128i cmp, resa, resb;
+        cmp = _mm_cmpgt_epi32(b, a);
+        resa = _mm_and_si128 (cmp, a);
+        resb = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(resa, resb);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MIN_EPU16(__m128i a, __m128i b)
+    {
+        __m128i c8000, b_s, a_s, cmp;
+        c8000 = _mm_cmpeq_epi16 (a,a); //0xffff
+        c8000 = _mm_slli_epi16 (c8000, 15); //0x8000
+        b_s = _mm_sub_epi16 (b, c8000);
+        a_s = _mm_sub_epi16 (a, c8000);
+        cmp = _mm_cmpgt_epi16 (b_s, a_s); //no unsigned comparison, need to go to signed
+        a_s = _mm_and_si128 (cmp,a);
+        b_s = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(a_s, b_s);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MIN_EPU32(__m128i a, __m128i b)
+    {
+        __m128i c80000000, b_s, a_s, cmp;
+        c80000000 = _mm_cmpeq_epi32 (a,a); //0xffffffff
+        c80000000 = _mm_slli_epi32 (c80000000, 31); //0x80000000
+        b_s = _mm_sub_epi32 (b, c80000000);
+        a_s = _mm_sub_epi32 (a, c80000000);
+        cmp = _mm_cmpgt_epi32 (b_s, a_s); //no unsigned comparison, need to go to signed
+        a_s = _mm_and_si128 (cmp,a);
+        b_s = _mm_andnot_si128 (cmp,b);
+        return _mm_or_si128(a_s, b_s);
+    }
+
+    _NEON2SSE_INLINE __m128i  _MM_BLENDV_EPI8(__m128i a, __m128i b, __m128i mask) //this is NOT exact implementation of _mm_blendv_epi8  !!!!! - please see below
+    {
+        //it assumes mask is either 0xff or 0  always (like in all usecases below) while for the original _mm_blendv_epi8 only MSB mask byte matters.
+        __m128i a_masked, b_masked;
+        b_masked = _mm_and_si128 (mask,b); //use b if mask 0xff
+        a_masked = _mm_andnot_si128 (mask,a);
+        return _mm_or_si128(a_masked, b_masked);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_PACKUS_EPI32(__m128i a, __m128i b)
+    {
+        _NEON2SSE_ALIGN_16 int8_t mask8_32_even_odd[16] = { 0,1, 4,5, 8,9,  12,13,  2,3, 6,7,10,11,14,15};
+        __m128i a16, b16, res, reshi,cmp, zero;
+        zero = _mm_setzero_si128();
+        a16 = _mm_shuffle_epi8 (a, *(__m128i*) mask8_32_even_odd);
+        b16 = _mm_shuffle_epi8 (b, *(__m128i*) mask8_32_even_odd);
+        res = _mm_unpacklo_epi64(a16, b16); //result without saturation
+        reshi = _mm_unpackhi_epi64(a16, b16); //hi part of result used for saturation
+        cmp = _mm_cmpgt_epi16(zero, reshi); //if cmp<0 the result should be zero
+        res = _mm_andnot_si128(cmp,res); //if cmp zero - do nothing, otherwise cmp <0  and the result is 0
+        cmp = _mm_cmpgt_epi16(reshi,zero); //if cmp positive
+        return _mm_or_si128(res, cmp); //if cmp positive we are out of 16bits need to saturaate to 0xffff
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_PACKUS1_EPI32(__m128i a)
+    {
+        _NEON2SSE_ALIGN_16 int8_t mask8_32_even_odd[16] = { 0,1, 4,5, 8,9,  12,13,  2,3, 6,7,10,11,14,15};
+        __m128i a16, res, reshi,cmp, zero;
+        zero = _mm_setzero_si128();
+        a16 = _mm_shuffle_epi8 (a, *(__m128i*)mask8_32_even_odd);
+        reshi = _mm_unpackhi_epi64(a16, a16); //hi part of result used for saturation
+        cmp = _mm_cmpgt_epi16(zero, reshi); //if cmp<0 the result should be zero
+        res = _mm_andnot_si128(cmp, a16); //if cmp zero - do nothing, otherwise cmp <0  and the result is 0
+        cmp = _mm_cmpgt_epi16(reshi,zero); //if cmp positive
+        return _mm_or_si128(res, cmp); //if cmp positive we are out of 16bits need to saturaate to 0xffff
+    }
+
+
+    _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(__m128i _MM_MULLO_EPI32(__m128i a, __m128i b), _NEON2SSE_REASON_SLOW_SERIAL)
+    {
+        _NEON2SSE_ALIGN_16 int32_t atmp[4], btmp[4], res[4];
+        int64_t res64;
+        int i;
+        _mm_store_si128((__m128i*)atmp, a);
+        _mm_store_si128((__m128i*)btmp, b);
+        for (i = 0; i<4; i++) {
+            res64 = atmp[i] * btmp[i];
+            res[i] = (int)(res64 & 0xffffffff);
+        }
+        return _mm_load_si128((__m128i*)res);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_MUL_EPI32(__m128i a, __m128i b)
+    {
+        __m128i sign, zero,  mul_us, a_neg, b_neg, mul_us_neg;
+        sign = _mm_xor_si128 (a, b);
+        sign =  _mm_srai_epi32 (sign, 31); //promote sign bit to all fields, all fff if negative and all 0 if positive
+        zero = _mm_setzero_si128();
+        a_neg = _mm_abs_epi32 (a); //negate a and b
+        b_neg = _mm_abs_epi32 (b); //negate a and b
+        mul_us = _mm_mul_epu32 (a_neg, b_neg); //uses 0 and 2nd data lanes, (abs), the multiplication gives 64 bit result
+        mul_us_neg = _mm_sub_epi64(zero, mul_us);
+        mul_us_neg = _mm_and_si128(sign, mul_us_neg);
+        mul_us = _mm_andnot_si128(sign, mul_us);
+        return _mm_or_si128 (mul_us, mul_us_neg);
+    }
+
+    _NEON2SSE_INLINE __m128i _MM_CMPEQ_EPI64(__m128i a, __m128i b)
+    {
+        __m128i res;
+        res = _mm_cmpeq_epi32 (a, b);
+        return _mm_shuffle_epi32 (res, 1 | (1 << 2) | (3 << 4) | (3 << 6)); //copy the information from hi to low part of the 64 bit data
+    }
+#endif     //SSE4
+
+//the special case of functions working only for 32 bits, no SSE4
+_NEON2SSE_INLINE __m128i  _MM_INSERT_EPI64_32(__m128i vec, int p, const int LANE)
+{
+    _NEON2SSE_ALIGN_16 uint64_t pvec[2] = {0,0};
+    _NEON2SSE_ALIGN_16 uint64_t mask[2] = {0xffffffffffffffff, 0xffffffffffffffff};
+    __m128i vec_masked, p_masked;
+    pvec[LANE] = p;
+    mask[LANE] = 0x0;
+    vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p
+    p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec
+    return _mm_or_si128(vec_masked, p_masked);
+}
+
+_NEON2SSE_INLINE int64_t _MM_EXTRACT_EPI64_32(__m128i val, const int LANE)
+{
+    _NEON2SSE_ALIGN_16 int64_t tmp[2];
+    _mm_store_si128((__m128i*)tmp, val);
+    return tmp[LANE];
+}
+
+#ifndef _NEON2SSE_64BIT_SSE4
+    #define _MM_INSERT_EPI64 _MM_INSERT_EPI64_32
+    #define _MM_EXTRACT_EPI64 _MM_EXTRACT_EPI64_32
+#endif
+
+int32x4_t  vqd_s32(int32x4_t a); //Doubling saturation for signed ints
+_NEON2SSE_INLINE int32x4_t  vqd_s32(int32x4_t a)
+{
+    //Overflow happens only if a and sum have the opposite signs
+    __m128i c7fffffff, res, res_sat, res_xor_a;
+    c7fffffff = _mm_set1_epi32(0x7fffffff);
+    res = _mm_slli_epi32 (a, 1); // res = a*2
+    res_sat = _mm_srli_epi32(a, 31);
+    res_sat = _mm_add_epi32(res_sat, c7fffffff);
+    res_xor_a = _mm_xor_si128(res, a);
+    res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise
+    res_sat = _mm_and_si128(res_xor_a, res_sat);
+    res = _mm_andnot_si128(res_xor_a, res);
+    return _mm_or_si128(res, res_sat);
+}
+
+
+//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+//*************************************************************************
+//*************************************************************************
+//*****************  Functions redefinition\implementatin starts here *****
+//*************************************************************************
+//*************************************************************************
+//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+
+/*If the unified intrinsics solutions is necessary please define your SSE intrinsics wrap here like in the following sample:
+#ifdef ARM
+#define vector_addq_s32 _mm_add_epi32
+#else //if we have IA
+#define vector_addq_s32 vadd_s32
+#endif
+
+********************************************************************************************
+Functions below are organised in the following way:
+
+Each NEON intrinsic function has one of the following options:
+1.  its x86 full equivalent SSE intrinsic - in this case x86 version just follows the NEON one under the corresponding #define statement
+2.  x86 implementation using more than one x86 intrinsics. In this case it is shaped as inlined C function with return statement
+3.  the reference to the NEON function returning the same result and implemented in x86 as above. In this case it is shaped as matching NEON function definition
+4.  for about 5% of functions due to the corresponding x86 SIMD unavailability or inefficiency in terms of performance
+the serial implementation is provided along with the corresponding compiler warning. If these functions are on your app critical path
+- please consider such functions removal from your code.
+*/
+
+//***********************************************************************
+//************************      Vector add   *****************************
+//***********************************************************************
+int8x8_t vadd_s8(int8x8_t a, int8x8_t b); // VADD.I8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vadd_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_add_epi8(_pM128i(a),_pM128i(b)));
+}
+
+
+int16x4_t vadd_s16(int16x4_t a, int16x4_t b); // VADD.I16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vadd_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_add_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+int32x2_t vadd_s32(int32x2_t a, int32x2_t b); // VADD.I32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vadd_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    return64(_mm_add_epi32(_pM128i(a),_pM128i(b)));
+}
+
+
+int64x1_t  vadd_s64(int64x1_t a,  int64x1_t b); // VADD.I64 d0,d0,d0
+_NEON2SSE_INLINE int64x1_t  vadd_s64(int64x1_t a,  int64x1_t b)
+{
+    int64x1_t res64;
+    res64.m64_i64[0] = a.m64_i64[0] + b.m64_i64[0];
+    return res64;
+}
+
+
+float32x2_t vadd_f32(float32x2_t a, float32x2_t b); // VADD.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vadd_f32(float32x2_t a, float32x2_t b)
+{
+    __m128 res;
+    __m64_128 res64;
+    res = _mm_add_ps(_pM128(a),_pM128(b)); //SSE, use only low 64 bits
+    _M64f(res64, res);
+    return res64;
+}
+
+uint8x8_t  vadd_u8(uint8x8_t a, uint8x8_t b); // VADD.I8 d0,d0,d0
+#define vadd_u8 vadd_s8
+
+uint16x4_t  vadd_u16(uint16x4_t a, uint16x4_t b); // VADD.I16 d0,d0,d0
+#define vadd_u16 vadd_s16
+
+uint32x2_t  vadd_u32(uint32x2_t a, uint32x2_t b); // VADD.I32 d0,d0,d0
+#define vadd_u32 vadd_s32
+
+uint64x1_t vadd_u64(uint64x1_t a,  uint64x1_t b); // VADD.I64 d0,d0,d0
+_NEON2SSE_INLINE uint64x1_t vadd_u64(uint64x1_t a,  uint64x1_t b)
+{
+    uint64x1_t res64;
+    res64.m64_u64[0] = a.m64_u64[0] + b.m64_u64[0];
+    return res64;
+}
+
+
+int8x16_t   vaddq_s8(int8x16_t a, int8x16_t b); // VADD.I8 q0,q0,q0
+#define vaddq_s8 _mm_add_epi8
+
+int16x8_t   vaddq_s16(int16x8_t a, int16x8_t b); // VADD.I16 q0,q0,q0
+#define vaddq_s16 _mm_add_epi16
+
+int32x4_t   vaddq_s32(int32x4_t a, int32x4_t b); // VADD.I32 q0,q0,q0
+#define vaddq_s32 _mm_add_epi32
+
+int64x2_t   vaddq_s64(int64x2_t a, int64x2_t b); // VADD.I64 q0,q0,q0
+#define vaddq_s64 _mm_add_epi64
+
+float32x4_t vaddq_f32(float32x4_t a, float32x4_t b); // VADD.F32 q0,q0,q0
+#define vaddq_f32 _mm_add_ps
+
+uint8x16_t   vaddq_u8(uint8x16_t a, uint8x16_t b); // VADD.I8 q0,q0,q0
+#define vaddq_u8 _mm_add_epi8
+
+uint16x8_t   vaddq_u16(uint16x8_t a, uint16x8_t b); // VADD.I16 q0,q0,q0
+#define vaddq_u16 _mm_add_epi16
+
+uint32x4_t   vaddq_u32(uint32x4_t a, uint32x4_t b); // VADD.I32 q0,q0,q0
+#define vaddq_u32 _mm_add_epi32
+
+uint64x2_t   vaddq_u64(uint64x2_t a, uint64x2_t b); // VADD.I64 q0,q0,q0
+#define vaddq_u64 _mm_add_epi64
+
+//**************************** Vector long add *****************************:
+//***********************************************************************
+//Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width.
+int16x8_t  vaddl_s8(int8x8_t a, int8x8_t b); // VADDL.S8 q0,d0,d0
+_NEON2SSE_INLINE int16x8_t  vaddl_s8(int8x8_t a, int8x8_t b) // VADDL.S8 q0,d0,d0
+{
+    __m128i a16, b16;
+    a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE4.1,
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1,
+    return _mm_add_epi16 (a16, b16);
+}
+
+int32x4_t  vaddl_s16(int16x4_t a, int16x4_t b); // VADDL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t  vaddl_s16(int16x4_t a, int16x4_t b) // VADDL.S16 q0,d0,d0
+{
+    __m128i a32, b32;
+    a32 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE4.1
+    b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi32 (a32, b32);
+}
+
+int64x2_t  vaddl_s32(int32x2_t a, int32x2_t b); // VADDL.S32 q0,d0,d0
+_NEON2SSE_INLINE int64x2_t  vaddl_s32(int32x2_t a, int32x2_t b) // VADDL.S32 q0,d0,d0
+{
+    //may be not optimal
+    __m128i a64, b64;
+    a64 = _MM_CVTEPI32_EPI64 (_pM128i(a)); //SSE4.1
+    b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi64 ( a64, b64);
+}
+
+uint16x8_t vaddl_u8(uint8x8_t a, uint8x8_t b); // VADDL.U8 q0,d0,d0
+_NEON2SSE_INLINE uint16x8_t vaddl_u8(uint8x8_t a, uint8x8_t b) // VADDL.U8 q0,d0,d0
+{
+    __m128i a16, b16;
+    a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE4.1
+    b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi16 (a16, b16);
+}
+
+uint32x4_t vaddl_u16(uint16x4_t a, uint16x4_t b); // VADDL.s16 q0,d0,d0
+_NEON2SSE_INLINE uint32x4_t vaddl_u16(uint16x4_t a, uint16x4_t b) // VADDL.s16 q0,d0,d0
+{
+    __m128i a32, b32;
+    a32 = _MM_CVTEPU16_EPI32 (_pM128i(a)); //SSE4.1
+    b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi32 (a32, b32);
+}
+
+uint64x2_t vaddl_u32(uint32x2_t a, uint32x2_t b); // VADDL.U32 q0,d0,d0
+_NEON2SSE_INLINE uint64x2_t vaddl_u32(uint32x2_t a, uint32x2_t b) // VADDL.U32 q0,d0,d0
+{
+    //may be not optimal
+    __m128i a64, b64;
+    a64 = _MM_CVTEPU32_EPI64 (_pM128i(a)); //SSE4.1
+    b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi64 (a64, b64);
+}
+
+//***************   Vector wide add: vaddw_<type>. Vr[i]:=Va[i]+Vb[i] ******************
+//*************** *********************************************************************
+int16x8_t  vaddw_s8(int16x8_t a, int8x8_t b); // VADDW.S8 q0,q0,d0
+_NEON2SSE_INLINE int16x8_t  vaddw_s8(int16x8_t a, int8x8_t b) // VADDW.S8 q0,q0,d0
+{
+    __m128i b16;
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1,
+    return _mm_add_epi16 (a, b16);
+}
+
+int32x4_t  vaddw_s16(int32x4_t a, int16x4_t b); // VADDW.S16 q0,q0,d0
+_NEON2SSE_INLINE int32x4_t  vaddw_s16(int32x4_t a, int16x4_t b) // VADDW.S16 q0,q0,d0
+{
+    __m128i b32;
+    b32 =  _MM_CVTEPI16_EPI32(_pM128i(b)); //SSE4.1,
+    return _mm_add_epi32 (a, b32);
+}
+
+int64x2_t  vaddw_s32(int64x2_t a, int32x2_t b); // VADDW.S32 q0,q0,d0
+_NEON2SSE_INLINE int64x2_t  vaddw_s32(int64x2_t a, int32x2_t b) // VADDW.S32 q0,q0,d0
+{
+    __m128i b64;
+    b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi64 (a, b64);
+}
+
+uint16x8_t vaddw_u8(uint16x8_t a, uint8x8_t b); // VADDW.U8 q0,q0,d0
+_NEON2SSE_INLINE uint16x8_t vaddw_u8(uint16x8_t a, uint8x8_t b) // VADDW.U8 q0,q0,d0
+{
+    __m128i b16;
+    b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi16 (a, b16);
+}
+
+uint32x4_t vaddw_u16(uint32x4_t a, uint16x4_t b); // VADDW.s16 q0,q0,d0
+_NEON2SSE_INLINE uint32x4_t vaddw_u16(uint32x4_t a, uint16x4_t b) // VADDW.s16 q0,q0,d0
+{
+    __m128i b32;
+    b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi32 (a, b32);
+}
+
+uint64x2_t vaddw_u32(uint64x2_t a, uint32x2_t b); // VADDW.U32 q0,q0,d0
+_NEON2SSE_INLINE uint64x2_t vaddw_u32(uint64x2_t a, uint32x2_t b) // VADDW.U32 q0,q0,d0
+{
+    __m128i b64;
+    b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1
+    return _mm_add_epi64 (a, b64);
+}
+
+//******************************Vector halving add: vhadd -> Vr[i]:=(Va[i]+Vb[i])>>1 ,  result truncated *******************************
+//*************************************************************************************************************************
+int8x8_t vhadd_s8(int8x8_t a,  int8x8_t b); // VHADD.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vhadd_s8(int8x8_t a,  int8x8_t b)
+{
+    int8x8_t res64;
+    return64(vhaddq_u8(_pM128i(a), _pM128i(b)));
+}
+
+
+int16x4_t vhadd_s16(int16x4_t a,  int16x4_t b); // VHADD.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vhadd_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64( vhaddq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+int32x2_t vhadd_s32(int32x2_t a,  int32x2_t b); // VHADD.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vhadd_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64( vhaddq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint8x8_t vhadd_u8(uint8x8_t a,  uint8x8_t b); // VHADD.w d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vhadd_u8(uint8x8_t a,  uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64( vhaddq_u8(_pM128i(a), _pM128i(b)));
+}
+
+
+uint16x4_t vhadd_u16(uint16x4_t a,  uint16x4_t b); // VHADD.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vhadd_u16(uint16x4_t a,  uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64( vhaddq_u16(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vhadd_u32(uint32x2_t a,  uint32x2_t b); // VHADD.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vhadd_u32(uint32x2_t a,  uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64( vhaddq_u32(_pM128i(a), _pM128i(b)));
+}
+
+
+int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b); // VHADD.S8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b)
+{
+    //need to avoid internal overflow, will use the (x&y)+((x^y)>>1).
+    __m128i tmp1, tmp2;
+    tmp1 = _mm_and_si128(a,b);
+    tmp2 = _mm_xor_si128(a,b);
+    tmp2 = vshrq_n_s8(tmp2,1);
+    return _mm_add_epi8(tmp1,tmp2);
+}
+
+int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b); // VHADD.S1 6 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b)
+{
+    //need to avoid internal overflow, will use the (x&y)+((x^y)>>1).
+    __m128i tmp1, tmp2;
+    tmp1 = _mm_and_si128(a,b);
+    tmp2 = _mm_xor_si128(a,b);
+    tmp2 = _mm_srai_epi16(tmp2,1);
+    return _mm_add_epi16(tmp1,tmp2);
+}
+
+int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b); // VHADD.S32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b) // VHADD.S32 q0,q0,q0
+{
+    //need to avoid internal overflow, will use the (x&y)+((x^y)>>1).
+    __m128i tmp1, tmp2;
+    tmp1 = _mm_and_si128(a,b);
+    tmp2 = _mm_xor_si128(a,b);
+    tmp2 = _mm_srai_epi32(tmp2,1);
+    return _mm_add_epi32(tmp1,tmp2);
+}
+
+uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b); // VHADD.U8 q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b) // VHADD.U8 q0,q0,q0
+{
+    __m128i c1, sum, res;
+    c1 = _mm_set1_epi8(1);
+    sum = _mm_avg_epu8(a, b); //result is rounded, need to compensate it
+    res = _mm_xor_si128(a, b); //for rounding compensation
+    res = _mm_and_si128(res,c1); //for rounding compensation
+    return _mm_sub_epi8 (sum, res); //actual rounding compensation
+}
+
+uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b); // VHADD.s16 q0,q0,q0
+_NEON2SSE_INLINE uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b) // VHADD.s16 q0,q0,q0
+{
+    __m128i sum, res;
+    sum = _mm_avg_epu16(a, b); //result is rounded, need to compensate it
+    res = _mm_xor_si128(a, b); //for rounding compensation
+    res = _mm_slli_epi16 (res,15); //shift left  then back right to
+    res = _mm_srli_epi16 (res,15); //get 1 or zero
+    return _mm_sub_epi16 (sum, res); //actual rounding compensation
+}
+
+uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b); // VHADD.U32 q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b) // VHADD.U32 q0,q0,q0
+{
+    //need to avoid internal overflow, will use the (x&y)+((x^y)>>1).
+    __m128i tmp1, tmp2;
+    tmp1 = _mm_and_si128(a,b);
+    tmp2 = _mm_xor_si128(a,b);
+    tmp2 = _mm_srli_epi32(tmp2,1);
+    return _mm_add_epi32(tmp1,tmp2);
+}
+
+//************************Vector rounding halving add: vrhadd{q}_<type>. Vr[i]:=(Va[i]+Vb[i]+1)>>1   ***************************
+//*****************************************************************************************************************************
+int8x8_t vrhadd_s8(int8x8_t a,  int8x8_t b); // VRHADD.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vrhadd_s8(int8x8_t a,  int8x8_t b)
+{
+    int8x8_t res64;
+    return64(vrhaddq_s8(_pM128i(a), _pM128i(b)));
+}
+
+
+int16x4_t vrhadd_s16(int16x4_t a,  int16x4_t b); // VRHADD.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vrhadd_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vrhaddq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+int32x2_t vrhadd_s32(int32x2_t a,  int32x2_t b); // VRHADD.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vrhadd_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vrhaddq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint8x8_t vrhadd_u8(uint8x8_t a, uint8x8_t b); // VRHADD.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vrhadd_u8(uint8x8_t a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(_mm_avg_epu8(_pM128i(a),_pM128i(b))); //SSE, result rounding!!!
+}
+
+
+uint16x4_t vrhadd_u16(uint16x4_t a, uint16x4_t b); // VRHADD.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vrhadd_u16(uint16x4_t a, uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(_mm_avg_epu16(_pM128i(a),_pM128i(b))); //SSE, result rounding!!!
+}
+
+
+uint32x2_t vrhadd_u32(uint32x2_t a,  uint32x2_t b); // VRHADD.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vrhadd_u32(uint32x2_t a,  uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64(vrhaddq_u32(_pM128i(a), _pM128i(b)));
+}
+
+
+int8x16_t  vrhaddq_s8(int8x16_t a, int8x16_t b); // VRHADD.S8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t  vrhaddq_s8(int8x16_t a, int8x16_t b) // VRHADD.S8 q0,q0,q0
+{
+    //no signed average in x86 SIMD, go to unsigned
+    __m128i c128, au, bu, sum;
+    c128 = _mm_set1_epi8(0x80); //-128
+    au = _mm_sub_epi8(a, c128); //add 128
+    bu = _mm_sub_epi8(b, c128); //add 128
+    sum = _mm_avg_epu8(au, bu);
+    return _mm_add_epi8 (sum, c128); //sub 128
+}
+
+int16x8_t  vrhaddq_s16(int16x8_t a, int16x8_t b); // VRHADD.S16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t  vrhaddq_s16(int16x8_t a, int16x8_t b) // VRHADD.S16 q0,q0,q0
+{
+    //no signed average in x86 SIMD, go to unsigned
+    __m128i cx8000, au, bu, sum;
+    cx8000 = _mm_set1_epi16(0x8000); // - 32768
+    au = _mm_sub_epi16(a, cx8000); //add 32768
+    bu = _mm_sub_epi16(b, cx8000); //add 32768
+    sum = _mm_avg_epu16(au, bu);
+    return _mm_add_epi16 (sum, cx8000); //sub 32768
+}
+
+int32x4_t  vrhaddq_s32(int32x4_t a, int32x4_t b); // VRHADD.S32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t  vrhaddq_s32(int32x4_t a, int32x4_t b)
+{
+    //need to avoid overflow
+    __m128i a2, b2, res, sum;
+    a2 = _mm_srai_epi32(a,1); //a2=a/2;
+    b2 = _mm_srai_epi32(b,1); // b2=b/2;
+    res = _mm_or_si128(a,b); //for rounding
+    res = _mm_slli_epi32 (res,31); //shift left  then back right to
+    res = _mm_srli_epi32 (res,31); //get 1 or zero
+    sum = _mm_add_epi32(a2,b2);
+    return _mm_add_epi32(sum,res);
+}
+
+uint8x16_t   vrhaddq_u8(uint8x16_t a, uint8x16_t b); // VRHADD.U8 q0,q0,q0
+#define vrhaddq_u8 _mm_avg_epu8 //SSE2, results rounded
+
+uint16x8_t   vrhaddq_u16(uint16x8_t a, uint16x8_t b); // VRHADD.s16 q0,q0,q0
+#define vrhaddq_u16 _mm_avg_epu16 //SSE2, results rounded
+
+
+uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b); // VRHADD.U32 q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b) // VRHADD.U32 q0,q0,q0
+{
+    //need to avoid overflow
+    __m128i a2, b2, res, sum;
+    a2 = _mm_srli_epi32(a,1); //a2=a/2;
+    b2 = _mm_srli_epi32(b,1); // b2=b/2;
+    res = _mm_or_si128(a,b); //for rounding
+    res = _mm_slli_epi32 (res,31); //shift left  then back right to
+    res = _mm_srli_epi32 (res,31); //get 1 or zero
+    sum = _mm_add_epi32(a2,b2);
+    return _mm_add_epi32(sum,res);
+}
+
+//****************** VQADD: Vector saturating add ************************
+//************************************************************************
+int8x8_t vqadd_s8(int8x8_t a, int8x8_t b); // VQADD.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vqadd_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_adds_epi8(_pM128i(a),_pM128i(b)));
+}
+
+
+int16x4_t vqadd_s16(int16x4_t a, int16x4_t b); // VQADD.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vqadd_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_adds_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+int32x2_t vqadd_s32(int32x2_t a,  int32x2_t b); // VQADD.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vqadd_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vqaddq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+int64x1_t  vqadd_s64(int64x1_t a, int64x1_t b); // VQADD.S64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqadd_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int64x1_t res;
+    uint64_t a64, b64;
+    a64 = a.m64_u64[0];
+    b64 = b.m64_u64[0];
+    res.m64_u64[0] = a64 + b64;
+    a64 = (a64 >> 63) + (~_SIGNBIT64);
+    if ((int64_t)((b64 ^ a64) | ~(res.m64_u64[0] ^ b64))>=0) {
+        res.m64_u64[0] = a64;
+    }
+    return res;
+}
+
+uint8x8_t vqadd_u8(uint8x8_t a, uint8x8_t b); // VQADD.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vqadd_u8(uint8x8_t a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(_mm_adds_epu8(_pM128i(a),_pM128i(b)));
+}
+
+
+uint16x4_t vqadd_u16(uint16x4_t a, uint16x4_t b); // VQADD.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vqadd_u16(uint16x4_t a, uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(_mm_adds_epu16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t vqadd_u32(uint32x2_t a,  uint32x2_t b); // VQADD.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vqadd_u32(uint32x2_t a,  uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64(vqaddq_u32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint64x1_t vqadd_u64(uint64x1_t a, uint64x1_t b); // VQADD.U64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqadd_u64(uint64x1_t a, uint64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    _NEON2SSE_ALIGN_16 uint64_t a64, b64;
+    uint64x1_t res;
+    a64 = a.m64_u64[0];
+    b64 = b.m64_u64[0];
+    res.m64_u64[0] = a64 + b64;
+    if (res.m64_u64[0] < a64) {
+        res.m64_u64[0] = ~(uint64_t)0;
+    }
+    return res;
+}
+
+int8x16_t   vqaddq_s8(int8x16_t a, int8x16_t b); // VQADD.S8 q0,q0,q0
+#define vqaddq_s8 _mm_adds_epi8
+
+int16x8_t   vqaddq_s16(int16x8_t a, int16x8_t b); // VQADD.S16 q0,q0,q0
+#define vqaddq_s16 _mm_adds_epi16
+
+int32x4_t  vqaddq_s32(int32x4_t a, int32x4_t b); // VQADD.S32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t  vqaddq_s32(int32x4_t a, int32x4_t b)
+{
+    //no corresponding x86 SIMD soulution, special tricks are necessary. Overflow happens only if a and b have the same sign and sum has the opposite sign
+    __m128i c7fffffff, res, res_sat, res_xor_a, b_xor_a_;
+    c7fffffff = _mm_set1_epi32(0x7fffffff);
+    res = _mm_add_epi32(a, b);
+    res_sat = _mm_srli_epi32(a, 31);
+    res_sat = _mm_add_epi32(res_sat, c7fffffff);
+    res_xor_a = _mm_xor_si128(res, a);
+    b_xor_a_ = _mm_xor_si128(b, a);
+    res_xor_a = _mm_andnot_si128(b_xor_a_, res_xor_a);
+    res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise
+    res_sat = _mm_and_si128(res_xor_a, res_sat);
+    res = _mm_andnot_si128(res_xor_a, res);
+    return _mm_or_si128(res, res_sat);
+}
+
+int64x2_t  vqaddq_s64(int64x2_t a, int64x2_t b); // VQADD.S64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2];
+    _mm_store_si128((__m128i*)atmp, a);
+    _mm_store_si128((__m128i*)btmp, b);
+    res[0] = atmp[0] + btmp[0];
+    res[1] = atmp[1] + btmp[1];
+
+    atmp[0] = (atmp[0] >> 63) + (~_SIGNBIT64);
+    atmp[1] = (atmp[1] >> 63) + (~_SIGNBIT64);
+
+    if ((int64_t)((btmp[0] ^ atmp[0]) | ~(res[0] ^ btmp[0]))>=0) {
+        res[0] = atmp[0];
+    }
+    if ((int64_t)((btmp[1] ^ atmp[1]) | ~(res[1] ^ btmp[1]))>=0) {
+        res[1] = atmp[1];
+    }
+    return _mm_load_si128((__m128i*)res);
+}
+
+uint8x16_t   vqaddq_u8(uint8x16_t a, uint8x16_t b); // VQADD.U8 q0,q0,q0
+#define vqaddq_u8 _mm_adds_epu8
+
+uint16x8_t   vqaddq_u16(uint16x8_t a, uint16x8_t b); // VQADD.s16 q0,q0,q0
+#define vqaddq_u16 _mm_adds_epu16
+
+uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b); // VQADD.U32 q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b)
+{
+    __m128i c80000000, cmp, subsum, suba, sum;
+    c80000000 = _mm_set1_epi32 (0x80000000);
+    sum = _mm_add_epi32 (a, b);
+    subsum = _mm_sub_epi32 (sum, c80000000);
+    suba = _mm_sub_epi32 (a, c80000000);
+    cmp = _mm_cmpgt_epi32 ( suba, subsum); //no unsigned comparison, need to go to signed
+    return _mm_or_si128 (sum, cmp); //saturation
+}
+
+uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b); // VQADD.U64 q0,q0,q0
+#ifdef USE_SSE4
+    _NEON2SSE_INLINE uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b)
+    {
+        __m128i c80000000, sum, cmp, suba, subsum;
+        c80000000 = _mm_set_epi32 (0x80000000, 0x0, 0x80000000, 0x0);
+        sum = _mm_add_epi64 (a, b);
+        subsum = _mm_sub_epi64 (sum, c80000000);
+        suba = _mm_sub_epi64 (a, c80000000);
+        cmp = _mm_cmpgt_epi64 ( suba, subsum); //no unsigned comparison, need to go to signed, SSE4.2!!!
+        return _mm_or_si128 (sum, cmp); //saturation
+    }
+#else
+    _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+    {
+        _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2];
+        _mm_store_si128((__m128i*)atmp, a);
+        _mm_store_si128((__m128i*)btmp, b);
+        res[0] = atmp[0] + btmp[0];
+        res[1] = atmp[1] + btmp[1];
+        if (res[0] < atmp[0]) res[0] = ~(uint64_t)0;
+        if (res[1] < atmp[1]) res[1] = ~(uint64_t)0;
+        return _mm_load_si128((__m128i*)(res));
+    }
+#endif
+
+
+//******************* Vector add high half (truncated)  ******************
+//************************************************************************
+int8x8_t   vaddhn_s16(int16x8_t a, int16x8_t b); // VADDHN.I16 d0,q0,q0
+_NEON2SSE_INLINE int8x8_t   vaddhn_s16(int16x8_t a, int16x8_t b) // VADDHN.I16 d0,q0,q0
+{
+    int8x8_t res64;
+    __m128i sum;
+    sum = _mm_add_epi16 (a, b);
+    sum = _mm_srai_epi16 (sum, 8);
+    sum = _mm_packs_epi16 (sum, sum); //use 64 low bits only
+    return64(sum);
+}
+
+int16x4_t  vaddhn_s32(int32x4_t a, int32x4_t b); // VADDHN.I32 d0,q0,q0
+_NEON2SSE_INLINE int16x4_t  vaddhn_s32(int32x4_t a, int32x4_t b) // VADDHN.I32 d0,q0,q0
+{
+    int16x4_t res64;
+    __m128i sum;
+    sum = _mm_add_epi32 (a, b);
+    sum = _mm_srai_epi32(sum, 16);
+    sum = _mm_packs_epi32 (sum, sum); //use 64 low bits only
+    return64(sum);
+}
+
+int32x2_t  vaddhn_s64(int64x2_t a, int64x2_t b); // VADDHN.I64 d0,q0,q0
+_NEON2SSE_INLINE int32x2_t  vaddhn_s64(int64x2_t a, int64x2_t b)
+{
+    int32x2_t res64;
+    __m128i sum;
+    sum = _mm_add_epi64 (a, b);
+    sum = _mm_shuffle_epi32(sum,  1 | (3 << 2) | (0 << 4) | (2 << 6));
+    return64(sum);
+}
+
+uint8x8_t  vaddhn_u16(uint16x8_t a, uint16x8_t b); // VADDHN.I16 d0,q0,q0
+_NEON2SSE_INLINE uint8x8_t  vaddhn_u16(uint16x8_t a, uint16x8_t b) // VADDHN.I16 d0,q0,q0
+{
+    uint8x8_t res64;
+    __m128i sum;
+    sum = _mm_add_epi16 (a, b);
+    sum = _mm_srli_epi16 (sum, 8);
+    sum = _mm_packus_epi16 (sum,sum); //use 64 low bits only
+    return64(sum);
+}
+
+uint16x4_t vaddhn_u32(uint32x4_t a, uint32x4_t b); // VADDHN.I32 d0,q0,q0
+_NEON2SSE_INLINE uint16x4_t vaddhn_u32(uint32x4_t a, uint32x4_t b) // VADDHN.I32 d0,q0,q0
+{
+    uint16x4_t res64;
+    __m128i sum;
+    sum = _mm_add_epi32 (a, b);
+    sum = _mm_srli_epi32 (sum, 16);
+    sum = _MM_PACKUS1_EPI32 (sum); //use 64 low bits only
+    return64(sum);
+}
+
+uint32x2_t vaddhn_u64(uint64x2_t a, uint64x2_t b); // VADDHN.I64 d0,q0,q0
+#define vaddhn_u64 vaddhn_s64
+
+//*********** Vector rounding add high half: vraddhn_<type> ******************.
+//***************************************************************************
+int8x8_t   vraddhn_s16(int16x8_t a, int16x8_t b); // VRADDHN.I16 d0,q0,q0
+_NEON2SSE_INLINE int8x8_t   vraddhn_s16(int16x8_t a, int16x8_t b) // VRADDHN.I16 d0,q0,q0
+{
+    int8x8_t res64;
+    __m128i sum, mask1;
+    sum = _mm_add_epi16 (a, b);
+    mask1 = _mm_slli_epi16(sum, 9); //shift left then back right to
+    mask1 = _mm_srli_epi16(mask1, 15); //get  7-th bit 1 or zero
+    sum = _mm_srai_epi16 (sum, 8); //get high half
+    sum = _mm_add_epi16 (sum, mask1); //actual rounding
+    sum = _mm_packs_epi16 (sum, sum);
+    return64(sum);
+}
+
+int16x4_t  vraddhn_s32(int32x4_t a, int32x4_t b); // VRADDHN.I32 d0,q0,q0
+_NEON2SSE_INLINE int16x4_t  vraddhn_s32(int32x4_t a, int32x4_t b) // VRADDHN.I32 d0,q0,q0
+{
+    //SIMD may be not optimal, serial may be faster
+    int16x4_t res64;
+    __m128i sum, mask1;
+    sum = _mm_add_epi32 (a, b);
+    mask1 = _mm_slli_epi32(sum, 17); //shift left then back right to
+    mask1 = _mm_srli_epi32(mask1,31); //get  15-th bit 1 or zero
+    sum = _mm_srai_epi32 (sum, 16); //get high half
+    sum = _mm_add_epi32 (sum, mask1); //actual rounding
+    sum = _mm_packs_epi32 (sum, sum);
+    return64(sum);
+}
+
+int32x2_t  vraddhn_s64(int64x2_t a, int64x2_t b); // VRADDHN.I64 d0,q0,q0
+_NEON2SSE_INLINE int32x2_t vraddhn_s64(int64x2_t a, int64x2_t b)
+{
+    //SIMD may be not optimal, serial may be faster
+    int32x2_t res64;
+    __m128i sum, mask1;
+    sum = _mm_add_epi64 (a, b);
+    mask1 = _mm_slli_epi64(sum, 33); //shift left then back right to
+    mask1 = _mm_srli_epi64(mask1,32); //get  31-th bit 1 or zero
+    sum = _mm_add_epi64 (sum, mask1); //actual high half rounding
+    sum = _mm_shuffle_epi32(sum,  1 | (3 << 2) | (1 << 4) | (3 << 6));
+    return64(sum);
+}
+
+uint8x8_t  vraddhn_u16(uint16x8_t a, uint16x8_t b); // VRADDHN.I16 d0,q0,q0
+_NEON2SSE_INLINE uint8x8_t  vraddhn_u16(uint16x8_t a, uint16x8_t b) // VRADDHN.I16 d0,q0,q0
+{
+    uint8x8_t res64;
+    __m128i sum, mask1;
+    sum = _mm_add_epi16 (a, b);
+    mask1 = _mm_slli_epi16(sum, 9); //shift left then back right to
+    mask1 = _mm_srli_epi16(mask1, 15); //get  7-th bit 1 or zero
+    sum = _mm_srai_epi16 (sum, 8); //get high half
+    sum = _mm_add_epi16 (sum, mask1); //actual rounding
+    sum = _mm_packus_epi16 (sum, sum);
+    return64(sum);
+}
+
+uint16x4_t vraddhn_u32(uint32x4_t a, uint32x4_t b); // VRADDHN.I32 d0,q0,q0
+_NEON2SSE_INLINE uint16x4_t vraddhn_u32(uint32x4_t a, uint32x4_t b)
+{
+    //SIMD may be not optimal, serial may be faster
+    uint16x4_t res64;
+    __m128i sum, mask1;
+    sum = _mm_add_epi32 (a, b);
+    mask1 = _mm_slli_epi32(sum, 17); //shift left then back right to
+    mask1 = _mm_srli_epi32(mask1,31); //get  15-th bit 1 or zero
+    sum = _mm_srai_epi32 (sum, 16); //get high half
+    sum = _mm_add_epi32 (sum, mask1); //actual rounding
+    sum = _MM_PACKUS1_EPI32 (sum);
+    return64(sum);
+}
+
+uint32x2_t vraddhn_u64(uint64x2_t a, uint64x2_t b); // VRADDHN.I64 d0,q0,q0
+#define vraddhn_u64 vraddhn_s64
+
+//**********************************************************************************
+//*********             Multiplication            *************************************
+//**************************************************************************************
+
+//Vector multiply: vmul -> Vr[i] := Va[i] * Vb[i]
+//As we don't go to wider result functions are equal to "multiply low" in x86
+int8x8_t vmul_s8(int8x8_t a, int8x8_t b); // VMUL.I8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vmul_s8(int8x8_t a, int8x8_t b) // VMUL.I8 d0,d0,d0
+{
+    // no 8 bit simd multiply, need to go to 16 bits in SSE
+    int8x8_t res64;
+    __m128i a128, b128, res;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    a128 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1 use low 64 bits
+    b128 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1 use low 64 bits
+    res = _mm_mullo_epi16 (a128, b128);
+    res = _mm_shuffle_epi8 (res, *(__m128i*) mask8_16_even_odd); //return to 8 bit from 16, use 64 low bits only
+    return64(res);
+}
+
+int16x4_t vmul_s16(int16x4_t a,  int16x4_t b); // VMUL.I16 d0,d0,d0
+#define vmul_s16 vmul_u16
+
+int32x2_t vmul_s32(int32x2_t a,  int32x2_t b); // VMUL.I32 d0,d0,d0
+#define vmul_s32 vmul_u32
+
+float32x2_t vmul_f32(float32x2_t a, float32x2_t b); // VMUL.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vmul_f32(float32x2_t a, float32x2_t b)
+{
+    float32x4_t tmp;
+    __m64_128 res64;
+    tmp =  _mm_mul_ps(_pM128(a),_pM128(b));
+    _M64f(res64, tmp); //use low 64 bits
+    return res64;
+}
+
+uint8x8_t vmul_u8(uint8x8_t a, uint8x8_t b); // VMUL.I8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vmul_u8(uint8x8_t a, uint8x8_t b) // VMUL.I8 d0,d0,d0
+{
+    // no 8 bit simd multiply, need to go to 16 bits in SSE
+    uint8x8_t res64;
+    __m128i mask, a128, b128, res;
+    mask = _mm_set1_epi16(0xff);
+    a128 = _MM_CVTEPU8_EPI16 (_pM128i(a));
+    b128 = _MM_CVTEPU8_EPI16 (_pM128i(b));
+    res = _mm_mullo_epi16 (a128, b128);
+    res = _mm_and_si128(res, mask); //to avoid saturation
+    res = _mm_packus_epi16 (res,res); //use only low 64 bits
+    return64(res);
+}
+
+uint16x4_t vmul_u16(uint16x4_t a, uint16x4_t b); // VMUL.I16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vmul_u16(uint16x4_t a, uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(_mm_mullo_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t   vmul_u32(uint32x2_t a, uint32x2_t b); // VMUL.I32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING( uint32x2_t   vmul_u32(uint32x2_t a, uint32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint32x2_t res;
+    res.m64_u32[0] = a.m64_u32[0] * b.m64_u32[0];
+    res.m64_u32[1] = a.m64_u32[1] * b.m64_u32[1];
+    return res;
+}
+
+poly8x8_t vmul_p8(poly8x8_t a, poly8x8_t b); // VMUL.P8 d0,d0,d0
+_NEON2SSE_INLINE poly8x8_t vmul_p8(poly8x8_t a, poly8x8_t b)
+{
+    //may be optimized
+    poly8x8_t res64;
+    __m128i a64, b64, c1, res, tmp, bmasked;
+    int i;
+    a64 = _pM128i(a);
+    b64 = _pM128i(b);
+    c1 = _mm_cmpeq_epi8 (a64,a64); //all ones 0xff....
+    c1 = vshrq_n_u8(c1,7); //0x1
+    bmasked = _mm_and_si128(b64, c1); //0x1
+    res = vmulq_u8(a64, bmasked);
+    for(i = 1; i<8; i++) {
+        c1 = _mm_slli_epi16(c1,1); //shift mask left by 1, 16 bit shift is OK here
+        bmasked = _mm_and_si128(b64, c1); //0x1
+        tmp = vmulq_u8(a64, bmasked);
+        res = _mm_xor_si128(res, tmp);
+    }
+    return64 (res);
+}
+
+int8x16_t vmulq_s8(int8x16_t a, int8x16_t b); // VMUL.I8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vmulq_s8(int8x16_t a, int8x16_t b) // VMUL.I8 q0,q0,q0
+{
+    // no 8 bit simd multiply, need to go to 16 bits
+    //solution may be not optimal
+    __m128i a16, b16, r16_1, r16_2;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    a16 = _MM_CVTEPI8_EPI16 (a); // SSE 4.1
+    b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1
+    r16_1 = _mm_mullo_epi16 (a16, b16);
+    //swap hi and low part of a and b to process the remaining data
+    a16 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32);
+    a16 = _MM_CVTEPI8_EPI16 (a16); // SSE 4.1
+    b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1  __m128i r16_2
+
+    r16_2 = _mm_mullo_epi16 (a16, b16);
+    r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*)mask8_16_even_odd); //return to 8 bit
+    r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*)mask8_16_even_odd); //return to 8 bit
+
+    return _mm_unpacklo_epi64(r16_1,  r16_2);
+}
+
+int16x8_t   vmulq_s16(int16x8_t a, int16x8_t b); // VMUL.I16 q0,q0,q0
+#define vmulq_s16 _mm_mullo_epi16
+
+int32x4_t   vmulq_s32(int32x4_t a, int32x4_t b); // VMUL.I32 q0,q0,q0
+#define vmulq_s32 _MM_MULLO_EPI32 //SSE4.1
+
+float32x4_t vmulq_f32(float32x4_t a, float32x4_t b); // VMUL.F32 q0,q0,q0
+#define vmulq_f32 _mm_mul_ps
+
+uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b); // VMUL.I8 q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b) // VMUL.I8 q0,q0,q0
+{
+    // no 8 bit simd multiply, need to go to 16 bits
+    //solution may be not optimal
+    __m128i maskff, a16, b16, r16_1, r16_2;
+    maskff = _mm_set1_epi16(0xff);
+    a16 = _MM_CVTEPU8_EPI16 (a); // SSE 4.1
+    b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1
+    r16_1 = _mm_mullo_epi16 (a16, b16);
+    r16_1 = _mm_and_si128(r16_1, maskff); //to avoid saturation
+    //swap hi and low part of a and b to process the remaining data
+    a16 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32);
+    a16 = _MM_CVTEPI8_EPI16 (a16); // SSE 4.1
+    b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1
+
+    r16_2 = _mm_mullo_epi16 (a16, b16);
+    r16_2 = _mm_and_si128(r16_2, maskff); //to avoid saturation
+    return _mm_packus_epi16 (r16_1,  r16_2);
+}
+
+uint16x8_t   vmulq_u16(uint16x8_t a, uint16x8_t b); // VMUL.I16 q0,q0,q0
+#define vmulq_u16 _mm_mullo_epi16
+
+uint32x4_t   vmulq_u32(uint32x4_t a, uint32x4_t b); // VMUL.I32 q0,q0,q0
+#define vmulq_u32 _MM_MULLO_EPI32 //SSE4.1
+
+poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b); // VMUL.P8 q0,q0,q0
+_NEON2SSE_INLINE poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b)
+{
+    //may be optimized
+    __m128i c1, res, tmp, bmasked;
+    int i;
+    c1 = _mm_cmpeq_epi8 (a,a); //all ones 0xff....
+    c1 = vshrq_n_u8(c1,7); //0x1
+    bmasked = _mm_and_si128(b, c1); //0x1
+    res = vmulq_u8(a, bmasked);
+    for(i = 1; i<8; i++) {
+        c1 = _mm_slli_epi16(c1,1); //shift mask left by 1, 16 bit shift is OK here
+        bmasked = _mm_and_si128(b, c1); //0x1
+        tmp = vmulq_u8(a, bmasked);
+        res = _mm_xor_si128(res, tmp);
+    }
+    return res;
+}
+
+//************************* Vector long multiply ***********************************
+//****************************************************************************
+int16x8_t vmull_s8(int8x8_t a, int8x8_t b); // VMULL.S8 q0,d0,d0
+_NEON2SSE_INLINE int16x8_t vmull_s8(int8x8_t a, int8x8_t b) // VMULL.S8 q0,d0,d0
+{
+    //no 8 bit simd multiply, need to go to 16 bits
+    __m128i a16, b16;
+    a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1
+    return _mm_mullo_epi16 (a16, b16); //should fit into 16 bit
+}
+
+int32x4_t vmull_s16(int16x4_t a, int16x4_t b); // VMULL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vmull_s16(int16x4_t a, int16x4_t b) // VMULL.S16 q0,d0,d0
+{
+    #ifdef USE_SSE4
+        __m128i a16, b16;
+        a16 = _MM_CVTEPI16_EPI32 (_pM128i(a)); // SSE 4.1
+        b16 = _MM_CVTEPI16_EPI32 (_pM128i(b)); // SSE 4.1
+        return _MM_MULLO_EPI32 (a16, b16); // SSE 4.1
+    #else
+        __m128i low, hi, a128,b128;
+        a128 = _pM128i(a);
+        b128 = _pM128i(b);
+        low =  _mm_mullo_epi16(a128,b128);
+        hi =   _mm_mulhi_epi16(a128,b128);
+        return _mm_unpacklo_epi16(low,hi);
+    #endif
+}
+
+int64x2_t vmull_s32(int32x2_t a, int32x2_t b); // VMULL.S32 q0,d0,d0
+_NEON2SSE_INLINE int64x2_t vmull_s32(int32x2_t a, int32x2_t b) // VMULL.S32 q0,d0,d0
+{
+    __m128i ab, ba, a128, b128;
+    a128 = _pM128i(a);
+    b128 = _pM128i(b);
+    ab = _mm_unpacklo_epi32 (a128, b128); //a0, b0, a1,b1
+    ba = _mm_unpacklo_epi32 (b128, a128); //b0, a0, b1,a1
+    return _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result
+}
+
+uint16x8_t vmull_u8(uint8x8_t a, uint8x8_t b); // VMULL.U8 q0,d0,d0
+_NEON2SSE_INLINE uint16x8_t vmull_u8(uint8x8_t a, uint8x8_t b) // VMULL.U8 q0,d0,d0
+{
+    //no 8 bit simd multiply, need to go to 16 bits
+    __m128i a16, b16;
+    a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); // SSE 4.1
+    b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); // SSE 4.1
+    return _mm_mullo_epi16 (a16, b16); //should fit into 16 bit
+}
+
+uint32x4_t vmull_u16(uint16x4_t a, uint16x4_t b); // VMULL.s16 q0,d0,d0
+_NEON2SSE_INLINE uint32x4_t vmull_u16(uint16x4_t a, uint16x4_t b) // VMULL.s16 q0,d0,d0
+{
+    #ifdef USE_SSE4
+        __m128i a16, b16;
+        a16 = _MM_CVTEPU16_EPI32 (_pM128i(a)); // SSE 4.1
+        b16 = _MM_CVTEPU16_EPI32 (_pM128i(b)); // SSE 4.1
+        return _MM_MULLO_EPI32 (a16, b16); // SSE 4.1
+    #else
+        __m128i a128,b128,low, hi;
+        a128 = _pM128i(a);
+        b128 = _pM128i(b);
+        low =  _mm_mullo_epi16(a128,b128);
+        hi =   _mm_mulhi_epu16(a128,b128);
+        return _mm_unpacklo_epi16(low,hi);
+    #endif
+}
+
+uint64x2_t vmull_u32(uint32x2_t a, uint32x2_t b); // VMULL.U32 q0,d0,d0
+_NEON2SSE_INLINE uint64x2_t vmull_u32(uint32x2_t a, uint32x2_t b) // VMULL.U32 q0,d0,d0
+{
+    ///may be not optimal compared with serial implementation
+    __m128i ab, ba, a128, b128;
+    a128 = _pM128i(a);
+    b128 = _pM128i(b);
+    ab = _mm_unpacklo_epi32 (a128, b128); //a0, b0, a1,b1
+    ba = _mm_unpacklo_epi32 (b128, a128); //b0, a0, b1,a1
+    return _mm_mul_epu32 (ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result
+}
+
+poly16x8_t vmull_p8(poly8x8_t a, poly8x8_t b); // VMULL.P8 q0,d0,d0
+_NEON2SSE_INLINE poly16x8_t vmull_p8(poly8x8_t a, poly8x8_t b)
+{
+    //may be optimized
+    __m128i a128,b128, c1, a128_16, bmasked_16, res, tmp, bmasked;
+    int i;
+    a128 = _pM128i(a);
+    b128 = _pM128i(b);
+    c1 = _mm_cmpeq_epi8 (a128,a128); //all ones 0xff....
+    c1 = vshrq_n_u8(c1,7); //0x1
+    bmasked = _mm_and_si128(b128, c1); //0x1
+
+    a128_16 = _MM_CVTEPU8_EPI16 (a128); // SSE 4.1
+    bmasked_16 = _MM_CVTEPU8_EPI16 (bmasked); // SSE 4.1
+    res = _mm_mullo_epi16 (a128_16, bmasked_16); //should fit into 16 bit
+    for(i = 1; i<8; i++) {
+        c1 = _mm_slli_epi16(c1,1); //shift mask left by 1, 16 bit shift is OK here
+        bmasked = _mm_and_si128(b128, c1); //0x1
+        bmasked_16 = _MM_CVTEPU8_EPI16 (bmasked); // SSE 4.1
+        tmp = _mm_mullo_epi16 (a128_16, bmasked_16); //should fit into 16 bit, vmull_u8(a, bmasked);
+        res = _mm_xor_si128(res, tmp);
+    }
+    return res;
+}
+
+//****************Vector saturating doubling long multiply **************************
+//*****************************************************************
+int32x4_t vqdmull_s16(int16x4_t a, int16x4_t b); // VQDMULL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vqdmull_s16(int16x4_t a, int16x4_t b)
+{
+    //the serial soulution may be faster due to saturation
+    __m128i res;
+    res = vmull_s16(a, b);
+    return vqd_s32(res);
+}
+
+int64x2_t vqdmull_s32(int32x2_t a, int32x2_t b); // VQDMULL.S32 q0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmull_s32(int32x2_t a, int32x2_t b),_NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //the serial soulution may be faster due to saturation
+    __m128i res;
+    res = vmull_s32(a,b);
+    return vqaddq_s64(res,res); //slow serial function!!!!
+}
+
+//********************* Vector multiply accumulate: vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i]  ************************
+//******************************************************************************************
+int8x8_t vmla_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLA.I8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vmla_s8(int8x8_t a, int8x8_t b, int8x8_t c) // VMLA.I8 d0,d0,d0
+{
+    // no 8 bit x86 simd multiply, need to go to 16 bits,  and use the low 64 bits
+    int8x8_t res64;
+    __m128i b128, c128, res;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    b128 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1 use low 64 bits
+    c128 = _MM_CVTEPI8_EPI16 (_pM128i(c)); // SSE 4.1 use low 64 bits
+    res = _mm_mullo_epi16 (c128, b128);
+    res  =  _mm_shuffle_epi8 (res, *(__m128i*) mask8_16_even_odd);
+    res  = _mm_add_epi8 (res, _pM128i(a)); //use the low 64 bits
+    return64(res);
+}
+
+int16x4_t vmla_s16(int16x4_t a,  int16x4_t b, int16x4_t c); // VMLA.I16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vmla_s16(int16x4_t a,  int16x4_t b, int16x4_t c)
+{
+    int16x4_t res64;
+    return64(vmlaq_s16(_pM128i(a),_pM128i(b), _pM128i(c)));
+}
+
+
+int32x2_t vmla_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLA.I32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vmla_s32(int32x2_t a, int32x2_t b, int32x2_t c) // VMLA.I32 d0,d0,d0
+{
+    int32x2_t res64;
+    __m128i res;
+    res = _MM_MULLO_EPI32 (_pM128i(b), _pM128i(c)); //SSE4.1
+    res = _mm_add_epi32 (res, _pM128i(a)); //use the low 64 bits
+    return64(res);
+}
+
+float32x2_t vmla_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLA.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vmla_f32(float32x2_t a, float32x2_t b, float32x2_t c)
+{
+    //fma is coming soon, but right now:
+    __m128 res;
+    __m64_128 res64;
+    res = _mm_mul_ps (_pM128(c), _pM128(b));
+    res = _mm_add_ps (_pM128(a), res);
+    _M64f(res64, res);
+    return res64;
+}
+
+uint8x8_t vmla_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLA.I8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vmla_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c) // VMLA.I8 d0,d0,d0
+{
+    // no 8 bit x86 simd multiply, need to go to 16 bits,  and use the low 64 bits
+    uint8x8_t res64;
+    __m128i mask, b128, c128, res;
+    mask = _mm_set1_epi16(0xff);
+    b128 = _MM_CVTEPU8_EPI16 (_pM128i(b)); // SSE 4.1 use low 64 bits
+    c128 = _MM_CVTEPU8_EPI16 (_pM128i(c)); // SSE 4.1 use low 64 bits
+    res = _mm_mullo_epi16 (c128, b128);
+    res = _mm_and_si128(res, mask); //to avoid saturation
+    res = _mm_packus_epi16 (res, res);
+    res =  _mm_add_epi8 (res, _pM128i(a)); //use the low 64 bits
+    return64(res);
+}
+
+uint16x4_t vmla_u16(uint16x4_t a,  uint16x4_t b, uint16x4_t c); // VMLA.I16 d0,d0,d0
+#define vmla_u16 vmla_s16
+
+uint32x2_t vmla_u32(uint32x2_t a,  uint32x2_t b, uint32x2_t c); // VMLA.I32 d0,d0,d0
+#define vmla_u32 vmla_s32
+
+int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLA.I8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VMLA.I8 q0,q0,q0
+{
+    //solution may be not optimal
+    // no 8 bit simd multiply, need to go to 16 bits
+    __m128i b16, c16, r16_1, a_2,r16_2;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1
+    c16 = _MM_CVTEPI8_EPI16 (c); // SSE 4.1
+    r16_1 = _mm_mullo_epi16 (b16, c16);
+    r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits
+    r16_1 = _mm_add_epi8 (r16_1, a);
+    //swap hi and low part of a, b and c to process the remaining data
+    a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32);
+    c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32);
+    b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1
+    c16 = _MM_CVTEPI8_EPI16 (c16); // SSE 4.1
+
+    r16_2 = _mm_mullo_epi16 (b16, c16);
+    r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd);
+    r16_2 = _mm_add_epi8(r16_2, a_2);
+    return _mm_unpacklo_epi64(r16_1,r16_2);
+}
+
+int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLA.I16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VMLA.I16 q0,q0,q0
+{
+    __m128i res;
+    res = _mm_mullo_epi16 (c, b);
+    return _mm_add_epi16 (res, a);
+}
+
+int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLA.I32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VMLA.I32 q0,q0,q0
+{
+    __m128i res;
+    res = _MM_MULLO_EPI32 (c,  b); //SSE4.1
+    return _mm_add_epi32 (res, a);
+}
+
+float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLA.F32 q0,q0,q0
+_NEON2SSE_INLINE float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c) // VMLA.F32 q0,q0,q0
+{
+    //fma is coming soon, but right now:
+    __m128 res;
+    res = _mm_mul_ps (c, b);
+    return _mm_add_ps (a, res);
+}
+
+uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLA.I8 q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) // VMLA.I8 q0,q0,q0
+{
+    //solution may be not optimal
+    // no 8 bit simd multiply, need to go to 16 bits
+    __m128i b16, c16, r16_1, a_2, r16_2;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1
+    c16 = _MM_CVTEPU8_EPI16 (c); // SSE 4.1
+    r16_1 = _mm_mullo_epi16 (b16, c16);
+    r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits
+    r16_1 = _mm_add_epi8 (r16_1, a);
+    //swap hi and low part of a, b and c to process the remaining data
+    a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32);
+    c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32);
+    b16 = _MM_CVTEPU8_EPI16 (b16); // SSE 4.1
+    c16 = _MM_CVTEPU8_EPI16 (c16); // SSE 4.1
+
+    r16_2 = _mm_mullo_epi16 (b16, c16);
+    r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd);
+    r16_2 = _mm_add_epi8(r16_2, a_2);
+    return _mm_unpacklo_epi64(r16_1,r16_2);
+}
+
+uint16x8_t vmlaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLA.I16 q0,q0,q0
+#define vmlaq_u16 vmlaq_s16
+
+uint32x4_t vmlaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLA.I32 q0,q0,q0
+#define vmlaq_u32 vmlaq_s32
+
+//**********************  Vector widening multiply accumulate (long multiply accumulate):
+//                          vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i]  **************
+//********************************************************************************************
+int16x8_t vmlal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLAL.S8 q0,d0,d0
+_NEON2SSE_INLINE int16x8_t vmlal_s8(int16x8_t a, int8x8_t b, int8x8_t c) // VMLAL.S8 q0,d0,d0
+{
+    int16x8_t res;
+    res = vmull_s8(b, c);
+    return _mm_add_epi16 (res, a);
+}
+
+int32x4_t vmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLAL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VMLAL.S16 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    int32x4_t res;
+    res = vmull_s16(b,  c);
+    return _mm_add_epi32 (res, a);
+}
+
+int64x2_t vmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLAL.S32 q0,d0,d0
+_NEON2SSE_INLINE int64x2_t vmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c) // VMLAL.S32 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    int64x2_t res;
+    res = vmull_s32( b, c);
+    return _mm_add_epi64 (res, a);
+}
+
+uint16x8_t vmlal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLAL.U8 q0,d0,d0
+_NEON2SSE_INLINE uint16x8_t vmlal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c) // VMLAL.U8 q0,d0,d0
+{
+    uint16x8_t res;
+    res = vmull_u8(b, c);
+    return _mm_add_epi16 (res, a);
+}
+
+uint32x4_t vmlal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLAL.s16 q0,d0,d0
+_NEON2SSE_INLINE uint32x4_t vmlal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c) // VMLAL.s16 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    uint32x4_t res;
+    res = vmull_u16(b, c);
+    return _mm_add_epi32 (res, a);
+}
+
+uint64x2_t vmlal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLAL.U32 q0,d0,d0
+_NEON2SSE_INLINE uint64x2_t vmlal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c) // VMLAL.U32 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    int64x2_t res;
+    res = vmull_u32( b,c);
+    return _mm_add_epi64 (res, a);
+}
+
+//******************** Vector multiply subtract: vmls -> Vr[i] := Va[i] - Vb[i] * Vc[i] ***************************************
+//********************************************************************************************
+int8x8_t vmls_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLS.I8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vmls_s8(int8x8_t a, int8x8_t b, int8x8_t c) // VMLS.I8 d0,d0,d0
+{
+    // no 8 bit simd multiply, need to go to 16 bits -  and use the low 64 bits
+    int8x8_t res64;
+    __m128i res;
+    res64 = vmul_s8(b,c);
+    res = _mm_sub_epi8 (_pM128i(a), _pM128i(res64));
+    return64(res);
+}
+
+int16x4_t vmls_s16(int16x4_t a,  int16x4_t b, int16x4_t c); // VMLS.I16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vmls_s16(int16x4_t a,  int16x4_t b, int16x4_t c)
+{
+    int16x4_t res64;
+    return64(vmlsq_s16(_pM128i(a),_pM128i(b), _pM128i(c)));
+}
+
+
+int32x2_t vmls_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLS.I32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vmls_s32(int32x2_t a, int32x2_t b, int32x2_t c) // VMLS.I32 d0,d0,d0
+{
+    int32x2_t res64;
+    __m128i res;
+    res = _MM_MULLO_EPI32 (_pM128i(c),_pM128i( b)); //SSE4.1
+    res =  _mm_sub_epi32 (_pM128i(a),res); //use low 64 bits only
+    return64(res);
+}
+
+float32x2_t vmls_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLS.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vmls_f32(float32x2_t a, float32x2_t b, float32x2_t c)
+{
+    __m128 res;
+    __m64_128 res64;
+    res = _mm_mul_ps (_pM128(c), _pM128(b));
+    res = _mm_sub_ps (_pM128(a), res);
+    _M64f(res64, res);
+    return res64;
+}
+
+uint8x8_t vmls_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLS.I8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vmls_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c)
+{
+    // no 8 bit simd multiply, need to go to 16 bits -  and use the low 64 bits
+    uint8x8_t res64;
+    __m128i res;
+    res64 = vmul_u8(b,c);
+    res = _mm_sub_epi8 (_pM128i(a), _pM128i(res64));
+    return64(res);
+}
+
+uint16x4_t vmls_u16(uint16x4_t a,  uint16x4_t b, uint16x4_t c); // VMLS.I16 d0,d0,d0
+#define vmls_u16 vmls_s16
+
+uint32x2_t vmls_u32(uint32x2_t a,  uint32x2_t b, uint32x2_t c); // VMLS.I32 d0,d0,d0
+#define vmls_u32 vmls_s32
+
+
+int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLS.I8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VMLS.I8 q0,q0,q0
+{
+    //solution may be not optimal
+    // no 8 bit simd multiply, need to go to 16 bits
+    __m128i b16, c16, r16_1, a_2, r16_2;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1
+    c16 = _MM_CVTEPI8_EPI16 (c); // SSE 4.1
+    r16_1 = _mm_mullo_epi16 (b16, c16);
+    r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd);
+    r16_1 = _mm_sub_epi8 (a, r16_1);
+    //swap hi and low part of a, b, c to process the remaining data
+    a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32);
+    c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32);
+    b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1
+    c16 = _MM_CVTEPI8_EPI16 (c16); // SSE 4.1
+
+    r16_2 = _mm_mullo_epi16 (b16, c16);
+    r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd);
+    r16_2 = _mm_sub_epi8 (a_2, r16_2);
+    return _mm_unpacklo_epi64(r16_1,r16_2);
+}
+
+int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLS.I16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VMLS.I16 q0,q0,q0
+{
+    __m128i res;
+    res = _mm_mullo_epi16 (c, b);
+    return _mm_sub_epi16 (a, res);
+}
+
+int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLS.I32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VMLS.I32 q0,q0,q0
+{
+    __m128i res;
+    res = _MM_MULLO_EPI32 (c, b); //SSE4.1
+    return _mm_sub_epi32 (a, res);
+}
+
+float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLS.F32 q0,q0,q0
+_NEON2SSE_INLINE float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c) // VMLS.F32 q0,q0,q0
+{
+    __m128 res;
+    res = _mm_mul_ps (c, b);
+    return _mm_sub_ps (a, res);
+}
+
+uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLS.I8 q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) // VMLS.I8 q0,q0,q0
+{
+    //solution may be not optimal
+    // no 8 bit simd multiply, need to go to 16 bits
+    __m128i b16, c16, r16_1, a_2, r16_2;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1
+    c16 = _MM_CVTEPU8_EPI16 (c); // SSE 4.1
+    r16_1 = _mm_mullo_epi16 (b16, c16);
+    r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits
+    r16_1 = _mm_sub_epi8 (a, r16_1);
+    //swap hi and low part of a, b and c to process the remaining data
+    a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32);
+    c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32);
+    b16 = _MM_CVTEPU8_EPI16 (b16); // SSE 4.1
+    c16 = _MM_CVTEPU8_EPI16 (c16); // SSE 4.1
+
+    r16_2 = _mm_mullo_epi16 (b16, c16);
+    r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd);
+    r16_2 = _mm_sub_epi8(a_2, r16_2);
+    return _mm_unpacklo_epi64(r16_1,r16_2);
+}
+
+uint16x8_t vmlsq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLS.I16 q0,q0,q0
+#define vmlsq_u16 vmlsq_s16
+
+uint32x4_t vmlsq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLS.I32 q0,q0,q0
+#define vmlsq_u32 vmlsq_s32
+
+//******************** Vector multiply subtract long (widening multiply subtract) ************************************
+//*************************************************************************************************************
+int16x8_t vmlsl_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLSL.S8 q0,d0,d0
+_NEON2SSE_INLINE int16x8_t vmlsl_s8(int16x8_t a, int8x8_t b, int8x8_t c) // VMLSL.S8 q0,d0,d0
+{
+    int16x8_t res;
+    res = vmull_s8(b, c);
+    return _mm_sub_epi16 (a, res);
+}
+
+int32x4_t vmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLSL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VMLSL.S16 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    int32x4_t res;
+    res = vmull_s16(b,  c);
+    return _mm_sub_epi32 (a, res);
+}
+
+int64x2_t vmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLSL.S32 q0,d0,d0
+_NEON2SSE_INLINE int64x2_t vmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c) // VMLSL.S32 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    int64x2_t res;
+    res = vmull_s32( b,c);
+    return _mm_sub_epi64 (a, res);
+}
+
+uint16x8_t vmlsl_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLSL.U8 q0,d0,d0
+_NEON2SSE_INLINE uint16x8_t vmlsl_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c) // VMLSL.U8 q0,d0,d0
+{
+    uint16x8_t res;
+    res = vmull_u8(b, c);
+    return _mm_sub_epi16 (a, res);
+}
+
+uint32x4_t vmlsl_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLSL.s16 q0,d0,d0
+_NEON2SSE_INLINE uint32x4_t vmlsl_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c) // VMLSL.s16 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    uint32x4_t res;
+    res = vmull_u16(b, c);
+    return _mm_sub_epi32 (a, res);
+}
+
+uint64x2_t vmlsl_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLSL.U32 q0,d0,d0
+_NEON2SSE_INLINE uint64x2_t vmlsl_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c) // VMLSL.U32 q0,d0,d0
+{
+    //may be not optimal compared with serial implementation
+    int64x2_t res;
+    res = vmull_u32( b,c);
+    return _mm_sub_epi64 (a, res);
+}
+
+//******  Vector saturating doubling multiply high **********************
+//*************************************************************************
+int16x4_t vqdmulh_s16(int16x4_t a,  int16x4_t b); // VQDMULH.S16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vqdmulh_s16(int16x4_t a,  int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int16x4_t res;
+    int32_t a32, b32, i;
+    for (i = 0; i<4; i++) {
+        a32 = (int32_t) a.m64_i16[i];
+        b32 = (int32_t) b.m64_i16[i];
+        a32 = (a32 * b32) >> 15;
+        res.m64_i16[i] = (a32 == 0x8000) ? 0x7fff : (int16_t) a32;
+    }
+    return res;
+}
+
+int32x2_t vqdmulh_s32(int32x2_t a, int32x2_t b); // VQDMULH.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vqdmulh_s32(int32x2_t a, int32x2_t b) // no multiply high 32 bit SIMD in IA32, so need to do some tricks, serial solution may be faster
+{
+    //may be not optimal compared with a serial solution
+    int32x2_t res64;
+    __m128i mask;
+    _NEON2SSE_ALIGN_16 uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    int64x2_t mul;
+    mul = vmull_s32(a,b);
+    mul = _mm_slli_epi64(mul,1); //double the result
+    //at this point start treating 2 64-bit numbers as 4 32-bit
+    mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits
+    mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32);
+    mul = _mm_xor_si128 (mul,  mask); //res saturated for 0x80000000
+    return64(mul);
+}
+
+int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b); // VQDMULH.S16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b) // VQDMULH.S16 q0,q0,q0
+{
+    __m128i res, res_lo, mask;
+    _NEON2SSE_ALIGN_16 uint16_t cmask[] = {0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000};
+    res = _mm_mulhi_epi16 (a, b);
+    res = _mm_slli_epi16 (res, 1); //double the result, don't care about saturation
+    res_lo = _mm_mullo_epi16 (a, b);
+    res_lo = _mm_srli_epi16(res_lo,15); //take the highest bit
+    res = _mm_add_epi16(res, res_lo); //combine results
+    mask = _mm_cmpeq_epi16 (res, *(__m128i*)cmask);
+    return _mm_xor_si128 (res,  mask); //res saturated for 0x8000
+}
+
+int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b); // VQDMULH.S32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    // no multiply high 32 bit SIMD in IA32, may be not optimal compared with a serial solution for the SSSE3 target
+    __m128i ab, ba, mask, mul, mul1;
+    _NEON2SSE_ALIGN_16 uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    ab = _mm_unpacklo_epi32 (a, b); //a0, b0, a1,b1
+    ba = _mm_unpacklo_epi32 (b, a); //b0, a0, b1,a1
+    mul = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result
+    mul = _mm_slli_epi64(mul,1); //double the result
+    ab = _mm_unpackhi_epi32 (a, b); //a2, b2, a3,b3
+    ba = _mm_unpackhi_epi32 (b, a); //b2, a2, b3,a3
+    mul1 = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result
+    mul1 = _mm_slli_epi64(mul1,1); //double the result
+    mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits
+    mul1 = _mm_shuffle_epi32 (mul1, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits
+    mul = _mm_unpacklo_epi64(mul, mul1);
+    mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32);
+    return _mm_xor_si128 (mul,  mask); //res saturated for 0x80000000
+}
+
+//********* Vector saturating rounding doubling multiply high ****************
+//****************************************************************************
+//If use _mm_mulhrs_xx functions  the result may differ from NEON one a little  due to different rounding rules and order
+int16x4_t vqrdmulh_s16(int16x4_t a,  int16x4_t b); // VQRDMULH.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vqrdmulh_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vqrdmulhq_s16(_pM128i(a), _pM128i(b)));
+}
+
+int32x2_t vqrdmulh_s32(int32x2_t a, int32x2_t b); // VQRDMULH.S32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrdmulh_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    //may be not optimal compared with a serial solution
+    int32x2_t res64;
+    _NEON2SSE_ALIGN_16 uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    __m128i res_sat, mask, mask1;
+    int64x2_t mul;
+    mul = vmull_s32(a,b);
+    res_sat = _mm_slli_epi64 (mul, 1); //double the result, saturation not considered
+    mask1 = _mm_slli_epi64(res_sat, 32); //shift left then back right to
+    mask1 = _mm_srli_epi64(mask1,31); //get  31-th bit 1 or zero
+    mul = _mm_add_epi32 (res_sat, mask1); //actual rounding
+    //at this point start treating 2 64-bit numbers as 4 32-bit
+    mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits from each 64-bit
+    mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32);
+    mul = _mm_xor_si128 (mul,  mask); //res saturated for 0x80000000
+    return64(mul);
+}
+
+int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b); // VQRDMULH.S16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b) // VQRDMULH.S16 q0,q0,q0
+{
+    __m128i mask, res;
+    _NEON2SSE_ALIGN_16 uint16_t cmask[] = {0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000};
+    res = _mm_mulhrs_epi16 (a, b);
+    mask = _mm_cmpeq_epi16 (res, *(__m128i*)cmask);
+    return _mm_xor_si128 (res,  mask); //res saturated for 0x8000
+}
+
+int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b); // VQRDMULH.S32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    // no multiply high 32 bit SIMD in IA32, may be not optimal compared with a serial solution for the SSSE3 target
+    __m128i ab, ba,  mask, mul, mul1, mask1;
+    _NEON2SSE_ALIGN_16 uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    ab = _mm_unpacklo_epi32 (a, b); //a0, b0, a1,b1
+    ba = _mm_unpacklo_epi32 (b, a); //b0, a0, b1,a1
+    mul = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result
+    mul = _mm_slli_epi64 (mul, 1); //double the result, saturation not considered
+    mask1 = _mm_slli_epi64(mul, 32); //shift left then back right to
+    mask1 = _mm_srli_epi64(mask1,31); //get  31-th bit 1 or zero
+    mul = _mm_add_epi32 (mul, mask1); //actual rounding
+
+    ab = _mm_unpackhi_epi32 (a, b); //a2, b2, a3,b3
+    ba = _mm_unpackhi_epi32 (b, a); //b2, a2, b3,a3
+    mul1 = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result
+    mul1 = _mm_slli_epi64 (mul1, 1); //double the result, saturation not considered
+    mask1 = _mm_slli_epi64(mul1, 32); //shift left then back right to
+    mask1 = _mm_srli_epi64(mask1,31); //get  31-th bit 1 or zero
+    mul1 = _mm_add_epi32 (mul1, mask1); //actual rounding
+    //at this point start treating 2 64-bit numbers as 4 32-bit
+    mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits from each 64-bit
+    mul1 = _mm_shuffle_epi32 (mul1, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits from each 64-bit
+    mul = _mm_unpacklo_epi64(mul, mul1);
+    mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32);
+    return _mm_xor_si128 (mul,  mask); //res saturated for 0x80000000
+}
+
+//*************Vector widening saturating doubling multiply accumulate (long saturating doubling multiply accumulate) *****
+//*************************************************************************************************************************
+int32x4_t vqdmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLAL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vqdmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VQDMLAL.S16 q0,d0,d0
+{
+    //not optimal SIMD soulution, serial may be faster
+    __m128i res32;
+    res32 = vmull_s16(b,  c);
+    res32 = vqd_s32(res32); //doubling & saturation ,if no saturation we could use _mm_slli_epi32 (res, 1);
+    return vqaddq_s32(res32, a); //saturation
+}
+
+int64x2_t vqdmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLAL.S32 q0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c),_NEON2SSE_REASON_SLOW_SERIAL)
+{
+    __m128i res64;
+    res64 = vmull_s32(b,c);
+    res64 = vqaddq_s64(res64, res64); //doubling & saturation ,if no saturation we could use _mm_slli_epi64 (res, 1);
+    return vqaddq_s64(res64, a); //saturation
+}
+
+//************************************************************************************
+//******************  Vector subtract ***********************************************
+//************************************************************************************
+int8x8_t vsub_s8(int8x8_t a, int8x8_t b); // VSUB.I8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vsub_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_sub_epi8(_pM128i(a),_pM128i(b)));
+}
+
+
+int16x4_t vsub_s16(int16x4_t a, int16x4_t b); // VSUB.I16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vsub_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_sub_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+int32x2_t vsub_s32(int32x2_t a, int32x2_t b); // VSUB.I32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vsub_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    return64(_mm_sub_epi32(_pM128i(a),_pM128i(b)));
+}
+
+
+int64x1_t vsub_s64(int64x1_t a,  int64x1_t b); // VSUB.I64 d0,d0,d0
+_NEON2SSE_INLINE int64x1_t vsub_s64(int64x1_t a,  int64x1_t b)
+{
+    int64x1_t res64;
+    res64.m64_i64[0] = a.m64_i64[0] - b.m64_i64[0];
+    return res64;
+}
+
+
+float32x2_t vsub_f32(float32x2_t a, float32x2_t b); // VSUB.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vsub_f32(float32x2_t a, float32x2_t b)
+{
+    float32x2_t res;
+    res.m64_f32[0] = a.m64_f32[0] - b.m64_f32[0];
+    res.m64_f32[1] = a.m64_f32[1] - b.m64_f32[1];
+    return res;
+}
+
+uint8x8_t vsub_u8(uint8x8_t a, uint8x8_t b); // VSUB.I8 d0,d0,d0
+#define vsub_u8 vsub_s8
+
+uint16x4_t vsub_u16(uint16x4_t a, uint16x4_t b); // VSUB.I16 d0,d0,d0
+#define vsub_u16 vsub_s16
+
+uint32x2_t vsub_u32(uint32x2_t a, uint32x2_t b); // VSUB.I32 d0,d0,d0
+#define vsub_u32 vsub_s32
+
+
+uint64x1_t vsub_u64(uint64x1_t a,  uint64x1_t b); // VSUB.I64 d0,d0,d0
+_NEON2SSE_INLINE uint64x1_t vsub_u64(uint64x1_t a,  uint64x1_t b)
+{
+    int64x1_t res64;
+    res64.m64_u64[0] = a.m64_u64[0] - b.m64_u64[0];
+    return res64;
+}
+
+
+int8x16_t   vsubq_s8(int8x16_t a, int8x16_t b); // VSUB.I8 q0,q0,q0
+#define vsubq_s8 _mm_sub_epi8
+
+int16x8_t   vsubq_s16(int16x8_t a, int16x8_t b); // VSUB.I16 q0,q0,q0
+#define vsubq_s16 _mm_sub_epi16
+
+int32x4_t   vsubq_s32(int32x4_t a, int32x4_t b); // VSUB.I32 q0,q0,q0
+#define vsubq_s32 _mm_sub_epi32
+
+int64x2_t   vsubq_s64(int64x2_t a, int64x2_t b); // VSUB.I64 q0,q0,q0
+#define vsubq_s64 _mm_sub_epi64
+
+float32x4_t vsubq_f32(float32x4_t a, float32x4_t b); // VSUB.F32 q0,q0,q0
+#define vsubq_f32 _mm_sub_ps
+
+uint8x16_t   vsubq_u8(uint8x16_t a, uint8x16_t b); // VSUB.I8 q0,q0,q0
+#define vsubq_u8 _mm_sub_epi8
+
+uint16x8_t   vsubq_u16(uint16x8_t a, uint16x8_t b); // VSUB.I16 q0,q0,q0
+#define vsubq_u16 _mm_sub_epi16
+
+uint32x4_t   vsubq_u32(uint32x4_t a, uint32x4_t b); // VSUB.I32 q0,q0,q0
+#define vsubq_u32 _mm_sub_epi32
+
+uint64x2_t   vsubq_u64(uint64x2_t a, uint64x2_t b); // VSUB.I64 q0,q0,q0
+#define vsubq_u64 _mm_sub_epi64
+
+//***************Vector long subtract: vsub -> Vr[i]:=Va[i]-Vb[i] ******************
+//***********************************************************************************
+//Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width.
+int16x8_t vsubl_s8(int8x8_t a, int8x8_t b); // VSUBL.S8 q0,d0,d0
+_NEON2SSE_INLINE int16x8_t vsubl_s8(int8x8_t a, int8x8_t b) // VSUBL.S8 q0,d0,d0
+{
+    __m128i a16, b16;
+    a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE4.1,
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi16 (a16, b16);
+}
+
+int32x4_t vsubl_s16(int16x4_t a, int16x4_t b); // VSUBL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vsubl_s16(int16x4_t a, int16x4_t b) // VSUBL.S16 q0,d0,d0
+{
+    __m128i a32, b32;
+    a32 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE4.1
+    b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi32 (a32, b32);
+}
+
+int64x2_t vsubl_s32(int32x2_t a, int32x2_t b); // VSUBL.S32 q0,d0,d0
+_NEON2SSE_INLINE int64x2_t vsubl_s32(int32x2_t a, int32x2_t b) // VSUBL.S32 q0,d0,d0
+{
+    //may be not optimal
+    __m128i a64, b64;
+    a64 = _MM_CVTEPI32_EPI64 (_pM128i(a)); //SSE4.1
+    b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi64 (a64, b64);
+}
+
+uint16x8_t vsubl_u8(uint8x8_t a, uint8x8_t b); // VSUBL.U8 q0,d0,d0
+_NEON2SSE_INLINE uint16x8_t vsubl_u8(uint8x8_t a, uint8x8_t b) // VSUBL.U8 q0,d0,d0
+{
+    __m128i a16, b16;
+    a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE4.1,
+    b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi16 (a16, b16);
+}
+
+uint32x4_t vsubl_u16(uint16x4_t a, uint16x4_t b); // VSUBL.s16 q0,d0,d0
+_NEON2SSE_INLINE uint32x4_t vsubl_u16(uint16x4_t a, uint16x4_t b) // VSUBL.s16 q0,d0,d0
+{
+    __m128i a32, b32;
+    a32 = _MM_CVTEPU16_EPI32 (_pM128i(a)); //SSE4.1
+    b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi32 (a32, b32);
+}
+
+uint64x2_t vsubl_u32(uint32x2_t a, uint32x2_t b); // VSUBL.U32 q0,d0,d0
+_NEON2SSE_INLINE uint64x2_t vsubl_u32(uint32x2_t a, uint32x2_t b) // VSUBL.U32 q0,d0,d0
+{
+    //may be not optimal
+    __m128i a64, b64;
+    a64 = _MM_CVTEPU32_EPI64 (_pM128i(a)); //SSE4.1
+    b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi64 (a64, b64);
+}
+
+//***************** Vector wide subtract: vsub -> Vr[i]:=Va[i]-Vb[i] **********************************
+//*****************************************************************************************************
+int16x8_t vsubw_s8(int16x8_t a, int8x8_t b); // VSUBW.S8 q0,q0,d0
+_NEON2SSE_INLINE int16x8_t vsubw_s8(int16x8_t a, int8x8_t b) // VSUBW.S8 q0,q0,d0
+{
+    __m128i b16;
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi16 (a, b16);
+}
+
+int32x4_t vsubw_s16(int32x4_t a, int16x4_t b); // VSUBW.S16 q0,q0,d0
+_NEON2SSE_INLINE int32x4_t vsubw_s16(int32x4_t a, int16x4_t b) // VSUBW.S16 q0,q0,d0
+{
+    __m128i b32;
+    b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi32 (a, b32);
+}
+
+int64x2_t vsubw_s32(int64x2_t a, int32x2_t b); // VSUBW.S32 q0,q0,d0
+_NEON2SSE_INLINE int64x2_t vsubw_s32(int64x2_t a, int32x2_t b) // VSUBW.S32 q0,q0,d0
+{
+    __m128i b64;
+    b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1
+    return _mm_sub_epi64 (a, b64);
+}
+
+uint16x8_t vsubw_u8(uint16x8_t a, uint8x8_t b); // VSUBW.U8 q0,q0,d0
+_NEON2SSE_INLINE uint16x8_t vsubw_u8(uint16x8_t a, uint8x8_t b) // VSUBW.U8 q0,q0,d0
+{
+    __m128i b16;
+    b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi16 (a, b16);
+}
+
+uint32x4_t vsubw_u16(uint32x4_t a, uint16x4_t b); // VSUBW.s16 q0,q0,d0
+_NEON2SSE_INLINE uint32x4_t vsubw_u16(uint32x4_t a, uint16x4_t b) // VSUBW.s16 q0,q0,d0
+{
+    __m128i b32;
+    b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1,
+    return _mm_sub_epi32 (a, b32);
+}
+
+uint64x2_t vsubw_u32(uint64x2_t a, uint32x2_t b); // VSUBW.U32 q0,q0,d0
+_NEON2SSE_INLINE uint64x2_t vsubw_u32(uint64x2_t a, uint32x2_t b) // VSUBW.U32 q0,q0,d0
+{
+    __m128i b64;
+    b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1
+    return _mm_sub_epi64 (a, b64);
+}
+
+//************************Vector saturating subtract *********************************
+//*************************************************************************************
+int8x8_t vqsub_s8(int8x8_t a, int8x8_t b); // VQSUB.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vqsub_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_subs_epi8(_pM128i(a),_pM128i(b)));
+}
+
+
+int16x4_t vqsub_s16(int16x4_t a, int16x4_t b); // VQSUB.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vqsub_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_subs_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+int32x2_t vqsub_s32(int32x2_t a,  int32x2_t b); // VQSUB.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vqsub_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vqsubq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+int64x1_t vqsub_s64(int64x1_t a, int64x1_t b); // VQSUB.S64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqsub_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) //no optimal SIMD soulution
+{
+    uint64x1_t res;
+    uint64_t a64,b64;
+    a64 = a.m64_u64[0];
+    b64 = b.m64_u64[0];
+    res.m64_u64[0] = a64 - b64;
+
+    a64 =  (a64 >> 63) + (~_SIGNBIT64);
+    if ((int64_t)((a64 ^ b64) & (a64 ^ res.m64_u64[0])) < 0) {
+        res.m64_u64[0] = a64;
+    }
+    return res;
+}
+
+uint8x8_t vqsub_u8(uint8x8_t a, uint8x8_t b); // VQSUB.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vqsub_u8(uint8x8_t a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(_mm_subs_epu8(_pM128i(a),_pM128i(b)));
+}
+
+
+uint16x4_t vqsub_u16(uint16x4_t a, uint16x4_t b); // VQSUB.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vqsub_u16(uint16x4_t a, uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(_mm_subs_epu16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t vqsub_u32(uint32x2_t a,  uint32x2_t b); // VQSUB.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vqsub_u32(uint32x2_t a,  uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64(vqsubq_u32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint64x1_t vqsub_u64(uint64x1_t a, uint64x1_t b); // VQSUB.U64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqsub_u64(uint64x1_t a, uint64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint64x1_t res;
+    uint64_t a64, b64;
+    a64 = _Ui64(a);
+    b64 = _Ui64(b);
+    if (a64 > b64) {
+        res.m64_u64[0] = a64 - b64;
+    } else {
+        res.m64_u64[0] = 0;
+    }
+    return res;
+}
+
+int8x16_t   vqsubq_s8(int8x16_t a, int8x16_t b); // VQSUB.S8 q0,q0,q0
+#define vqsubq_s8 _mm_subs_epi8
+
+int16x8_t   vqsubq_s16(int16x8_t a, int16x8_t b); // VQSUB.S16 q0,q0,q0
+#define vqsubq_s16 _mm_subs_epi16
+
+int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b); // VQSUB.S32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b)
+{
+    //no corresponding x86 SIMD soulution, special tricks are necessary. The overflow is possible only if a and b have opposite signs and sub has opposite sign to a
+    __m128i c7fffffff, res, res_sat, res_xor_a, b_xor_a;
+    c7fffffff = _mm_set1_epi32(0x7fffffff);
+    res = _mm_sub_epi32(a, b);
+    res_sat = _mm_srli_epi32(a, 31);
+    res_sat = _mm_add_epi32(res_sat, c7fffffff);
+    res_xor_a = _mm_xor_si128(res, a);
+    b_xor_a = _mm_xor_si128(b, a);
+    res_xor_a = _mm_and_si128(b_xor_a, res_xor_a);
+    res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise
+    res_sat = _mm_and_si128(res_xor_a, res_sat);
+    res = _mm_andnot_si128(res_xor_a, res);
+    return _mm_or_si128(res, res_sat);
+}
+
+int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b); // VQSUB.S64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) //no optimal SIMD soulution
+{
+    _NEON2SSE_ALIGN_16 int64_t atmp[2], btmp[2];
+    _NEON2SSE_ALIGN_16 uint64_t res[2];
+    _mm_store_si128((__m128i*)atmp, a);
+    _mm_store_si128((__m128i*)btmp, b);
+    res[0] = atmp[0] - btmp[0];
+    res[1] = atmp[1] - btmp[1];
+    if (((res[0] ^ atmp[0]) & _SIGNBIT64) && ((atmp[0] ^ btmp[0]) & _SIGNBIT64)) {
+        res[0] = (atmp[0] >> 63) ^ ~_SIGNBIT64;
+    }
+    if (((res[1] ^ atmp[1]) & _SIGNBIT64) && ((atmp[1] ^ btmp[1]) & _SIGNBIT64)) {
+        res[1] = (atmp[1] >> 63) ^ ~_SIGNBIT64;
+    }
+    return _mm_load_si128((__m128i*)res);
+}
+
+uint8x16_t   vqsubq_u8(uint8x16_t a, uint8x16_t b); // VQSUB.U8 q0,q0,q0
+#define vqsubq_u8 _mm_subs_epu8
+
+uint16x8_t   vqsubq_u16(uint16x8_t a, uint16x8_t b); // VQSUB.s16 q0,q0,q0
+#define vqsubq_u16 _mm_subs_epu16
+
+uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b); // VQSUB.U32 q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b) // VQSUB.U32 q0,q0,q0
+{
+    __m128i min, mask, sub;
+    min = _MM_MIN_EPU32(a, b); //SSE4.1
+    mask = _mm_cmpeq_epi32 (min,  b);
+    sub = _mm_sub_epi32 (a, b);
+    return _mm_and_si128 ( sub, mask);
+}
+
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL); // VQSUB.U64 q0,q0,q0
+#ifdef USE_SSE4
+    _NEON2SSE_INLINE uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b)
+    {
+        __m128i c80000000, subb, suba, cmp, sub;
+        c80000000 = _mm_set_epi32 (0x80000000, 0x0, 0x80000000, 0x0);
+        sub  = _mm_sub_epi64 (a, b);
+        suba = _mm_sub_epi64 (a, c80000000);
+        subb = _mm_sub_epi64 (b, c80000000);
+        cmp = _mm_cmpgt_epi64 ( suba, subb); //no unsigned comparison, need to go to signed, SSE4.2!!!
+        return _mm_and_si128 (sub, cmp); //saturation
+    }
+#else
+    _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+    {
+        _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2];
+        _mm_store_si128((__m128i*)atmp, a);
+        _mm_store_si128((__m128i*)btmp, b);
+        res[0] = (atmp[0] > btmp[0]) ? atmp[0] -  btmp[0] : 0;
+        res[1] = (atmp[1] > btmp[1]) ? atmp[1] -  btmp[1] : 0;
+        return _mm_load_si128((__m128i*)(res));
+    }
+#endif
+
+//**********Vector halving subtract Vr[i]:=(Va[i]-Vb[i])>>1  ******************************************************
+//****************************************************************
+int8x8_t vhsub_s8(int8x8_t a, int8x8_t b); // VHSUB.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vhsub_s8(int8x8_t a, int8x8_t b) // VHSUB.S8 d0,d0,d0
+{
+    //no 8 bit shift available, internal overflow is possible, so let's go to 16 bit,
+    int8x8_t res64;
+    __m128i r16;
+    int8x8_t r;
+    r = vsub_s8 (a, b);
+    r16 = _MM_CVTEPI8_EPI16 (_pM128i(r)); //SSE 4.1
+    r16 = _mm_srai_epi16 (r16, 1); //SSE2
+    r16 =  _mm_packs_epi16 (r16,r16); //use low 64 bits
+    return64(r16);
+}
+
+int16x4_t vhsub_s16(int16x4_t a,  int16x4_t b); // VHSUB.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vhsub_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vhsubq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+
+int32x2_t vhsub_s32(int32x2_t a,  int32x2_t b); // VHSUB.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vhsub_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vhsubq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint8x8_t vhsub_u8(uint8x8_t a,  uint8x8_t b); // VHSUB.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vhsub_u8(uint8x8_t a,  uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(vhsubq_u8(_pM128i(a), _pM128i(b)));
+}
+
+uint16x4_t vhsub_u16(uint16x4_t a,  uint16x4_t b); // VHSUB.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vhsub_u16(uint16x4_t a,  uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(vhsubq_u16(_pM128i(a), _pM128i(b)));
+}
+
+uint32x2_t vhsub_u32(uint32x2_t a,  uint32x2_t b); // VHSUB.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vhsub_u32(uint32x2_t a,  uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64(vhsubq_u32(_pM128i(a), _pM128i(b)));
+}
+
+int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b); // VHSUB.S8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b) // VHSUB.S8 q0,q0,q0
+{
+    // //need to deal with the possibility of internal overflow
+    __m128i c128, au,bu;
+    c128 = _mm_set1_epi8 (128);
+    au = _mm_add_epi8( a, c128);
+    bu = _mm_add_epi8( b, c128);
+    return vhsubq_u8(au,bu);
+}
+
+int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b); // VHSUB.S16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b) // VHSUB.S16 q0,q0,q0
+{
+    //need to deal with the possibility of internal overflow
+    __m128i c8000, au,bu;
+    c8000 = _mm_set1_epi16(0x8000);
+    au = _mm_add_epi16( a, c8000);
+    bu = _mm_add_epi16( b, c8000);
+    return vhsubq_u16(au,bu);
+}
+
+int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b); // VHSUB.S32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b) // VHSUB.S32 q0,q0,q0
+{
+    //need to deal with the possibility of internal overflow
+    __m128i a2, b2,r, b_1;
+    a2 = _mm_srai_epi32 (a,1);
+    b2 = _mm_srai_epi32 (b,1);
+    r = _mm_sub_epi32 (a2, b2);
+    b_1 = _mm_andnot_si128(a, b); //!a and b
+    b_1 = _mm_slli_epi32 (b_1,31);
+    b_1 = _mm_srli_epi32 (b_1,31); //0 or 1, last b bit
+    return _mm_sub_epi32(r,b_1);
+}
+
+uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b); // VHSUB.U8 q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b) // VHSUB.U8 q0,q0,q0
+{
+    __m128i avg;
+    avg = _mm_avg_epu8 (a, b);
+    return _mm_sub_epi8(a, avg);
+}
+
+uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b); // VHSUB.s16 q0,q0,q0
+_NEON2SSE_INLINE uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b) // VHSUB.s16 q0,q0,q0
+{
+    __m128i avg;
+    avg = _mm_avg_epu16 (a, b);
+    return _mm_sub_epi16(a, avg);
+}
+
+uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b); // VHSUB.U32 q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b) // VHSUB.U32 q0,q0,q0
+{
+    //need to deal with the possibility of internal overflow
+    __m128i a2, b2,r, b_1;
+    a2 = _mm_srli_epi32 (a,1);
+    b2 = _mm_srli_epi32 (b,1);
+    r = _mm_sub_epi32 (a2, b2);
+    b_1 = _mm_andnot_si128(a, b); //!a and b
+    b_1 = _mm_slli_epi32 (b_1,31);
+    b_1 = _mm_srli_epi32 (b_1,31); //0 or 1, last b bit
+    return _mm_sub_epi32(r,b_1);
+}
+
+//******* Vector subtract high half (truncated) ** ************
+//************************************************************
+int8x8_t vsubhn_s16(int16x8_t a, int16x8_t b); // VSUBHN.I16 d0,q0,q0
+_NEON2SSE_INLINE int8x8_t vsubhn_s16(int16x8_t a, int16x8_t b) // VSUBHN.I16 d0,q0,q0
+{
+    int8x8_t res64;
+    __m128i sum, sum8;
+    sum = _mm_sub_epi16 (a, b);
+    sum8 = _mm_srai_epi16 (sum, 8);
+    sum8 = _mm_packs_epi16(sum8,sum8);
+    return64(sum8);
+}
+
+int16x4_t vsubhn_s32(int32x4_t a, int32x4_t b); // VSUBHN.I32 d0,q0,q0
+_NEON2SSE_INLINE int16x4_t vsubhn_s32(int32x4_t a, int32x4_t b) // VSUBHN.I32 d0,q0,q0
+{
+    int16x4_t res64;
+    __m128i sum, sum16;
+    sum = _mm_sub_epi32 (a, b);
+    sum16 = _mm_srai_epi32 (sum, 16);
+    sum16 = _mm_packs_epi32(sum16,sum16);
+    return64(sum16);
+}
+
+int32x2_t vsubhn_s64(int64x2_t a, int64x2_t b); // VSUBHN.I64 d0,q0,q0
+_NEON2SSE_INLINE int32x2_t vsubhn_s64(int64x2_t a, int64x2_t b)
+{
+    int32x2_t res64;
+    __m128i sub;
+    sub = _mm_sub_epi64 (a, b);
+    sub = _mm_shuffle_epi32(sub,  1 | (3 << 2) | (0 << 4) | (2 << 6));
+    return64(sub);
+}
+
+uint8x8_t vsubhn_u16(uint16x8_t a, uint16x8_t b); // VSUBHN.I16 d0,q0,q0
+_NEON2SSE_INLINE uint8x8_t vsubhn_u16(uint16x8_t a, uint16x8_t b) // VSUBHN.I16 d0,q0,q0
+{
+    uint8x8_t res64;
+    __m128i sum, sum8;
+    sum = _mm_sub_epi16 (a, b);
+    sum8 = _mm_srli_epi16 (sum, 8);
+    sum8 =  _mm_packus_epi16(sum8,sum8);
+    return64(sum8);
+}
+
+uint16x4_t vsubhn_u32(uint32x4_t a, uint32x4_t b); // VSUBHN.I32 d0,q0,q0
+_NEON2SSE_INLINE uint16x4_t vsubhn_u32(uint32x4_t a, uint32x4_t b) // VSUBHN.I32 d0,q0,q0
+{
+    uint16x4_t res64;
+    __m128i sum, sum16;
+    sum = _mm_sub_epi32 (a, b);
+    sum16 = _mm_srli_epi32 (sum, 16);
+    sum16 =  _MM_PACKUS1_EPI32(sum16);
+    return64(sum16);
+}
+
+uint32x2_t vsubhn_u64(uint64x2_t a, uint64x2_t b); // VSUBHN.I64 d0,q0,q0
+#define vsubhn_u64 vsubhn_s64
+
+//************ Vector rounding subtract high half *********************
+//*********************************************************************
+int8x8_t vrsubhn_s16(int16x8_t a, int16x8_t b); // VRSUBHN.I16 d0,q0,q0
+_NEON2SSE_INLINE int8x8_t vrsubhn_s16(int16x8_t a, int16x8_t b) // VRSUBHN.I16 d0,q0,q0
+{
+    int8x8_t res64;
+    __m128i sub, mask1;
+    sub = _mm_sub_epi16 (a, b);
+    mask1 = _mm_slli_epi16(sub, 9); //shift left then back right to
+    mask1 = _mm_srli_epi16(mask1, 15); //get  7-th bit 1 or zero
+    sub = _mm_srai_epi16 (sub, 8); //get high half
+    sub = _mm_add_epi16 (sub, mask1); //actual rounding
+    sub =  _mm_packs_epi16 (sub, sub);
+    return64(sub);
+}
+
+int16x4_t vrsubhn_s32(int32x4_t a, int32x4_t b); // VRSUBHN.I32 d0,q0,q0
+_NEON2SSE_INLINE int16x4_t vrsubhn_s32(int32x4_t a, int32x4_t b) // VRSUBHN.I32 d0,q0,q0
+{
+    //SIMD may be not optimal, serial may be faster
+    int16x4_t res64;
+    __m128i sub, mask1;
+    sub = _mm_sub_epi32 (a, b);
+    mask1 = _mm_slli_epi32(sub, 17); //shift left then back right to
+    mask1 = _mm_srli_epi32(mask1,31); //get  15-th bit 1 or zero
+    sub = _mm_srai_epi32 (sub, 16); //get high half
+    sub = _mm_add_epi32 (sub, mask1); //actual rounding
+    sub = _mm_packs_epi32 (sub, sub);
+    return64(sub);
+}
+
+int32x2_t vrsubhn_s64(int64x2_t a, int64x2_t b); // VRSUBHN.I64 d0,q0,q0
+_NEON2SSE_INLINE int32x2_t vrsubhn_s64(int64x2_t a, int64x2_t b)
+{
+    //SIMD may be not optimal, serial may be faster
+    int32x2_t res64;
+    __m128i sub, mask1;
+    sub = _mm_sub_epi64 (a, b);
+    mask1 = _mm_slli_epi64(sub, 33); //shift left then back right to
+    mask1 = _mm_srli_epi64(mask1,32); //get  31-th bit 1 or zero
+    sub = _mm_add_epi64 (sub, mask1); //actual high half rounding
+    sub = _mm_shuffle_epi32(sub,  1 | (3 << 2) | (0 << 4) | (2 << 6));
+    return64(sub);
+}
+
+uint8x8_t vrsubhn_u16(uint16x8_t a, uint16x8_t b); // VRSUBHN.I16 d0,q0,q0
+_NEON2SSE_INLINE uint8x8_t vrsubhn_u16(uint16x8_t a, uint16x8_t b) // VRSUBHN.I16 d0,q0,q0
+{
+    uint8x8_t res64;
+    __m128i sub, mask1;
+    sub = _mm_sub_epi16 (a, b);
+    mask1 = _mm_slli_epi16(sub, 9); //shift left then back right to
+    mask1 = _mm_srli_epi16(mask1, 15); //get  7-th bit 1 or zero
+    sub = _mm_srai_epi16 (sub, 8); //get high half
+    sub = _mm_add_epi16 (sub, mask1); //actual rounding
+    sub = _mm_packus_epi16 (sub, sub);
+    return64(sub);
+}
+
+uint16x4_t vrsubhn_u32(uint32x4_t a, uint32x4_t b); // VRSUBHN.I32 d0,q0,q0
+_NEON2SSE_INLINE uint16x4_t vrsubhn_u32(uint32x4_t a, uint32x4_t b) // VRSUBHN.I32 d0,q0,q0
+{
+    //SIMD may be not optimal, serial may be faster
+    uint16x4_t res64;
+    __m128i sub, mask1;
+    sub = _mm_sub_epi32 (a, b);
+    mask1 = _mm_slli_epi32(sub, 17); //shift left then back right to
+    mask1 = _mm_srli_epi32(mask1,31); //get  15-th bit 1 or zero
+    sub = _mm_srai_epi32 (sub, 16); //get high half
+    sub = _mm_add_epi32 (sub, mask1); //actual rounding
+    sub =  _MM_PACKUS1_EPI32 (sub);
+    return64(sub);
+}
+
+uint32x2_t vrsubhn_u64(uint64x2_t a, uint64x2_t b); // VRSUBHN.I64 d0,q0,q0
+#define vrsubhn_u64 vrsubhn_s64
+
+//*********** Vector saturating doubling multiply subtract long ********************
+//************************************************************************************
+int32x4_t vqdmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLSL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vqdmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c)
+{
+    //not optimal SIMD soulution, serial may be faster
+    __m128i res32, mask;
+    int32x4_t res;
+    _NEON2SSE_ALIGN_16 uint32_t cmask[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    res = vmull_s16(b,  c);
+    res32 = _mm_slli_epi32 (res, 1); //double the result, saturation not considered
+    mask = _mm_cmpeq_epi32 (res32, *(__m128i*)cmask);
+    res32 = _mm_xor_si128 (res32,  mask); //res32 saturated for 0x80000000
+    return vqsubq_s32(a, res32); //saturation
+}
+
+int64x2_t vqdmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLSL.S32 q0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    __m128i res64, mask;
+    int64x2_t res;
+    _NEON2SSE_ALIGN_16 uint64_t cmask[] = {0x8000000000000000, 0x8000000000000000};
+    res = vmull_s32(b,  c);
+    res64 = _mm_slli_epi64 (res, 1); //double the result, saturation not considered
+    mask = _MM_CMPEQ_EPI64 (res64, *(__m128i*)cmask);
+    res64 = _mm_xor_si128 (res64,  mask); //res32 saturated for 0x80000000
+    return vqsubq_s64(a, res64); //saturation
+}
+
+//******************  COMPARISON ***************************************
+//******************* Vector compare equal *************************************
+//****************************************************************************
+uint8x8_t vceq_s8(int8x8_t a, int8x8_t b); // VCEQ.I8 d0, d0, d0
+_NEON2SSE_INLINE int8x8_t vceq_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_cmpeq_epi8(_pM128i(a),_pM128i(b)));
+}
+
+
+uint16x4_t vceq_s16(int16x4_t a, int16x4_t b); // VCEQ.I16 d0, d0, d0
+_NEON2SSE_INLINE int16x4_t vceq_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_cmpeq_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t vceq_s32(int32x2_t a, int32x2_t b); // VCEQ.I32 d0, d0, d0
+_NEON2SSE_INLINE int32x2_t vceq_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    return64(_mm_cmpeq_epi32(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t vceq_f32(float32x2_t a, float32x2_t b); // VCEQ.F32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vceq_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128 res;
+    res = _mm_cmpeq_ps(_pM128(a), _pM128(b) );
+    return64f(res);
+}
+
+uint8x8_t vceq_u8(uint8x8_t a, uint8x8_t b); // VCEQ.I8 d0, d0, d0
+_NEON2SSE_INLINE uint8x8_t vceq_u8(uint8x8_t a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(_mm_cmpeq_epi8(_pM128i(a),_pM128i(b)));
+}
+
+
+uint16x4_t vceq_u16(uint16x4_t a, uint16x4_t b); // VCEQ.I16 d0, d0, d0
+_NEON2SSE_INLINE uint16x4_t vceq_u16(uint16x4_t a, uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(_mm_cmpeq_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t vceq_u32(uint32x2_t a, uint32x2_t b); // VCEQ.I32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vceq_u32(uint32x2_t a, uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64(_mm_cmpeq_epi32(_pM128i(a),_pM128i(b)));
+}
+
+
+uint8x8_t   vceq_p8(poly8x8_t a, poly8x8_t b); // VCEQ.I8 d0, d0, d0
+#define vceq_p8 vceq_u8
+
+
+uint8x16_t   vceqq_s8(int8x16_t a, int8x16_t b); // VCEQ.I8 q0, q0, q0
+#define vceqq_s8 _mm_cmpeq_epi8
+
+uint16x8_t   vceqq_s16(int16x8_t a, int16x8_t b); // VCEQ.I16 q0, q0, q0
+#define vceqq_s16 _mm_cmpeq_epi16
+
+uint32x4_t   vceqq_s32(int32x4_t a, int32x4_t b); // VCEQ.I32 q0, q0, q0
+#define vceqq_s32 _mm_cmpeq_epi32
+
+uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b); // VCEQ.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b)
+{
+    __m128 res;
+    res = _mm_cmpeq_ps(a,b);
+    return _M128i(res);
+}
+
+uint8x16_t   vceqq_u8(uint8x16_t a, uint8x16_t b); // VCEQ.I8 q0, q0, q0
+#define vceqq_u8 _mm_cmpeq_epi8
+
+uint16x8_t   vceqq_u16(uint16x8_t a, uint16x8_t b); // VCEQ.I16 q0, q0, q0
+#define vceqq_u16 _mm_cmpeq_epi16
+
+uint32x4_t   vceqq_u32(uint32x4_t a, uint32x4_t b); // VCEQ.I32 q0, q0, q0
+#define vceqq_u32 _mm_cmpeq_epi32
+
+uint8x16_t   vceqq_p8(poly8x16_t a, poly8x16_t b); // VCEQ.I8 q0, q0, q0
+#define vceqq_p8 _mm_cmpeq_epi8
+
+//******************Vector compare greater-than or equal*************************
+//*******************************************************************************
+//in IA SIMD no greater-than-or-equal comparison for integers,
+// there is greater-than available only, so we need the following tricks
+
+uint8x8_t vcge_s8(int8x8_t a,  int8x8_t b); // VCGE.S8 d0, d0, d0
+_NEON2SSE_INLINE int8x8_t vcge_s8(int8x8_t a,  int8x8_t b)
+{
+    int8x8_t res64;
+    return64(vcgeq_s8(_pM128i(a), _pM128i(b)));
+}
+
+
+uint16x4_t vcge_s16(int16x4_t a,  int16x4_t b); // VCGE.S16 d0, d0, d0
+_NEON2SSE_INLINE int16x4_t vcge_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vcgeq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vcge_s32(int32x2_t a,  int32x2_t b); // VCGE.S32 d0, d0, d0
+_NEON2SSE_INLINE int32x2_t vcge_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vcgeq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vcge_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcge_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128 res;
+    res = _mm_cmpge_ps(_pM128(a),_pM128(b)); //use only 2 first entries
+    return64f(res);
+}
+
+uint8x8_t vcge_u8(uint8x8_t a,  uint8x8_t b); // VCGE.U8 d0, d0, d0
+_NEON2SSE_INLINE uint8x8_t vcge_u8(uint8x8_t a,  uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(vcgeq_u8(_pM128i(a), _pM128i(b)));
+}
+
+
+uint16x4_t vcge_u16(uint16x4_t a,  uint16x4_t b); // VCGE.s16 d0, d0, d0
+_NEON2SSE_INLINE uint16x4_t vcge_u16(uint16x4_t a,  uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(vcgeq_u16(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vcge_u32(uint32x2_t a,  uint32x2_t b); // VCGE.U32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcge_u32(uint32x2_t a,  uint32x2_t b)
+{
+    //serial solution looks faster
+    uint32x2_t res64;
+    return64(vcgeq_u32 (_pM128i(a), _pM128i(b)));
+}
+
+
+
+uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0
+_NEON2SSE_INLINE uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b) // VCGE.S8 q0, q0, q0
+{
+    __m128i m1, m2;
+    m1 = _mm_cmpgt_epi8 ( a, b);
+    m2 = _mm_cmpeq_epi8 ( a, b);
+    return _mm_or_si128  ( m1, m2);
+}
+
+uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0
+_NEON2SSE_INLINE uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b) // VCGE.S16 q0, q0, q0
+{
+    __m128i m1, m2;
+    m1 = _mm_cmpgt_epi16 ( a, b);
+    m2 = _mm_cmpeq_epi16 ( a, b);
+    return _mm_or_si128   ( m1,m2);
+}
+
+uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b) // VCGE.S32 q0, q0, q0
+{
+    __m128i m1, m2;
+    m1 = _mm_cmpgt_epi32 (a, b);
+    m2 = _mm_cmpeq_epi32 (a, b);
+    return _mm_or_si128   (m1, m2);
+}
+
+uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b)
+{
+    __m128 res;
+    res = _mm_cmpge_ps(a,b); //use only 2 first entries
+    return *(__m128i*)&res;
+}
+
+uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0
+_NEON2SSE_INLINE uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b) // VCGE.U8 q0, q0, q0
+{
+    //no unsigned chars comparison, only signed available,so need the trick
+    #ifdef USE_SSE4
+        __m128i cmp;
+        cmp = _mm_max_epu8(a, b);
+        return _mm_cmpeq_epi8(cmp, a); //a>=b
+    #else
+        __m128i c128, as, bs, m1, m2;
+        c128 = _mm_set1_epi8 (128);
+        as = _mm_sub_epi8( a, c128);
+        bs = _mm_sub_epi8( b, c128);
+        m1 = _mm_cmpgt_epi8( as, bs);
+        m2 = _mm_cmpeq_epi8 (as, bs);
+        return _mm_or_si128 ( m1,  m2);
+    #endif
+}
+
+uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b); // VCGE.s16 q0, q0, q0
+_NEON2SSE_INLINE uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b) // VCGE.s16 q0, q0, q0
+{
+    //no unsigned shorts comparison, only signed available,so need the trick
+    #ifdef USE_SSE4
+        __m128i cmp;
+        cmp = _mm_max_epu16(a, b);
+        return _mm_cmpeq_epi16(cmp, a); //a>=b
+    #else
+        __m128i c8000, as, bs, m1, m2;
+        c8000 = _mm_set1_epi16 (0x8000);
+        as = _mm_sub_epi16(a,c8000);
+        bs = _mm_sub_epi16(b,c8000);
+        m1 = _mm_cmpgt_epi16(as, bs);
+        m2 = _mm_cmpeq_epi16 (as, bs);
+        return _mm_or_si128 ( m1, m2);
+    #endif
+}
+
+uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b) // VCGE.U32 q0, q0, q0
+{
+    //no unsigned ints comparison, only signed available,so need the trick
+    #ifdef USE_SSE4
+        __m128i cmp;
+        cmp = _mm_max_epu32(a, b);
+        return _mm_cmpeq_epi32(cmp, a); //a>=b
+    #else
+        //serial solution may be faster
+        __m128i c80000000, as, bs, m1, m2;
+        c80000000 = _mm_set1_epi32 (0x80000000);
+        as = _mm_sub_epi32(a,c80000000);
+        bs = _mm_sub_epi32(b,c80000000);
+        m1 = _mm_cmpgt_epi32 (as, bs);
+        m2 = _mm_cmpeq_epi32 (as, bs);
+        return _mm_or_si128 ( m1,  m2);
+    #endif
+}
+
+//**********************Vector compare less-than or equal******************************
+//***************************************************************************************
+//in IA SIMD no less-than-or-equal comparison for integers present, so we need the tricks
+
+uint8x8_t vcle_s8(int8x8_t a,  int8x8_t b); // VCGE.S8 d0, d0, d0
+_NEON2SSE_INLINE int8x8_t vcle_s8(int8x8_t a,  int8x8_t b)
+{
+    int8x8_t res64;
+    return64(vcleq_s8(_pM128i(a), _pM128i(b)));
+}
+
+
+uint16x4_t vcle_s16(int16x4_t a,  int16x4_t b); // VCGE.S16 d0, d0, d0
+_NEON2SSE_INLINE int16x4_t vcle_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vcleq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vcle_s32(int32x2_t a,  int32x2_t b); // VCGE.S32 d0, d0, d0
+_NEON2SSE_INLINE int32x2_t vcle_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vcleq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vcle_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0?
+_NEON2SSE_INLINE uint32x2_t vcle_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128 res;
+    res = _mm_cmple_ps(_pM128(a),_pM128(b));
+    return64f(res);
+}
+
+uint8x8_t vcle_u8(uint8x8_t a,  uint8x8_t b); // VCGE.U8 d0, d0, d0
+#define vcle_u8(a,b) vcge_u8(b,a)
+
+
+uint16x4_t vcle_u16(uint16x4_t a,  uint16x4_t b); // VCGE.s16 d0, d0, d0
+#define vcle_u16(a,b) vcge_u16(b,a)
+
+
+uint32x2_t vcle_u32(uint32x2_t a,  uint32x2_t b); // VCGE.U32 d0, d0, d0
+#define vcle_u32(a,b) vcge_u32(b,a)
+
+uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0
+_NEON2SSE_INLINE uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b) // VCGE.S8 q0, q0, q0
+{
+    __m128i c1, res;
+    c1 = _mm_cmpeq_epi8 (a,a); //all ones 0xff....
+    res = _mm_cmpgt_epi8 ( a,  b);
+    return _mm_andnot_si128 (res, c1); //inverse the cmpgt result, get less-than-or-equal
+}
+
+uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0
+_NEON2SSE_INLINE uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b) // VCGE.S16 q0, q0, q0
+{
+    __m128i c1, res;
+    c1 = _mm_cmpeq_epi16 (a,a); //all ones 0xff....
+    res = _mm_cmpgt_epi16 ( a,  b);
+    return _mm_andnot_si128 (res, c1);
+}
+
+uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b) // VCGE.S32 q0, q0, q0
+{
+    __m128i c1, res;
+    c1 = _mm_cmpeq_epi32 (a,a); //all ones 0xff....
+    res = _mm_cmpgt_epi32 ( a,  b);
+    return _mm_andnot_si128 (res, c1);
+}
+
+uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b)
+{
+    __m128 res;
+    res = _mm_cmple_ps(a,b);
+    return *(__m128i*)&res;
+}
+
+uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0
+#ifdef USE_SSE4
+    _NEON2SSE_INLINE uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b) // VCGE.U8 q0, q0, q0
+    {
+        //no unsigned chars comparison in SSE, only signed available,so need the trick
+        __m128i cmp;
+        cmp = _mm_min_epu8(a, b);
+        return _mm_cmpeq_epi8(cmp, a); //a<=b
+    }
+#else
+    #define vcleq_u8(a,b) vcgeq_u8(b,a)
+#endif
+
+
+uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b); // VCGE.s16 q0, q0, q0
+#ifdef USE_SSE4
+    _NEON2SSE_INLINE uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b) // VCGE.s16 q0, q0, q0
+    {
+        //no unsigned shorts comparison in SSE, only signed available,so need the trick
+        __m128i cmp;
+        cmp = _mm_min_epu16(a, b);
+        return _mm_cmpeq_epi16(cmp, a); //a<=b
+    }
+#else
+    #define vcleq_u16(a,b) vcgeq_u16(b,a)
+#endif
+
+
+uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0
+#ifdef USE_SSE4
+    _NEON2SSE_INLINE uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b) // VCGE.U32 q0, q0, q0
+    {
+        //no unsigned chars comparison in SSE, only signed available,so need the trick
+        __m128i cmp;
+        cmp = _mm_min_epu32(a, b);
+        return _mm_cmpeq_epi32(cmp, a); //a<=b
+    }
+#else
+//solution may be not optimal compared with the serial one
+    #define vcleq_u32(a,b) vcgeq_u32(b,a)
+#endif
+
+
+//****** Vector compare greater-than ******************************************
+//**************************************************************************
+uint8x8_t vcgt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0
+_NEON2SSE_INLINE int8x8_t vcgt_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_cmpgt_epi8(_pM128i(a),_pM128i(b)));
+}
+
+
+uint16x4_t vcgt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0
+_NEON2SSE_INLINE int16x4_t vcgt_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_cmpgt_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t vcgt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0
+_NEON2SSE_INLINE int32x2_t vcgt_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    return64(_mm_cmpgt_epi32(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t vcgt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcgt_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128 res;
+    res = _mm_cmpgt_ps(_pM128(a),_pM128(b)); //use only 2 first entries
+    return64f(res);
+}
+
+uint8x8_t vcgt_u8(uint8x8_t a,  uint8x8_t b); // VCGT.U8 d0, d0, d0
+_NEON2SSE_INLINE uint8x8_t vcgt_u8(uint8x8_t a,  uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(vcgtq_u8(_pM128i(a), _pM128i(b)));
+}
+
+
+uint16x4_t vcgt_u16(uint16x4_t a,  uint16x4_t b); // VCGT.s16 d0, d0, d0
+_NEON2SSE_INLINE uint16x4_t vcgt_u16(uint16x4_t a,  uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(vcgtq_u16(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vcgt_u32(uint32x2_t a,  uint32x2_t b); // VCGT.U32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcgt_u32(uint32x2_t a,  uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64(vcgtq_u32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint8x16_t   vcgtq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0
+#define vcgtq_s8 _mm_cmpgt_epi8
+
+uint16x8_t   vcgtq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0
+#define vcgtq_s16 _mm_cmpgt_epi16
+
+uint32x4_t   vcgtq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0
+#define vcgtq_s32 _mm_cmpgt_epi32
+
+uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b)
+{
+    __m128 res;
+    res = _mm_cmpgt_ps(a,b); //use only 2 first entries
+    return *(__m128i*)&res;
+}
+
+uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0
+_NEON2SSE_INLINE uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b) // VCGT.U8 q0, q0, q0
+{
+    //no unsigned chars comparison, only signed available,so need the trick
+    __m128i c128, as, bs;
+    c128 = _mm_set1_epi8 (128);
+    as = _mm_sub_epi8(a,c128);
+    bs = _mm_sub_epi8(b,c128);
+    return _mm_cmpgt_epi8 (as, bs);
+}
+
+uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b); // VCGT.s16 q0, q0, q0
+_NEON2SSE_INLINE uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b) // VCGT.s16 q0, q0, q0
+{
+    //no unsigned short comparison, only signed available,so need the trick
+    __m128i c8000, as, bs;
+    c8000 = _mm_set1_epi16 (0x8000);
+    as = _mm_sub_epi16(a,c8000);
+    bs = _mm_sub_epi16(b,c8000);
+    return _mm_cmpgt_epi16 ( as, bs);
+}
+
+uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b) // VCGT.U32 q0, q0, q0
+{
+    //no unsigned int comparison, only signed available,so need the trick
+    __m128i c80000000, as, bs;
+    c80000000 = _mm_set1_epi32 (0x80000000);
+    as = _mm_sub_epi32(a,c80000000);
+    bs = _mm_sub_epi32(b,c80000000);
+    return _mm_cmpgt_epi32 ( as, bs);
+}
+
+//********************* Vector compare less-than **************************
+//*************************************************************************
+uint8x8_t   vclt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0
+#define vclt_s8(a,b) vcgt_s8(b,a) //swap the arguments!!
+
+
+uint16x4_t   vclt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0
+#define vclt_s16(a,b) vcgt_s16(b,a) //swap the arguments!!
+
+
+uint32x2_t   vclt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0
+#define vclt_s32(a,b)  vcgt_s32(b,a) //swap the arguments!!
+
+
+uint32x2_t vclt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0
+#define vclt_f32(a,b) vcgt_f32(b, a) //swap the arguments!!
+
+uint8x8_t vclt_u8(uint8x8_t a, uint8x8_t b); // VCGT.U8 d0, d0, d0
+#define vclt_u8(a,b) vcgt_u8(b,a) //swap the arguments!!
+
+uint16x4_t vclt_u16(uint16x4_t a, uint16x4_t b); // VCGT.s16 d0, d0, d0
+#define vclt_u16(a,b) vcgt_u16(b,a) //swap the arguments!!
+
+uint32x2_t vclt_u32(uint32x2_t a, uint32x2_t b); // VCGT.U32 d0, d0, d0
+#define vclt_u32(a,b) vcgt_u32(b,a) //swap the arguments!!
+
+uint8x16_t   vcltq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0
+#define vcltq_s8(a,b) vcgtq_s8(b, a) //swap the arguments!!
+
+uint16x8_t   vcltq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0
+#define vcltq_s16(a,b) vcgtq_s16(b, a) //swap the arguments!!
+
+uint32x4_t   vcltq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0
+#define vcltq_s32(a,b) vcgtq_s32(b, a) //swap the arguments!!
+
+uint32x4_t vcltq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0
+#define vcltq_f32(a,b) vcgtq_f32(b, a) //swap the arguments!!
+
+uint8x16_t vcltq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0
+#define vcltq_u8(a,b) vcgtq_u8(b, a) //swap the arguments!!
+
+uint16x8_t vcltq_u16(uint16x8_t a, uint16x8_t b); // VCGT.s16 q0, q0, q0
+#define vcltq_u16(a,b) vcgtq_u16(b, a) //swap the arguments!!
+
+uint32x4_t vcltq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0
+#define vcltq_u32(a,b) vcgtq_u32(b, a) //swap the arguments!!
+
+//*****************Vector compare absolute greater-than or equal ************
+//***************************************************************************
+uint32x2_t vcage_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcage_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff);
+    a0 = _mm_cmpge_ps ( a0, b0);
+    return64f(a0);
+}
+
+uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b) // VACGE.F32 q0, q0, q0
+{
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (a, *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (b, *(__m128*)&c7fffffff);
+    a0 = _mm_cmpge_ps ( a0, b0);
+    return (*(__m128i*)&a0);
+}
+
+//********Vector compare absolute less-than or equal ******************
+//********************************************************************
+uint32x2_t vcale_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcale_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff);
+    a0 = _mm_cmple_ps (a0, b0);
+    return64f(a0);
+}
+
+uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b) // VACGE.F32 q0, q0, q0
+{
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (a, *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (b, *(__m128*)&c7fffffff);
+    a0 = _mm_cmple_ps (a0, b0);
+    return (*(__m128i*)&a0);
+}
+
+//********  Vector compare absolute greater-than    ******************
+//******************************************************************
+uint32x2_t vcagt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcagt_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff);
+    a0 = _mm_cmpgt_ps (a0, b0);
+    return64f(a0);
+}
+
+uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b) // VACGT.F32 q0, q0, q0
+{
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (a, *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (b, *(__m128*)&c7fffffff);
+    a0 = _mm_cmpgt_ps (a0, b0);
+    return (*(__m128i*)&a0);
+}
+
+//***************Vector compare absolute less-than  ***********************
+//*************************************************************************
+uint32x2_t vcalt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vcalt_f32(float32x2_t a, float32x2_t b)
+{
+    uint32x2_t res64;
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff);
+    a0 = _mm_cmplt_ps (a0, b0);
+    return64f(a0);
+}
+
+uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b) // VACGT.F32 q0, q0, q0
+{
+    __m128i c7fffffff;
+    __m128 a0, b0;
+    c7fffffff = _mm_set1_epi32 (0x7fffffff);
+    a0 = _mm_and_ps (a, *(__m128*)&c7fffffff);
+    b0 = _mm_and_ps (b, *(__m128*)&c7fffffff);
+    a0 = _mm_cmplt_ps (a0, b0);
+    return (*(__m128i*)&a0);
+}
+
+//*************************Vector test bits************************************
+//*****************************************************************************
+/*VTST (Vector Test Bits) takes each element in a vector, and bitwise logical ANDs them
+with the corresponding element of a second vector. If the result is not zero, the
+corresponding element in the destination vector is set to all ones. Otherwise, it is set to
+all zeros. */
+
+uint8x8_t vtst_s8(int8x8_t a,  int8x8_t b); // VTST.8 d0, d0, d0
+_NEON2SSE_INLINE uint8x8_t vtst_s8(int8x8_t a,  int8x8_t b)
+{
+    int8x8_t res64;
+    return64(vtstq_s8(_pM128i(a), _pM128i(b)));
+}
+
+
+uint16x4_t vtst_s16(int16x4_t a,  int16x4_t b); // VTST.16 d0, d0, d0
+_NEON2SSE_INLINE uint16x4_t vtst_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vtstq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vtst_s32(int32x2_t a,  int32x2_t b); // VTST.32 d0, d0, d0
+_NEON2SSE_INLINE uint32x2_t vtst_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vtstq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+uint8x8_t vtst_u8(uint8x8_t a,  uint8x8_t b); // VTST.8 d0, d0, d0
+#define vtst_u8 vtst_s8
+
+uint16x4_t vtst_u16(uint16x4_t a,  uint16x4_t b); // VTST.16 d0, d0, d0
+#define vtst_u16 vtst_s16
+
+uint32x2_t vtst_u32(uint32x2_t a,  uint32x2_t b); // VTST.32 d0, d0, d0
+#define vtst_u32 vtst_s32
+
+
+uint8x8_t vtst_p8(poly8x8_t a, poly8x8_t b); // VTST.8 d0, d0, d0
+#define vtst_p8 vtst_u8
+
+uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b); // VTST.8 q0, q0, q0
+_NEON2SSE_INLINE uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b) // VTST.8 q0, q0, q0
+{
+    __m128i zero, one, res;
+    zero = _mm_setzero_si128 ();
+    one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff
+    res = _mm_and_si128 (a, b);
+    res =  _mm_cmpeq_epi8 (res, zero);
+    return _mm_xor_si128(res, one); //invert result
+}
+
+uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b); // VTST.16 q0, q0, q0
+_NEON2SSE_INLINE uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b) // VTST.16 q0, q0, q0
+{
+    __m128i zero, one, res;
+    zero = _mm_setzero_si128 ();
+    one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff
+    res = _mm_and_si128 (a, b);
+    res =  _mm_cmpeq_epi16 (res, zero);
+    return _mm_xor_si128(res, one); //invert result
+}
+
+uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b); // VTST.32 q0, q0, q0
+_NEON2SSE_INLINE uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b) // VTST.32 q0, q0, q0
+{
+    __m128i zero, one, res;
+    zero = _mm_setzero_si128 ();
+    one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff
+    res = _mm_and_si128 (a, b);
+    res =  _mm_cmpeq_epi32 (res, zero);
+    return _mm_xor_si128(res, one); //invert result
+}
+
+uint8x16_t vtstq_u8(uint8x16_t a, uint8x16_t b); // VTST.8 q0, q0, q0
+#define vtstq_u8 vtstq_s8
+
+uint16x8_t vtstq_u16(uint16x8_t a, uint16x8_t b); // VTST.16 q0, q0, q0
+#define vtstq_u16 vtstq_s16
+
+uint32x4_t vtstq_u32(uint32x4_t a, uint32x4_t b); // VTST.32 q0, q0, q0
+#define vtstq_u32 vtstq_s32
+
+uint8x16_t vtstq_p8(poly8x16_t a, poly8x16_t b); // VTST.8 q0, q0, q0
+#define vtstq_p8 vtstq_u8
+
+//****************** Absolute difference ********************
+//*** Absolute difference between the arguments: Vr[i] = | Va[i] - Vb[i] |*****
+//************************************************************
+int8x8_t vabd_s8(int8x8_t a,  int8x8_t b); // VABD.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vabd_s8(int8x8_t a,  int8x8_t b)
+{
+    int8x8_t res64;
+    return64(vabdq_s8(_pM128i(a), _pM128i(b)));
+}
+
+int16x4_t vabd_s16(int16x4_t a,  int16x4_t b); // VABD.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vabd_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vabdq_s16(_pM128i(a), _pM128i(b)));
+}
+
+int32x2_t vabd_s32(int32x2_t a,  int32x2_t b); // VABD.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vabd_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vabdq_s32(_pM128i(a), _pM128i(b)));
+}
+
+uint8x8_t vabd_u8(uint8x8_t a,  uint8x8_t b); // VABD.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vabd_u8(uint8x8_t a,  uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(vabdq_u8(_pM128i(a), _pM128i(b)));
+}
+
+uint16x4_t vabd_u16(uint16x4_t a,  uint16x4_t b); // VABD.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vabd_u16(uint16x4_t a,  uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(vabdq_u16(_pM128i(a), _pM128i(b)));
+}
+
+uint32x2_t vabd_u32(uint32x2_t a,  uint32x2_t b); // VABD.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vabd_u32(uint32x2_t a,  uint32x2_t b)
+{
+    uint32x2_t res64;
+    return64(vabdq_u32(_pM128i(a), _pM128i(b)));
+}
+
+float32x2_t vabd_f32(float32x2_t a, float32x2_t b); // VABD.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vabd_f32(float32x2_t a, float32x2_t b)
+{
+    float32x4_t res;
+    __m64_128 res64;
+    res = vabdq_f32(_pM128(a), _pM128(b));
+    _M64f(res64, res);
+    return res64;
+}
+
+int8x16_t vabdq_s8(int8x16_t a, int8x16_t b); // VABD.S8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vabdq_s8(int8x16_t a, int8x16_t b) // VABD.S8 q0,q0,q0
+{
+    __m128i res;
+    res = _mm_sub_epi8 (a, b);
+    return _mm_abs_epi8 (res);
+}
+
+int16x8_t vabdq_s16(int16x8_t a, int16x8_t b); // VABD.S16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vabdq_s16(int16x8_t a, int16x8_t b) // VABD.S16 q0,q0,q0
+{
+    __m128i res;
+    res = _mm_sub_epi16 (a,b);
+    return _mm_abs_epi16 (res);
+}
+
+int32x4_t vabdq_s32(int32x4_t a, int32x4_t b); // VABD.S32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vabdq_s32(int32x4_t a, int32x4_t b) // VABD.S32 q0,q0,q0
+{
+    __m128i res;
+    res = _mm_sub_epi32 (a,b);
+    return _mm_abs_epi32 (res);
+}
+
+uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b); // VABD.U8 q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b) //no abs for unsigned
+{
+    __m128i cmp, difab, difba;
+    cmp = vcgtq_u8(a,b);
+    difab = _mm_sub_epi8(a,b);
+    difba = _mm_sub_epi8 (b,a);
+    difab = _mm_and_si128(cmp, difab);
+    difba = _mm_andnot_si128(cmp, difba);
+    return _mm_or_si128(difab, difba);
+}
+
+uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b); // VABD.s16 q0,q0,q0
+_NEON2SSE_INLINE uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b)
+{
+    __m128i cmp, difab, difba;
+    cmp = vcgtq_u16(a,b);
+    difab = _mm_sub_epi16(a,b);
+    difba = _mm_sub_epi16 (b,a);
+    difab = _mm_and_si128(cmp, difab);
+    difba = _mm_andnot_si128(cmp, difba);
+    return _mm_or_si128(difab, difba);
+}
+
+uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b); // VABD.U32 q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b)
+{
+    __m128i cmp, difab, difba;
+    cmp = vcgtq_u32(a,b);
+    difab = _mm_sub_epi32(a,b);
+    difba = _mm_sub_epi32 (b,a);
+    difab = _mm_and_si128(cmp, difab);
+    difba = _mm_andnot_si128(cmp, difba);
+    return _mm_or_si128(difab, difba);
+}
+
+float32x4_t vabdq_f32(float32x4_t a, float32x4_t b); // VABD.F32 q0,q0,q0
+_NEON2SSE_INLINE float32x4_t vabdq_f32(float32x4_t a, float32x4_t b) // VABD.F32 q0,q0,q0
+{
+    __m128i c1;
+    __m128 res;
+    c1 =  _mm_set1_epi32(0x7fffffff);
+    res = _mm_sub_ps (a, b);
+    return _mm_and_ps (res, *(__m128*)&c1);
+}
+
+//************  Absolute difference - long **************************
+//********************************************************************
+int16x8_t vabdl_s8(int8x8_t a, int8x8_t b); // VABDL.S8 q0,d0,d0
+_NEON2SSE_INLINE int16x8_t vabdl_s8(int8x8_t a, int8x8_t b) // VABDL.S8 q0,d0,d0
+{
+    __m128i a16, b16;
+    a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE4.1,
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1,
+    return vabdq_s16(a16, b16);
+
+}
+
+int32x4_t vabdl_s16(int16x4_t a, int16x4_t b); // VABDL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vabdl_s16(int16x4_t a, int16x4_t b) // VABDL.S16 q0,d0,d0
+{
+    __m128i a32, b32;
+    a32 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE4.1
+    b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1,
+    return vabdq_s32(a32, b32);
+}
+
+int64x2_t vabdl_s32(int32x2_t a, int32x2_t b); // VABDL.S32 q0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (int64x2_t vabdl_s32(int32x2_t a, int32x2_t b),_NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //no optimal SIMD solution, serial looks faster
+    _NEON2SSE_ALIGN_16 int64_t res[2];
+    if(a.m64_i32[0] > b.m64_i32[0]) res[0] = ( int64_t) a.m64_i32[0] - ( int64_t) b.m64_i32[0];
+    else res[0] = ( int64_t) b.m64_i32[0] - ( int64_t) a.m64_i32[0];
+    if(a.m64_i32[1] > b.m64_i32[1]) res[1] = ( int64_t) a.m64_i32[1] - ( int64_t) b.m64_i32[1];
+    else res[1] = ( int64_t) b.m64_i32[1] - ( int64_t) a.m64_i32[1];
+    return _mm_load_si128((__m128i*)res);
+}
+
+uint16x8_t vabdl_u8(uint8x8_t a, uint8x8_t b); // VABDL.U8 q0,d0,d0
+_NEON2SSE_INLINE uint16x8_t vabdl_u8(uint8x8_t a, uint8x8_t b)
+{
+    __m128i res;
+    res = vsubl_u8(a,b);
+    return _mm_abs_epi16(res);
+}
+
+uint32x4_t vabdl_u16(uint16x4_t a, uint16x4_t b); // VABDL.s16 q0,d0,d0
+_NEON2SSE_INLINE uint32x4_t vabdl_u16(uint16x4_t a, uint16x4_t b)
+{
+    __m128i res;
+    res = vsubl_u16(a,b);
+    return _mm_abs_epi32(res);
+}
+
+uint64x2_t vabdl_u32(uint32x2_t a, uint32x2_t b); // VABDL.U32 q0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (uint64x2_t vabdl_u32(uint32x2_t a, uint32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    _NEON2SSE_ALIGN_16 uint64_t res[2];
+    if(a.m64_u32[0] > b.m64_u32[0]) res[0] = ( uint64_t) a.m64_u32[0] - ( uint64_t) b.m64_u32[0];
+    else res[0] = ( uint64_t) b.m64_u32[0] - ( uint64_t) a.m64_u32[0];
+    if(a.m64_u32[1] > b.m64_u32[1]) res[1] = ( uint64_t) a.m64_u32[1] - ( uint64_t) b.m64_u32[1];
+    else res[1] = ( uint64_t) b.m64_u32[1] - ( uint64_t) a.m64_u32[1];
+    return _mm_load_si128((__m128i*)res);
+}
+
+//**********Absolute difference and accumulate: Vr[i] = Va[i] + | Vb[i] - Vc[i] | *************
+//*********************************************************************************************
+int8x8_t vaba_s8(int8x8_t a,  int8x8_t b, int8x8_t c); // VABA.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vaba_s8(int8x8_t a,  int8x8_t b, int8x8_t c)
+{
+    int8x8_t res64;
+    return64(vabaq_s8(_pM128i(a),_pM128i(b), _pM128i(c)));
+}
+
+int16x4_t vaba_s16(int16x4_t a,  int16x4_t b, int16x4_t c); // VABA.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vaba_s16(int16x4_t a,  int16x4_t b, int16x4_t c)
+{
+    int16x4_t res64;
+    return64(vabaq_s16(_pM128i(a), _pM128i(b), _pM128i(c)));
+}
+
+int32x2_t vaba_s32(int32x2_t a,  int32x2_t b, int32x2_t c); // VABA.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vaba_s32(int32x2_t a,  int32x2_t b, int32x2_t c)
+{
+    int32x2_t res64;
+    return64(vabaq_s32(_pM128i(a), _pM128i(b), _pM128i(c)));
+}
+
+uint8x8_t vaba_u8(uint8x8_t a,  uint8x8_t b, uint8x8_t c); // VABA.U8 d0,d0,d0
+#define vaba_u8 vaba_s8
+
+
+uint16x4_t vaba_u16(uint16x4_t a,  uint16x4_t b, uint16x4_t c); // VABA.s16 d0,d0,d0
+#define vaba_u16 vaba_s16
+
+uint32x2_t vaba_u32(uint32x2_t a,  uint32x2_t b, uint32x2_t c); // VABA.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vaba_u32(uint32x2_t a,  uint32x2_t b, uint32x2_t c)
+{
+    uint32x2_t res64;
+    return64(vabaq_u32(_pM128i(a), _pM128i(b), _pM128i(c)));
+}
+
+int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VABA.S8 q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VABA.S8 q0,q0,q0
+{
+    int8x16_t sub;
+    sub = vabdq_s8(b, c);
+    return vaddq_s8( a, sub);
+}
+
+int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VABA.S16 q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VABA.S16 q0,q0,q0
+{
+    int16x8_t sub;
+    sub = vabdq_s16(b, c);
+    return vaddq_s16( a, sub);
+}
+
+int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VABA.S32 q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VABA.S32 q0,q0,q0
+{
+    int32x4_t sub;
+    sub = vabdq_s32(b, c);
+    return vaddq_s32( a, sub);
+}
+
+uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VABA.U8 q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c)
+{
+    uint8x16_t sub;
+    sub = vabdq_u8(b, c);
+    return vaddq_u8( a, sub);
+}
+
+uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VABA.s16 q0,q0,q0
+_NEON2SSE_INLINE uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c)
+{
+    uint16x8_t sub;
+    sub = vabdq_u16(b, c);
+    return vaddq_u16( a, sub);
+}
+
+uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VABA.U32 q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c)
+{
+    uint32x4_t sub;
+    sub = vabdq_u32(b, c);
+    return vaddq_u32( a, sub);
+}
+
+//************** Absolute difference and accumulate - long ********************************
+//*************************************************************************************
+int16x8_t vabal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VABAL.S8 q0,d0,d0
+_NEON2SSE_INLINE int16x8_t vabal_s8(int16x8_t a, int8x8_t b, int8x8_t c) // VABAL.S8 q0,d0,d0
+{
+    __m128i b16, c16, res;
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1,
+    c16 = _MM_CVTEPI8_EPI16 (_pM128i(c)); //SSE4.1,
+    res = _mm_abs_epi16 (_mm_sub_epi16 (b16, c16) );
+    return _mm_add_epi16 (a, res);
+}
+
+int32x4_t vabal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VABAL.S16 q0,d0,d0
+_NEON2SSE_INLINE int32x4_t vabal_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VABAL.S16 q0,d0,d0
+{
+    __m128i b32, c32, res;
+    b32 = _MM_CVTEPI16_EPI32(_pM128i(b)); //SSE4.1
+    c32 = _MM_CVTEPI16_EPI32(_pM128i(c)); //SSE4.1
+    res = _mm_abs_epi32 (_mm_sub_epi32 (b32, c32) );
+    return _mm_add_epi32 (a, res);
+}
+
+int64x2_t vabal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VABAL.S32 q0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (int64x2_t vabal_s32(int64x2_t a, int32x2_t b, int32x2_t c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    __m128i res;
+    res = vabdl_s32(b,c);
+    return _mm_add_epi64(a, res);
+}
+
+uint16x8_t vabal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VABAL.U8 q0,d0,d0
+_NEON2SSE_INLINE uint16x8_t vabal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c)
+{
+    __m128i b16, c16, res;
+    b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1,
+    c16 = _MM_CVTEPU8_EPI16 (_pM128i(c)); //SSE4.1,
+    res = _mm_abs_epi16 (_mm_sub_epi16 (b16, c16) );
+    return _mm_add_epi16 (a, res);
+}
+
+uint32x4_t vabal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VABAL.s16 q0,d0,d0
+_NEON2SSE_INLINE uint32x4_t vabal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c)
+{
+    __m128i b32, c32, res;
+    b32 = _MM_CVTEPU16_EPI32(_pM128i(b)); //SSE4.1
+    c32 = _MM_CVTEPU16_EPI32(_pM128i(c)); //SSE4.1
+    res = _mm_abs_epi32 (_mm_sub_epi32 (b32, c32) );
+    return _mm_add_epi32 (a, res);
+}
+
+uint64x2_t vabal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VABAL.U32 q0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (uint64x2_t vabal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    __m128i res;
+    res = vabdl_u32(b,c);
+    return _mm_add_epi64(a, res);
+}
+
+//***********************************************************************************
+//****************  Maximum and minimum operations **********************************
+//***********************************************************************************
+//************* Maximum:  vmax -> Vr[i] := (Va[i] >= Vb[i]) ? Va[i] : Vb[i]    *******
+//***********************************************************************************
+int8x8_t   vmax_s8(int8x8_t a, int8x8_t b); // VMAX.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t   vmax_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = _MM_MAX_EPI8(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits
+    return64(res);
+}
+
+int16x4_t vmax_s16(int16x4_t a, int16x4_t b); // VMAX.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vmax_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_max_epi16(_pM128i(a),_pM128i(b)));
+}
+
+int32x2_t   vmax_s32(int32x2_t a, int32x2_t b); // VMAX.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t   vmax_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    __m128i res;
+    res =  _MM_MAX_EPI32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits
+    return64(res);
+}
+
+uint8x8_t vmax_u8(uint8x8_t a, uint8x8_t b); // VMAX.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vmax_u8(uint8x8_t a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(_mm_max_epu8(_pM128i(a),_pM128i(b)));
+}
+
+
+uint16x4_t vmax_u16(uint16x4_t a, uint16x4_t b); // VMAX.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vmax_u16(uint16x4_t a, uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(_MM_MAX_EPU16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t   vmax_u32(uint32x2_t a, uint32x2_t b); // VMAX.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t   vmax_u32(uint32x2_t a, uint32x2_t b)
+{
+    uint32x2_t res64;
+    __m128i res;
+    res = _MM_MAX_EPU32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits, may be not effective compared with serial
+    return64(res);
+}
+
+float32x2_t vmax_f32(float32x2_t a, float32x2_t b); // VMAX.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vmax_f32(float32x2_t a, float32x2_t b)
+{
+    //serial solution looks faster than  SIMD one
+    float32x2_t res;
+    res.m64_f32[0] = (a.m64_f32[0] > b.m64_f32[0]) ? a.m64_f32[0] : b.m64_f32[0];
+    res.m64_f32[1] = (a.m64_f32[1] > b.m64_f32[1]) ? a.m64_f32[1] : b.m64_f32[1];
+    return res;
+}
+
+int8x16_t   vmaxq_s8(int8x16_t a, int8x16_t b); // VMAX.S8 q0,q0,q0
+#define vmaxq_s8 _MM_MAX_EPI8 //SSE4.1
+
+int16x8_t   vmaxq_s16(int16x8_t a, int16x8_t b); // VMAX.S16 q0,q0,q0
+#define vmaxq_s16 _mm_max_epi16
+
+int32x4_t   vmaxq_s32(int32x4_t a, int32x4_t b); // VMAX.S32 q0,q0,q0
+#define vmaxq_s32 _MM_MAX_EPI32 //SSE4.1
+
+uint8x16_t   vmaxq_u8(uint8x16_t a, uint8x16_t b); // VMAX.U8 q0,q0,q0
+#define vmaxq_u8 _mm_max_epu8
+
+uint16x8_t   vmaxq_u16(uint16x8_t a, uint16x8_t b); // VMAX.s16 q0,q0,q0
+#define vmaxq_u16 _MM_MAX_EPU16 //SSE4.1
+
+uint32x4_t   vmaxq_u32(uint32x4_t a, uint32x4_t b); // VMAX.U32 q0,q0,q0
+#define vmaxq_u32 _MM_MAX_EPU32 //SSE4.1
+
+
+float32x4_t vmaxq_f32(float32x4_t a, float32x4_t b); // VMAX.F32 q0,q0,q0
+#define vmaxq_f32 _mm_max_ps
+
+//*************** Minimum: vmin -> Vr[i] := (Va[i] >= Vb[i]) ? Vb[i] : Va[i] ********************************
+//***********************************************************************************************************
+int8x8_t   vmin_s8(int8x8_t a, int8x8_t b); // VMIN.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t   vmin_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = _MM_MIN_EPI8(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits
+    return64(res);
+}
+
+int16x4_t vmin_s16(int16x4_t a, int16x4_t b); // VMIN.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vmin_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_min_epi16(_pM128i(a),_pM128i(b)));
+}
+
+
+int32x2_t   vmin_s32(int32x2_t a, int32x2_t b); // VMIN.S32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t   vmin_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = _MM_MIN_EPI32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits
+    return64(res);
+}
+
+uint8x8_t vmin_u8(uint8x8_t a, uint8x8_t b); // VMIN.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vmin_u8(uint8x8_t a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    return64(_mm_min_epu8(_pM128i(a),_pM128i(b)));
+}
+
+
+uint16x4_t vmin_u16(uint16x4_t a, uint16x4_t b); // VMIN.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vmin_u16(uint16x4_t a, uint16x4_t b)
+{
+    uint16x4_t res64;
+    return64(_MM_MIN_EPU16(_pM128i(a),_pM128i(b)));
+}
+
+
+uint32x2_t   vmin_u32(uint32x2_t a, uint32x2_t b); // VMIN.U32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t   vmin_u32(uint32x2_t a, uint32x2_t b)
+{
+    uint32x2_t res64;
+    __m128i res;
+    res = _MM_MIN_EPU32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits, may be not effective compared with serial
+    return64(res);
+}
+
+float32x2_t vmin_f32(float32x2_t a, float32x2_t b); // VMIN.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vmin_f32(float32x2_t a, float32x2_t b)
+{
+    //serial solution looks faster than  SIMD one
+    float32x2_t res;
+    res.m64_f32[0] = (a.m64_f32[0] < b.m64_f32[0]) ? a.m64_f32[0] : b.m64_f32[0];
+    res.m64_f32[1] = (a.m64_f32[1] < b.m64_f32[1]) ? a.m64_f32[1] : b.m64_f32[1];
+    return res;
+}
+
+int8x16_t   vminq_s8(int8x16_t a, int8x16_t b); // VMIN.S8 q0,q0,q0
+#define vminq_s8 _MM_MIN_EPI8 //SSE4.1
+
+int16x8_t   vminq_s16(int16x8_t a, int16x8_t b); // VMIN.S16 q0,q0,q0
+#define vminq_s16 _mm_min_epi16
+
+int32x4_t   vminq_s32(int32x4_t a, int32x4_t b); // VMIN.S32 q0,q0,q0
+#define vminq_s32 _MM_MIN_EPI32 //SSE4.1
+
+uint8x16_t   vminq_u8(uint8x16_t a, uint8x16_t b); // VMIN.U8 q0,q0,q0
+#define vminq_u8 _mm_min_epu8
+
+uint16x8_t   vminq_u16(uint16x8_t a, uint16x8_t b); // VMIN.s16 q0,q0,q0
+#define vminq_u16 _MM_MIN_EPU16 //SSE4.1
+
+uint32x4_t   vminq_u32(uint32x4_t a, uint32x4_t b); // VMIN.U32 q0,q0,q0
+#define vminq_u32 _MM_MIN_EPU32 //SSE4.1
+
+float32x4_t vminq_f32(float32x4_t a, float32x4_t b); // VMIN.F32 q0,q0,q0
+#define vminq_f32 _mm_min_ps
+
+//*************  Pairwise addition operations. **************************************
+//************************************************************************************
+//Pairwise add - adds adjacent pairs of elements of two vectors, and places the results in the destination vector
+int8x8_t vpadd_s8(int8x8_t a, int8x8_t b); // VPADD.I8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vpadd_s8(int8x8_t a, int8x8_t b) // VPADD.I8 d0,d0,d0
+{
+    //no 8 bit hadd in IA32, need to go to 16 bit and then pack
+    int8x8_t res64;
+    __m128i a16, b16, res;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1
+    b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1
+    res = _mm_hadd_epi16 (a16, b16);
+    res = _mm_shuffle_epi8 (res, *(__m128i*) mask8_16_even_odd); //return to 8 bit, use low 64 bits
+    return64(res);
+}
+
+int16x4_t   vpadd_s16(int16x4_t a, int16x4_t b); // VPADD.I16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t   vpadd_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    __m128i hadd128;
+    hadd128 = _mm_hadd_epi16 (_pM128i(a), _pM128i(b));
+    hadd128 = _mm_shuffle_epi32 (hadd128, 0 | (2 << 2) | (1 << 4) | (3 << 6));
+    return64(hadd128);
+}
+
+
+int32x2_t   vpadd_s32(int32x2_t a, int32x2_t b); // VPADD.I32 d0,d0,d0
+_NEON2SSE_INLINE int32x2_t   vpadd_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    __m128i hadd128;
+    hadd128 = _mm_hadd_epi32 (_pM128i(a), _pM128i(b));
+    hadd128 = _mm_shuffle_epi32 (hadd128, 0 | (2 << 2) | (1 << 4) | (3 << 6));
+    return64(hadd128);
+}
+
+
+uint8x8_t vpadd_u8(uint8x8_t a, uint8x8_t b); // VPADD.I8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vpadd_u8(uint8x8_t a, uint8x8_t b) // VPADD.I8 d0,d0,d0
+{
+    //  no 8 bit hadd in IA32, need to go to 16 bit and then pack
+    uint8x8_t res64;
+//  no unsigned _mm_hadd_ functions in IA32, but 8 unsigned is less then 16 signed, so it should work
+    __m128i mask8, a16, b16, res;
+    mask8 = _mm_set1_epi16(0xff);
+    a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); // SSE 4.1
+    b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); // SSE 4.1
+    res = _mm_hadd_epi16 (a16, b16);
+    res = _mm_and_si128(res, mask8); //to avoid saturation
+    res = _mm_packus_epi16 (res,res); //use low 64 bits
+    return64(res);
+}
+
+uint16x4_t vpadd_u16(uint16x4_t a, uint16x4_t b); // VPADD.I16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vpadd_u16(uint16x4_t a, uint16x4_t b) // VPADD.I16 d0,d0,d0
+{
+    // solution may be not optimal, serial execution may be faster
+    // no unsigned _mm_hadd_ functions in IA32, need to move from unsigned to signed
+    uint16x4_t res64;
+    __m128i c32767,  cfffe, as, bs, res;
+    c32767 = _mm_set1_epi16 (32767);
+    cfffe = _mm_set1_epi16 (0xfffe);
+    as = _mm_sub_epi16 (_pM128i(a), c32767);
+    bs = _mm_sub_epi16 (_pM128i(b), c32767);
+    res = _mm_hadd_epi16 (as, bs);
+    res = _mm_add_epi16 (res, cfffe);
+    res = _mm_shuffle_epi32 (res, 0 | (2 << 2) | (1 << 4) | (3 << 6));
+    return64(res);
+}
+
+uint32x2_t vpadd_u32(uint32x2_t a, uint32x2_t b); // VPADD.I32 d0,d0,d0
+_NEON2SSE_INLINE uint32x2_t vpadd_u32(uint32x2_t a, uint32x2_t b) //serial may be faster
+{
+    //hadd doesn't work for unsigned values
+    uint32x2_t res64;
+    __m128i ab, ab_sh, res;
+    ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //a0 a1 b0 b1
+    ab_sh = _mm_shuffle_epi32(ab, 1 | (0 << 2) | (3 << 4) | (2 << 6)); //a1, a0, b1, b0
+    res = _mm_add_epi32(ab, ab_sh);
+    res = _mm_shuffle_epi32(res, 0 | (2 << 2) | (1 << 4) | (3 << 6));
+    return64(res);
+}
+
+float32x2_t vpadd_f32(float32x2_t a, float32x2_t b); // VPADD.F32 d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vpadd_f32(float32x2_t a, float32x2_t b)
+{
+    __m128 hadd128;
+    __m64_128 res64;
+    hadd128 = _mm_hadd_ps (_pM128(a), _pM128(b));
+    hadd128 = _mm_shuffle_ps (hadd128, hadd128, _MM_SHUFFLE(3,1, 2, 0)); //use low 64 bits
+    _M64f(res64, hadd128);
+    return res64;
+}
+
+
+//**************************  Long pairwise add  **********************************
+//*********************************************************************************
+//Adds adjacent pairs of elements of a vector,sign or zero extends the results to twice their original width,
+// and places the final results in the destination vector.
+
+int16x4_t vpaddl_s8(int8x8_t a); // VPADDL.S8 d0,d0
+_NEON2SSE_INLINE int16x4_t vpaddl_s8(int8x8_t a) // VPADDL.S8 d0,d0
+{
+    //no 8 bit hadd in IA32, need to go to 16 bit anyway
+    __m128i a16;
+    int16x4_t res64;
+    a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1
+    a16 = _mm_hadd_epi16 (a16,  a16); //use low 64 bits
+    return64(a16);
+}
+
+int32x2_t vpaddl_s16(int16x4_t a); // VPADDL.S16 d0,d0
+_NEON2SSE_INLINE int32x2_t vpaddl_s16(int16x4_t a) // VPADDL.S16 d0,d0
+{
+    // solution may be not optimal, serial execution may be faster
+    int32x2_t res64;
+    __m128i r32_1;
+    r32_1 = _MM_CVTEPI16_EPI32 (_pM128i(a));
+    r32_1 = _mm_hadd_epi32(r32_1, r32_1); //use low 64 bits
+    return64(r32_1);
+}
+
+int64x1_t vpaddl_s32(int32x2_t a); // VPADDL.S32 d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vpaddl_s32(int32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution looks faster
+{
+    int64x1_t res;
+    res.m64_i64[0] = (int64_t)a.m64_i32[0] + (int64_t)a.m64_i32[1];
+    return res;
+}
+
+uint16x4_t vpaddl_u8(uint8x8_t a); // VPADDL.U8 d0,d0
+_NEON2SSE_INLINE uint16x4_t vpaddl_u8(uint8x8_t a) // VPADDL.U8 d0,d0
+{
+    //  no 8 bit hadd in IA32, need to go to 16 bit
+//  no unsigned _mm_hadd_ functions in IA32, but 8 unsigned is less then 16 signed, so it should work
+    uint16x4_t res64;
+    __m128i a16;
+    a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); // SSE 4.1 use low 64 bits
+    a16 = _mm_hadd_epi16 (a16, a16); //use low 64 bits
+    return64(a16);
+}
+
+uint32x2_t vpaddl_u16(uint16x4_t a); // VPADDL.s16 d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vpaddl_u16(uint16x4_t a),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than a SIMD one
+    uint32x2_t res;
+    res.m64_u32[0] = (uint32_t)a.m64_u16[0] + (uint32_t)a.m64_u16[1];
+    res.m64_u32[1] = (uint32_t)a.m64_u16[2] + (uint32_t)a.m64_u16[3];
+    return res;
+}
+
+uint64x1_t vpaddl_u32(uint32x2_t a); // VPADDL.U32 d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vpaddl_u32(uint32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution looks faster
+{
+    uint64x1_t res;
+    res.m64_u64[0] = (uint64_t)a.m64_u32[0] + (uint64_t)a.m64_u32[1];
+    return res;
+}
+
+int16x8_t vpaddlq_s8(int8x16_t a); // VPADDL.S8 q0,q0
+_NEON2SSE_INLINE int16x8_t vpaddlq_s8(int8x16_t a) // VPADDL.S8 q0,q0
+{
+    //no 8 bit hadd in IA32, need to go to 16 bit
+    __m128i r16_1, r16_2;
+    r16_1 = _MM_CVTEPI8_EPI16 (a); // SSE 4.1
+    //swap hi and low part of r to process the remaining data
+    r16_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    r16_2 = _MM_CVTEPI8_EPI16 (r16_2);
+    return _mm_hadd_epi16 (r16_1, r16_2);
+}
+
+int32x4_t vpaddlq_s16(int16x8_t a); // VPADDL.S16 q0,q0
+_NEON2SSE_INLINE int32x4_t vpaddlq_s16(int16x8_t a) // VPADDL.S16 q0,q0
+{
+    //no 8 bit hadd in IA32, need to go to 16 bit
+    __m128i r32_1, r32_2;
+    r32_1 = _MM_CVTEPI16_EPI32(a);
+    //swap hi and low part of r to process the remaining data
+    r32_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    r32_2 = _MM_CVTEPI16_EPI32 (r32_2);
+    return _mm_hadd_epi32 (r32_1, r32_2);
+}
+
+int64x2_t vpaddlq_s32(int32x4_t a); // VPADDL.S32 q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vpaddlq_s32(int32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) // VPADDL.S32 q0,q0
+{
+    _NEON2SSE_ALIGN_16 int32_t atmp[4];
+    _NEON2SSE_ALIGN_16 int64_t res[2];
+    _mm_store_si128((__m128i*)atmp, a);
+    res[0] = (int64_t)atmp[0] + (int64_t)atmp[1];
+    res[1] = (int64_t)atmp[2] + (int64_t)atmp[3];
+    return _mm_load_si128((__m128i*)res);
+}
+
+uint16x8_t vpaddlq_u8(uint8x16_t a); // VPADDL.U8 q0,q0
+_NEON2SSE_INLINE uint16x8_t vpaddlq_u8(uint8x16_t a) // VPADDL.U8 q0,q0
+{
+    //no 8 bit hadd in IA32, need to go to 16 bit
+    __m128i r16_1, r16_2;
+    r16_1 = _MM_CVTEPU8_EPI16(a);
+    //swap hi and low part of r to process the remaining data
+    r16_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    r16_2 = _MM_CVTEPU8_EPI16 (r16_2);
+    return _mm_hadd_epi16 (r16_1, r16_2);
+}
+
+uint32x4_t vpaddlq_u16(uint16x8_t a); // VPADDL.s16 q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vpaddlq_u16(uint16x8_t a),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than a SIMD one
+    _NEON2SSE_ALIGN_16 uint16_t atmp[8];
+    _NEON2SSE_ALIGN_16 uint32_t res[4];
+    _mm_store_si128((__m128i*)atmp, a);
+    res[0] = (uint32_t)atmp[0] + (uint32_t)atmp[1];
+    res[1] = (uint32_t)atmp[2] + (uint32_t)atmp[3];
+    res[2] = (uint32_t)atmp[4] + (uint32_t)atmp[5];
+    res[3] = (uint32_t)atmp[6] + (uint32_t)atmp[7];
+    return _mm_load_si128((__m128i*)res);
+}
+
+uint64x2_t vpaddlq_u32(uint32x4_t a); // VPADDL.U32 q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vpaddlq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    _NEON2SSE_ALIGN_16 uint32_t atmp[4];
+    _NEON2SSE_ALIGN_16 uint64_t res[2];
+    _mm_store_si128((__m128i*)atmp, a);
+    res[0] = (uint64_t)atmp[0] + (uint64_t)atmp[1];
+    res[1] = (uint64_t)atmp[2] + (uint64_t)atmp[3];
+    return _mm_load_si128((__m128i*)res);
+}
+
+//************************  Long pairwise add and accumulate **************************
+//****************************************************************************************
+//VPADAL (Vector Pairwise Add and Accumulate Long) adds adjacent pairs of elements of a vector,
+// and accumulates the  values of the results into the elements of the destination (wide) vector
+int16x4_t vpadal_s8(int16x4_t a,  int8x8_t b); // VPADAL.S8 d0,d0
+_NEON2SSE_INLINE int16x4_t vpadal_s8(int16x4_t a,  int8x8_t b)
+{
+    int16x4_t res64;
+    return64(vpadalq_s8(_pM128i(a), _pM128i(b)));
+}
+
+int32x2_t vpadal_s16(int32x2_t a,  int16x4_t b); // VPADAL.S16 d0,d0
+_NEON2SSE_INLINE int32x2_t vpadal_s16(int32x2_t a,  int16x4_t b)
+{
+    int32x2_t res64;
+    return64(vpadalq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+int64x1_t vpadal_s32(int64x1_t a, int32x2_t b); // VPADAL.S32 d0,d0
+_NEON2SSE_INLINE int64x1_t vpadal_s32(int64x1_t a, int32x2_t b)
+{
+    int64x1_t res;
+    res.m64_i64[0] = (int64_t)b.m64_i32[0] + (int64_t)b.m64_i32[1] + a.m64_i64[0];
+    return res;
+}
+
+uint16x4_t vpadal_u8(uint16x4_t a,  uint8x8_t b); // VPADAL.U8 d0,d0
+_NEON2SSE_INLINE uint16x4_t vpadal_u8(uint16x4_t a,  uint8x8_t b)
+{
+    uint16x4_t res64;
+    return64(vpadalq_u8(_pM128i(a), _pM128i(b)));
+}
+
+
+uint32x2_t vpadal_u16(uint32x2_t a,  uint16x4_t b); // VPADAL.s16 d0,d0
+_NEON2SSE_INLINE uint32x2_t vpadal_u16(uint32x2_t a,  uint16x4_t b)
+{
+    uint32x2_t res64;
+    return64(vpadalq_u16(_pM128i(a), _pM128i(b)));
+}
+
+uint64x1_t vpadal_u32(uint64x1_t a, uint32x2_t b); // VPADAL.U32 d0,d0
+_NEON2SSE_INLINE uint64x1_t vpadal_u32(uint64x1_t a, uint32x2_t b)
+{
+    uint64x1_t res;
+    res.m64_u64[0] = (uint64_t)b.m64_u32[0] + (uint64_t)b.m64_u32[1] + a.m64_u64[0];
+    return res;
+}
+
+int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b); // VPADAL.S8 q0,q0
+_NEON2SSE_INLINE int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b) // VPADAL.S8 q0,q0
+{
+    int16x8_t pad;
+    pad = vpaddlq_s8(b);
+    return _mm_add_epi16 (a, pad);
+}
+
+int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b); // VPADAL.S16 q0,q0
+_NEON2SSE_INLINE int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b) // VPADAL.S16 q0,q0
+{
+    int32x4_t pad;
+    pad = vpaddlq_s16(b);
+    return _mm_add_epi32(a, pad);
+}
+
+int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b); // VPADAL.S32 q0,q0
+_NEON2SSE_INLINE int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b)
+{
+    int64x2_t pad;
+    pad = vpaddlq_s32(b);
+    return _mm_add_epi64 (a, pad);
+}
+
+uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b); // VPADAL.U8 q0,q0
+_NEON2SSE_INLINE uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b) // VPADAL.U8 q0,q0
+{
+    uint16x8_t pad;
+    pad = vpaddlq_u8(b);
+    return _mm_add_epi16 (a, pad);
+}
+
+uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b); // VPADAL.s16 q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint32x4_t pad;
+    pad = vpaddlq_u16(b);
+    return _mm_add_epi32(a, pad);
+} //no optimal SIMD solution, serial is faster
+
+uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b); // VPADAL.U32 q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //no optimal SIMD solution, serial is faster
+    uint64x2_t pad;
+    pad = vpaddlq_u32(b);
+    return _mm_add_epi64(a, pad);
+} //no optimal SIMD solution, serial is faster
+
+//**********  Folding maximum   *************************************
+//*******************************************************************
+//VPMAX (Vector Pairwise Maximum) compares adjacent pairs of elements in two vectors,
+//and copies the larger of each pair into the corresponding element in the destination
+//    no corresponding functionality in IA32 SIMD, so we need to do the vertical comparison
+int8x8_t vpmax_s8(int8x8_t a, int8x8_t b); // VPMAX.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vpmax_s8(int8x8_t a, int8x8_t b) // VPMAX.S8 d0,d0,d0
+{
+    int8x8_t res64;
+    __m128i ab, ab1, max;
+    _NEON2SSE_ALIGN_16 uint8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
+    _NEON2SSE_ALIGN_16 uint8_t mask8_odd[16] = { 1, 3,  5,  7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical max finding
+    max = _MM_MAX_EPI8 (ab, ab1); // SSE4.1
+    max = _mm_shuffle_epi8 (max, *(__m128i*) mask8_odd); //remove repetitive data
+    return64(max); //we need 64 bits only
+}
+
+int16x4_t vpmax_s16(int16x4_t a, int16x4_t b); // VPMAX.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vpmax_s16(int16x4_t a, int16x4_t b) // VPMAX.S16 d0,d0,d0
+{
+    //solution may be not optimal compared with the serial one
+    int16x4_t res64;
+    __m128i ab, ab1, max;
+    _NEON2SSE_ALIGN_16 int8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number
+    _NEON2SSE_ALIGN_16 int8_t mask16_odd[16] = { 0,1, 4,5, 8,9, 12,13,  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 ( _pM128i(a),  _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical max finding, use 8bit fn and the corresponding mask
+    max = _mm_max_epi16 (ab, ab1);
+    max =  _mm_shuffle_epi8 (max, *(__m128i*) mask16_odd); //remove repetitive data, use 8bit fn and the corresponding mask
+    return64(max);
+}
+
+int32x2_t vpmax_s32(int32x2_t a, int32x2_t b); // VPMAX.S32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vpmax_s32(int32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than SIMD one
+    int32x2_t res;
+    res.m64_i32[0] = (a.m64_i32[0] < a.m64_i32[1]) ? a.m64_i32[1] : a.m64_i32[0];
+    res.m64_i32[1] = (b.m64_i32[0] < b.m64_i32[1]) ? b.m64_i32[1] : b.m64_i32[0];
+    return res;
+}
+
+uint8x8_t vpmax_u8(uint8x8_t a, uint8x8_t b); // VPMAX.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vpmax_u8(uint8x8_t a, uint8x8_t b) // VPMAX.U8 d0,d0,d0
+{
+    uint8x8_t res64;
+    __m128i ab, ab1, max;
+    _NEON2SSE_ALIGN_16 int8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
+    _NEON2SSE_ALIGN_16 uint8_t mask8_odd[16] = { 1, 3,  5,  7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 (_pM128i(a), _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical max finding
+    max = _mm_max_epu8 (ab, ab1); // SSE4.1
+    max = _mm_shuffle_epi8 (max, *(__m128i*) mask8_odd); //remove repetitive data
+    return64(max);
+}
+
+uint16x4_t vpmax_u16(uint16x4_t a, uint16x4_t b); // VPMAX.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vpmax_u16(uint16x4_t a, uint16x4_t b) // VPMAX.s16 d0,d0,d0
+{
+    //solution may be not optimal compared with the serial one
+    uint16x4_t res64;
+    __m128i ab, ab1, max;
+    _NEON2SSE_ALIGN_16 uint8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number
+    _NEON2SSE_ALIGN_16 uint8_t mask16_odd[16] = { 0,1, 4,5, 8,9, 12,13,  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical max finding, use 8bit fn and the corresponding mask
+    max = _MM_MAX_EPU16 (ab, ab1);
+    max = _mm_shuffle_epi8 (max, *(__m128i*) mask16_odd); //remove repetitive data, use 8bit fn and the corresponding mask
+    return64(max);
+}
+
+uint32x2_t vpmax_u32(uint32x2_t a, uint32x2_t b); // VPMAX.U32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vpmax_u32(uint32x2_t a, uint32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than SIMD one
+    uint32x2_t res;
+    res.m64_i32[0] = (a.m64_i32[0] < a.m64_i32[1]) ? a.m64_i32[1] : a.m64_i32[0];
+    res.m64_i32[1] = (b.m64_i32[0] < b.m64_i32[1]) ? b.m64_i32[1] : b.m64_i32[0];
+    return res;
+} //serial solution looks faster than a SIMD one
+
+float32x2_t vpmax_f32(float32x2_t a, float32x2_t b); // VPMAX.F32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(float32x2_t vpmax_f32(float32x2_t a, float32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than  SIMD one
+    float32x2_t res;
+    res.m64_f32[0] = (a.m64_f32[0] < a.m64_f32[1]) ? a.m64_f32[1] : a.m64_f32[0];
+    res.m64_f32[1] = (b.m64_f32[0] < b.m64_f32[1]) ? b.m64_f32[1] : b.m64_f32[0];
+    return res;
+}
+
+// ***************** Folding minimum  ****************************
+// **************************************************************
+//vpmin -> takes minimum of adjacent pairs
+int8x8_t vpmin_s8(int8x8_t a, int8x8_t b); // VPMIN.S8 d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vpmin_s8(int8x8_t a, int8x8_t b) // VPMIN.S8 d0,d0,d0
+{
+    int8x8_t res64;
+    __m128i ab, ab1, min;
+    _NEON2SSE_ALIGN_16 uint8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
+    _NEON2SSE_ALIGN_16 uint8_t mask8_odd[16] = { 1, 3,  5,  7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical min finding
+    min =  _MM_MIN_EPI8 (ab, ab1); // SSE4.1
+    min =  _mm_shuffle_epi8 (min, *(__m128i*) mask8_odd); //remove repetitive data
+    return64(min);
+}
+
+int16x4_t vpmin_s16(int16x4_t a, int16x4_t b); // VPMIN.S16 d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vpmin_s16(int16x4_t a, int16x4_t b) // VPMIN.S16 d0,d0,d0
+{
+    //solution may be not optimal compared with the serial one
+    int16x4_t res64;
+    __m128i ab, ab1, min;
+    _NEON2SSE_ALIGN_16 int8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number
+    _NEON2SSE_ALIGN_16 int8_t mask16_odd[16] = { 0,1, 4,5, 8,9, 12,13,  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 (  _pM128i(a),  _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical max finding, use 8bit fn and the corresponding mask
+    min = _mm_min_epi16 (ab, ab1);
+    min = _mm_shuffle_epi8 (min, *(__m128i*) mask16_odd); //remove repetitive data, use 8bit fn and the corresponding mask
+    return64(min);
+}
+
+int32x2_t vpmin_s32(int32x2_t a, int32x2_t b); // VPMIN.S32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vpmin_s32(int32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than SIMD one
+    int32x2_t res;
+    res.m64_i32[0] = (a.m64_i32[0] > a.m64_i32[1]) ? a.m64_i32[1] : a.m64_i32[0];
+    res.m64_i32[1] = (b.m64_i32[0] > b.m64_i32[1]) ? b.m64_i32[1] : b.m64_i32[0];
+    return res;
+}
+
+uint8x8_t vpmin_u8(uint8x8_t a, uint8x8_t b); // VPMIN.U8 d0,d0,d0
+_NEON2SSE_INLINE uint8x8_t vpmin_u8(uint8x8_t a, uint8x8_t b) // VPMIN.U8 d0,d0,d0
+{
+    uint8x8_t res64;
+    __m128i ab, ab1, min;
+    _NEON2SSE_ALIGN_16 uint8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
+    _NEON2SSE_ALIGN_16 uint8_t mask8_odd[16] = { 1, 3,  5,  7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 (  _pM128i(a),  _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical max finding
+    min = _mm_min_epu8 (ab, ab1); // SSE4.1
+    min = _mm_shuffle_epi8 (min, *(__m128i*) mask8_odd); //remove repetitive data
+    return64(min);
+}
+
+uint16x4_t vpmin_u16(uint16x4_t a, uint16x4_t b); // VPMIN.s16 d0,d0,d0
+_NEON2SSE_INLINE uint16x4_t vpmin_u16(uint16x4_t a, uint16x4_t b) // VPMIN.s16 d0,d0,d0
+{
+    //solution may be not optimal compared with the serial one
+    uint16x4_t res64;
+    __m128i ab, ab1, min;
+    _NEON2SSE_ALIGN_16 uint8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number
+    _NEON2SSE_ALIGN_16 uint8_t mask16_odd[16] = { 0,1, 4,5, 8,9, 12,13,  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+    ab = _mm_unpacklo_epi64 ( _pM128i(a),  _pM128i(b)); //ab
+    ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical min finding, use 8bit fn and the corresponding mask
+    min = _MM_MIN_EPU16 (ab, ab1);
+    min =    _mm_shuffle_epi8 (min, *(__m128i*) mask16_odd); //remove repetitive data, use 8bit fn and the corresponding mask
+    return64(min);
+}
+
+uint32x2_t vpmin_u32(uint32x2_t a, uint32x2_t b); // VPMIN.U32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vpmin_u32(uint32x2_t a, uint32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than SIMD one
+    uint32x2_t res;
+    res.m64_u32[0] = (a.m64_u32[0] > a.m64_u32[1]) ? a.m64_u32[1] : a.m64_u32[0];
+    res.m64_u32[1] = (b.m64_u32[0] > b.m64_u32[1]) ? b.m64_u32[1] : b.m64_u32[0];
+    return res;
+}
+
+float32x2_t vpmin_f32(float32x2_t a, float32x2_t b); // VPMIN.F32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(float32x2_t vpmin_f32(float32x2_t a, float32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution looks faster than SIMD one
+    float32x2_t res;
+    res.m64_f32[0] = (a.m64_f32[0] > a.m64_f32[1]) ? a.m64_f32[1] : a.m64_f32[0];
+    res.m64_f32[1] = (b.m64_f32[0] > b.m64_f32[1]) ? b.m64_f32[1] : b.m64_f32[0];
+    return res;
+}
+
+//***************************************************************
+//***********  Reciprocal/Sqrt ************************************
+//***************************************************************
+//****************** Reciprocal estimate *******************************
+//the ARM NEON and x86 SIMD results may be slightly different
+float32x2_t vrecpe_f32(float32x2_t a); // VRECPE.F32 d0,d0
+_NEON2SSE_INLINE float32x2_t vrecpe_f32(float32x2_t a) //use low 64 bits
+{
+    float32x4_t res;
+    __m64_128 res64;
+    res = _mm_rcp_ps(_pM128(a));
+    _M64f(res64, res);
+    return res64;
+}
+
+uint32x2_t vrecpe_u32(uint32x2_t a); // VRECPE.U32 d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vrecpe_u32(uint32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //Input is  fixed point number!!! No reciprocal for ints in IA32 available
+    uint32x2_t res;
+    float resf, r;
+    int i, q, s;
+    for (i =0; i<2; i++){
+        if((a.m64_u32[i] & 0x80000000) == 0) {
+            res.m64_u32[i] = 0xffffffff;
+        }else{
+            resf =  (float) (a.m64_u32[i] * (0.5f / (uint32_t)(1 << 31)));
+            q = (int)(resf * 512.0); /* a in units of 1/512 rounded down */
+            r = 1.0 / (((float)q + 0.5) / 512.0); /* reciprocal r */
+            s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */
+            r =  (float)s / 256.0;
+            res.m64_u32[i] = r * (uint32_t)(1 << 31);
+        }
+    }
+    return res;
+}
+
+float32x4_t vrecpeq_f32(float32x4_t a); // VRECPE.F32 q0,q0
+#define vrecpeq_f32 _mm_rcp_ps
+
+
+uint32x4_t vrecpeq_u32(uint32x4_t a); // VRECPE.U32 q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrecpeq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //Input is  fixed point number!!!
+    //We implement the recip_estimate function as described in ARMv7 reference manual (VRECPE instruction) but use float instead of double
+    _NEON2SSE_ALIGN_16 uint32_t atmp[4];
+    _NEON2SSE_ALIGN_16 uint32_t res[4];
+   _NEON2SSE_ALIGN_16 int c80000000[4] = {0x80000000,0x80000000, 0x80000000,0x80000000};
+    float resf, r;
+    int i, q, s;
+  __m128i res128, mask, zero;
+    _mm_store_si128((__m128i*)atmp, a);
+    zero = _mm_setzero_si128();
+    for (i =0; i<4; i++){
+        resf = (atmp[i] * (0.5f / (uint32_t) (1 << 31)));  //  2.3283064365386963E-10 ~(0.5f / (uint32_t) (1 << 31))
+        q = (int)(resf * 512.0); /* a in units of 1/512 rounded down */
+        r = 1.0 / (((float)q + 0.5) / 512.0); /* reciprocal r */
+        s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */
+        r =  (float)s / 256.0;
+        res[i] = (uint32_t) (r * (((uint32_t)1) << 31) );
+    }
+    res128 = _mm_load_si128((__m128i*)res);
+    mask = _mm_and_si128(a, *(__m128i*)c80000000);
+    mask = _mm_cmpeq_epi32(zero, mask);  //0xffffffff if atmp[i] <= 0x7fffffff
+    return _mm_or_si128(res128, mask);
+}
+
+//**********Reciprocal square root estimate ****************
+//**********************************************************
+//no reciprocal square root for ints in IA32 available, neither for unsigned int to float4 lanes conversion, so a serial solution looks faster
+//but the particular implementation for vrsqrte_u32 may vary for various ARM compilers
+////the ARM NEON and x86 SIMD results may be slightly different
+float32x2_t vrsqrte_f32(float32x2_t a); // VRSQRTE.F32 d0,d0
+_NEON2SSE_INLINE float32x2_t vrsqrte_f32(float32x2_t a) //use low 64 bits
+{
+    float32x4_t res;
+    __m64_128 res64;
+    res = _mm_rsqrt_ps(_pM128(a));
+    _M64f(res64, res);
+    return res64;
+}
+
+uint32x2_t vrsqrte_u32(uint32x2_t a); // VRSQRTE.U32 d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vrsqrte_u32(uint32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //Input is  fixed point number!!!
+    //We implement the recip_sqrt_estimate function as described in ARMv7 reference manual (VRSQRTE instruction) but use float instead of double
+   uint32x2_t res;
+   __m128 tmp;
+    float r, resf, coeff;
+    int i,q0, q1, s;;
+    for (i =0; i<2; i++){
+        if((a.m64_u32[i] & 0xc0000000) == 0) { //a <=0x3fffffff
+            res.m64_u32[i] = 0xffffffff;
+        }else{
+            resf =  (float) (a.m64_u32[i] * (0.5f / (uint32_t)(1 << 31)));
+            coeff = (resf < 0.5)? 512.0 : 256.0 ; /* range 0.25 <= resf < 0.5  or range 0.5 <= resf < 1.0*/
+            q0 = (int)(resf * coeff); /* a in units of 1/512 rounded down */
+            r = ((float)q0 + 0.5) / coeff;
+            tmp = _mm_rsqrt_ss(_mm_load_ss( &r));/* reciprocal root r */
+            _mm_store_ss(&r, tmp);
+            s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */
+            r = (float)s / 256.0;
+            res.m64_u32[i] = r * (((uint32_t)1) << 31);
+        }
+    }
+    return res;
+}
+
+float32x4_t vrsqrteq_f32(float32x4_t a); // VRSQRTE.F32 q0,q0
+#define vrsqrteq_f32 _mm_rsqrt_ps
+
+uint32x4_t vrsqrteq_u32(uint32x4_t a); // VRSQRTE.U32 q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrsqrteq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //Input is  fixed point number!!!
+    //We implement the recip_sqrt_estimate function as described in ARMv7 reference manual (VRSQRTE instruction) but use float instead of double
+   _NEON2SSE_ALIGN_16 uint32_t  atmp[4], res[4];
+   _NEON2SSE_ALIGN_16 float c1_31[4] = {(float)(((uint32_t)1) << 31), (float)(((uint32_t)1) << 31),(float)(((uint32_t)1) << 31), (float)(((uint32_t)1) << 31)};
+   _NEON2SSE_ALIGN_16 int c_c0000000[4] = {0xc0000000,0xc0000000, 0xc0000000,0xc0000000};
+  __m128 tmp;
+  __m128i res128, mask, zero;
+    float r, resf, coeff;
+    int i,q0, q1, s;
+    _mm_store_si128((__m128i*)atmp, a);
+    zero = _mm_setzero_si128();
+    for (i =0; i<4; i++){
+        resf =  (float) (atmp[i] * (0.5f / (uint32_t)(1 << 31)));
+        coeff = (resf < 0.5)? 512.0 : 256.0 ; /* range 0.25 <= resf < 0.5  or range 0.5 <= resf < 1.0*/
+        q0 = (int)(resf * coeff); /* a in units of 1/512 rounded down */
+        r = ((float)q0 + 0.5) / coeff;
+        tmp = _mm_rsqrt_ss(_mm_load_ss( &r));/* reciprocal root r */
+        _mm_store_ss(&r, tmp);
+        s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */
+        r = (float)s / 256.0;
+        res[i] = (uint32_t) (r * (((uint32_t)1) << 31) );
+    }
+    res128 = _mm_load_si128((__m128i*)res);
+    mask = _mm_and_si128(a, *(__m128i*)c_c0000000);
+    mask = _mm_cmpeq_epi32(zero, mask);  //0xffffffff if atmp[i] <= 0x3fffffff
+    return _mm_or_si128(res128, mask);
+}
+//************ Reciprocal estimate/step and 1/sqrt estimate/step ***************************
+//******************************************************************************************
+//******VRECPS (Vector Reciprocal Step) ***************************************************
+//multiplies the elements of one vector by the corresponding elements of another vector,
+//subtracts each of the results from 2, and places the final results into the elements of the destination vector.
+
+float32x2_t vrecps_f32(float32x2_t a, float32x2_t b); // VRECPS.F32 d0, d0, d0
+_NEON2SSE_INLINE float32x2_t vrecps_f32(float32x2_t a, float32x2_t b)
+{
+    float32x4_t res;
+    __m64_128 res64;
+    res = vrecpsq_f32(_pM128(a), _pM128(b));
+    _M64f(res64, res);
+    return res64;
+}
+
+float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b); // VRECPS.F32 q0, q0, q0
+_NEON2SSE_INLINE float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b) // VRECPS.F32 q0, q0, q0
+{
+    __m128 f2, mul;
+    f2 =  _mm_set1_ps(2.);
+    mul = _mm_mul_ps(a,b);
+    return _mm_sub_ps(f2,mul);
+}
+
+//*****************VRSQRTS (Vector Reciprocal Square Root Step) *****************************
+//multiplies the elements of one vector by the corresponding elements of another vector,
+//subtracts each of the results from 3, divides these results by two, and places the final results into the elements of the destination vector.
+
+float32x2_t vrsqrts_f32(float32x2_t a, float32x2_t b); // VRSQRTS.F32 d0, d0, d0
+_NEON2SSE_INLINE float32x2_t vrsqrts_f32(float32x2_t a, float32x2_t b)
+{
+    float32x2_t res;
+    res.m64_f32[0] = (3 - a.m64_f32[0] * b.m64_f32[0]) / 2;
+    res.m64_f32[1] = (3 - a.m64_f32[1] * b.m64_f32[1]) / 2;
+    return res;
+}
+
+float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b); // VRSQRTS.F32 q0, q0, q0
+_NEON2SSE_INLINE float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b) // VRSQRTS.F32 q0, q0, q0
+{
+    __m128 f3, f05, mul;
+    f3 =  _mm_set1_ps(3.);
+    f05 =  _mm_set1_ps(0.5);
+    mul = _mm_mul_ps(a,b);
+    f3 = _mm_sub_ps(f3,mul);
+    return _mm_mul_ps (f3, f05);
+}
+//********************************************************************************************
+//***************************** Shifts by signed variable ***********************************
+//********************************************************************************************
+//***** Vector shift left: Vr[i] := Va[i] << Vb[i] (negative values shift right) ***********************
+//********************************************************************************************
+//No such operations in IA32 SIMD unfortunately, constant shift only available, so need to do the serial solution
+//helper macro. It matches ARM implementation for big shifts
+#define SERIAL_SHIFT(TYPE, INTERNAL_TYPE, LENMAX, LEN) \
+        _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 INTERNAL_TYPE btmp[LENMAX]; int i, lanesize = sizeof(INTERNAL_TYPE) << 3; \
+        _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \
+        for (i = 0; i<LEN; i++) { \
+        if( (btmp[i] >= lanesize)||(btmp[i] <= -lanesize) ) res[i] = 0; \
+        else res[i] = (btmp[i] >=0) ? atmp[i] << btmp[i] : atmp[i] >> (-btmp[i]); } \
+        return _mm_load_si128((__m128i*)res);
+
+#define SERIAL_SHIFT_64(TYPE, SIGN, LEN) \
+        int ## TYPE ## x ## LEN ## _t res;  int i, lanesize = sizeof(int ## TYPE ## _t) << 3; \
+        for (i = 0; i<LEN; i++) { \
+        if( (b.m64_i ## TYPE[i] >= lanesize)||(b.m64_i ## TYPE[i] <= -lanesize) ) res.m64_ ## SIGN ## TYPE[i] = 0; \
+        else res.m64_ ## SIGN ## TYPE[i] = (b.m64_i ## TYPE[i] >=0) ? a.m64_ ## SIGN ## TYPE[i] << b.m64_i ## TYPE[i] : a.m64_ ## SIGN ## TYPE[i] >> (-b.m64_i ## TYPE[i]); } \
+        return res;
+
+int8x8_t vshl_s8(int8x8_t a, int8x8_t b); // VSHL.S8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vshl_s8(int8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT_64(8, i, 8)
+}
+
+int16x4_t vshl_s16(int16x4_t a, int16x4_t b); // VSHL.S16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vshl_s16(int16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT_64(16, i, 4)
+}
+
+int32x2_t vshl_s32(int32x2_t a, int32x2_t b); // VSHL.S32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vshl_s32(int32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT_64(32, i, 2)
+}
+
+int64x1_t vshl_s64(int64x1_t a, int64x1_t b); // VSHL.S64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vshl_s64(int64x1_t a, int64x1_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT_64(64, i, 1)
+}
+
+uint8x8_t vshl_u8(uint8x8_t a, int8x8_t b); // VSHL.U8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vshl_u8(uint8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT_64(8, u, 8)
+}
+
+uint16x4_t vshl_u16(uint16x4_t a, int16x4_t b); // VSHL.s16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vshl_u16(uint16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT_64(16, u, 4)
+}
+
+uint32x2_t vshl_u32(uint32x2_t a, int32x2_t b); // VSHL.U32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vshl_u32(uint32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT_64(32, u, 2)
+}
+
+uint64x1_t vshl_u64(uint64x1_t a, int64x1_t b); // VSHL.U64 d0,d0,d0
+_NEON2SSE_INLINE uint64x1_t vshl_u64(uint64x1_t a, int64x1_t b) //if we use the SERIAL_SHIFT macro need to have the special processing  for large numbers
+{
+    SERIAL_SHIFT_64(64, u, 1)
+}
+
+int8x16_t vshlq_s8(int8x16_t a, int8x16_t b); // VSHL.S8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vshlq_s8(int8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(int8_t, int8_t, 16, 16)
+}
+
+int16x8_t vshlq_s16(int16x8_t a, int16x8_t b); // VSHL.S16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vshlq_s16(int16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(int16_t, int16_t, 8, 8)
+}
+
+int32x4_t vshlq_s32(int32x4_t a, int32x4_t b); // VSHL.S32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vshlq_s32(int32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(int32_t, int32_t, 4, 4)
+}
+
+int64x2_t vshlq_s64(int64x2_t a, int64x2_t b); // VSHL.S64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vshlq_s64(int64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(int64_t, int64_t, 2, 2)
+}
+
+uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b); // VSHL.U8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(uint8_t, int8_t, 16, 16)
+}
+
+uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b); // VSHL.s16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(uint16_t, int16_t, 8, 8)
+}
+
+uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b); // VSHL.U32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(uint32_t, int32_t, 4, 4)
+}
+
+uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b); // VSHL.U64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING( uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SHIFT(uint64_t, int64_t, 2, 2)
+}
+
+
+//*********** Vector saturating shift left: (negative values shift right) **********************
+//********************************************************************************************
+//No such operations in IA32 SIMD available yet, constant shift only available, so need to do the serial solution
+#define SERIAL_SATURATING_SHIFT_SIGNED(TYPE, LENMAX, LEN) \
+        _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX], btmp[LENMAX]; TYPE limit; int i; \
+        int lanesize_1 = (sizeof(TYPE) << 3) - 1; \
+        _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \
+        for (i = 0; i<LEN; i++) { \
+        if (atmp[i] ==0) res[i] = 0; \
+        else{ \
+            if(btmp[i] <0) res[i] = atmp[i] >> (-btmp[i]); \
+            else{ \
+                if (btmp[i]>lanesize_1) { \
+                    res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \
+                }else{ \
+                    limit = (TYPE)1 << (lanesize_1 - btmp[i]); \
+                    if((atmp[i] >= limit)||(atmp[i] <= -limit)) \
+                        res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \
+                    else res[i] = atmp[i] << btmp[i]; }}}} \
+        return _mm_load_si128((__m128i*)res);
+
+#define SERIAL_SATURATING_SHIFT_UNSIGNED(TYPE, LENMAX, LEN) \
+        _NEON2SSE_ALIGN_16 _UNSIGNED_T(TYPE) atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 TYPE btmp[LENMAX]; _UNSIGNED_T(TYPE) limit; int i; \
+        TYPE lanesize = (sizeof(TYPE) << 3); \
+        _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \
+        for (i = 0; i<LEN; i++) { \
+        if (atmp[i] ==0) {res[i] = 0; \
+        }else{ \
+            if(btmp[i] < 0) res[i] = atmp[i] >> (-btmp[i]); \
+            else{ \
+                if (btmp[i]>lanesize) res[i] = ~((TYPE)0); \
+                else{ \
+                    limit = (TYPE) 1 << (lanesize - btmp[i]); \
+                    res[i] = ( atmp[i] >= limit) ? res[i] = ~((TYPE)0) : atmp[i] << btmp[i]; }}}} \
+        return _mm_load_si128((__m128i*)res);
+
+#define SERIAL_SATURATING_SHIFT_SIGNED_64(TYPE, LEN) \
+        int ## TYPE ## x ## LEN ## _t res; int ## TYPE ## _t limit; int i; \
+        int lanesize_1 = (sizeof( int ## TYPE ## _t) << 3) - 1; \
+        for (i = 0; i<LEN; i++) { \
+        if (a.m64_i ## TYPE[i] ==0) res.m64_i ## TYPE[i] = 0; \
+        else{ \
+            if(b.m64_i ## TYPE[i] <0) res.m64_i ## TYPE[i] = a.m64_i ## TYPE[i] >> (-(b.m64_i ## TYPE[i])); \
+            else{ \
+                if (b.m64_i ## TYPE[i]>lanesize_1) { \
+                    res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t) 1 << lanesize_1) - 1; \
+                }else{ \
+                    limit = (int ## TYPE ## _t) 1 << (lanesize_1 - b.m64_i ## TYPE[i]); \
+                    if((a.m64_i ## TYPE[i] >= limit)||(a.m64_i ## TYPE[i] <= -limit)) \
+                        res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t) 1 << lanesize_1) - 1; \
+                    else res.m64_i ## TYPE[i] = a.m64_i ## TYPE[i] << b.m64_i ## TYPE[i]; }}}} \
+        return res;
+
+#define SERIAL_SATURATING_SHIFT_UNSIGNED_64(TYPE, LEN) \
+        int ## TYPE ## x ## LEN ## _t res;  _UNSIGNED_T(int ## TYPE ## _t) limit; int i; \
+        int ## TYPE ## _t lanesize = (sizeof(int ## TYPE ## _t) << 3); \
+        for (i = 0; i<LEN; i++) { \
+        if (a.m64_u ## TYPE[i] ==0) {res.m64_u ## TYPE[i] = 0; \
+        }else{ \
+            if(b.m64_i ## TYPE[i] < 0) res.m64_u ## TYPE[i] = a.m64_u ## TYPE[i] >> (-(b.m64_i ## TYPE[i])); \
+            else{ \
+                if (b.m64_i ## TYPE[i]>lanesize) res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0); \
+                else{ \
+                    limit = (int ## TYPE ## _t) 1 << (lanesize - b.m64_i ## TYPE[i]); \
+                    res.m64_u ## TYPE[i] = ( a.m64_u ## TYPE[i] >= limit) ? res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0) : a.m64_u ## TYPE[i] << b.m64_u ## TYPE[i]; }}}} \
+        return res;
+
+int8x8_t vqshl_s8(int8x8_t a, int8x8_t b); // VQSHL.S8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vqshl_s8(int8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED_64(8,8)
+}
+
+int16x4_t vqshl_s16(int16x4_t a, int16x4_t b); // VQSHL.S16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vqshl_s16(int16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED_64(16,4)
+}
+
+int32x2_t vqshl_s32(int32x2_t a, int32x2_t b); // VQSHL.S32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqshl_s32(int32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED_64(32,2)
+}
+
+int64x1_t vqshl_s64(int64x1_t a, int64x1_t b); // VQSHL.S64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqshl_s64(int64x1_t a, int64x1_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED_64(64,1)
+}
+
+uint8x8_t vqshl_u8(uint8x8_t a, int8x8_t b); // VQSHL.U8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vqshl_u8(uint8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED_64(8,8)
+}
+
+uint16x4_t vqshl_u16(uint16x4_t a, int16x4_t b); // VQSHL.s16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vqshl_u16(uint16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED_64(16,4)
+}
+
+uint32x2_t vqshl_u32(uint32x2_t a, int32x2_t b); // VQSHL.U32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqshl_u32(uint32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED_64(32,2)
+}
+
+uint64x1_t vqshl_u64(uint64x1_t a, int64x1_t b); // VQSHL.U64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqshl_u64(uint64x1_t a, int64x1_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED_64(64,1)
+}
+
+int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b); // VQSHL.S8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED(int8_t, 16, 16)
+}
+
+int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b); // VQSHL.S16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED(int16_t, 8, 8)
+}
+
+int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b); // VQSHL.S32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED(int32_t, 4, 4)
+}
+
+int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b); // VQSHL.S64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_SIGNED(int64_t, 2, 2)
+}
+
+uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b); // VQSHL.U8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED(int8_t, 16, 16)
+}
+
+uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b); // VQSHL.s16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED(int16_t, 8, 8)
+}
+
+uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b); // VQSHL.U32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED(int32_t, 4, 4)
+}
+
+uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b); // VQSHL.U64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_SHIFT_UNSIGNED(int64_t, 2, 2)
+}
+
+
+//******** Vector rounding shift left: (negative values shift right) **********
+//****************************************************************************
+//No such operations in IA32 SIMD available yet, constant shift only available, so need to do the serial solution
+//rounding makes sense for right shifts only.
+#define SERIAL_ROUNDING_SHIFT(TYPE, INTERNAL_TYPE, LENMAX, LEN) \
+        _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 INTERNAL_TYPE btmp[LENMAX]; INTERNAL_TYPE i, lanesize = sizeof(INTERNAL_TYPE) << 3; \
+        _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \
+        for (i = 0; i<LEN; i++) { \
+        if( btmp[i] >= 0) { \
+            if(btmp[i] >= lanesize) res[i] = 0; \
+            else res[i] = (atmp[i] << btmp[i]); \
+        }else{ \
+            res[i] = (btmp[i] < -lanesize) ? res[i] = 0 : \
+                            (btmp[i] == -lanesize) ? (atmp[i] & ((INTERNAL_TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) : \
+                            (atmp[i] >> (-btmp[i])) + ( (atmp[i] & ((INTERNAL_TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) );    }} \
+        return _mm_load_si128((__m128i*)res);
+
+
+#define SERIAL_ROUNDING_SHIFT_64(TYPE, SIGN, LEN) \
+        int ## TYPE ## x ## LEN ## _t res;  int i;  int lanesize = sizeof(int ## TYPE ## _t) << 3; \
+        for (i = 0; i<LEN; i++) { \
+        if( b.m64_i ## TYPE[i] >= 0) { \
+            if(b.m64_i ## TYPE[i] >= lanesize) res.m64_ ## SIGN ## TYPE[i] = 0; \
+            else res.m64_ ## SIGN ## TYPE[i] = (a.m64_ ## SIGN ## TYPE[i] << b.m64_i ## TYPE[i]); \
+        }else{ \
+            res.m64_ ## SIGN ## TYPE[i] = (b.m64_i ## TYPE[i] < -lanesize) ? res.m64_ ## SIGN ## TYPE[i] = 0 : \
+                            (b.m64_i ## TYPE[i] == -lanesize) ? (a.m64_ ## SIGN ## TYPE[i] & ((int ## TYPE ## _t) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) : \
+                            (a.m64_ ## SIGN ## TYPE[i] >> (-(b.m64_i ## TYPE[i]))) + ( (a.m64_ ## SIGN ## TYPE[i] & ((int ## TYPE ## _t) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) );    }} \
+        return res;
+
+
+int8x8_t vrshl_s8(int8x8_t a, int8x8_t b); // VRSHL.S8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vrshl_s8(int8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(8,i,8)
+}
+
+int16x4_t vrshl_s16(int16x4_t a, int16x4_t b); // VRSHL.S16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vrshl_s16(int16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(16,i,4)
+}
+
+int32x2_t vrshl_s32(int32x2_t a, int32x2_t b); // VRSHL.S32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vrshl_s32(int32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(32,i,2)
+}
+
+int64x1_t vrshl_s64(int64x1_t a, int64x1_t b); // VRSHL.S64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vrshl_s64(int64x1_t a, int64x1_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(64,i,1)
+}
+
+uint8x8_t vrshl_u8(uint8x8_t a, int8x8_t b); // VRSHL.U8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vrshl_u8(uint8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(8,u,8)
+}
+
+uint16x4_t vrshl_u16(uint16x4_t a, int16x4_t b); // VRSHL.s16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vrshl_u16(uint16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(16,u,4)
+}
+
+uint32x2_t vrshl_u32(uint32x2_t a, int32x2_t b); // VRSHL.U32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vrshl_u32(uint32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(32,u,2)
+}
+
+uint64x1_t vrshl_u64(uint64x1_t a, int64x1_t b); // VRSHL.U64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vrshl_u64(uint64x1_t a, int64x1_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT_64(64,u,1)
+}
+
+int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b); // VRSHL.S8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(int8_t, int8_t, 16, 16)
+}
+
+int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b); // VRSHL.S16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(int16_t, int16_t, 8, 8)
+}
+
+int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b); // VRSHL.S32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(int32_t, int32_t, 4, 4)
+}
+
+int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b); // VRSHL.S64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(int64_t, int64_t, 2, 2)
+}
+
+uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b); // VRSHL.U8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(uint8_t, int8_t, 16, 16)
+}
+
+uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b); // VRSHL.s16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(uint16_t, int16_t, 8, 8)
+}
+
+uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b); // VRSHL.U32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(uint32_t, int32_t, 4, 4)
+}
+
+uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b); // VRSHL.U64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_ROUNDING_SHIFT(uint64_t, int64_t, 2, 2)
+}
+
+
+//********** Vector saturating rounding shift left: (negative values shift right) ****************
+//*************************************************************************************************
+//No such operations in IA32 SIMD unfortunately, constant shift only available, so need to do the serial solution
+//Saturation happens for left shifts only while rounding makes sense for right shifts only.
+#define SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(TYPE, LENMAX, LEN) \
+        _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX], btmp[LENMAX]; TYPE limit; int i; \
+        int lanesize_1 = (sizeof(TYPE) << 3) - 1; \
+        _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \
+        for (i = 0; i<LEN; i++) { \
+        if (atmp[i] ==0) res[i] = 0; \
+        else{ \
+            if(btmp[i] <0) res[i] = (btmp[i] < (-lanesize_1)) ? 0 : (atmp[i] >> (-btmp[i])) + ( (atmp[i] & ((TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); \
+            else{ \
+                if (btmp[i]>lanesize_1) { \
+                    res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \
+                }else{ \
+                    limit = (TYPE)1 << (lanesize_1 - btmp[i]); \
+                    if((atmp[i] >= limit)||(atmp[i] <= -limit)) \
+                        res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \
+                    else res[i] = atmp[i] << btmp[i]; }}}} \
+        return _mm_load_si128((__m128i*)res);
+
+#define SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(TYPE, LENMAX, LEN) \
+        _NEON2SSE_ALIGN_16 _UNSIGNED_T(TYPE) atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 TYPE btmp[LENMAX]; _UNSIGNED_T(TYPE) limit; int i; \
+        int lanesize = (sizeof(TYPE) << 3); \
+        _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \
+        for (i = 0; i<LEN; i++) { \
+        if (atmp[i] ==0) {res[i] = 0; \
+        }else{ \
+            if(btmp[i] < 0) res[i] = (btmp[i] < (-lanesize)) ? 0 : (atmp[i] >> (-btmp[i])) + ( (atmp[i] & ((TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); \
+            else{ \
+                if (btmp[i]>lanesize) res[i] = ~((TYPE)0); \
+                else{ \
+                    limit = (TYPE) 1 << (lanesize - btmp[i]); \
+                    res[i] = ( atmp[i] >= limit) ? res[i] = ~((TYPE)0) : atmp[i] << btmp[i]; }}}} \
+        return _mm_load_si128((__m128i*)res);
+
+#define SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(TYPE, LEN) \
+        __m64_128 res; int ## TYPE ## _t limit; int i; \
+        int lanesize_1 = (sizeof(int ## TYPE ## _t ) << 3) - 1; \
+        for (i = 0; i<LEN; i++) { \
+        if (a.m64_i ## TYPE[i] ==0) res.m64_i ## TYPE[i] = 0; \
+        else{ \
+            if(b.m64_i ## TYPE[i] <0) res.m64_i ## TYPE[i] = (b.m64_i ## TYPE[i] < (-lanesize_1)) ? 0 : (a.m64_i ## TYPE[i] >> (-(b.m64_i ## TYPE[i]))) + ( (a.m64_i ## TYPE[i] & ((int ## TYPE ## _t ) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) ); \
+            else{ \
+                if (b.m64_i ## TYPE[i]>lanesize_1) { \
+                    res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t ))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t ) 1 << lanesize_1) - 1; \
+                }else{ \
+                    limit = (int ## TYPE ## _t ) 1 << (lanesize_1 - b.m64_i ## TYPE[i]); \
+                    if((a.m64_i ## TYPE[i] >= limit)||(a.m64_i ## TYPE[i] <= -limit)) \
+                        res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t ))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t ) 1 << lanesize_1) - 1; \
+                    else res.m64_i ## TYPE[i] = a.m64_i ## TYPE[i] << b.m64_i ## TYPE[i]; }}}} \
+        return res;
+
+#define SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(TYPE, LEN) \
+        __m64_128 res; _UNSIGNED_T(int ## TYPE ## _t) limit; int i; \
+        int lanesize = (sizeof(int ## TYPE ## _t) << 3); \
+        for (i = 0; i<LEN; i++) { \
+        if (a.m64_u ## TYPE[i] ==0) {res.m64_u ## TYPE[i] = 0; \
+        }else{ \
+            if(b.m64_i ## TYPE[i] < 0) res.m64_u ## TYPE[i] = (b.m64_i ## TYPE[i] < (-lanesize)) ? 0 : (a.m64_u ## TYPE[i] >> (-(b.m64_i ## TYPE[i]))) + ( (a.m64_u ## TYPE[i] & ((int ## TYPE ## _t) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) ); \
+            else{ \
+                if (b.m64_i ## TYPE[i]>lanesize) res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0); \
+                else{ \
+                    limit = (int ## TYPE ## _t) 1 << (lanesize - b.m64_i ## TYPE[i]); \
+                    res.m64_u ## TYPE[i] = ( a.m64_u ## TYPE[i] >= limit) ? res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0) : a.m64_u ## TYPE[i] << b.m64_i ## TYPE[i]; }}}} \
+        return res;
+
+int8x8_t vqrshl_s8(int8x8_t a, int8x8_t b); // VQRSHL.S8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vqrshl_s8(int8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(8,8)
+}
+
+int16x4_t vqrshl_s16(int16x4_t a, int16x4_t b); // VQRSHL.S16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vqrshl_s16(int16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(16,4)
+}
+
+int32x2_t vqrshl_s32(int32x2_t a, int32x2_t b); // VQRSHL.S32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrshl_s32(int32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(32,2)
+}
+
+int64x1_t vqrshl_s64(int64x1_t a, int64x1_t b); // VQRSHL.S64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqrshl_s64(int64x1_t a, int64x1_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(64,1)
+}
+
+uint8x8_t vqrshl_u8(uint8x8_t a, int8x8_t b); // VQRSHL.U8 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vqrshl_u8(uint8x8_t a, int8x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(8,8)
+}
+
+uint16x4_t vqrshl_u16(uint16x4_t a, int16x4_t b); // VQRSHL.s16 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vqrshl_u16(uint16x4_t a, int16x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(16,4)
+}
+
+uint32x2_t vqrshl_u32(uint32x2_t a, int32x2_t b); // VQRSHL.U32 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqrshl_u32(uint32x2_t a, int32x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(32,2)
+}
+
+uint64x1_t vqrshl_u64(uint64x1_t a, int64x1_t b); // VQRSHL.U64 d0,d0,d0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqrshl_u64(uint64x1_t a, int64x1_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(64,1)
+}
+
+int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b); // VQRSHL.S8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int8_t, 16, 16)
+}
+
+int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b); // VQRSHL.S16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int16_t, 8, 8)
+}
+
+int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b); // VQRSHL.S32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int32_t, 4, 4)
+}
+
+int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b); // VQRSHL.S64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int64_t, 2, 2)
+}
+
+uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b); // VQRSHL.U8 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int8_t, 16, 16)
+}
+
+uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b); // VQRSHL.s16 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int16_t, 8, 8)
+}
+
+uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b); // VQRSHL.U32 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int32_t, 4, 4)
+}
+
+uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b); // VQRSHL.U64 q0,q0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int64_t, 2, 2)
+}
+
+// *********************************************************************************
+// *****************************  Shifts by a constant *****************************
+// *********************************************************************************
+//**************** Vector shift right by constant*************************************
+//************************************************************************************
+int8x8_t vshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VSHR.S8 d0,d0,#8
+_NEON2SSE_INLINE int8x8_t vshr_n_s8(int8x8_t a, __constrange(1,8) int b) // VSHR.S8 d0,d0,#8
+{
+    //no 8 bit shift available, go to 16 bit
+    int8x8_t res64;
+    __m128i r;
+    r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1
+    r = _mm_srai_epi16 (r, b); //SSE2
+    r = _mm_packs_epi16 (r,r); //we need 64 bits only
+    return64(r);
+}
+
+int16x4_t vshr_n_s16(int16x4_t a,  __constrange(1,16) int b); // VSHR.S16 d0,d0,#16
+_NEON2SSE_INLINE int16x4_t vshr_n_s16(int16x4_t a,  __constrange(1,16) int b)
+{
+    int16x4_t res64;
+    return64(_mm_srai_epi16(_pM128i(a), b));
+}
+
+
+int32x2_t vshr_n_s32(int32x2_t a,  __constrange(1,32) int b); // VSHR.S32 d0,d0,#32
+_NEON2SSE_INLINE int32x2_t vshr_n_s32(int32x2_t a,  __constrange(1,32) int b)
+{
+    int32x2_t res64;
+    return64(_mm_srai_epi32(_pM128i(a), b));
+}
+
+int64x1_t vshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VSHR.S64 d0,d0,#64
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vshr_n_s64(int64x1_t a, __constrange(1,64) int b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //no arithmetic shift for 64bit values, serial solution used
+    int64x1_t res;
+    if(b>=64) res.m64_i64[0] = 0;
+    else res.m64_i64[0] = (*(int64_t*)&a) >> b;
+    return res;
+}
+
+uint8x8_t vshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VSHR.U8 d0,d0,#8
+_NEON2SSE_INLINE uint8x8_t vshr_n_u8(uint8x8_t a, __constrange(1,8) int b) // VSHR.U8 d0,d0,#8
+{
+    //no 8 bit shift available, go to 16 bit
+    uint8x8_t res64;
+    __m128i r;
+    r = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1
+    r = _mm_srli_epi16 (r, b); //for unsigned variables we use the logical shift not arithmetical one
+    r = _mm_packus_epi16 (r,r); //we need 64 bits only
+    return64(r);
+}
+
+uint16x4_t vshr_n_u16(uint16x4_t a,  __constrange(1,16) int b); // VSHR.s16 d0,d0,#16
+_NEON2SSE_INLINE uint16x4_t vshr_n_u16(uint16x4_t a,  __constrange(1,16) int b)
+{
+    uint16x4_t res64;
+    return64(_mm_srli_epi16(_pM128i(a), b));
+}
+
+
+uint32x2_t vshr_n_u32(uint32x2_t a,  __constrange(1,32) int b); // VSHR.U32 d0,d0,#32
+_NEON2SSE_INLINE uint32x2_t vshr_n_u32(uint32x2_t a,  __constrange(1,32) int b)
+{
+    uint32x2_t res64;
+    return64(_mm_srli_epi32(_pM128i(a), b));
+}
+
+
+uint64x1_t vshr_n_u64(uint64x1_t a,  __constrange(1,64) int b); // VSHR.U64 d0,d0,#64
+_NEON2SSE_INLINE uint64x1_t vshr_n_u64(uint64x1_t a,  __constrange(1,64) int b)
+{
+    uint64x1_t res64;
+    return64(_mm_srli_epi64(_pM128i(a), b));
+}
+
+
+int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VSHR.S8 q0,q0,#8
+_NEON2SSE_INLINE int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b) // VSHR.S8 q0,q0,#8
+{
+    //no 8 bit shift available, go to 16 bit trick
+    __m128i zero, mask0, a_sign, r, a_sign_mask;
+    _NEON2SSE_ALIGN_16 int16_t mask0_16[9] = {0x0000, 0x0080, 0x00c0, 0x00e0, 0x00f0,  0x00f8, 0x00fc, 0x00fe, 0x00ff};
+    zero = _mm_setzero_si128();
+    mask0 = _mm_set1_epi16(mask0_16[b]); //to mask the bits to be "spoiled"  by 16 bit shift
+    a_sign =  _mm_cmpgt_epi8 (zero, a); //ff if a<0 or zero if a>0
+    r = _mm_srai_epi16 (a, b);
+    a_sign_mask =  _mm_and_si128 (mask0, a_sign);
+    r =  _mm_andnot_si128 (mask0, r);
+    return _mm_or_si128 (r, a_sign_mask);
+}
+
+int16x8_t vshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VSHR.S16 q0,q0,#16
+#define vshrq_n_s16 _mm_srai_epi16
+
+int32x4_t vshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VSHR.S32 q0,q0,#32
+#define vshrq_n_s32 _mm_srai_epi32
+
+int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VSHR.S64 q0,q0,#64
+_NEON2SSE_INLINE int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b)
+{
+    //SIMD implementation may be not optimal due to 64 bit arithmetic shift absense in x86 SIMD
+    __m128i c1, signmask,a0,  res64;
+    _NEON2SSE_ALIGN_16 uint64_t mask[] = {0x8000000000000000, 0x8000000000000000};
+    c1 =  _mm_cmpeq_epi32(a,a); //0xffffffffffffffff
+    signmask  =  _mm_slli_epi64 (c1, (64 - b));
+    a0 = _mm_or_si128(a, *(__m128i*)mask); //get the first bit
+    a0 = _MM_CMPEQ_EPI64 (a, a0);
+    signmask = _mm_and_si128(a0, signmask);
+    res64 = _mm_srli_epi64 (a, b);
+    return _mm_or_si128(res64, signmask);
+}
+
+uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VSHR.U8 q0,q0,#8
+_NEON2SSE_INLINE uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b) // VSHR.U8 q0,q0,#8
+{
+    //no 8 bit shift available, need the special trick
+    __m128i mask0, r;
+    _NEON2SSE_ALIGN_16 uint16_t mask10_16[9] = {0xffff, 0xff7f, 0xff3f, 0xff1f, 0xff0f,  0xff07, 0xff03, 0xff01, 0xff00};
+    mask0 = _mm_set1_epi16(mask10_16[b]); //to mask the bits to be "spoiled"  by 16 bit shift
+    r = _mm_srli_epi16 ( a, b);
+    return _mm_and_si128 (r,  mask0);
+}
+
+uint16x8_t vshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VSHR.s16 q0,q0,#16
+#define vshrq_n_u16 _mm_srli_epi16
+
+uint32x4_t vshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VSHR.U32 q0,q0,#32
+#define vshrq_n_u32 _mm_srli_epi32
+
+uint64x2_t vshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VSHR.U64 q0,q0,#64
+#define vshrq_n_u64 _mm_srli_epi64
+
+//*************************** Vector shift left by constant *************************
+//*********************************************************************************
+int8x8_t vshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0
+_NEON2SSE_INLINE int8x8_t vshl_n_s8(int8x8_t a, __constrange(0,7) int b) // VSHL.I8 d0,d0,#0
+{
+    //no 8 bit shift available, go to 16 bit
+    int8x8_t res64;
+    __m128i r;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1
+    r = _mm_slli_epi16 (r, b); //SSE2
+    r = _mm_shuffle_epi8 (r, *(__m128i*) mask8_16_even_odd); //return to 8 bit, we need 64 bits only
+    return64(r);
+}
+
+int16x4_t vshl_n_s16(int16x4_t a,  __constrange(0,15) int b); // VSHL.I16 d0,d0,#0
+_NEON2SSE_INLINE int16x4_t vshl_n_s16(int16x4_t a,  __constrange(0,15) int b)
+{
+    int16x4_t res64;
+    return64(_mm_slli_epi16(_pM128i(a), b));
+}
+
+
+int32x2_t vshl_n_s32(int32x2_t a,  __constrange(0,31) int b); // VSHL.I32 d0,d0,#0
+_NEON2SSE_INLINE int32x2_t vshl_n_s32(int32x2_t a,  __constrange(0,31) int b)
+{
+    int32x2_t res64;
+    return64(_mm_slli_epi32(_pM128i(a), b));
+}
+
+
+int64x1_t vshl_n_s64(int64x1_t a,  __constrange(0,63) int b); // VSHL.I64 d0,d0,#0
+_NEON2SSE_INLINE int64x1_t vshl_n_s64(int64x1_t a,  __constrange(0,63) int b)
+{
+    int64x1_t res64;
+    return64(_mm_slli_epi64(_pM128i(a), b));
+}
+
+
+uint8x8_t vshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0
+_NEON2SSE_INLINE uint8x8_t vshl_n_u8(uint8x8_t a, __constrange(0,7) int b)
+{
+    //no 8 bit shift available, go to 16 bit
+    uint8x8_t res64;
+    __m128i mask8;
+    __m128i r;
+    mask8 = _mm_set1_epi16(0xff);
+    r = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1
+    r = _mm_slli_epi16 (r, b); //SSE2
+    r = _mm_and_si128(r, mask8); //to avoid saturation
+    r = _mm_packus_epi16 (r,r); //we need 64 bits only
+    return64(r);
+}
+
+uint16x4_t vshl_n_u16(uint16x4_t a,  __constrange(0,15) int b); // VSHL.I16 d0,d0,#0
+#define vshl_n_u16 vshl_n_s16
+
+
+uint32x2_t vshl_n_u32(uint32x2_t a,  __constrange(0,31) int b); // VSHL.I32 d0,d0,#0
+#define vshl_n_u32 vshl_n_s32
+
+uint64x1_t vshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VSHL.I64 d0,d0,#0
+#define vshl_n_u64 vshl_n_s64
+
+int8x16_t vshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0
+#define vshlq_n_s8 vshlq_n_u8
+
+int16x8_t vshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0
+#define vshlq_n_s16 _mm_slli_epi16
+
+int32x4_t vshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0
+#define vshlq_n_s32 _mm_slli_epi32
+
+int64x2_t vshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0
+#define vshlq_n_s64 _mm_slli_epi64
+
+uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0
+_NEON2SSE_INLINE uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b)
+{
+    //no 8 bit shift available, need the special trick
+    __m128i mask0, r;
+    _NEON2SSE_ALIGN_16 uint16_t mask10_16[9] = {0xffff, 0xfeff, 0xfcff, 0xf8ff, 0xf0ff,  0xe0ff, 0xc0ff, 0x80ff, 0xff};
+    mask0 = _mm_set1_epi16(mask10_16[b]); //to mask the bits to be "spoiled"  by 16 bit shift
+    r = _mm_slli_epi16 ( a, b);
+    return _mm_and_si128 (r,  mask0);
+}
+
+uint16x8_t vshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0
+#define vshlq_n_u16 vshlq_n_s16
+
+uint32x4_t vshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0
+#define vshlq_n_u32 vshlq_n_s32
+
+uint64x2_t vshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0
+#define vshlq_n_u64 vshlq_n_s64
+
+//************* Vector rounding shift right by constant ******************
+//*************************************************************************
+//No corresponding  x86 intrinsics exist, need to do some tricks
+int8x8_t vrshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VRSHR.S8 d0,d0,#8
+_NEON2SSE_INLINE int8x8_t vrshr_n_s8(int8x8_t a, __constrange(1,8) int b) // VRSHR.S8 d0,d0,#8
+{
+    //no 8 bit shift available, go to 16 bit
+    int8x8_t res64;
+    __m128i r, maskb;
+    r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1
+    maskb =  _mm_slli_epi16 (r, (16 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi16 (maskb, 15); //1 or 0
+    r = _mm_srai_epi16 (r, b);
+    r = _mm_add_epi16 (r, maskb); //actual rounding
+    r = _mm_packs_epi16 (r,r); ////we need 64 bits only
+    return64(r);
+}
+
+int16x4_t vrshr_n_s16(int16x4_t a,  __constrange(1,16) int b); // VRSHR.S16 d0,d0,#16
+_NEON2SSE_INLINE int16x4_t vrshr_n_s16(int16x4_t a,  __constrange(1,16) int b)
+{
+    int16x4_t res64;
+    return64(vrshrq_n_s16(_pM128i(a), b));
+}
+
+
+int32x2_t vrshr_n_s32(int32x2_t a,  __constrange(1,32) int b); // VRSHR.S32 d0,d0,#32
+_NEON2SSE_INLINE int32x2_t vrshr_n_s32(int32x2_t a,  __constrange(1,32) int b)
+{
+    int32x2_t res64;
+    return64(vrshrq_n_s32(_pM128i(a), b));
+}
+
+
+int64x1_t vrshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VRSHR.S64 d0,d0,#64
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vrshr_n_s64(int64x1_t a, __constrange(1,64) int b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    //serial solution is faster
+    int64x1_t res;
+    int64_t a_i64 = *( int64_t*)&a;
+    if(b==64) {
+        res.m64_i64[0] = 0; //for some compilers rounding happens and we need to use(a_i64 & _SIGNBIT64)>>63;
+    } else {
+        int64_t maskb = a_i64 & (( int64_t)1 << (b - 1));
+        res.m64_i64[0] = (a_i64 >> b) + (maskb >> (b - 1));
+    }
+    return res;
+}
+
+uint8x8_t vrshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VRSHR.U8 d0,d0,#8
+_NEON2SSE_INLINE uint8x8_t vrshr_n_u8(uint8x8_t a, __constrange(1,8) int b) // VRSHR.U8 d0,d0,#8
+{
+    //no 8 bit shift available, go to 16 bit, solution may be not optimal compared with the serial one
+    uint8x8_t res64;
+    __m128i r, maskb;
+    r = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1
+    maskb =  _mm_slli_epi16 (r, (16 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi16 (maskb, 15); //1 or 0
+    r = _mm_srli_epi16 (r, b);
+    r = _mm_add_epi16 (r, maskb); //actual rounding
+    r =  _mm_packus_epi16 (r,r); ////we need 64 bits only
+    return64(r);
+}
+
+uint16x4_t vrshr_n_u16(uint16x4_t a,  __constrange(1,16) int b); // VRSHR.s16 d0,d0,#16
+_NEON2SSE_INLINE uint16x4_t vrshr_n_u16(uint16x4_t a,  __constrange(1,16) int b)
+{
+    uint16x4_t res64;
+    return64(vrshrq_n_u16(_pM128i(a), b));
+}
+
+
+uint32x2_t vrshr_n_u32(uint32x2_t a,  __constrange(1,32) int b); // VRSHR.U32 d0,d0,#32
+_NEON2SSE_INLINE uint32x2_t vrshr_n_u32(uint32x2_t a,  __constrange(1,32) int b)
+{
+    uint32x2_t res64;
+    return64(vrshrq_n_u32(_pM128i(a), b));
+}
+
+
+uint64x1_t vrshr_n_u64(uint64x1_t a, __constrange(1,64) int b); // VRSHR.U64 d0,d0,#64
+_NEON2SSE_INLINE uint64x1_t vrshr_n_u64(uint64x1_t a, __constrange(1,64) int b)
+{
+    uint64x1_t res64;
+    return64(vrshrq_n_u64(_pM128i(a), b));
+}
+
+int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VRSHR.S8 q0,q0,#8
+_NEON2SSE_INLINE int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b) // VRSHR.S8 q0,q0,#8
+{
+    //no 8 bit shift available, go to 16 bit trick
+    __m128i r, mask1, maskb;
+    _NEON2SSE_ALIGN_16 uint16_t mask2b[9] = {0x0000, 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080}; // 2^b-th bit set to 1
+    r = vshrq_n_s8 (a, b);
+    mask1 = _mm_set1_epi16(mask2b[b]); // 2^b-th bit set to 1 for 16bit, need it for rounding
+    maskb = _mm_and_si128(a, mask1); //get b or 0 for rounding
+    maskb =  _mm_srli_epi16 (maskb, b - 1); // to add 1
+    return _mm_add_epi8(r, maskb); //actual rounding
+}
+
+int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VRSHR.S16 q0,q0,#16
+_NEON2SSE_INLINE int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b) // VRSHR.S16 q0,q0,#16
+{
+    __m128i maskb, r;
+    maskb =  _mm_slli_epi16(a, (16 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi16(maskb, 15); //1 or 0
+    r = _mm_srai_epi16 (a, b);
+    return _mm_add_epi16 (r, maskb); //actual rounding
+}
+
+int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VRSHR.S32 q0,q0,#32
+_NEON2SSE_INLINE int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b) // VRSHR.S32 q0,q0,#32
+{
+    __m128i maskb,  r;
+    maskb = _mm_slli_epi32 (a, (32 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi32 (maskb,31); //1 or 0
+    r = _mm_srai_epi32(a, b);
+    return _mm_add_epi32 (r, maskb); //actual rounding
+}
+
+int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VRSHR.S64 q0,q0,#64
+_NEON2SSE_INLINE int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b)
+{
+    //solution may be not optimal compared with a serial one
+    __m128i maskb;
+    int64x2_t r;
+    maskb = _mm_slli_epi64 (a, (64 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi64 (maskb,63); //1 or 0
+    r = vshrq_n_s64(a, b);
+    return _mm_add_epi64 (r, maskb); //actual rounding
+}
+
+uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VRSHR.U8 q0,q0,#8
+_NEON2SSE_INLINE uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b) // VRSHR.U8 q0,q0,#8
+{
+    //no 8 bit shift available, go to 16 bit trick
+    __m128i r, mask1, maskb;
+    _NEON2SSE_ALIGN_16 uint16_t mask2b[9] = {0x0000, 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080}; // 2^b-th bit set to 1
+    r = vshrq_n_u8 (a, b);
+    mask1 = _mm_set1_epi16(mask2b[b]); // 2^b-th bit set to 1 for 16bit, need it for rounding
+    maskb = _mm_and_si128(a, mask1); //get b or 0 for rounding
+    maskb =  _mm_srli_epi16 (maskb, b - 1); // to add 1
+    return _mm_add_epi8(r, maskb); //actual rounding
+}
+
+uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VRSHR.s16 q0,q0,#16
+_NEON2SSE_INLINE uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b) // VRSHR.S16 q0,q0,#16
+{
+    __m128i maskb, r;
+    maskb =  _mm_slli_epi16(a, (16 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi16(maskb, 15); //1 or 0
+    r = _mm_srli_epi16 (a, b);
+    return _mm_add_epi16 (r, maskb); //actual rounding
+}
+
+uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VRSHR.U32 q0,q0,#32
+_NEON2SSE_INLINE uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b) // VRSHR.S32 q0,q0,#32
+{
+    __m128i maskb,  r;
+    maskb = _mm_slli_epi32 (a, (32 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi32 (maskb,31); //1 or 0
+    r = _mm_srli_epi32(a, b);
+    return _mm_add_epi32 (r, maskb); //actual rounding
+}
+
+uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VRSHR.U64 q0,q0,#64
+_NEON2SSE_INLINE uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b)
+{
+    //solution may be not optimal compared with a serial one
+    __m128i maskb,  r;
+    maskb = _mm_slli_epi64 (a, (64 - b)); //to get rounding (b-1)th bit
+    maskb = _mm_srli_epi64 (maskb,63); //1 or 0
+    r = _mm_srli_epi64(a, b);
+    return _mm_add_epi64 (r, maskb); //actual rounding
+}
+
+//************* Vector shift right by constant and accumulate *********
+//*********************************************************************
+int8x8_t vsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VSRA.S8 d0,d0,#8
+_NEON2SSE_INLINE int8x8_t vsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c) // VSRA.S8 d0,d0,#8
+{
+    int8x8_t shift;
+    shift = vshr_n_s8(b, c);
+    return vadd_s8( a, shift);
+}
+
+int16x4_t vsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VSRA.S16 d0,d0,#16
+_NEON2SSE_INLINE int16x4_t vsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c) // VSRA.S16 d0,d0,#16
+{
+    int16x4_t shift;
+    shift = vshr_n_s16( b, c);
+    return vadd_s16(a, shift);
+}
+
+int32x2_t vsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VSRA.S32 d0,d0,#32
+_NEON2SSE_INLINE int32x2_t vsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c) // VSRA.S32 d0,d0,#32
+{
+    //may be not optimal compared with the serial execution
+    int32x2_t shift;
+    shift = vshr_n_s32(b, c);
+    return vadd_s32( a, shift);
+}
+
+int64x1_t vsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRA.S64 d0,d0,#64
+_NEON2SSE_INLINE int64x1_t vsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c)
+{
+    //may be not optimal compared with a serial solution
+    int64x1_t shift;
+    shift = vshr_n_s64(b, c);
+    return vadd_s64( a, shift);
+}
+
+uint8x8_t vsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VSRA.U8 d0,d0,#8
+_NEON2SSE_INLINE uint8x8_t vsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c) // VSRA.U8 d0,d0,#8
+{
+    uint8x8_t shift;
+    shift = vshr_n_u8(b, c);
+    return vadd_u8(a, shift);
+}
+
+uint16x4_t vsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VSRA.s16 d0,d0,#16
+_NEON2SSE_INLINE uint16x4_t vsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c) // VSRA.s16 d0,d0,#16
+{
+    uint16x4_t shift;
+    shift = vshr_n_u16(b, c);
+    return vadd_u16(a,shift);
+}
+
+uint32x2_t vsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VSRA.U32 d0,d0,#32
+_NEON2SSE_INLINE uint32x2_t vsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c) // VSRA.U32 d0,d0,#32
+{
+    //may be not optimal compared with the serial execution
+    uint32x2_t shift;
+    shift = vshr_n_u32(b, c);
+    return vadd_u32( a, shift);
+}
+
+uint64x1_t vsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRA.U64 d0,d0,#64
+_NEON2SSE_INLINE uint64x1_t vsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c) // VSRA.U64 d0,d0,#64
+{
+    //may be not optimal compared with the serial execution
+    uint64x1_t shift;
+    shift = vshr_n_u64(b, c);
+    return vadd_u64(a, shift);
+}
+
+int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRA.S8 q0,q0,#8
+_NEON2SSE_INLINE int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VSRA.S8 q0,q0,#8
+{
+    int8x16_t shift;
+    shift = vshrq_n_s8(b, c);
+    return vaddq_s8(a, shift);
+}
+
+int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRA.S16 q0,q0,#16
+_NEON2SSE_INLINE int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VSRA.S16 q0,q0,#16
+{
+    int16x8_t shift;
+    shift = vshrq_n_s16(b, c);
+    return vaddq_s16(a, shift);
+}
+
+int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRA.S32 q0,q0,#32
+_NEON2SSE_INLINE int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VSRA.S32 q0,q0,#32
+{
+    int32x4_t shift;
+    shift = vshrq_n_s32(b, c);
+    return vaddq_s32(a, shift);
+}
+
+int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRA.S64 q0,q0,#64
+_NEON2SSE_INLINE int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c) // VSRA.S64 q0,q0,#64
+{
+    int64x2_t shift;
+    shift = vshrq_n_s64(b, c);
+    return vaddq_s64( a, shift);
+}
+
+uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRA.U8 q0,q0,#8
+_NEON2SSE_INLINE uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c) // VSRA.U8 q0,q0,#8
+{
+    uint8x16_t shift;
+    shift = vshrq_n_u8(b, c);
+    return vaddq_u8(a, shift);
+}
+
+uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRA.s16 q0,q0,#16
+_NEON2SSE_INLINE uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c) // VSRA.s16 q0,q0,#16
+{
+    uint16x8_t shift;
+    shift = vshrq_n_u16(b, c);
+    return vaddq_u16(a,  shift);
+}
+
+uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRA.U32 q0,q0,#32
+_NEON2SSE_INLINE uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c) // VSRA.U32 q0,q0,#32
+{
+    uint32x4_t shift;
+    shift = vshrq_n_u32(b, c);
+    return vaddq_u32(a, shift);
+}
+
+uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRA.U64 q0,q0,#64
+_NEON2SSE_INLINE uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c) // VSRA.U64 q0,q0,#64
+{
+    uint64x2_t shift;
+    shift = vshrq_n_u64(b, c);
+    return vaddq_u64(a, shift);
+}
+
+//************* Vector rounding shift right by constant and accumulate ****************************
+//************************************************************************************************
+int8x8_t vrsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VRSRA.S8 d0,d0,#8
+_NEON2SSE_INLINE int8x8_t vrsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c) // VRSRA.S8 d0,d0,#8
+{
+    int8x8_t shift;
+    shift = vrshr_n_s8(b, c);
+    return vadd_s8( a, shift);
+}
+
+int16x4_t vrsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VRSRA.S16 d0,d0,#16
+_NEON2SSE_INLINE int16x4_t vrsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c) // VRSRA.S16 d0,d0,#16
+{
+    int16x4_t shift;
+    shift = vrshr_n_s16( b, c);
+    return vadd_s16(a, shift);
+}
+
+int32x2_t vrsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VRSRA.S32 d0,d0,#32
+_NEON2SSE_INLINE int32x2_t vrsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c) // VRSRA.S32 d0,d0,#32
+{
+    //may be not optimal compared with the serial execution
+    int32x2_t shift;
+    shift = vrshr_n_s32(b, c);
+    return vadd_s32( a, shift);
+}
+
+int64x1_t vrsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VRSRA.S64 d0,d0,#64
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vrsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution
+{
+    int64x1_t shift;
+    shift = vrshr_n_s64(b, c);
+    return vadd_s64( a, shift);
+}
+
+uint8x8_t vrsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VRSRA.U8 d0,d0,#8
+_NEON2SSE_INLINE uint8x8_t vrsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c) // VRSRA.U8 d0,d0,#8
+{
+    uint8x8_t shift;
+    shift = vrshr_n_u8(b, c);
+    return vadd_u8(a, shift);
+}
+
+uint16x4_t vrsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VRSRA.s16 d0,d0,#16
+_NEON2SSE_INLINE uint16x4_t vrsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c) // VRSRA.s16 d0,d0,#16
+{
+    uint16x4_t shift;
+    shift = vrshr_n_u16(b, c);
+    return vadd_u16(a,shift);
+}
+
+uint32x2_t vrsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VRSRA.U32 d0,d0,#32
+_NEON2SSE_INLINE uint32x2_t vrsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c) // VRSRA.U32 d0,d0,#32
+{
+    //may be not optimal compared with the serial execution
+    uint32x2_t shift;
+    shift = vrshr_n_u32(b, c);
+    return vadd_u32( a, shift);
+}
+
+uint64x1_t vrsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VRSRA.U64 d0,d0,#64
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vrsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution
+{
+    //may be not optimal compared with the serial execution
+    uint64x1_t shift;
+    shift = vrshr_n_u64(b, c);
+    return vadd_u64( a, shift);
+}
+
+int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VRSRA.S8 q0,q0,#8
+_NEON2SSE_INLINE int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VRSRA.S8 q0,q0,#8
+{
+    int8x16_t shift;
+    shift = vrshrq_n_s8(b, c);
+    return vaddq_s8(a, shift);
+}
+
+int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VRSRA.S16 q0,q0,#16
+_NEON2SSE_INLINE int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VRSRA.S16 q0,q0,#16
+{
+    int16x8_t shift;
+    shift = vrshrq_n_s16(b, c);
+    return vaddq_s16(a, shift);
+}
+
+int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VRSRA.S32 q0,q0,#32
+_NEON2SSE_INLINE int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VRSRA.S32 q0,q0,#32
+{
+    int32x4_t shift;
+    shift = vrshrq_n_s32(b, c);
+    return vaddq_s32(a, shift);
+}
+
+int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VRSRA.S64 q0,q0,#64
+_NEON2SSE_INLINE int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c)
+{
+    int64x2_t shift;
+    shift = vrshrq_n_s64(b, c);
+    return vaddq_s64(a, shift);
+}
+
+uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VRSRA.U8 q0,q0,#8
+_NEON2SSE_INLINE uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c) // VRSRA.U8 q0,q0,#8
+{
+    uint8x16_t shift;
+    shift = vrshrq_n_u8(b, c);
+    return vaddq_u8(a, shift);
+}
+
+uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VRSRA.s16 q0,q0,#16
+_NEON2SSE_INLINE uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c) // VRSRA.s16 q0,q0,#16
+{
+    uint16x8_t shift;
+    shift = vrshrq_n_u16(b, c);
+    return vaddq_u16(a,  shift);
+}
+
+uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VRSRA.U32 q0,q0,#32
+_NEON2SSE_INLINE uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c) // VRSRA.U32 q0,q0,#32
+{
+    uint32x4_t shift;
+    shift = vrshrq_n_u32(b, c);
+    return vaddq_u32(a, shift);
+}
+
+uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VRSRA.U64 q0,q0,#64
+_NEON2SSE_INLINE uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c)
+{
+    uint64x2_t shift;
+    shift = vrshrq_n_u64(b, c);
+    return vaddq_u64(a, shift);
+}
+
+//**********************Vector saturating shift left by constant *****************************
+//********************************************************************************************
+//we don't check const ranges  assuming they are met
+int8x8_t vqshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHL.S8 d0,d0,#0
+_NEON2SSE_INLINE int8x8_t vqshl_n_s8(int8x8_t a, __constrange(0,7) int b) // VQSHL.S8 d0,d0,#0
+{
+    //no 8 bit shift available in IA32 SIMD, go to 16 bit. It also provides the auto saturation (in packs function)
+    int8x8_t res64;
+    __m128i a128, r128;
+    a128 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1
+    r128 = _mm_slli_epi16 (a128, b);
+    r128 = _mm_packs_epi16 (r128,r128); //saturated s8, use 64 low bits only
+    return64(r128);
+}
+
+int16x4_t vqshl_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHL.S16 d0,d0,#0
+_NEON2SSE_INLINE int16x4_t vqshl_n_s16(int16x4_t a, __constrange(0,15) int b) // VQSHL.S16 d0,d0,#0
+{
+    // go to 32 bit to get the auto saturation (in packs function)
+    int16x4_t res64;
+    __m128i a128, r128;
+    a128 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE 4.1
+    r128 = _mm_slli_epi32 (a128, b); //shift_res
+    r128 = _mm_packs_epi32 (r128,r128); //saturated s16, use 64 low bits only
+    return64(r128);
+}
+
+int32x2_t vqshl_n_s32(int32x2_t a,  __constrange(0,31) int b); // VQSHL.S32 d0,d0,#0
+_NEON2SSE_INLINE int32x2_t vqshl_n_s32(int32x2_t a,  __constrange(0,31) int b)
+{
+    //serial execution may be faster
+    int32x2_t res64;
+    return64(vqshlq_n_s32 (_pM128i(a), b));
+}
+
+
+int64x1_t vqshl_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHL.S64 d0,d0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqshl_n_s64(int64x1_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    // no effective SIMD solution here
+    int64x1_t res;
+    int64_t bmask;
+    int64_t a_i64 = *( int64_t*)&a;
+    bmask = ( int64_t)1 << (63 - b); //positive
+    if (a_i64 >= bmask) {
+        res.m64_i64[0] = ~(_SIGNBIT64);
+    } else {
+        res.m64_i64[0]  = (a_i64 <= -bmask) ? _SIGNBIT64 : a_i64 << b;
+    }
+    return res;
+}
+
+
+uint8x8_t vqshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VQSHL.U8 d0,d0,#0
+_NEON2SSE_INLINE uint8x8_t vqshl_n_u8(uint8x8_t a, __constrange(0,7) int b) // VQSHL.U8 d0,d0,#0
+{
+    //no 8 bit shift available in IA32 SIMD, go to 16 bit
+    uint8x8_t res64;
+    __m128i a128, r128;
+    a128 = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1
+    r128 = _mm_slli_epi16 (a128, b); //shift_res
+    r128 = _mm_packus_epi16 (r128,r128); //saturated u8, use 64 low bits only
+    return64(r128);
+}
+
+uint16x4_t vqshl_n_u16(uint16x4_t a, __constrange(0,15) int b); // VQSHL.s16 d0,d0,#0
+_NEON2SSE_INLINE uint16x4_t vqshl_n_u16(uint16x4_t a, __constrange(0,15) int b) // VQSHL.s16 d0,d0,#0
+{
+    // go to 32 bit to get the auto saturation (in packus function)
+    uint16x4_t res64;
+    __m128i a128, r128;
+    a128 = _MM_CVTEPU16_EPI32 (_pM128i(a)); //SSE 4.1
+    r128 = _mm_slli_epi32 (a128, b); //shift_res
+    r128 = _MM_PACKUS1_EPI32 (r128); //saturated s16
+    return64(r128);
+}
+
+uint32x2_t vqshl_n_u32(uint32x2_t a,  __constrange(0,31) int b); // VQSHL.U32 d0,d0,#0
+_NEON2SSE_INLINE uint32x2_t vqshl_n_u32(uint32x2_t a,  __constrange(0,31) int b)
+{
+    uint32x2_t res64;
+    return64(vqshlq_n_u32(_pM128i(a), b));
+}
+
+uint64x1_t vqshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VQSHL.U64 d0,d0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqshl_n_u64(uint64x1_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    // no effective SIMD solution here
+    uint64x1_t res;
+    uint64_t bmask;
+    uint64_t a_i64 = *(uint64_t*)&a;
+    bmask = ( uint64_t)1 << (64 - b);
+    res.m64_u64[0] = (a_i64 >= bmask)&&(b>0) ? 0xffffffffffffffff : a_i64 << b; //if b=0 we are fine with any a
+    return res;
+}
+
+int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHL.S8 q0,q0,#0
+_NEON2SSE_INLINE int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b) // VQSHL.S8 q0,q0,#0
+{
+    // go to 16 bit to get the auto saturation (in packs function)
+    __m128i a128, r128_1, r128_2;
+    a128 = _MM_CVTEPI8_EPI16 (a); //SSE 4.1
+    r128_1 = _mm_slli_epi16 (a128, b);
+    //swap hi and low part of a128 to process the remaining data
+    a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    a128 = _MM_CVTEPI8_EPI16 (a128);
+    r128_2 = _mm_slli_epi16 (a128, b);
+    return _mm_packs_epi16 (r128_1, r128_2); //saturated s8
+}
+
+int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHL.S16 q0,q0,#0
+_NEON2SSE_INLINE int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b) // VQSHL.S16 q0,q0,#0
+{
+    // manual saturation solution looks LESS optimal than 32 bits conversion one
+    // go to 32 bit to get the auto saturation (in packs function)
+    __m128i a128, r128_1, r128_2;
+    a128 = _MM_CVTEPI16_EPI32 (a); //SSE 4.1
+    r128_1 = _mm_slli_epi32 (a128, b); //shift_res
+    //swap hi and low part of a128 to process the remaining data
+    a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    a128 = _MM_CVTEPI16_EPI32 (a128);
+    r128_2 = _mm_slli_epi32 (a128, b);
+    return _mm_packs_epi32 (r128_1, r128_2); //saturated s16
+}
+
+int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHL.S32 q0,q0,#0
+_NEON2SSE_INLINE int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b) // VQSHL.S32 q0,q0,#0
+{
+    // no 64 bit saturation option available, special tricks necessary
+    __m128i c1, maskA, saturation_mask, c7ffffff_mask, shift_res, shift_res_mask;
+    c1 = _mm_cmpeq_epi32(a,a); //0xff..ff
+    maskA = _mm_srli_epi32(c1, b + 1); //mask for positive numbers (32-b+1) zeros and b-1 ones
+    saturation_mask = _mm_cmpgt_epi32 (a, maskA); //0xff...ff if we need saturation, 0  otherwise
+    c7ffffff_mask  = _mm_srli_epi32(saturation_mask, 1); //saturated to 0x7f..ff when needed and zeros if not
+    shift_res = _mm_slli_epi32 (a, b);
+    shift_res_mask = _mm_andnot_si128(saturation_mask, shift_res);
+    //result with positive numbers saturated
+    shift_res = _mm_or_si128 (c7ffffff_mask, shift_res_mask);
+    //treat negative numbers
+    maskA = _mm_slli_epi32(c1, 31 - b); //mask for negative numbers b-1 ones  and (32-b+1)  zeros
+    saturation_mask = _mm_cmpgt_epi32 (maskA,a); //0xff...ff if we need saturation, 0  otherwise
+    c7ffffff_mask  = _mm_slli_epi32(saturation_mask, 31); //saturated to 0x80..00 when needed and zeros if not
+    shift_res_mask = _mm_andnot_si128(saturation_mask, shift_res);
+    return _mm_or_si128 (c7ffffff_mask, shift_res_mask);
+}
+
+int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHL.S64 q0,q0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    // no effective SIMD solution here
+    _NEON2SSE_ALIGN_16 int64_t atmp[2], res[2];
+    int64_t bmask;
+    int i;
+    bmask = ( int64_t)1 << (63 - b); //positive
+    _mm_store_si128((__m128i*)atmp, a);
+    for (i = 0; i<2; i++) {
+        if (atmp[i] >= bmask) {
+            res[i] = ~(_SIGNBIT64);
+        } else {
+            res[i] = (atmp[i] <= -bmask) ? _SIGNBIT64 : atmp[i] << b;
+        }
+    }
+    return _mm_load_si128((__m128i*)res);
+}
+
+uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VQSHL.U8 q0,q0,#0
+_NEON2SSE_INLINE uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b) // VQSHL.U8 q0,q0,#0
+{
+    // go to 16 bit to get the auto saturation (in packs function)
+    __m128i a128, r128_1, r128_2;
+    a128 = _MM_CVTEPU8_EPI16 (a); //SSE 4.1
+    r128_1 = _mm_slli_epi16 (a128, b);
+    //swap hi and low part of a128 to process the remaining data
+    a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    a128 = _MM_CVTEPU8_EPI16 (a128);
+    r128_2 = _mm_slli_epi16 (a128, b);
+    return _mm_packus_epi16 (r128_1, r128_2); //saturated u8
+}
+
+uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VQSHL.s16 q0,q0,#0
+_NEON2SSE_INLINE uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b) // VQSHL.s16 q0,q0,#0
+{
+    // manual saturation solution looks more optimal than 32 bits conversion one
+    __m128i cb, c8000, a_signed, saturation_mask,  shift_res;
+    cb = _mm_set1_epi16((1 << (16 - b)) - 1 - 0x8000 );
+    c8000 = _mm_set1_epi16 (0x8000);
+//no unsigned shorts comparison in SSE, only signed available, so need the trick
+    a_signed = _mm_sub_epi16(a, c8000); //go to signed
+    saturation_mask = _mm_cmpgt_epi16 (a_signed, cb);
+    shift_res = _mm_slli_epi16 (a, b);
+    return _mm_or_si128 (shift_res, saturation_mask);
+}
+
+uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VQSHL.U32 q0,q0,#0
+_NEON2SSE_INLINE uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b) // VQSHL.U32 q0,q0,#0
+{
+    // manual saturation solution, no 64 bit saturation option, the serial version may be faster
+    __m128i cb, c80000000, a_signed, saturation_mask,  shift_res;
+    cb = _mm_set1_epi32((1 << (32 - b)) - 1 - 0x80000000 );
+    c80000000 = _mm_set1_epi32 (0x80000000);
+//no unsigned ints comparison in SSE, only signed available, so need the trick
+    a_signed = _mm_sub_epi32(a, c80000000); //go to signed
+    saturation_mask = _mm_cmpgt_epi32 (a_signed, cb);
+    shift_res = _mm_slli_epi32 (a, b);
+    return _mm_or_si128 (shift_res, saturation_mask);
+}
+
+uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VQSHL.U64 q0,q0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    // no effective SIMD solution here
+    _NEON2SSE_ALIGN_16 uint64_t atmp[2], res[2];
+    uint64_t bmask;
+    int i;
+    bmask = ( uint64_t)1 << (64 - b);
+    _mm_store_si128((__m128i*)atmp, a);
+    for (i = 0; i<2; i++) {
+        res[i] = (atmp[i] >= bmask)&&(b>0) ? 0xffffffffffffffff : atmp[i] << b; //if b=0 we are fine with any a
+    }
+    return _mm_load_si128((__m128i*)res);
+}
+
+//**************Vector signed->unsigned saturating shift left by constant *************
+//*************************************************************************************
+uint8x8_t vqshlu_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHLU.S8 d0,d0,#0
+_NEON2SSE_INLINE uint8x8_t vqshlu_n_s8(int8x8_t a, __constrange(0,7) int b) // VQSHLU.S8 d0,d0,#0
+{
+    //no 8 bit shift available in IA32 SIMD, go to 16 bit. It also provides the auto saturation (in packs function)
+    uint8x8_t res64;
+    __m128i a128, r128;
+    a128 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1
+    r128 = _mm_slli_epi16 (a128, b);
+    r128 = _mm_packus_epi16 (r128,r128); //saturated u8, use 64 low bits only
+    return64(r128);
+}
+
+uint16x4_t vqshlu_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHLU.S16 d0,d0,#0
+_NEON2SSE_INLINE uint16x4_t vqshlu_n_s16(int16x4_t a, __constrange(0,15) int b) // VQSHLU.S16 d0,d0,#0
+{
+    uint16x4_t res64;
+    __m128i a128, r128;
+    a128 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE 4.1
+    r128 = _mm_slli_epi32 (a128, b); //shift_res
+    r128 = _MM_PACKUS1_EPI32 (r128); //saturated s16, use 64 low bits only
+    return64(r128);
+}
+
+uint32x2_t vqshlu_n_s32(int32x2_t a,  __constrange(0,31) int b); // VQSHLU.S32 d0,d0,#0
+_NEON2SSE_INLINE int32x2_t vqshlu_n_s32(int32x2_t a,  __constrange(0,31) int b)
+{
+    int32x2_t res64;
+    return64( vqshluq_n_s32(_pM128i(a), b));
+}
+
+uint64x1_t vqshlu_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHLU.S64 d0,d0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqshlu_n_s64(int64x1_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) // no effective SIMD solution here, serial execution looks faster
+{
+    uint64x1_t res;
+    uint64_t limit;
+    if (a.m64_i64[0]<=0) {
+        res.m64_u64[0] = 0;
+    } else {
+        limit = (uint64_t) 1 << (64 - b);
+        res.m64_u64[0] = ( ((uint64_t)a.m64_i64[0]) >= limit) ? res.m64_u64[0] = ~((uint64_t)0) : a.m64_i64[0] << b;
+    }
+    return res;
+}
+
+uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHLU.S8 q0,q0,#0
+_NEON2SSE_INLINE uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b) // VQSHLU.S8 q0,q0,#0
+{
+    __m128i a128, r128_1, r128_2;
+    a128 = _MM_CVTEPI8_EPI16 (a); //SSE 4.1
+    r128_1 = _mm_slli_epi16 (a128, b);
+    //swap hi and low part of a128 to process the remaining data
+    a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    a128 = _MM_CVTEPI8_EPI16 (a128);
+    r128_2 = _mm_slli_epi16 (a128, b);
+    return _mm_packus_epi16 (r128_1, r128_2); //saturated u8
+}
+
+uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHLU.S16 q0,q0,#0
+_NEON2SSE_INLINE uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b) // VQSHLU.S16 q0,q0,#0
+{
+    // manual saturation solution looks LESS optimal than 32 bits conversion one
+    __m128i a128, r128_1, r128_2;
+    a128 = _MM_CVTEPI16_EPI32 (a); //SSE 4.1
+    r128_1 = _mm_slli_epi32 (a128, b); //shift_res
+    //swap hi and low part of a128 to process the remaining data
+    a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32);
+    a128 = _MM_CVTEPI16_EPI32 (a128);
+    r128_2 = _mm_slli_epi32 (a128, b);
+    return _MM_PACKUS_EPI32 (r128_1, r128_2); //saturated s16
+}
+
+uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHLU.S32 q0,q0,#0
+_NEON2SSE_INLINE uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b) // VQSHLU.S32 q0,q0,#0
+{
+    //solution may be  not optimal compared with the serial one
+    __m128i zero, maskA, maskGT0, a0,  a_masked, a_shift;
+    zero = _mm_setzero_si128();
+    maskA = _mm_cmpeq_epi32(a, a);
+    maskA = _mm_slli_epi32(maskA,(32 - b)); // b ones and (32-b)zeros
+    //saturate negative numbers to zero
+    maskGT0   = _mm_cmpgt_epi32 (a, zero); // //0xffffffff if positive number and zero otherwise (negative numbers)
+    a0 = _mm_and_si128 (a,  maskGT0); //negative are zeros now
+    //saturate positive to 0xffffffff
+    a_masked = _mm_and_si128 (a0, maskA);
+    a_masked = _mm_cmpgt_epi32 (a_masked, zero); //0xffffffff if saturation necessary 0 otherwise
+    a_shift = _mm_slli_epi32 (a0, b);
+    return _mm_or_si128 (a_shift, a_masked); //actual saturation
+}
+
+uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHLU.S64 q0,q0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    // no effective SIMD solution here, serial execution looks faster
+    _NEON2SSE_ALIGN_16 int64_t atmp[2];
+    _NEON2SSE_ALIGN_16 uint64_t res[2];
+    uint64_t limit;
+    int i;
+    _mm_store_si128((__m128i*)atmp, a);
+    for (i = 0; i<2; i++) {
+        if (atmp[i]<=0) {
+            res[i] = 0;
+        } else {
+            limit = (uint64_t) 1 << (64 - b);
+            res[i] = ( ((uint64_t)atmp[i]) >= limit) ? res[i] = ~((uint64_t)0) : atmp[i] << b;
+        }
+    }
+    return _mm_load_si128((__m128i*)res);
+}
+
+//************** Vector narrowing  shift right by constant **************
+//**********************************************************************
+int8x8_t vshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8
+_NEON2SSE_INLINE int8x8_t vshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VSHRN.I16 d0,q0,#8
+{
+    int8x8_t res64;
+    __m128i r16;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    r16  = vshrq_n_s16(a,b);
+    r16  = _mm_shuffle_epi8 (r16, *(__m128i*) mask8_16_even_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems
+    return64(r16);
+}
+
+int16x4_t vshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16
+_NEON2SSE_INLINE int16x4_t vshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VSHRN.I32 d0,q0,#16
+{
+    int16x4_t res64;
+    __m128i r32;
+    _NEON2SSE_ALIGN_16 int8_t mask16_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    r32  = vshrq_n_s32(a,b);
+    r32  =  _mm_shuffle_epi8 (r32, *(__m128i*) mask16_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems
+    return64(r32);
+}
+
+int32x2_t vshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32
+_NEON2SSE_INLINE int32x2_t vshrn_n_s64(int64x2_t a, __constrange(1,32) int b)
+{
+    int32x2_t res64;
+    __m128i r64;
+    r64  = vshrq_n_s64(a,b);
+    r64  = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(r64);
+}
+
+uint8x8_t vshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8
+_NEON2SSE_INLINE uint8x8_t vshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VSHRN.I16 d0,q0,#8
+{
+    uint8x8_t res64;
+    __m128i mask, r16;
+    mask = _mm_set1_epi16(0xff);
+    r16  = vshrq_n_s16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8)
+    r16 = _mm_and_si128(r16, mask); //to avoid saturation
+    r16 = _mm_packus_epi16 (r16,r16); //narrow, use low 64 bits only
+    return64(r16);
+}
+
+uint16x4_t vshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16
+_NEON2SSE_INLINE uint16x4_t vshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VSHRN.I32 d0,q0,#16
+{
+    uint16x4_t res64;
+    __m128i mask, r32;
+    mask = _mm_set1_epi32(0xffff);
+    r32  = vshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 16)
+    r32 = _mm_and_si128(r32, mask); //to avoid saturation
+    r32 =  _MM_PACKUS1_EPI32 (r32); //saturate and  narrow, use low 64 bits only
+    return64(r32);
+}
+
+uint32x2_t vshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32
+_NEON2SSE_INLINE uint32x2_t vshrn_n_u64(uint64x2_t a, __constrange(1,32) int b)
+{
+    uint32x2_t res64;
+    __m128i r64;
+    r64  = vshrq_n_u64(a,b);
+    r64  = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(r64);
+}
+
+//************** Vector signed->unsigned narrowing saturating shift right by constant ********
+//*********************************************************************************************
+uint8x8_t vqshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRUN.S16 d0,q0,#8
+_NEON2SSE_INLINE uint8x8_t vqshrun_n_s16(int16x8_t a, __constrange(1,8) int b) // VQSHRUN.S16 d0,q0,#8
+{
+    uint8x8_t res64;
+    __m128i r16;
+    r16  = vshrq_n_s16(a,b);
+    r16 = _mm_packus_epi16 (r16,r16); //saturate and  narrow (signed to unsigned), use low 64 bits only
+    return64(r16);
+}
+
+uint16x4_t vqshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRUN.S32 d0,q0,#16
+_NEON2SSE_INLINE uint16x4_t vqshrun_n_s32(int32x4_t a, __constrange(1,16) int b) // VQSHRUN.S32 d0,q0,#16
+{
+    uint16x4_t res64;
+    __m128i r32;
+    r32  = vshrq_n_s32(a,b);
+    r32  = _MM_PACKUS1_EPI32 (r32); //saturate and  narrow(signed to unsigned), use low 64 bits only
+    return64(r32);
+}
+
+uint32x2_t vqshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRUN.S64 d0,q0,#32
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqshrun_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution is faster
+{
+    _NEON2SSE_ALIGN_16 int64_t atmp[2];
+    uint32x2_t res;
+    int64_t res64;
+    _mm_store_si128((__m128i*)atmp, a);
+    if (atmp[0] < 0) {
+        res.m64_u32[0] = 0;
+    } else {
+        res64 = (atmp[0] >> b);
+        res.m64_u32[0] = (res64 > (int64_t)0xffffffff) ? 0xffffffff : (uint32_t) res64;
+    }
+    if (atmp[1] < 0) {
+        res.m64_u32[1] = 0;
+    } else {
+        res64 = (atmp[1] >> b);
+        res.m64_u32[1] = (res64 > (int64_t)0xffffffff) ? 0xffffffff : (uint32_t)res64;
+    }
+    return res;
+}
+
+//**** Vector signed->unsigned rounding narrowing saturating shift right by constant *****
+uint8x8_t vqrshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRUN.S16 d0,q0,#8
+_NEON2SSE_INLINE uint8x8_t vqrshrun_n_s16(int16x8_t a, __constrange(1,8) int b) // VQRSHRUN.S16 d0,q0,#8
+{
+    //solution may be not optimal compared with the serial one
+    __m128i r16;
+    uint8x8_t res64;
+    r16 = vrshrq_n_s16(a,b);
+    r16 =  _mm_packus_epi16 (r16,r16); //saturate and  narrow (signed to unsigned), use low 64 bits only
+    return64(r16);
+}
+
+uint16x4_t vqrshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRUN.S32 d0,q0,#16
+_NEON2SSE_INLINE uint16x4_t vqrshrun_n_s32(int32x4_t a, __constrange(1,16) int b) // VQRSHRUN.S32 d0,q0,#16
+{
+    //solution may be not optimal compared with the serial one
+    __m128i r32;
+    uint16x4_t res64;
+    r32 = vrshrq_n_s32(a,b);
+    r32 =  _MM_PACKUS1_EPI32 (r32); //saturate and  narrow (signed to unsigned), use low 64 bits only
+    return64(r32);
+}
+
+uint32x2_t vqrshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRUN.S64 d0,q0,#32
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqrshrun_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution is faster
+{
+    _NEON2SSE_ALIGN_16 int64_t atmp[2];
+    uint32x2_t res;
+    int64_t res64;
+    _mm_store_si128((__m128i*)atmp, a);
+    if (atmp[0] < 0) {
+        res.m64_u32[0] = 0;
+    } else {
+        res64 = (atmp[0] >> b) + ( (atmp[0] & ((int64_t)1 << (b - 1))) >> (b - 1)  );
+        res.m64_u32[0] = (res64 > (int64_t)0xffffffff ) ? 0xffffffff : res64;
+    }
+    if (atmp[1] < 0) {
+        res.m64_u32[1] = 0;
+    } else {
+        res64 = (atmp[1] >> b) + ( (atmp[0] & ((int64_t)1 << (b - 1))) >> (b - 1)  );
+        res.m64_u32[1] = (res64 > (int64_t)0xffffffff ) ? 0xffffffff : res64;
+    }
+    return res;
+}
+
+//***** Vector narrowing saturating shift right by constant ******
+//*****************************************************************
+int8x8_t vqshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRN.S16 d0,q0,#8
+_NEON2SSE_INLINE int8x8_t vqshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VQSHRN.S16 d0,q0,#8
+{
+    int8x8_t res64;
+    __m128i r16;
+    r16  = vshrq_n_s16(a,b);
+    r16  = _mm_packs_epi16 (r16,r16); //saturate and  narrow, use low 64 bits only
+    return64(r16);
+}
+
+int16x4_t vqshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRN.S32 d0,q0,#16
+_NEON2SSE_INLINE int16x4_t vqshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VQSHRN.S32 d0,q0,#16
+{
+    int16x4_t res64;
+    __m128i r32;
+    r32  = vshrq_n_s32(a,b);
+    r32  = _mm_packs_epi32 (r32,r32); //saturate and  narrow, use low 64 bits only
+    return64(r32);
+}
+
+int32x2_t vqshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRN.S64 d0,q0,#32
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqshrn_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    //no optimal SIMD solution found
+    _NEON2SSE_ALIGN_16 int64_t res64[2], atmp[2];
+    int32x2_t res;
+    _mm_store_si128((__m128i*)atmp, a);
+    res64[0] = (atmp[0] >> b);
+    res64[1] = (atmp[1] >> b);
+    if(res64[0]>SINT_MAX) res64[0] = SINT_MAX;
+    if(res64[0]<SINT_MIN) res64[0] = SINT_MIN;
+    if(res64[1]>SINT_MAX) res64[1] = SINT_MAX;
+    if(res64[1]<SINT_MIN) res64[1] = SINT_MIN;
+    res.m64_i32[0] = (int32_t)res64[0];
+    res.m64_i32[1] = (int32_t)res64[1];
+    return res;
+}
+
+uint8x8_t vqshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQSHRN.s16 d0,q0,#8
+_NEON2SSE_INLINE uint8x8_t vqshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VQSHRN.s16 d0,q0,#8
+{
+    uint8x8_t res64;
+    __m128i r16;
+    r16  = vshrq_n_u16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8)
+    r16  = _mm_packus_epi16 (r16,r16); //saturate and  narrow, use low 64 bits only
+    return64(r16);
+}
+
+uint16x4_t vqshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQSHRN.U32 d0,q0,#16
+_NEON2SSE_INLINE uint16x4_t vqshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VQSHRN.U32 d0,q0,#16
+{
+    uint16x4_t res64;
+    __m128i r32;
+    r32  = vshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 8)
+    r32  = _MM_PACKUS1_EPI32 (r32); //saturate and  narrow, use low 64 bits only
+    return64(r32);
+}
+
+uint32x2_t vqshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQSHRN.U64 d0,q0,#32
+_NEON2SSE_INLINE uint32x2_t vqshrn_n_u64(uint64x2_t a, __constrange(1,32) int b)
+{
+    //serial solution may be faster
+    uint32x2_t res64;
+    __m128i r64, res_hi, zero;
+    zero = _mm_setzero_si128();
+    r64  = vshrq_n_u64(a,b);
+    res_hi = _mm_srli_epi64(r64,  32);
+    res_hi = _mm_cmpgt_epi32(res_hi, zero);
+    r64 = _mm_or_si128(r64, res_hi);
+    r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(r64);
+}
+
+
+//********* Vector rounding narrowing shift right by constant *************************
+//****************************************************************************************
+int8x8_t vrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8
+_NEON2SSE_INLINE int8x8_t vrshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VRSHRN.I16 d0,q0,#8
+{
+    int8x8_t res64;
+    __m128i r16;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    r16  = vrshrq_n_s16(a,b);
+    r16  = _mm_shuffle_epi8 (r16, *(__m128i*) mask8_16_even_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems
+    return64(r16);
+}
+
+int16x4_t vrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16
+_NEON2SSE_INLINE int16x4_t vrshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VRSHRN.I32 d0,q0,#16
+{
+    int16x4_t res64;
+    __m128i r32;
+    _NEON2SSE_ALIGN_16 int8_t mask16_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    r32  = vrshrq_n_s32(a,b);
+    r32  =  _mm_shuffle_epi8 (r32, *(__m128i*) mask16_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems
+    return64(r32);
+}
+
+int32x2_t vrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32
+_NEON2SSE_INLINE int32x2_t vrshrn_n_s64(int64x2_t a, __constrange(1,32) int b)
+{
+    int32x2_t res64;
+    __m128i r64;
+    r64  = vrshrq_n_s64(a,b);
+    r64  = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(r64);
+}
+
+uint8x8_t vrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8
+_NEON2SSE_INLINE uint8x8_t vrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VRSHRN.I16 d0,q0,#8
+{
+    uint8x8_t res64;
+    __m128i mask, r16;
+    mask = _mm_set1_epi16(0xff);
+    r16  = vrshrq_n_s16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8)
+    r16 = _mm_and_si128(r16, mask); //to avoid saturation
+    r16 = _mm_packus_epi16 (r16,r16); //saturate and  narrow, use low 64 bits only
+    return64(r16);
+}
+
+uint16x4_t vrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16
+_NEON2SSE_INLINE uint16x4_t vrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VRSHRN.I32 d0,q0,#16
+{
+    uint16x4_t res64;
+    __m128i mask, r32;
+    mask = _mm_set1_epi32(0xffff);
+    r32  = vrshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 8)
+    r32 = _mm_and_si128(r32, mask); //to avoid saturation
+    r32 = _MM_PACKUS1_EPI32 (r32); //saturate and  narrow, use low 64 bits only
+    return64(r32);
+}
+
+uint32x2_t vrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32
+_NEON2SSE_INLINE uint32x2_t vrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b) //serial solution may be faster
+{
+    uint32x2_t res64;
+    __m128i r64;
+    r64  = vrshrq_n_u64(a,b);
+    r64  =  _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(r64);
+}
+
+//************* Vector rounding narrowing saturating shift right by constant ************
+//****************************************************************************************
+int8x8_t vqrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRN.S16 d0,q0,#8
+_NEON2SSE_INLINE int8x8_t vqrshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VQRSHRN.S16 d0,q0,#8
+{
+    int8x8_t res64;
+    __m128i r16;
+    r16  = vrshrq_n_s16(a,b);
+    r16  =  _mm_packs_epi16 (r16,r16); //saturate and  narrow, use low 64 bits only
+    return64(r16);
+}
+
+int16x4_t vqrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRN.S32 d0,q0,#16
+_NEON2SSE_INLINE int16x4_t vqrshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VQRSHRN.S32 d0,q0,#16
+{
+    int16x4_t res64;
+    __m128i r32;
+    r32  = vrshrq_n_s32(a,b);
+    r32  = _mm_packs_epi32 (r32,r32); //saturate and  narrow, use low 64 bits only
+    return64(r32);
+}
+
+int32x2_t vqrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRN.S64 d0,q0,#32
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrshrn_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    //no optimal SIMD solution found
+    _NEON2SSE_ALIGN_16 int64_t res64[2], atmp[2], maskb[2];
+    int32x2_t res;
+    _mm_store_si128((__m128i*)atmp, a);
+    maskb[0] = atmp[0] & (( int64_t)1 << (b - 1));
+    res64[0] = (atmp[0] >> b) + (maskb[0] >> (b - 1)); //rounded result
+    maskb[1] = atmp[1] & (( int64_t)1 << (b - 1));
+    res64[1] = (atmp[1] >> b) + (maskb[1] >> (b - 1)); //rounded result
+    if(res64[0]>SINT_MAX) res64[0] = SINT_MAX;
+    if(res64[0]<SINT_MIN) res64[0] = SINT_MIN;
+    if(res64[1]>SINT_MAX) res64[1] = SINT_MAX;
+    if(res64[1]<SINT_MIN) res64[1] = SINT_MIN;
+    res.m64_i32[0] = (int32_t)res64[0];
+    res.m64_i32[1] = (int32_t)res64[1];
+    return res;
+}
+
+uint8x8_t vqrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQRSHRN.s16 d0,q0,#8
+_NEON2SSE_INLINE uint8x8_t vqrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VQRSHRN.s16 d0,q0,#8
+{
+    uint8x8_t res64;
+    __m128i r16;
+    r16  = vrshrq_n_u16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8)
+    r16  = _mm_packus_epi16 (r16,r16); //saturate and  narrow, use low 64 bits only
+    return64(r16);
+}
+
+uint16x4_t vqrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQRSHRN.U32 d0,q0,#16
+_NEON2SSE_INLINE uint16x4_t vqrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VQRSHRN.U32 d0,q0,#16
+{
+    uint16x4_t res64;
+    __m128i r32;
+    r32  = vrshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 8)
+    r32  = _MM_PACKUS1_EPI32 (r32); //saturate and  narrow, use low 64 bits only
+    return64(r32);
+}
+
+uint32x2_t vqrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQRSHRN.U64 d0,q0,#32
+_NEON2SSE_INLINE uint32x2_t vqrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b)
+{
+    //serial solution may be faster
+    uint32x2_t res64;
+    __m128i r64, res_hi, zero;
+    zero = _mm_setzero_si128();
+    r64  = vrshrq_n_u64(a,b);
+    res_hi = _mm_srli_epi64(r64,  32);
+    res_hi = _mm_cmpgt_epi32(res_hi, zero);
+    r64 = _mm_or_si128(r64, res_hi);
+    r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(r64);
+}
+
+//************** Vector widening shift left by constant ****************
+//************************************************************************
+int16x8_t vshll_n_s8(int8x8_t a, __constrange(0,8) int b); // VSHLL.S8 q0,d0,#0
+_NEON2SSE_INLINE int16x8_t vshll_n_s8(int8x8_t a, __constrange(0,8) int b) // VSHLL.S8 q0,d0,#0
+{
+    __m128i r;
+    r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1
+    return _mm_slli_epi16 (r, b);
+}
+
+int32x4_t vshll_n_s16(int16x4_t a, __constrange(0,16) int b); // VSHLL.S16 q0,d0,#0
+_NEON2SSE_INLINE int32x4_t vshll_n_s16(int16x4_t a, __constrange(0,16) int b) // VSHLL.S16 q0,d0,#0
+{
+    __m128i r;
+    r =  _MM_CVTEPI16_EPI32(_pM128i(a)); //SSE4.1,
+    return _mm_slli_epi32 (r, b);
+}
+
+int64x2_t vshll_n_s32(int32x2_t a, __constrange(0,32) int b); // VSHLL.S32 q0,d0,#0
+_NEON2SSE_INLINE int64x2_t vshll_n_s32(int32x2_t a, __constrange(0,32) int b) // VSHLL.S32 q0,d0,#0
+{
+    __m128i r;
+    r =  _MM_CVTEPI32_EPI64(_pM128i(a)); //SSE4.1,
+    return _mm_slli_epi64 (r, b);
+}
+
+uint16x8_t vshll_n_u8(uint8x8_t a, __constrange(0,8) int b); // VSHLL.U8 q0,d0,#0
+_NEON2SSE_INLINE uint16x8_t vshll_n_u8(uint8x8_t a, __constrange(0,8) int b) // VSHLL.U8 q0,d0,#0
+{
+    //no uint8 to uint16 conversion available, manual conversion used
+    __m128i zero,  r;
+    zero = _mm_setzero_si128 ();
+    r = _mm_unpacklo_epi8(_pM128i(a), zero);
+    return _mm_slli_epi16 (r, b);
+}
+
+uint32x4_t vshll_n_u16(uint16x4_t a, __constrange(0,16) int b); // VSHLL.s16 q0,d0,#0
+_NEON2SSE_INLINE uint32x4_t vshll_n_u16(uint16x4_t a, __constrange(0,16) int b) // VSHLL.s16 q0,d0,#0
+{
+    //no uint16 to uint32 conversion available, manual conversion used
+    __m128i zero,  r;
+    zero = _mm_setzero_si128 ();
+    r = _mm_unpacklo_epi16(_pM128i(a), zero);
+    return _mm_slli_epi32 (r, b);
+}
+
+uint64x2_t vshll_n_u32(uint32x2_t a, __constrange(0,32) int b); // VSHLL.U32 q0,d0,#0
+_NEON2SSE_INLINE uint64x2_t vshll_n_u32(uint32x2_t a, __constrange(0,32) int b) // VSHLL.U32 q0,d0,#0
+{
+    //no uint32 to uint64 conversion available, manual conversion used
+    __m128i zero,  r;
+    zero = _mm_setzero_si128 ();
+    r = _mm_unpacklo_epi32(_pM128i(a), zero);
+    return _mm_slli_epi64 (r, b);
+}
+
+//************************************************************************************
+//**************************** Shifts with insert ************************************
+//************************************************************************************
+//takes each element in a vector,  shifts them by an immediate value,
+//and inserts the results in the destination vector. Bits shifted out of the each element are lost.
+
+//**************** Vector shift right and insert ************************************
+//Actually the "c" left bits from "a" are the only bits remained from "a"  after the shift.
+//All other bits are taken from b shifted.
+int8x8_t vsri_n_s8(int8x8_t a,  int8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8
+_NEON2SSE_INLINE int8x8_t vsri_n_s8(int8x8_t a,  int8x8_t b, __constrange(1,8) int c)
+{
+    int8x8_t res64;
+    return64(vsriq_n_s8(_pM128i(a),_pM128i(b), c));
+}
+
+
+int16x4_t vsri_n_s16(int16x4_t a,  int16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16
+_NEON2SSE_INLINE int16x4_t vsri_n_s16(int16x4_t a,  int16x4_t b, __constrange(1,16) int c)
+{
+    int16x4_t res64;
+    return64(vsriq_n_s16(_pM128i(a),_pM128i(b), c));
+}
+
+
+int32x2_t vsri_n_s32(int32x2_t a,  int32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32
+_NEON2SSE_INLINE int32x2_t vsri_n_s32(int32x2_t a,  int32x2_t b, __constrange(1,32) int c)
+{
+    int32x2_t res64;
+    return64(vsriq_n_s32(_pM128i(a),_pM128i(b), c));
+}
+
+
+int64x1_t vsri_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64
+_NEON2SSE_INLINE int64x1_t vsri_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c)
+{
+    int64x1_t res;
+    if (c ==64)
+        res = a;
+    else{
+        res.m64_i64[0] = (b.m64_u64[0] >> c) | ((a.m64_i64[0] >> (64 - c)) << (64 - c)); //treat b as unsigned for shift to get leading zeros
+    }
+    return res;
+}
+
+uint8x8_t vsri_n_u8(uint8x8_t a,  uint8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8
+#define vsri_n_u8 vsri_n_s8
+
+uint16x4_t vsri_n_u16(uint16x4_t a,  uint16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16
+#define vsri_n_u16 vsri_n_s16
+
+uint32x2_t vsri_n_u32(uint32x2_t a,  uint32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32
+#define vsri_n_u32 vsri_n_s32
+
+
+uint64x1_t vsri_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64
+#define vsri_n_u64 vsri_n_s64
+
+poly8x8_t vsri_n_p8(poly8x8_t a, poly8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8
+#define vsri_n_p8 vsri_n_u8
+
+poly16x4_t vsri_n_p16(poly16x4_t a, poly16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16
+#define vsri_n_p16 vsri_n_u16
+
+int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8
+_NEON2SSE_INLINE int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VSRI.8 q0,q0,#8
+{
+    __m128i maskA, a_masked;
+    uint8x16_t b_shift;
+    _NEON2SSE_ALIGN_16 uint8_t maskLeft[9] = {0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; //"a" bits mask, 0 bit not used
+    maskA = _mm_set1_epi8(maskLeft[c]); // c ones and (8-c)zeros
+    a_masked = _mm_and_si128 (a, maskA);
+    b_shift = vshrq_n_u8( b, c); // c zeros on the left in b due to logical shift
+    return _mm_or_si128 (a_masked, b_shift); //combine (insert b into a)
+}
+
+int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16
+_NEON2SSE_INLINE int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VSRI.16 q0,q0,#16
+{
+    //to cut "c" left bits from a we do shift right and then  shift back left providing c right zeros in a
+    uint16x8_t b_shift;
+    uint16x8_t a_c;
+    b_shift = vshrq_n_u16( b, c); // c zeros on the left in b due to logical shift
+    a_c = vshrq_n_u16( a, (16 - c));
+    a_c  = _mm_slli_epi16(a_c, (16 - c)); //logical shift provides right "c" bits zeros in a
+    return _mm_or_si128 (a_c, b_shift); //combine (insert b into a)
+}
+
+int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32
+_NEON2SSE_INLINE int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VSRI.32 q0,q0,#32
+{
+    //to cut "c" left bits from a we do shift right and then  shift back left providing c right zeros in a
+    uint32x4_t b_shift;
+    uint32x4_t a_c;
+    b_shift = vshrq_n_u32( b, c); // c zeros on the left in b due to logical shift
+    a_c = vshrq_n_u32( a, (32 - c));
+    a_c  = _mm_slli_epi32(a_c, (32 - c)); //logical shift provides right "c" bits zeros in a
+    return _mm_or_si128 (a_c, b_shift); //combine (insert b into a)
+}
+
+int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64
+_NEON2SSE_INLINE int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c)
+{
+    //serial solution may be faster
+    uint64x2_t b_shift;
+    uint64x2_t a_c;
+    b_shift = _mm_srli_epi64(b, c); // c zeros on the left in b due to logical shift
+    a_c = _mm_srli_epi64(a, (64 - c));
+    a_c  = _mm_slli_epi64(a_c, (64 - c)); //logical shift provides right "c" bits zeros in a
+    return _mm_or_si128 (a_c, b_shift); //combine (insert b into a)
+}
+
+uint8x16_t vsriq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8
+#define vsriq_n_u8 vsriq_n_s8
+
+uint16x8_t vsriq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16
+#define vsriq_n_u16 vsriq_n_s16
+
+uint32x4_t vsriq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32
+#define vsriq_n_u32 vsriq_n_s32
+
+uint64x2_t vsriq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64
+#define vsriq_n_u64 vsriq_n_s64
+
+poly8x16_t vsriq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8
+#define vsriq_n_p8 vsriq_n_u8
+
+poly16x8_t vsriq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16
+#define vsriq_n_p16 vsriq_n_u16
+
+//***** Vector shift left and insert *********************************************
+//*********************************************************************************
+//Actually the "c" right bits from "a" are the only bits remained from "a"  after the shift.
+//All other bits are taken from b shifted. Ending zeros are inserted in b in the shift proces. We need to combine "a" and "b shifted".
+int8x8_t vsli_n_s8(int8x8_t a,  int8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0
+_NEON2SSE_INLINE int8x8_t vsli_n_s8(int8x8_t a,  int8x8_t b, __constrange(0,7) int c)
+{
+    int8x8_t res64;
+    return64(vsliq_n_s8(_pM128i(a),_pM128i(b), c));
+}
+
+
+int16x4_t vsli_n_s16(int16x4_t a,  int16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0
+_NEON2SSE_INLINE int16x4_t vsli_n_s16(int16x4_t a,  int16x4_t b, __constrange(0,15) int c)
+{
+    int16x4_t res64;
+    return64(vsliq_n_s16(_pM128i(a),_pM128i(b), c));
+}
+
+
+int32x2_t vsli_n_s32(int32x2_t a,  int32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0
+_NEON2SSE_INLINE int32x2_t vsli_n_s32(int32x2_t a,  int32x2_t b, __constrange(0,31) int c)
+{
+    int32x2_t res64;
+    return64(vsliq_n_s32(_pM128i(a),_pM128i(b), c));
+}
+
+int64x1_t vsli_n_s64(int64x1_t a, int64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0
+_NEON2SSE_INLINE int64x1_t vsli_n_s64(int64x1_t a, int64x1_t b, __constrange(0,63) int c)
+{
+    int64x1_t res;
+    res.m64_i64[0] = (b.m64_i64[0] << c) | ((a.m64_u64[0] << (64 - c)) >> (64 - c)); //need to treat a as unsigned to get leading zeros
+    return res;
+}
+
+
+uint8x8_t vsli_n_u8(uint8x8_t a,  uint8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0
+#define vsli_n_u8 vsli_n_s8
+
+uint16x4_t vsli_n_u16(uint16x4_t a,  uint16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0
+#define vsli_n_u16 vsli_n_s16
+
+uint32x2_t vsli_n_u32(uint32x2_t a,  uint32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0
+#define vsli_n_u32 vsli_n_s32
+
+uint64x1_t vsli_n_u64(uint64x1_t a, uint64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0
+#define vsli_n_u64 vsli_n_s64
+
+poly8x8_t vsli_n_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0
+#define vsli_n_p8 vsli_n_u8
+
+poly16x4_t vsli_n_p16(poly16x4_t a, poly16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0
+#define vsli_n_p16 vsli_n_u16
+
+int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0
+_NEON2SSE_INLINE int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c) // VSLI.8 q0,q0,#0
+{
+    __m128i maskA, a_masked;
+    int8x16_t b_shift;
+    _NEON2SSE_ALIGN_16 uint8_t maskRight[8] = {0x0, 0x1, 0x3, 0x7, 0x0f, 0x1f, 0x3f, 0x7f}; //"a" bits mask
+    maskA = _mm_set1_epi8(maskRight[c]); // (8-c)zeros and c ones
+    b_shift = vshlq_n_s8( b, c);
+    a_masked = _mm_and_si128 (a, maskA);
+    return _mm_or_si128 (b_shift, a_masked); //combine (insert b into a)
+}
+
+int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0
+_NEON2SSE_INLINE int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c) // VSLI.16 q0,q0,#0
+{
+    //to cut "c" right bits from a we do shift left and then logical shift back right providing (16-c)zeros in a
+    int16x8_t b_shift;
+    int16x8_t a_c;
+    b_shift = vshlq_n_s16( b, c);
+    a_c = vshlq_n_s16( a, (16 - c));
+    a_c  = _mm_srli_epi16(a_c, (16 - c));
+    return _mm_or_si128 (b_shift, a_c); //combine (insert b into a)
+}
+
+int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0
+_NEON2SSE_INLINE int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c) // VSLI.32 q0,q0,#0
+{
+    //solution may be  not optimal compared with the serial one
+    //to cut "c" right bits from a we do shift left and then logical shift back right providing (32-c)zeros in a
+    int32x4_t b_shift;
+    int32x4_t a_c;
+    b_shift = vshlq_n_s32( b, c);
+    a_c = vshlq_n_s32( a, (32 - c));
+    a_c  = _mm_srli_epi32(a_c, (32 - c));
+    return _mm_or_si128 (b_shift, a_c); //combine (insert b into a)
+}
+
+int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0
+_NEON2SSE_INLINE int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c) // VSLI.64 q0,q0,#0
+{
+    //solution may be  not optimal compared with the serial one
+    //to cut "c" right bits from a we do shift left and then logical shift back right providing (64-c)zeros in a
+    int64x2_t b_shift;
+    int64x2_t a_c;
+    b_shift = vshlq_n_s64( b, c);
+    a_c = vshlq_n_s64( a, (64 - c));
+    a_c  = _mm_srli_epi64(a_c, (64 - c));
+    return _mm_or_si128 (b_shift, a_c); //combine (insert b into a)
+}
+
+uint8x16_t vsliq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0
+#define vsliq_n_u8 vsliq_n_s8
+
+uint16x8_t vsliq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0
+#define vsliq_n_u16 vsliq_n_s16
+
+uint32x4_t vsliq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0
+#define vsliq_n_u32 vsliq_n_s32
+
+uint64x2_t vsliq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0
+#define vsliq_n_u64 vsliq_n_s64
+
+poly8x16_t vsliq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0
+#define vsliq_n_p8 vsliq_n_u8
+
+poly16x8_t vsliq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0
+#define vsliq_n_p16 vsliq_n_u16
+
+// ***********************************************************************************************
+// ****************** Loads and stores of a single vector ***************************************
+// ***********************************************************************************************
+//Performs loads and stores of a single vector of some type.
+//*******************************  Loads ********************************************************
+// ***********************************************************************************************
+//We assume ptr is NOT aligned in general case and use __m128i _mm_loadu_si128 ((__m128i*) ptr);.
+//also for SSE3  supporting systems the __m128i _mm_lddqu_si128 (__m128i const* p) usage for unaligned access may be advantageous.
+// it loads a 32-byte block aligned on a 16-byte boundary and extracts the 16 bytes corresponding to the unaligned access
+//If the ptr is aligned then could use __m128i _mm_load_si128 ((__m128i*) ptr) instead;
+#define LOAD_SI128(ptr) \
+        ( ((unsigned long)(ptr) & 15) == 0 ) ? _mm_load_si128((__m128i*)(ptr)) : _mm_loadu_si128((__m128i*)(ptr));
+
+uint8x16_t vld1q_u8(__transfersize(16) uint8_t const * ptr); // VLD1.8 {d0, d1}, [r0]
+#define vld1q_u8 LOAD_SI128
+
+uint16x8_t vld1q_u16(__transfersize(8) uint16_t const * ptr); // VLD1.16 {d0, d1}, [r0]
+#define vld1q_u16 LOAD_SI128
+
+uint32x4_t vld1q_u32(__transfersize(4) uint32_t const * ptr); // VLD1.32 {d0, d1}, [r0]
+#define vld1q_u32 LOAD_SI128
+
+uint64x2_t vld1q_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+#define vld1q_u64 LOAD_SI128
+
+int8x16_t vld1q_s8(__transfersize(16) int8_t const * ptr); // VLD1.8 {d0, d1}, [r0]
+#define vld1q_s8 LOAD_SI128
+
+int16x8_t vld1q_s16(__transfersize(8) int16_t const * ptr); // VLD1.16 {d0, d1}, [r0]
+#define vld1q_s16 LOAD_SI128
+
+int32x4_t vld1q_s32(__transfersize(4) int32_t const * ptr); // VLD1.32 {d0, d1}, [r0]
+#define vld1q_s32 LOAD_SI128
+
+int64x2_t vld1q_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+#define vld1q_s64 LOAD_SI128
+
+float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr); // VLD1.16 {d0, d1}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers
+/* _NEON2SSE_INLINE float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr)// VLD1.16 {d0, d1}, [r0]
+{__m128 f1 = _mm_set_ps (ptr[3], ptr[2], ptr[1], ptr[0]);
+__m128 f2;
+f2 = _mm_set_ps (ptr[7], ptr[6], ptr[5], ptr[4]);
+}*/
+
+float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr); // VLD1.32 {d0, d1}, [r0]
+_NEON2SSE_INLINE float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr)
+{
+    if( (((unsigned long)(ptr)) & 15 ) == 0 ) //16 bits aligned
+        return _mm_load_ps(ptr);
+    else
+        return _mm_loadu_ps(ptr);
+}
+
+poly8x16_t vld1q_p8(__transfersize(16) poly8_t const * ptr); // VLD1.8 {d0, d1}, [r0]
+#define vld1q_p8  LOAD_SI128
+
+poly16x8_t vld1q_p16(__transfersize(8) poly16_t const * ptr); // VLD1.16 {d0, d1}, [r0]
+#define vld1q_p16 LOAD_SI128
+
+uint8x8_t vld1_u8(__transfersize(8) uint8_t const * ptr); // VLD1.8 {d0}, [r0]
+#define vld1_u8(ptr)  *((__m64_128*)(ptr)) //was _mm_loadl_epi64((__m128i*)(ptr))
+
+uint16x4_t vld1_u16(__transfersize(4) uint16_t const * ptr); // VLD1.16 {d0}, [r0]
+#define vld1_u16 vld1_u8
+
+uint32x2_t vld1_u32(__transfersize(2) uint32_t const * ptr); // VLD1.32 {d0}, [r0]
+#define vld1_u32 vld1_u8
+
+
+uint64x1_t vld1_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0]
+#define vld1_u64 vld1_u8
+
+int8x8_t vld1_s8(__transfersize(8) int8_t const * ptr); // VLD1.8 {d0}, [r0]
+#define vld1_s8 vld1_u8
+
+int16x4_t vld1_s16(__transfersize(4) int16_t const * ptr); // VLD1.16 {d0}, [r0]
+#define vld1_s16 vld1_u16
+
+int32x2_t vld1_s32(__transfersize(2) int32_t const * ptr); // VLD1.32 {d0}, [r0]
+#define vld1_s32 vld1_u32
+
+int64x1_t vld1_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0]
+#define vld1_s64 vld1_u64
+
+float16x4_t vld1_f16(__transfersize(4) __fp16 const * ptr); // VLD1.16 {d0}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit like _mm_set_ps (ptr[3], ptr[2], ptr[1], ptr[0]);
+
+float32x2_t vld1_f32(__transfersize(2) float32_t const * ptr); // VLD1.32 {d0}, [r0]
+_NEON2SSE_INLINE float32x2_t vld1_f32(__transfersize(2) float32_t const * ptr)
+{
+    float32x2_t res;
+    res.m64_f32[0] = *(ptr);
+    res.m64_f32[1] = *(ptr + 1);
+    return res;
+}
+
+poly8x8_t vld1_p8(__transfersize(8) poly8_t const * ptr); // VLD1.8 {d0}, [r0]
+#define vld1_p8 vld1_u8
+
+poly16x4_t vld1_p16(__transfersize(4) poly16_t const * ptr); // VLD1.16 {d0}, [r0]
+#define vld1_p16 vld1_u16
+
+//***********************************************************************************************************
+//******* Lane load functions - insert the data at  vector's given position (lane) *************************
+//***********************************************************************************************************
+uint8x16_t vld1q_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0]
+#define vld1q_lane_u8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane)
+
+uint16x8_t vld1q_lane_u16(__transfersize(1)    uint16_t const * ptr, uint16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0]
+#define vld1q_lane_u16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane)
+
+uint32x4_t vld1q_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0]
+#define vld1q_lane_u32(ptr, vec, lane) _MM_INSERT_EPI32(vec, *(ptr), lane)
+
+uint64x2_t vld1q_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0]
+#define vld1q_lane_u64(ptr, vec, lane) _MM_INSERT_EPI64(vec, *(ptr), lane); // _p;
+
+
+int8x16_t vld1q_lane_s8(__transfersize(1) int8_t const * ptr, int8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0]
+#define vld1q_lane_s8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane)
+
+int16x8_t vld1q_lane_s16(__transfersize(1) int16_t const * ptr, int16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0]
+#define vld1q_lane_s16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane)
+
+int32x4_t vld1q_lane_s32(__transfersize(1) int32_t const * ptr, int32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0]
+#define vld1q_lane_s32(ptr, vec, lane) _MM_INSERT_EPI32(vec, *(ptr), lane)
+
+float16x8_t vld1q_lane_f16(__transfersize(1) __fp16 const * ptr, float16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0]
+_NEON2SSE_INLINE float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane)
+{
+    //we need to deal with  ptr  16bit NOT aligned case
+    __m128 p;
+    p = _mm_set1_ps(*(ptr));
+    return _MM_INSERT_PS(vec,  p, _INSERTPS_NDX(0, lane));
+}
+
+int64x2_t vld1q_lane_s64(__transfersize(1) int64_t const * ptr, int64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0]
+#define vld1q_lane_s64(ptr, vec, lane) _MM_INSERT_EPI64(vec, *(ptr), lane)
+
+poly8x16_t vld1q_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0]
+#define vld1q_lane_p8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane)
+
+poly16x8_t vld1q_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0]
+#define vld1q_lane_p16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane)
+
+uint8x8_t vld1_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x8_t vec, __constrange(0,7) int lane); // VLD1.8 {d0[0]}, [r0]
+_NEON2SSE_INLINE uint8x8_t vld1_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x8_t vec, __constrange(0,7) int lane)
+{
+    uint8x8_t res;
+    res = vec;
+    res.m64_u8[lane] = *(ptr);
+    return res;
+}
+
+uint16x4_t vld1_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0]
+_NEON2SSE_INLINE uint16x4_t vld1_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x4_t vec, __constrange(0,3) int lane)
+{
+    uint16x4_t res;
+    res = vec;
+    res.m64_u16[lane] = *(ptr);
+    return res;
+}
+
+uint32x2_t vld1_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0]
+_NEON2SSE_INLINE uint32x2_t vld1_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x2_t vec, __constrange(0,1) int lane)
+{
+    uint32x2_t res;
+    res = vec;
+    res.m64_u32[lane] = *(ptr);
+    return res;
+}
+
+uint64x1_t vld1_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x1_t vec, __constrange(0,0) int lane); // VLD1.64 {d0}, [r0]
+_NEON2SSE_INLINE uint64x1_t vld1_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x1_t vec, __constrange(0,0) int lane)
+{
+    uint64x1_t res;
+    res.m64_u64[0] = *(ptr);
+    return res;
+}
+
+
+int8x8_t vld1_lane_s8(__transfersize(1) int8_t const * ptr, int8x8_t vec, __constrange(0,7) int lane); // VLD1.8 {d0[0]}, [r0]
+#define vld1_lane_s8(ptr, vec, lane) vld1_lane_u8((uint8_t*)ptr, vec, lane)
+
+int16x4_t vld1_lane_s16(__transfersize(1) int16_t const * ptr, int16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0]
+#define vld1_lane_s16(ptr, vec, lane) vld1_lane_u16((uint16_t*)ptr, vec, lane)
+
+int32x2_t vld1_lane_s32(__transfersize(1) int32_t const * ptr, int32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0]
+#define vld1_lane_s32(ptr, vec, lane) vld1_lane_u32((uint32_t*)ptr, vec, lane)
+
+float16x4_t vld1_lane_f16(__transfersize(1) __fp16 const * ptr, float16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+float32x2_t vld1_lane_f32(__transfersize(1) float32_t const * ptr, float32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0]
+_NEON2SSE_INLINE float32x2_t vld1_lane_f32(__transfersize(1) float32_t const * ptr, float32x2_t vec, __constrange(0,1) int lane)
+{
+    float32x2_t res;
+    res = vec;
+    res.m64_f32[lane] = *(ptr);
+    return res;
+}
+
+int64x1_t vld1_lane_s64(__transfersize(1) int64_t const * ptr, int64x1_t vec, __constrange(0,0) int lane); // VLD1.64 {d0}, [r0]
+#define vld1_lane_s64(ptr, vec, lane) vld1_lane_u64((uint64_t*)ptr, vec, lane)
+
+poly8x8_t vld1_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x8_t vec, __constrange(0,7) int lane); // VLD1.8 {d0[0]}, [r0]
+#define vld1_lane_p8 vld1_lane_u8
+
+poly16x4_t vld1_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0]
+#define vld1_lane_p16 vld1_lane_s16
+
+// ****************** Load single value ( set all lanes of vector with same value from memory)**********************
+// ******************************************************************************************************************
+uint8x16_t vld1q_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+#define vld1q_dup_u8(ptr) _mm_set1_epi8(*(ptr))
+
+uint16x8_t vld1q_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+#define vld1q_dup_u16(ptr) _mm_set1_epi16(*(ptr))
+
+uint32x4_t vld1q_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+#define vld1q_dup_u32(ptr) _mm_set1_epi32(*(ptr))
+
+uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0]
+_NEON2SSE_INLINE uint64x2_t   vld1q_dup_u64(__transfersize(1) uint64_t const * ptr)
+{
+    _NEON2SSE_ALIGN_16 uint64_t val[2] = {*(ptr), *(ptr)};
+    return LOAD_SI128(val);
+}
+
+int8x16_t vld1q_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+#define vld1q_dup_s8(ptr) _mm_set1_epi8(*(ptr))
+
+int16x8_t vld1q_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+#define vld1q_dup_s16(ptr) _mm_set1_epi16 (*(ptr))
+
+int32x4_t vld1q_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+#define vld1q_dup_s32(ptr) _mm_set1_epi32 (*(ptr))
+
+int64x2_t vld1q_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0]
+#define vld1q_dup_s64(ptr) vld1q_dup_u64((uint64_t*)ptr)
+
+float16x8_t vld1q_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0]
+//current IA SIMD doesn't support float16, need to go to 32 bits
+
+float32x4_t vld1q_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+#define vld1q_dup_f32(ptr) _mm_set1_ps (*(ptr))
+
+poly8x16_t vld1q_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+#define vld1q_dup_p8(ptr) _mm_set1_epi8(*(ptr))
+
+poly16x8_t vld1q_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+#define vld1q_dup_p16(ptr) _mm_set1_epi16 (*(ptr))
+
+uint8x8_t vld1_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vld1_dup_u8(__transfersize(1) uint8_t const * ptr), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint8x8_t res;
+    int i;
+    for(i = 0; i<8; i++) {
+        res.m64_u8[i] =  *(ptr);
+    }
+    return res;
+}
+
+uint16x4_t vld1_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vld1_dup_u16(__transfersize(1) uint16_t const * ptr), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint16x4_t res;
+    int i;
+    for(i = 0; i<4; i++) {
+        res.m64_u16[i] =  *(ptr);
+    }
+    return res;
+}
+
+uint32x2_t vld1_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vld1_dup_u32(__transfersize(1) uint32_t const * ptr), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint32x2_t res;
+    res.m64_u32[0] = *(ptr);
+    res.m64_u32[1] = *(ptr);
+    return res;
+}
+
+uint64x1_t vld1_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0]
+_NEON2SSE_INLINE uint64x1_t vld1_dup_u64(__transfersize(1) uint64_t const * ptr)
+{
+    uint64x1_t res;
+    res.m64_u64[0] = *(ptr);
+    return res;
+}
+
+int8x8_t vld1_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+#define vld1_dup_s8(ptr) vld1_dup_u8((uint8_t*)ptr)
+
+
+int16x4_t vld1_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+#define vld1_dup_s16(ptr) vld1_dup_u16((uint16_t*)ptr)
+
+
+int32x2_t vld1_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+#define vld1_dup_s32(ptr) vld1_dup_u32((uint32_t*)ptr)
+
+
+int64x1_t vld1_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0]
+#define vld1_dup_s64(ptr) vld1_dup_u64((uint64_t*)ptr)
+
+float16x4_t vld1_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0]
+//current IA SIMD doesn't support float16
+
+float32x2_t vld1_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0]
+_NEON2SSE_INLINE float32x2_t vld1_dup_f32(__transfersize(1) float32_t const * ptr)
+{
+    float32x2_t res;
+    res.m64_f32[0] = *(ptr);
+    res.m64_f32[1] = res.m64_f32[0];
+    return res; // use last 64bits only
+}
+
+poly8x8_t vld1_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0]
+#define vld1_dup_p8 vld1_dup_u8
+
+
+poly16x4_t vld1_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0]
+#define vld1_dup_p16 vld1_dup_u16
+
+
+//*************************************************************************************
+//********************************* Store **********************************************
+//*************************************************************************************
+// If ptr is 16bit aligned and you  need to store data without cache pollution then use void _mm_stream_si128 ((__m128i*)ptr, val);
+//here we assume the case of  NOT 16bit aligned ptr possible. If it is aligned we could to use _mm_store_si128 like shown in the following macro
+#define STORE_SI128(ptr, val) \
+        (((unsigned long)(ptr) & 15) == 0 ) ? _mm_store_si128 ((__m128i*)(ptr), val) : _mm_storeu_si128 ((__m128i*)(ptr), val);
+
+void vst1q_u8(__transfersize(16) uint8_t * ptr, uint8x16_t val); // VST1.8 {d0, d1}, [r0]
+#define vst1q_u8 STORE_SI128
+
+void vst1q_u16(__transfersize(8) uint16_t * ptr, uint16x8_t val); // VST1.16 {d0, d1}, [r0]
+#define vst1q_u16 STORE_SI128
+
+void vst1q_u32(__transfersize(4) uint32_t * ptr, uint32x4_t val); // VST1.32 {d0, d1}, [r0]
+#define vst1q_u32 STORE_SI128
+
+void vst1q_u64(__transfersize(2) uint64_t * ptr, uint64x2_t val); // VST1.64 {d0, d1}, [r0]
+#define vst1q_u64 STORE_SI128
+
+void vst1q_s8(__transfersize(16) int8_t * ptr, int8x16_t val); // VST1.8 {d0, d1}, [r0]
+#define vst1q_s8 STORE_SI128
+
+void vst1q_s16(__transfersize(8) int16_t * ptr, int16x8_t val); // VST1.16 {d0, d1}, [r0]
+#define vst1q_s16 STORE_SI128
+
+void vst1q_s32(__transfersize(4) int32_t * ptr, int32x4_t val); // VST1.32 {d0, d1}, [r0]
+#define vst1q_s32 STORE_SI128
+
+void vst1q_s64(__transfersize(2) int64_t * ptr, int64x2_t val); // VST1.64 {d0, d1}, [r0]
+#define vst1q_s64 STORE_SI128
+
+void vst1q_f16(__transfersize(8) __fp16 * ptr, float16x8_t val); // VST1.16 {d0, d1}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently
+
+void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val); // VST1.32 {d0, d1}, [r0]
+_NEON2SSE_INLINE void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val)
+{
+    if( ((unsigned long)(ptr) & 15)  == 0 ) //16 bits aligned
+        _mm_store_ps (ptr, val);
+    else
+        _mm_storeu_ps (ptr, val);
+}
+
+void vst1q_p8(__transfersize(16) poly8_t * ptr, poly8x16_t val); // VST1.8 {d0, d1}, [r0]
+#define vst1q_p8  vst1q_u8
+
+void vst1q_p16(__transfersize(8) poly16_t * ptr, poly16x8_t val); // VST1.16 {d0, d1}, [r0]
+#define vst1q_p16 vst1q_u16
+
+void vst1_u8(__transfersize(8) uint8_t * ptr, uint8x8_t val); // VST1.8 {d0}, [r0]
+_NEON2SSE_INLINE void vst1_u8(__transfersize(8) uint8_t * ptr, uint8x8_t val)
+{
+    int i;
+    for (i = 0; i<8; i++) {
+        *(ptr + i) = ((uint8_t*)&val)[i];
+    }
+    //_mm_storel_epi64((__m128i*)ptr, val);
+    return;
+}
+
+void vst1_u16(__transfersize(4) uint16_t * ptr, uint16x4_t val); // VST1.16 {d0}, [r0]
+_NEON2SSE_INLINE void vst1_u16(__transfersize(4) uint16_t * ptr, uint16x4_t val)
+{
+    int i;
+    for (i = 0; i<4; i++) {
+        *(ptr + i) = ((uint16_t*)&val)[i];
+    }
+    //_mm_storel_epi64((__m128i*)ptr, val);
+    return;
+}
+
+void vst1_u32(__transfersize(2) uint32_t * ptr, uint32x2_t val); // VST1.32 {d0}, [r0]
+_NEON2SSE_INLINE void vst1_u32(__transfersize(2) uint32_t * ptr, uint32x2_t val)
+{
+    int i;
+    for (i = 0; i<2; i++) {
+        *(ptr + i) = ((uint32_t*)&val)[i];
+    }
+    //_mm_storel_epi64((__m128i*)ptr, val);
+    return;
+}
+
+void vst1_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val); // VST1.64 {d0}, [r0]
+_NEON2SSE_INLINE void vst1_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val)
+{
+    *(ptr) = *((uint64_t*)&val);
+    //_mm_storel_epi64((__m128i*)ptr, val);
+    return;
+}
+
+void vst1_s8(__transfersize(8) int8_t * ptr, int8x8_t val); // VST1.8 {d0}, [r0]
+#define vst1_s8(ptr,val) vst1_u8((uint8_t*)ptr,val)
+
+void vst1_s16(__transfersize(4) int16_t * ptr, int16x4_t val); // VST1.16 {d0}, [r0]
+#define vst1_s16(ptr,val) vst1_u16((uint16_t*)ptr,val)
+
+void vst1_s32(__transfersize(2) int32_t * ptr, int32x2_t val); // VST1.32 {d0}, [r0]
+#define vst1_s32(ptr,val) vst1_u32((uint32_t*)ptr,val)
+
+void vst1_s64(__transfersize(1) int64_t * ptr, int64x1_t val); // VST1.64 {d0}, [r0]
+#define vst1_s64(ptr,val) vst1_u64((uint64_t*)ptr,val)
+
+void vst1_f16(__transfersize(4) __fp16 * ptr, float16x4_t val); // VST1.16 {d0}, [r0]
+//current IA SIMD doesn't support float16
+
+void vst1_f32(__transfersize(2) float32_t * ptr, float32x2_t val); // VST1.32 {d0}, [r0]
+_NEON2SSE_INLINE void vst1_f32(__transfersize(2) float32_t * ptr, float32x2_t val)
+{
+    *(ptr) =   val.m64_f32[0];
+    *(ptr + 1) = val.m64_f32[1];
+    return;
+}
+
+void vst1_p8(__transfersize(8) poly8_t * ptr, poly8x8_t val); // VST1.8 {d0}, [r0]
+#define vst1_p8 vst1_u8
+
+void vst1_p16(__transfersize(4) poly16_t * ptr, poly16x4_t val); // VST1.16 {d0}, [r0]
+#define vst1_p16 vst1_u16
+
+//***********Store a lane of a vector into memory (extract given lane) *********************
+//******************************************************************************************
+void vst1q_lane_u8(__transfersize(1) uint8_t * ptr, uint8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0]
+#define vst1q_lane_u8(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI8 (val, lane)
+
+void vst1q_lane_u16(__transfersize(1) uint16_t * ptr, uint16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0]
+#define vst1q_lane_u16(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI16 (val, lane)
+
+void vst1q_lane_u32(__transfersize(1) uint32_t * ptr, uint32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0]
+#define vst1q_lane_u32(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI32 (val, lane)
+
+void vst1q_lane_u64(__transfersize(1) uint64_t * ptr, uint64x2_t val, __constrange(0,1) int lane); // VST1.64 {d0}, [r0]
+#define vst1q_lane_u64(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI64 (val, lane)
+
+void vst1q_lane_s8(__transfersize(1) int8_t * ptr, int8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0]
+#define vst1q_lane_s8(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI8 (val, lane)
+
+void vst1q_lane_s16(__transfersize(1) int16_t * ptr, int16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0]
+#define vst1q_lane_s16(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI16 (val, lane)
+
+void vst1q_lane_s32(__transfersize(1) int32_t * ptr, int32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0]
+#define vst1q_lane_s32(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI32 (val, lane)
+
+void vst1q_lane_s64(__transfersize(1) int64_t * ptr, int64x2_t val, __constrange(0,1) int lane); // VST1.64 {d0}, [r0]
+#define vst1q_lane_s64(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI64 (val, lane)
+
+void vst1q_lane_f16(__transfersize(1) __fp16 * ptr, float16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+void vst1q_lane_f32(__transfersize(1) float32_t * ptr, float32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0]
+_NEON2SSE_INLINE void vst1q_lane_f32(__transfersize(1) float32_t * ptr, float32x4_t val, __constrange(0,3) int lane)
+{
+    int32_t ilane;
+    ilane = _MM_EXTRACT_PS(val,lane);
+    *(ptr) =  *((float*)&ilane);
+}
+
+void vst1q_lane_p8(__transfersize(1) poly8_t * ptr, poly8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0]
+#define vst1q_lane_p8   vst1q_lane_u8
+
+void vst1q_lane_p16(__transfersize(1) poly16_t * ptr, poly16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0]
+#define vst1q_lane_p16   vst1q_lane_s16
+
+void vst1_lane_u8(__transfersize(1) uint8_t * ptr, uint8x8_t val, __constrange(0,7) int lane); // VST1.8 {d0[0]}, [r0]
+_NEON2SSE_INLINE void vst1_lane_u8(__transfersize(1) uint8_t * ptr, uint8x8_t val, __constrange(0,7) int lane)
+{
+    *(ptr) = val.m64_u8[lane];
+}
+
+void vst1_lane_u16(__transfersize(1) uint16_t * ptr, uint16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0]
+_NEON2SSE_INLINE void vst1_lane_u16(__transfersize(1) uint16_t * ptr, uint16x4_t val, __constrange(0,3) int lane)
+{
+    *(ptr) = val.m64_u16[lane];
+}
+
+void vst1_lane_u32(__transfersize(1) uint32_t * ptr, uint32x2_t val, __constrange(0,1) int lane); // VST1.32 {d0[0]}, [r0]
+_NEON2SSE_INLINE void vst1_lane_u32(__transfersize(1) uint32_t * ptr, uint32x2_t val, __constrange(0,1) int lane)
+{
+    *(ptr) = val.m64_u32[lane];
+}
+
+void vst1_lane_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val, __constrange(0,0) int lane); // VST1.64 {d0}, [r0]
+_NEON2SSE_INLINE void vst1_lane_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val, __constrange(0,0) int lane)
+{
+    *(ptr) = val.m64_u64[0];
+}
+
+void vst1_lane_s8(__transfersize(1) int8_t * ptr, int8x8_t val, __constrange(0,7) int lane); // VST1.8 {d0[0]}, [r0]
+#define  vst1_lane_s8(ptr, val, lane) vst1_lane_u8((uint8_t*)ptr, val, lane)
+
+void vst1_lane_s16(__transfersize(1) int16_t * ptr, int16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0]
+#define vst1_lane_s16(ptr, val, lane) vst1_lane_u16((uint16_t*)ptr, val, lane)
+
+void vst1_lane_s32(__transfersize(1) int32_t * ptr, int32x2_t val, __constrange(0,1) int lane); // VST1.32 {d0[0]}, [r0]
+#define vst1_lane_s32(ptr, val, lane)  vst1_lane_u32((uint32_t*)ptr, val, lane)
+
+
+void vst1_lane_s64(__transfersize(1) int64_t * ptr, int64x1_t val, __constrange(0,0) int lane); // VST1.64 {d0}, [r0]
+#define vst1_lane_s64(ptr, val, lane) vst1_lane_u64((uint64_t*)ptr, val, lane)
+
+
+void vst1_lane_f16(__transfersize(1) __fp16 * ptr, float16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+void vst1_lane_f32(__transfersize(1) float32_t * ptr, float32x2_t val, __constrange(0,1) int lane); // VST1.32 {d0[0]}, [r0]
+_NEON2SSE_INLINE void vst1_lane_f32(__transfersize(1) float32_t * ptr, float32x2_t val, __constrange(0,1) int lane)
+{
+    *(ptr) = val.m64_f32[lane];
+}
+
+void vst1_lane_p8(__transfersize(1) poly8_t * ptr, poly8x8_t val, __constrange(0,7) int lane); // VST1.8 {d0[0]}, [r0]
+#define vst1_lane_p8 vst1_lane_u8
+
+void vst1_lane_p16(__transfersize(1) poly16_t * ptr, poly16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0]
+#define vst1_lane_p16 vst1_lane_s16
+
+//***********************************************************************************************
+//**************** Loads and stores of an N-element structure **********************************
+//***********************************************************************************************
+//These intrinsics load or store an n-element structure. The array structures are defined in the beginning
+//We assume ptr is NOT aligned in general case, for more details see  "Loads and stores of a single vector functions"
+//****************** 2 elements load  *********************************************
+uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr); // VLD2.8 {d0, d2}, [r0]
+_NEON2SSE_INLINE uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr) // VLD2.8 {d0, d2}, [r0]
+{
+    uint8x16x2_t v;
+    v.val[0] = vld1q_u8(ptr);
+    v.val[1] = vld1q_u8((ptr + 16));
+    v = vuzpq_s8(v.val[0], v.val[1]);
+    return v;
+}
+
+uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr); // VLD2.16 {d0, d2}, [r0]
+_NEON2SSE_INLINE uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr) // VLD2.16 {d0, d2}, [r0]
+{
+    uint16x8x2_t v;
+    v.val[0] = vld1q_u16( ptr);
+    v.val[1] = vld1q_u16( (ptr + 8));
+    v = vuzpq_s16(v.val[0], v.val[1]);
+    return v;
+}
+
+uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr); // VLD2.32 {d0, d2}, [r0]
+_NEON2SSE_INLINE uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr) // VLD2.32 {d0, d2}, [r0]
+{
+    uint32x4x2_t v;
+    v.val[0] = vld1q_u32 ( ptr);
+    v.val[1] = vld1q_u32 ( (ptr + 4));
+    v = vuzpq_s32(v.val[0], v.val[1]);
+    return v;
+}
+
+int8x16x2_t vld2q_s8(__transfersize(32) int8_t const * ptr);
+#define  vld2q_s8(ptr) vld2q_u8((uint8_t*) ptr)
+
+int16x8x2_t vld2q_s16(__transfersize(16) int16_t const * ptr); // VLD2.16 {d0, d2}, [r0]
+#define vld2q_s16(ptr) vld2q_u16((uint16_t*) ptr)
+
+int32x4x2_t vld2q_s32(__transfersize(8) int32_t const * ptr); // VLD2.32 {d0, d2}, [r0]
+#define vld2q_s32(ptr) vld2q_u32((uint32_t*) ptr)
+
+
+float16x8x2_t vld2q_f16(__transfersize(16) __fp16 const * ptr); // VLD2.16 {d0, d2}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr); // VLD2.32 {d0, d2}, [r0]
+_NEON2SSE_INLINE float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr) // VLD2.32 {d0, d2}, [r0]
+{
+    float32x4x2_t v;
+    v.val[0] =  vld1q_f32 (ptr);
+    v.val[1] =  vld1q_f32 ((ptr + 4));
+    v = vuzpq_f32(v.val[0], v.val[1]);
+    return v;
+}
+
+poly8x16x2_t vld2q_p8(__transfersize(32) poly8_t const * ptr); // VLD2.8 {d0, d2}, [r0]
+#define  vld2q_p8 vld2q_u8
+
+poly16x8x2_t vld2q_p16(__transfersize(16) poly16_t const * ptr); // VLD2.16 {d0, d2}, [r0]
+#define vld2q_p16 vld2q_u16
+
+uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr); // VLD2.8 {d0, d1}, [r0]
+_NEON2SSE_INLINE uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr)
+{
+    uint8x8x2_t v;
+    _NEON2SSE_ALIGN_16 int8_t mask8_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15};
+    __m128i ld128;
+    ld128 = vld1q_u8(ptr); //merge two 64-bits in 128 bit
+    ld128 =  _mm_shuffle_epi8(ld128, *(__m128i*)mask8_even_odd);
+    vst1q_u8((v.val), ld128); //  v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32);
+    return v;
+}
+
+uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr); // VLD2.16 {d0, d1}, [r0]
+_NEON2SSE_INLINE uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr)
+{
+    _NEON2SSE_ALIGN_16 uint16x4x2_t v;
+    _NEON2SSE_ALIGN_16 int8_t mask16_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7, 10,11, 14,15};
+    __m128i ld128;
+    ld128 = vld1q_u16(ptr); //merge two 64-bits in 128 bit
+    ld128 = _mm_shuffle_epi8(ld128, *(__m128i*)mask16_even_odd);
+    vst1q_u16((v.val), ld128);
+    return v;
+}
+
+uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr); // VLD2.32 {d0, d1}, [r0]
+_NEON2SSE_INLINE uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr)
+{
+    _NEON2SSE_ALIGN_16 uint32x2x2_t v;
+    __m128i ld128;
+    ld128 = vld1q_u32(ptr); //merge two 64-bits in 128 bit
+    ld128 = _mm_shuffle_epi32(ld128,  0 | (2 << 2) | (1 << 4) | (3 << 6));
+    vst1q_u32((v.val), ld128);
+    return v;
+}
+
+uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+_NEON2SSE_INLINE uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr)
+{
+    uint64x1x2_t v;
+    v.val[0].m64_u64[0] = *(ptr);
+    v.val[1].m64_u64[0] = *(ptr + 1);
+    return v;
+}
+
+int8x8x2_t vld2_s8(__transfersize(16) int8_t const * ptr); // VLD2.8 {d0, d1}, [r0]
+#define vld2_s8(ptr) vld2_u8((uint8_t*)ptr)
+
+int16x4x2_t vld2_s16(__transfersize(8) int16_t const * ptr); // VLD2.16 {d0, d1}, [r0]
+#define vld2_s16(ptr) vld2_u16((uint16_t*)ptr)
+
+int32x2x2_t vld2_s32(__transfersize(4) int32_t const * ptr); // VLD2.32 {d0, d1}, [r0]
+#define vld2_s32(ptr) vld2_u32((uint32_t*)ptr)
+
+int64x1x2_t vld2_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+#define vld2_s64(ptr) vld2_u64((uint64_t*)ptr)
+
+float16x4x2_t vld2_f16(__transfersize(8) __fp16 const * ptr); // VLD2.16 {d0, d1}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1_f16 for example
+
+float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr); // VLD2.32 {d0, d1}, [r0]
+_NEON2SSE_INLINE float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr)
+{
+    float32x2x2_t v;
+    v.val[0].m64_f32[0] = *(ptr);
+    v.val[0].m64_f32[1] = *(ptr + 2);
+    v.val[1].m64_f32[0] = *(ptr + 1);
+    v.val[1].m64_f32[1] = *(ptr + 3);
+    return v;
+}
+
+poly8x8x2_t vld2_p8(__transfersize(16) poly8_t const * ptr); // VLD2.8 {d0, d1}, [r0]
+#define vld2_p8 vld2_u8
+
+poly16x4x2_t vld2_p16(__transfersize(8) poly16_t const * ptr); // VLD2.16 {d0, d1}, [r0]
+#define vld2_p16 vld2_u16
+
+//******************** Triplets ***************************************
+//*********************************************************************
+uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr) // VLD3.8 {d0, d2, d4}, [r0]
+{
+    //a0,a1,a2,a3,...a7,a8,...a15,  b0,b1,b2,...b7,b8,...b15, c0,c1,c2,...c7,c8,...c15 ->
+    //a:0,3,6,9,12,15,b:2,5,8,11,14,  c:1,4,7,10,13
+    //a:1,4,7,10,13,  b:0,3,6,9,12,15,c:2,5,8,11,14,
+    //a:2,5,8,11,14,  b:1,4,7,10,13,  c:0,3,6,9,12,15
+    uint8x16x3_t v;
+    __m128i tmp0, tmp1,tmp2, tmp3;
+    _NEON2SSE_ALIGN_16 int8_t mask8_0[16] = {0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14};
+    _NEON2SSE_ALIGN_16 int8_t mask8_1[16] = {2,5,8,11,14,0,3,6,9,12,15,1,4,7,10,13};
+    _NEON2SSE_ALIGN_16 int8_t mask8_2[16] = {1,4,7,10,13,2,5,8,11,14,0,3,6,9,12,15};
+
+    v.val[0] =  vld1q_u8 (ptr); //a0,a1,a2,a3,...a7, ...a15
+    v.val[1] =  vld1q_u8 ((ptr + 16)); //b0,b1,b2,b3...b7, ...b15
+    v.val[2] =  vld1q_u8 ((ptr + 32)); //c0,c1,c2,c3,...c7,...c15
+
+    tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask8_0); //a:0,3,6,9,12,15,1,4,7,10,13,2,5,8,11
+    tmp1 = _mm_shuffle_epi8(v.val[1], *(__m128i*)mask8_1); //b:2,5,8,11,14,0,3,6,9,12,15,1,4,7,10,13
+    tmp2 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask8_2); //c:1,4,7,10,13,2,5,8,11,14,3,6,9,12,15
+
+    tmp3 = _mm_slli_si128(tmp0,10); //0,0,0,0,0,0,0,0,0,0,a0,a3,a6,a9,a12,a15
+    tmp3 = _mm_alignr_epi8(tmp1,tmp3, 10); //a:0,3,6,9,12,15,b:2,5,8,11,14,x,x,x,x,x
+    tmp3 = _mm_slli_si128(tmp3, 5); //0,0,0,0,0,a:0,3,6,9,12,15,b:2,5,8,11,14,
+    tmp3 = _mm_srli_si128(tmp3, 5); //a:0,3,6,9,12,15,b:2,5,8,11,14,:0,0,0,0,0
+    v.val[0] = _mm_slli_si128(tmp2, 11); //0,0,0,0,0,0,0,0,0,0,0,0, 1,4,7,10,13,
+    v.val[0] = _mm_or_si128(v.val[0],tmp3); //a:0,3,6,9,12,15,b:2,5,8,11,14,c:1,4,7,10,13,
+
+    tmp3 = _mm_slli_si128(tmp0, 5); //0,0,0,0,0,a:0,3,6,9,12,15,1,4,7,10,13,
+    tmp3 = _mm_srli_si128(tmp3, 11); //a:1,4,7,10,13, 0,0,0,0,0,0,0,0,0,0,0
+    v.val[1] = _mm_srli_si128(tmp1,5); //b:0,3,6,9,12,15,C:1,4,7,10,13, 0,0,0,0,0
+    v.val[1] = _mm_slli_si128(v.val[1], 5); //0,0,0,0,0,b:0,3,6,9,12,15,C:1,4,7,10,13,
+    v.val[1] = _mm_or_si128(v.val[1],tmp3); //a:1,4,7,10,13,b:0,3,6,9,12,15,C:1,4,7,10,13,
+    v.val[1] =  _mm_slli_si128(v.val[1],5); //0,0,0,0,0,a:1,4,7,10,13,b:0,3,6,9,12,15,
+    v.val[1] = _mm_srli_si128(v.val[1], 5); //a:1,4,7,10,13,b:0,3,6,9,12,15,0,0,0,0,0
+    tmp3 = _mm_srli_si128(tmp2,5); //c:2,5,8,11,14,0,3,6,9,12,15,0,0,0,0,0
+    tmp3 = _mm_slli_si128(tmp3,11); //0,0,0,0,0,0,0,0,0,0,0,c:2,5,8,11,14,
+    v.val[1] = _mm_or_si128(v.val[1],tmp3); //a:1,4,7,10,13,b:0,3,6,9,12,15,c:2,5,8,11,14,
+
+    tmp3 = _mm_srli_si128(tmp2,10); //c:0,3,6,9,12,15, 0,0,0,0,0,0,0,0,0,0,
+    tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0,0,0,0,0,0, c:0,3,6,9,12,15,
+    v.val[2] = _mm_srli_si128(tmp1,11); //b:1,4,7,10,13,0,0,0,0,0,0,0,0,0,0,0
+    v.val[2] = _mm_slli_si128(v.val[2],5); //0,0,0,0,0,b:1,4,7,10,13, 0,0,0,0,0,0
+    v.val[2] = _mm_or_si128(v.val[2],tmp3); //0,0,0,0,0,b:1,4,7,10,13,c:0,3,6,9,12,15,
+    tmp0 = _mm_srli_si128(tmp0, 11); //a:2,5,8,11,14, 0,0,0,0,0,0,0,0,0,0,0,
+    v.val[2] = _mm_or_si128(v.val[2],tmp0); //a:2,5,8,11,14,b:1,4,7,10,13,c:0,3,6,9,12,15,
+    return v;
+}
+
+uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr) // VLD3.16 {d0, d2, d4}, [r0]
+{
+    //a0, a1,a2,a3,...a7,  b0,b1,b2,b3,...b7, c0,c1,c2,c3...c7 -> a0,a3,a6,b1,b4,b7,c2,c5, a1,a4,a7,b2,b5,c0,c3,c6, a2,a5,b0,b3,b6,c1,c4,c7
+    uint16x8x3_t v;
+    __m128i tmp0, tmp1,tmp2, tmp3;
+    _NEON2SSE_ALIGN_16 int8_t mask16_0[16] = {0,1, 6,7, 12,13, 2,3, 8,9, 14,15, 4,5, 10,11};
+    _NEON2SSE_ALIGN_16 int8_t mask16_1[16] = {2,3, 8,9, 14,15, 4,5, 10,11, 0,1, 6,7, 12,13};
+    _NEON2SSE_ALIGN_16 int8_t mask16_2[16] = {4,5, 10,11, 0,1, 6,7, 12,13, 2,3, 8,9, 14,15};
+
+    v.val[0] =  vld1q_u16 (ptr); //a0,a1,a2,a3,...a7,
+    v.val[1] =  vld1q_u16 ((ptr + 8)); //b0,b1,b2,b3...b7
+    v.val[2] =  vld1q_u16 ((ptr + 16)); //c0,c1,c2,c3,...c7
+
+    tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask16_0); //a0,a3,a6,a1,a4,a7,a2,a5,
+    tmp1 = _mm_shuffle_epi8(v.val[1], *(__m128i*)mask16_1); //b1,b4,b7,b2,b5,b0,b3,b6
+    tmp2 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask16_2); //c2,c5, c0,c3,c6, c1,c4,c7
+
+    tmp3 = _mm_slli_si128(tmp0,10); //0,0,0,0,0,a0,a3,a6,
+    tmp3 = _mm_alignr_epi8(tmp1,tmp3, 10); //a0,a3,a6,b1,b4,b7,x,x
+    tmp3 = _mm_slli_si128(tmp3, 4); //0,0, a0,a3,a6,b1,b4,b7
+    tmp3 = _mm_srli_si128(tmp3, 4); //a0,a3,a6,b1,b4,b7,0,0
+    v.val[0] = _mm_slli_si128(tmp2, 12); //0,0,0,0,0,0, c2,c5,
+    v.val[0] = _mm_or_si128(v.val[0],tmp3); //a0,a3,a6,b1,b4,b7,c2,c5
+
+    tmp3 = _mm_slli_si128(tmp0, 4); //0,0,a0,a3,a6,a1,a4,a7
+    tmp3 = _mm_srli_si128(tmp3,10); //a1,a4,a7, 0,0,0,0,0
+    v.val[1] = _mm_srli_si128(tmp1,6); //b2,b5,b0,b3,b6,0,0
+    v.val[1] = _mm_slli_si128(v.val[1], 6); //0,0,0,b2,b5,b0,b3,b6,
+    v.val[1] = _mm_or_si128(v.val[1],tmp3); //a1,a4,a7,b2,b5,b0,b3,b6,
+    v.val[1] =  _mm_slli_si128(v.val[1],6); //0,0,0,a1,a4,a7,b2,b5,
+    v.val[1] = _mm_srli_si128(v.val[1], 6); //a1,a4,a7,b2,b5,0,0,0,
+    tmp3 = _mm_srli_si128(tmp2,4); //c0,c3,c6, c1,c4,c7,0,0
+    tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0,c0,c3,c6,
+    v.val[1] = _mm_or_si128(v.val[1],tmp3); //a1,a4,a7,b2,b5,c0,c3,c6,
+
+    tmp3 = _mm_srli_si128(tmp2,10); //c1,c4,c7, 0,0,0,0,0
+    tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0, c1,c4,c7,
+    v.val[2] = _mm_srli_si128(tmp1,10); //b0,b3,b6,0,0, 0,0,0
+    v.val[2] = _mm_slli_si128(v.val[2],4); //0,0, b0,b3,b6,0,0,0
+    v.val[2] = _mm_or_si128(v.val[2],tmp3); //0,0, b0,b3,b6,c1,c4,c7,
+    tmp0 = _mm_srli_si128(tmp0, 12); //a2,a5,0,0,0,0,0,0
+    v.val[2] = _mm_or_si128(v.val[2],tmp0); //a2,a5,b0,b3,b6,c1,c4,c7,
+    return v;
+}
+
+uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr) // VLD3.32 {d0, d2, d4}, [r0]
+{
+    //a0,a1,a2,a3,  b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1,  a1,b0,b3,c2, a2,b1,c0,c3,
+    uint32x4x3_t v;
+    __m128i tmp0, tmp1,tmp2, tmp3;
+    v.val[0] =  vld1q_u32 (ptr); //a0,a1,a2,a3,
+    v.val[1] =  vld1q_u32 ((ptr + 4)); //b0,b1,b2,b3
+    v.val[2] =  vld1q_u32 ((ptr + 8)); //c0,c1,c2,c3,
+
+    tmp0 = _mm_shuffle_epi32(v.val[0], 0 | (3 << 2) | (1 << 4) | (2 << 6)); //a0,a3,a1,a2
+    tmp1 = _mm_shuffle_epi32(v.val[1], _SWAP_HI_LOW32); //b2,b3,b0,b1
+    tmp2 = _mm_shuffle_epi32(v.val[2], 1 | (2 << 2) | (0 << 4) | (3 << 6)); //c1,c2, c0,c3
+
+    tmp3 = _mm_unpacklo_epi32(tmp1, tmp2); //b2,c1, b3,c2
+    v.val[0] = _mm_unpacklo_epi64(tmp0,tmp3); //a0,a3,b2,c1
+    tmp0 = _mm_unpackhi_epi32(tmp0, tmp1); //a1,b0, a2,b1
+    v.val[1] = _mm_shuffle_epi32(tmp0, _SWAP_HI_LOW32 ); //a2,b1, a1,b0,
+    v.val[1] = _mm_unpackhi_epi64(v.val[1], tmp3); //a1,b0, b3,c2
+    v.val[2] = _mm_unpackhi_epi64(tmp0, tmp2); //a2,b1, c0,c3
+    return v;
+}
+
+int8x16x3_t vld3q_s8(__transfersize(48) int8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0]
+#define  vld3q_s8(ptr) vld3q_u8((uint8_t*) (ptr))
+
+int16x8x3_t vld3q_s16(__transfersize(24) int16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+#define  vld3q_s16(ptr) vld3q_u16((uint16_t*) (ptr))
+
+int32x4x3_t vld3q_s32(__transfersize(12) int32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0]
+#define  vld3q_s32(ptr) vld3q_u32((uint32_t*) (ptr))
+
+float16x8x3_t vld3q_f16(__transfersize(24) __fp16 const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr) // VLD3.32 {d0, d2, d4}, [r0]
+{
+    //a0,a1,a2,a3,  b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1,  a1,b0,b3,c2, a2,b1,c0,c3,
+    float32x4x3_t v;
+    __m128 tmp0, tmp1,tmp2, tmp3;
+    v.val[0] =  vld1q_f32 (ptr); //a0,a1,a2,a3,
+    v.val[1] =  vld1q_f32 ((ptr + 4)); //b0,b1,b2,b3
+    v.val[2] =  vld1q_f32 ((ptr + 8)); //c0,c1,c2,c3,
+
+    tmp0 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[0]), 0 | (3 << 2) | (1 << 4) | (2 << 6))); //a0,a3,a1,a2
+    tmp1 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[1]), _SWAP_HI_LOW32)); //b2,b3,b0,b1
+    tmp2 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[2]), 1 | (2 << 2) | (0 << 4) | (3 << 6))); //c1,c2, c0,c3
+    tmp3 = _mm_unpacklo_ps(tmp1, tmp2); //b2,c1, b3,c2
+
+    v.val[0] = _mm_movelh_ps(tmp0,tmp3); //a0,a3,b2,c1
+    tmp0 = _mm_unpackhi_ps(tmp0, tmp1); //a1,b0, a2,b1
+    v.val[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(tmp0), _SWAP_HI_LOW32 )); //a2,b1, a1,b0,
+    v.val[1] = _mm_movehl_ps(tmp3,v.val[1]); //a1,b0, b3,c2
+    v.val[2] = _mm_movehl_ps(tmp2,tmp0); //a2,b1, c0,c3
+    return v;
+}
+
+poly8x16x3_t vld3q_p8(__transfersize(48) poly8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0]
+#define vld3q_p8 vld3q_u8
+
+poly16x8x3_t vld3q_p16(__transfersize(24) poly16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0]
+#define vld3q_p16 vld3q_u16
+
+uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr) // VLD3.8 {d0, d1, d2}, [r0]
+{
+    //a0, a1,a2,a3,...a7,  b0,b1,b2,b3,...b7, c0,c1,c2,c3...c7 -> a0,a3,a6,b1,b4,b7,c2,c5, a1,a4,a7,b2,b5,c0,c3,c6, a2,a5,b0,b3,b6,c1,c4,c7
+    uint8x8x3_t v;
+    __m128i val0, val1, val2, tmp0, tmp1;
+    _NEON2SSE_ALIGN_16 int8_t mask8_0[16] = {0,3,6,9,12,15, 1,4,7,10,13, 2,5,8,11,14};
+    _NEON2SSE_ALIGN_16 int8_t mask8_1[16] = {2,5, 0,3,6, 1,4,7, 0,0,0,0,0,0,0,0};
+    val0 =  vld1q_u8 (ptr); //a0,a1,a2,a3,...a7, b0,b1,b2,b3...b7
+    val2 =  _mm_loadl_epi64((__m128i*)(ptr + 16)); //c0,c1,c2,c3,...c7
+
+    tmp0 = _mm_shuffle_epi8(val0, *(__m128i*)mask8_0); //a0,a3,a6,b1,b4,b7, a1,a4,a7,b2,b5, a2,a5,b0,b3,b6,
+    tmp1 = _mm_shuffle_epi8(val2, *(__m128i*)mask8_1); //c2,c5, c0,c3,c6, c1,c4,c7,x,x,x,x,x,x,x,x
+    val0 = _mm_slli_si128(tmp0,10);
+    val0 = _mm_srli_si128(val0,10); //a0,a3,a6,b1,b4,b7, 0,0,0,0,0,0,0,0,0,0
+    val2 = _mm_slli_si128(tmp1,6); //0,0,0,0,0,0,c2,c5,x,x,x,x,x,x,x,x
+    val0 = _mm_or_si128(val0,val2); //a0,a3,a6,b1,b4,b7,c2,c5 x,x,x,x,x,x,x,x
+    _M64(v.val[0], val0);
+    val1 = _mm_slli_si128(tmp0,5); //0,0,0,0,0,0,0,0,0,0,0, a1,a4,a7,b2,b5,
+    val1 = _mm_srli_si128(val1,11); //a1,a4,a7,b2,b5,0,0,0,0,0,0,0,0,0,0,0,
+    val2 = _mm_srli_si128(tmp1,2); //c0,c3,c6,c1,c4,c7,x,x,x,x,x,x,x,x,0,0
+    val2 = _mm_slli_si128(val2,5); //0,0,0,0,0,c0,c3,c6,0,0,0,0,0,0,0,0
+    val1 = _mm_or_si128(val1,val2); //a1,a4,a7,b2,b5,c0,c3,c6,x,x,x,x,x,x,x,x
+    _M64(v.val[1], val1);
+
+    tmp0 = _mm_srli_si128(tmp0,11); //a2,a5,b0,b3,b6,0,0,0,0,0,0,0,0,0,0,0,
+    val2 = _mm_srli_si128(tmp1,5); //c1,c4,c7,0,0,0,0,0,0,0,0,0,0,0,0,0
+    val2 = _mm_slli_si128(val2,5); //0,0,0,0,0,c1,c4,c7,
+    val2 = _mm_or_si128(tmp0, val2); //a2,a5,b0,b3,b6,c1,c4,c7,x,x,x,x,x,x,x,x
+    _M64(v.val[2], val2);
+    return v;
+}
+
+uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr) // VLD3.16 {d0, d1, d2}, [r0]
+{
+    //a0,a1,a2,a3,  b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1,  a1,b0,b3,c2, a2,b1,c0,c3,
+    uint16x4x3_t v;
+    __m128i val0, val1, val2, tmp0, tmp1;
+    _NEON2SSE_ALIGN_16 int8_t mask16[16] = {0,1, 6,7, 12,13, 2,3, 8,9, 14,15, 4,5, 10,11};
+    val0 =  vld1q_u16 (ptr); //a0,a1,a2,a3,  b0,b1,b2,b3
+    val2 =  _mm_loadl_epi64((__m128i*)(ptr + 8)); //c0,c1,c2,c3, x,x,x,x
+
+    tmp0 = _mm_shuffle_epi8(val0, *(__m128i*)mask16); //a0, a3, b2,a1, b0, b3, a2, b1
+    tmp1 = _mm_shufflelo_epi16(val2, 201); //11 00 10 01     : c1, c2, c0, c3,
+    val0 = _mm_slli_si128(tmp0,10);
+    val0 = _mm_srli_si128(val0,10); //a0, a3, b2, 0,0, 0,0,
+    val2 = _mm_slli_si128(tmp1,14); //0,0,0,0,0,0,0,c1
+    val2 = _mm_srli_si128(val2,8); //0,0,0,c1,0,0,0,0
+    val0 = _mm_or_si128(val0,val2); //a0, a3, b2, c1, x,x,x,x
+    _M64(v.val[0], val0);
+
+    val1 = _mm_slli_si128(tmp0,4); //0,0,0,0,0,a1, b0, b3
+    val1 = _mm_srli_si128(val1,10); //a1, b0, b3, 0,0, 0,0,
+    val2 = _mm_srli_si128(tmp1,2); //c2, 0,0,0,0,0,0,0,
+    val2 = _mm_slli_si128(val2,6); //0,0,0,c2,0,0,0,0
+    val1 = _mm_or_si128(val1,val2); //a1, b0, b3, c2, x,x,x,x
+    _M64(v.val[1], val1);
+
+    tmp0 = _mm_srli_si128(tmp0,12); //a2, b1,0,0,0,0,0,0
+    tmp1 = _mm_srli_si128(tmp1,4);
+    tmp1 = _mm_slli_si128(tmp1,4); //0,0,c0, c3,
+    val2 = _mm_or_si128(tmp0, tmp1); //a2, b1, c0, c3,
+    _M64(v.val[2], val2);
+    return v;
+}
+
+uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr) // VLD3.32 {d0, d1, d2}, [r0]
+{
+    //a0,a1,  b0,b1, c0,c1,  -> a0,b1, a1,c0, b0,c1
+    uint32x2x3_t v;
+    __m128i val0, val1, val2;
+    val0 =  vld1q_u32 (ptr); //a0,a1,  b0,b1,
+    val2 =   _mm_loadl_epi64((__m128i*) (ptr + 4)); //c0,c1, x,x
+
+    val0 = _mm_shuffle_epi32(val0, 0 | (3 << 2) | (1 << 4) | (2 << 6)); //a0,b1, a1, b0
+    _M64(v.val[0], val0);
+    val2 =  _mm_slli_si128(val2, 8); //x, x,c0,c1,
+    val1 =  _mm_unpackhi_epi32(val0,val2); //a1,c0, b0, c1
+    _M64(v.val[1], val1);
+    val2 =  _mm_srli_si128(val1, 8); //b0, c1, x, x,
+    _M64(v.val[2], val2);
+    return v;
+}
+uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr) // VLD1.64 {d0, d1, d2}, [r0]
+{
+    uint64x1x3_t v;
+    v.val[0].m64_u64[0] = *(ptr);
+    v.val[1].m64_u64[0] = *(ptr + 1);
+    v.val[2].m64_u64[0] = *(ptr + 2);
+    return v;
+}
+
+int8x8x3_t vld3_s8(__transfersize(24) int8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0]
+#define vld3_s8(ptr) vld3_u8((uint8_t*)ptr)
+
+int16x4x3_t vld3_s16(__transfersize(12) int16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+#define vld3_s16(ptr) vld3_u16((uint16_t*)ptr)
+
+int32x2x3_t vld3_s32(__transfersize(6) int32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0]
+#define vld3_s32(ptr) vld3_u32((uint32_t*)ptr)
+
+int64x1x3_t vld3_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+#define vld3_s64(ptr) vld3_u64((uint64_t*)ptr)
+
+float16x4x3_t vld3_f16(__transfersize(12) __fp16 const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr)
+{
+    //a0,a1,  b0,b1, c0,c1,  -> a0,b1, a1,c0, b0,c1
+    float32x2x3_t v;
+    v.val[0].m64_f32[0] = *(ptr);
+    v.val[0].m64_f32[1] = *(ptr + 3);
+
+    v.val[1].m64_f32[0] = *(ptr + 1);
+    v.val[1].m64_f32[1] = *(ptr + 4);
+
+    v.val[2].m64_f32[0] = *(ptr + 2);
+    v.val[2].m64_f32[1] = *(ptr + 5);
+    return v;
+}
+
+poly8x8x3_t vld3_p8(__transfersize(24) poly8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0]
+#define vld3_p8 vld3_u8
+
+poly16x4x3_t vld3_p16(__transfersize(12) poly16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0]
+#define vld3_p16 vld3_u16
+
+//***************  Quadruples load ********************************
+//*****************************************************************
+uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr) // VLD4.8 {d0, d2, d4, d6}, [r0]
+{
+    uint8x16x4_t v;
+    __m128i tmp3, tmp2, tmp1, tmp0;
+
+    v.val[0] = vld1q_u8 ( ptr); //a0,a1,a2,...a7, ...a15
+    v.val[1] = vld1q_u8 ( (ptr + 16)); //b0, b1,b2,...b7.... b15
+    v.val[2] = vld1q_u8 ( (ptr + 32)); //c0, c1,c2,...c7....c15
+    v.val[3] = vld1q_u8 ( (ptr + 48)); //d0,d1,d2,...d7....d15
+
+    tmp0 = _mm_unpacklo_epi8(v.val[0],v.val[1]); //a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7
+    tmp1 = _mm_unpacklo_epi8(v.val[2],v.val[3]); //c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7
+    tmp2 = _mm_unpackhi_epi8(v.val[0],v.val[1]); //a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15
+    tmp3 = _mm_unpackhi_epi8(v.val[2],v.val[3]); //c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15
+
+    v.val[0] = _mm_unpacklo_epi8(tmp0, tmp2); //a0,a8, b0,b8,  a1,a9, b1,b9, ....a3,a11, b3,b11
+    v.val[1] = _mm_unpackhi_epi8(tmp0, tmp2); //a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15
+    v.val[2] = _mm_unpacklo_epi8(tmp1, tmp3); //c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11
+    v.val[3] = _mm_unpackhi_epi8(tmp1, tmp3); //c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15
+
+    tmp0 =  _mm_unpacklo_epi32(v.val[0], v.val[2] ); ///a0,a8, b0,b8, c0,c8,  d0,d8, a1,a9, b1,b9, c1,c9, d1,d9
+    tmp1 =  _mm_unpackhi_epi32(v.val[0], v.val[2] ); //a2,a10, b2,b10, c2,c10, d2,d10, a3,a11, b3,b11, c3,c11, d3,d11
+    tmp2 =  _mm_unpacklo_epi32(v.val[1], v.val[3] ); //a4,a12, b4,b12, c4,c12, d4,d12, a5,a13, b5,b13, c5,c13, d5,d13,
+    tmp3 =  _mm_unpackhi_epi32(v.val[1], v.val[3] ); //a6,a14, b6,b14, c6,c14, d6,d14, a7,a15,b7,b15,c7,c15,d7,d15
+
+    v.val[0] = _mm_unpacklo_epi8(tmp0, tmp2); //a0,a4,a8,a12,b0,b4,b8,b12,c0,c4,c8,c12,d0,d4,d8,d12
+    v.val[1] = _mm_unpackhi_epi8(tmp0, tmp2); //a1,a5, a9, a13, b1,b5, b9,b13, c1,c5, c9, c13, d1,d5, d9,d13
+    v.val[2] = _mm_unpacklo_epi8(tmp1, tmp3); //a2,a6, a10,a14, b2,b6, b10,b14,c2,c6, c10,c14, d2,d6, d10,d14
+    v.val[3] = _mm_unpackhi_epi8(tmp1, tmp3); //a3,a7, a11,a15, b3,b7, b11,b15,c3,c7, c11, c15,d3,d7, d11,d15
+    return v;
+}
+
+uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr) // VLD4.16 {d0, d2, d4, d6}, [r0]
+{
+    uint16x8x4_t v;
+    __m128i tmp3, tmp2, tmp1, tmp0;
+    tmp0  =  vld1q_u16 (ptr); //a0,a1,a2,...a7
+    tmp1  =  vld1q_u16 ((ptr + 8)); //b0, b1,b2,...b7
+    tmp2  =  vld1q_u16 ((ptr + 16)); //c0, c1,c2,...c7
+    tmp3  =  vld1q_u16 ((ptr + 24)); //d0,d1,d2,...d7
+    v.val[0] = _mm_unpacklo_epi16(tmp0,tmp1); //a0,b0, a1,b1, a2,b2, a3,b3,
+    v.val[1] = _mm_unpacklo_epi16(tmp2,tmp3); //c0,d0, c1,d1, c2,d2, c3,d3,
+    v.val[2] = _mm_unpackhi_epi16(tmp0,tmp1); //a4,b4, a5,b5, a6,b6, a7,b7
+    v.val[3] = _mm_unpackhi_epi16(tmp2,tmp3); //c4,d4, c5,d5, c6,d6, c7,d7
+    tmp0 = _mm_unpacklo_epi16(v.val[0], v.val[2]); //a0,a4, b0,b4, a1,a5, b1,b5
+    tmp1 = _mm_unpackhi_epi16(v.val[0], v.val[2]); //a2,a6, b2,b6, a3,a7, b3,b7
+    tmp2 = _mm_unpacklo_epi16(v.val[1], v.val[3]); //c0,c4, d0,d4, c1,c5, d1,d5
+    tmp3 = _mm_unpackhi_epi16(v.val[1], v.val[3]); //c2,c6, d2,d6, c3,c7, d3,d7
+    v.val[0] =  _mm_unpacklo_epi64(tmp0, tmp2); //a0,a4, b0,b4, c0,c4, d0,d4,
+    v.val[1] =  _mm_unpackhi_epi64(tmp0, tmp2); //a1,a5, b1,b5, c1,c5, d1,d5
+    v.val[2] =  _mm_unpacklo_epi64(tmp1, tmp3); //a2,a6, b2,b6, c2,c6, d2,d6,
+    v.val[3] =  _mm_unpackhi_epi64(tmp1, tmp3); //a3,a7, b3,b7, c3,c7, d3,d7
+    return v;
+}
+
+uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr) // VLD4.32 {d0, d2, d4, d6}, [r0]
+{
+    uint32x4x4_t v;
+    __m128i tmp3, tmp2, tmp1, tmp0;
+    v.val[0] =  vld1q_u32 (ptr);
+    v.val[1] =  vld1q_u32 ((ptr + 4));
+    v.val[2] =  vld1q_u32 ((ptr + 8));
+    v.val[3] =  vld1q_u32 ((ptr + 12));
+    tmp0 = _mm_unpacklo_epi32(v.val[0],v.val[1]);
+    tmp1 = _mm_unpacklo_epi32(v.val[2],v.val[3]);
+    tmp2 = _mm_unpackhi_epi32(v.val[0],v.val[1]);
+    tmp3 = _mm_unpackhi_epi32(v.val[2],v.val[3]);
+    v.val[0] = _mm_unpacklo_epi64(tmp0, tmp1);
+    v.val[1] = _mm_unpackhi_epi64(tmp0, tmp1);
+    v.val[2] = _mm_unpacklo_epi64(tmp2, tmp3);
+    v.val[3] = _mm_unpackhi_epi64(tmp2, tmp3);
+    return v;
+}
+
+int8x16x4_t vld4q_s8(__transfersize(64) int8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0]
+#define vld4q_s8(ptr) vld4q_u8((uint8_t*)ptr)
+
+int16x8x4_t vld4q_s16(__transfersize(32) int16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+#define  vld4q_s16(ptr) vld4q_u16((uint16_t*)ptr)
+
+int32x4x4_t vld4q_s32(__transfersize(16) int32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0]
+#define  vld4q_s32(ptr) vld4q_u32((uint32_t*)ptr)
+
+float16x8x4_t vld4q_f16(__transfersize(32) __fp16 const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr) // VLD4.32 {d0, d2, d4, d6}, [r0]
+{
+    float32x4x4_t v;
+    __m128 tmp3, tmp2, tmp1, tmp0;
+
+    v.val[0] =  vld1q_f32 ((float*) ptr);
+    v.val[1] =  vld1q_f32 ((float*) (ptr + 4));
+    v.val[2] =  vld1q_f32 ((float*) (ptr + 8));
+    v.val[3] =  vld1q_f32 ((float*) (ptr + 12));
+    tmp0 = _mm_unpacklo_ps(v.val[0], v.val[1]);
+    tmp2 = _mm_unpacklo_ps(v.val[2], v.val[3]);
+    tmp1 = _mm_unpackhi_ps(v.val[0], v.val[1]);
+    tmp3 = _mm_unpackhi_ps(v.val[2], v.val[3]);
+    v.val[0] = _mm_movelh_ps(tmp0, tmp2);
+    v.val[1] = _mm_movehl_ps(tmp2, tmp0);
+    v.val[2] = _mm_movelh_ps(tmp1, tmp3);
+    v.val[3] = _mm_movehl_ps(tmp3, tmp1);
+    return v;
+}
+
+poly8x16x4_t vld4q_p8(__transfersize(64) poly8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0]
+#define vld4q_p8 vld4q_u8
+
+poly16x8x4_t vld4q_p16(__transfersize(32) poly16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0]
+#define vld4q_p16 vld4q_s16
+
+uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr) // VLD4.8 {d0, d1, d2, d3}, [r0]
+{
+    uint8x8x4_t v;
+    __m128i sh0, sh1;
+    __m128i val0,  val2;
+    _NEON2SSE_ALIGN_16 int8_t mask4_8[16] = {0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15};
+
+    val0 = vld1q_u8(( ptr)); //load first 64-bits in val[0] and val[1]
+    val2 = vld1q_u8(( ptr + 16)); //load third and forth 64-bits in val[2], val[3]
+
+    sh0 = _mm_shuffle_epi8(val0, *(__m128i*)mask4_8);
+    sh1 = _mm_shuffle_epi8(val2, *(__m128i*)mask4_8);
+    val0 = _mm_unpacklo_epi32(sh0,sh1); //0,4,8,12,16,20,24,28, 1,5,9,13,17,21,25,29
+    vst1q_u8(&v.val[0], val0 );
+    val2 = _mm_unpackhi_epi32(sh0,sh1); //2,6,10,14,18,22,26,30, 3,7,11,15,19,23,27,31
+    vst1q_u8(&v.val[2], val2 );
+    return v;
+}
+
+uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr) // VLD4.16 {d0, d1, d2, d3}, [r0]
+{
+    uint16x4x4_t v;
+    __m128i sh0, sh1;
+    __m128i val0, val2;
+    _NEON2SSE_ALIGN_16 int8_t mask4_16[16] = {0,1, 8,9, 2,3, 10,11, 4,5, 12,13, 6,7, 14,15}; //0, 4, 1, 5, 2, 6, 3, 7
+    val0 = vld1q_u16 ( (ptr)); //load first 64-bits in val[0] and val[1]
+    val2 = vld1q_u16 ( (ptr + 8)); //load third and forth 64-bits in val[2], val[3]
+    sh0 = _mm_shuffle_epi8(val0, *(__m128i*)mask4_16);
+    sh1 = _mm_shuffle_epi8(val2, *(__m128i*)mask4_16);
+    val0 = _mm_unpacklo_epi32(sh0,sh1); //0,4,8,12, 1,5,9,13
+    vst1q_u16(&v.val[0], val0 );
+    val2 = _mm_unpackhi_epi32(sh0,sh1); //2,6,10,14, 3,7,11,15
+    vst1q_u16(&v.val[2], val2 );
+    return v;
+}
+
+uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr)
+{
+    //a0,a1,  b0,b1, c0,c1, d0,d1 -> a0,c0, a1,c1, b0,d0, b1,d1
+    uint32x2x4_t v;
+    __m128i val0, val01, val2;
+    val0 =  vld1q_u32 (ptr); //a0,a1,  b0,b1,
+    val2 =  vld1q_u32 ((ptr + 4)); //c0,c1, d0,d1
+    val01 = _mm_unpacklo_epi32(val0,val2); //a0, c0, a1,c1,
+    val2 = _mm_unpackhi_epi32(val0,val2); //b0,d0, b1, d1
+    vst1q_u32(&v.val[0], val01);
+    vst1q_u32(&v.val[2], val2 );
+    return v;
+}
+
+uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr) // VLD1.64 {d0, d1, d2, d3}, [r0]
+{
+    uint64x1x4_t v;
+    v.val[0].m64_u64[0] = *(ptr); //load first 64-bits in val[0] and val[1]
+    v.val[1].m64_u64[0] = *(ptr + 1); //load first 64-bits in val[0] and val[1]
+    v.val[2].m64_u64[0] = *(ptr + 2); //load third and forth 64-bits in val[2], val[3]
+    v.val[3].m64_u64[0] = *(ptr + 3); //load third and forth 64-bits in val[2], val[3]
+    return v;
+}
+
+int8x8x4_t vld4_s8(__transfersize(32) int8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0]
+#define  vld4_s8(ptr) vld4_u8((uint8_t*)ptr)
+
+int16x4x4_t vld4_s16(__transfersize(16) int16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+#define vld4_s16(ptr) vld4_u16((uint16_t*)ptr)
+
+int32x2x4_t vld4_s32(__transfersize(8) int32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0]
+#define vld4_s32(ptr) vld4_u32((uint32_t*)ptr)
+
+int64x1x4_t vld4_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+#define vld4_s64(ptr) vld4_u64((uint64_t*)ptr)
+
+float16x4x4_t vld4_f16(__transfersize(16) __fp16 const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr) // VLD4.32 {d0, d1, d2, d3}, [r0]
+{
+    //a0,a1,  b0,b1, c0,c1, d0,d1 -> a0,c0, a1,c1, b0,d0, b1,d1
+    float32x2x4_t res;
+    res.val[0].m64_f32[0] = *(ptr);
+    res.val[0].m64_f32[1] = *(ptr + 4);
+    res.val[1].m64_f32[0] = *(ptr + 1);
+    res.val[1].m64_f32[1] = *(ptr + 5);
+    res.val[2].m64_f32[0] = *(ptr + 2);
+    res.val[2].m64_f32[1] = *(ptr + 6);
+    res.val[3].m64_f32[0] = *(ptr + 3);
+    res.val[3].m64_f32[1] = *(ptr + 7);
+    return res;
+}
+
+poly8x8x4_t vld4_p8(__transfersize(32) poly8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0]
+#define vld4_p8 vld4_u8
+
+poly16x4x4_t vld4_p16(__transfersize(16) poly16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0]
+#define vld4_p16 vld4_u16
+
+//************* Duplicate (or propagate) ptr[0] to all val[0] lanes and ptr[1] to all val[1] lanes *******************
+//*******************************************************************************************************************
+uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0]
+_NEON2SSE_INLINE uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr) // VLD2.8 {d0[], d1[]}, [r0]
+{
+    uint8x8x2_t v;
+    __m128i val0, val1;
+    val0 = LOAD_SI128(ptr); //0,1,x,x, x,x,x,x,x,x,x,x, x,x,x,x
+    val1 = _mm_unpacklo_epi8(val0,val0); //0,0,1,1,x,x,x,x, x,x,x,x,x,x,x,x,
+    val1 = _mm_unpacklo_epi16(val1,val1); //0,0,0,0, 1,1,1,1,x,x,x,x, x,x,x,x
+    val0 = _mm_unpacklo_epi32(val1,val1); //0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,
+    vst1q_u8(v.val, val0);
+    return v;
+}
+
+uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+_NEON2SSE_INLINE uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr) // VLD2.16 {d0[], d1[]}, [r0]
+{
+    uint16x4x2_t v;
+    __m128i val0, val1;
+    val1 = LOAD_SI128(ptr); //0,1,x,x, x,x,x,x
+    val0 = _mm_shufflelo_epi16(val1, 0); //00 00 00 00 (all 0)
+    _M64(v.val[0], val0);
+    val1 = _mm_shufflelo_epi16(val1, 85); //01 01 01 01 (all 1)
+    _M64(v.val[1], val1);
+    return v;
+}
+
+uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0]
+_NEON2SSE_INLINE uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr) // VLD2.32 {d0[], d1[]}, [r0]
+{
+    uint32x2x2_t v;
+    __m128i val0;
+    val0 = LOAD_SI128(ptr); //0,1,x,x
+    val0 = _mm_shuffle_epi32(val0,   0 | (0 << 2) | (1 << 4) | (1 << 6)); //0,0,1,1
+    vst1q_u32(v.val, val0);
+    return v;
+}
+
+uint64x1x2_t vld2_dup_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+#define vld2_dup_u64 vld2_u64
+
+int8x8x2_t vld2_dup_s8(__transfersize(2) int8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0]
+#define vld2_dup_s8(ptr) vld2_dup_u8((uint8_t*)ptr)
+
+int16x4x2_t vld2_dup_s16(__transfersize(2) int16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+#define vld2_dup_s16(ptr) vld2_dup_u16((uint16_t*)ptr)
+
+int32x2x2_t vld2_dup_s32(__transfersize(2) int32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0]
+#define vld2_dup_s32(ptr) vld2_dup_u32((uint32_t*)ptr)
+
+int64x1x2_t vld2_dup_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0]
+#define vld2_dup_s64(ptr) vld2_dup_u64((uint64_t*)ptr)
+
+float16x4x2_t vld2_dup_f16(__transfersize(2) __fp16 const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0]
+_NEON2SSE_INLINE float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr) // VLD2.32 {d0[], d1[]}, [r0]
+{
+    float32x2x2_t v;
+    v.val[0].m64_f32[0] = *(ptr); //0,0
+    v.val[0].m64_f32[1] = *(ptr); //0,0
+    v.val[1].m64_f32[0] = *(ptr + 1); //1,1
+    v.val[1].m64_f32[1] = *(ptr + 1); //1,1
+    return v;
+}
+
+poly8x8x2_t vld2_dup_p8(__transfersize(2) poly8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0]
+#define vld2_dup_p8 vld2_dup_u8
+
+poly16x4x2_t vld2_dup_p16(__transfersize(2) poly16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0]
+#define vld2_dup_p16 vld2_dup_s16
+
+//************* Duplicate (or propagate)triplets: *******************
+//********************************************************************
+//ptr[0] to all val[0] lanes, ptr[1] to all val[1] lanes and ptr[2] to all val[2] lanes
+uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0]
+_NEON2SSE_INLINE uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr) // VLD3.8 {d0[], d1[], d2[]}, [r0]
+{
+    uint8x8x3_t v;
+    __m128i val0, val1, val2;
+    val0 = LOAD_SI128(ptr); //0,1,2,x, x,x,x,x,x,x,x,x, x,x,x,x
+    val1 = _mm_unpacklo_epi8(val0,val0); //0,0,1,1,2,2,x,x, x,x,x,x,x,x,x,x,
+    val1 = _mm_unpacklo_epi16(val1,val1); //0,0,0,0, 1,1,1,1,2,2,2,2,x,x,x,x,
+    val0 = _mm_unpacklo_epi32(val1,val1); //0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,
+    val2 = _mm_unpackhi_epi32(val1,val1); // 2,2,2,2,2,2,2,2, x,x,x,x,x,x,x,x,
+    vst1q_u8(v.val, val0);
+    _M64(v.val[2], val2);
+    return v;
+}
+
+uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+_NEON2SSE_INLINE uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr) // VLD3.16 {d0[], d1[], d2[]}, [r0]
+{
+    uint16x4x3_t v;
+    __m128i val0, val1, val2;
+    val2 = LOAD_SI128(ptr); //0,1,2,x, x,x,x,x
+    val0 = _mm_shufflelo_epi16(val2, 0); //00 00 00 00 (all 0)
+    val1 = _mm_shufflelo_epi16(val2, 85); //01 01 01 01 (all 1)
+    val2 = _mm_shufflelo_epi16(val2, 170); //10 10 10 10 (all 2)
+    _M64(v.val[0], val0);
+    _M64(v.val[1], val1);
+    _M64(v.val[2], val2);
+    return v;
+}
+
+uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0]
+_NEON2SSE_INLINE uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr) // VLD3.32 {d0[], d1[], d2[]}, [r0]
+{
+    uint32x2x3_t v;
+    __m128i val0, val1, val2;
+    val2 = LOAD_SI128(ptr); //0,1,2,x
+    val0 = _mm_shuffle_epi32(val2,   0 | (0 << 2) | (2 << 4) | (2 << 6)); //0,0,2,2
+    val1 = _mm_shuffle_epi32(val2,   1 | (1 << 2) | (2 << 4) | (2 << 6)); //1,1,2,2
+    val2 = _mm_srli_si128(val0, 8); //2,2,0x0,0x0
+    _M64(v.val[0], val0);
+    _M64(v.val[1], val1);
+    _M64(v.val[2], val2);
+    return v;
+}
+
+uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr) // VLD1.64 {d0, d1, d2}, [r0]
+{
+    uint64x1x3_t v;
+    v.val[0].m64_u64[0] = *(ptr);
+    v.val[1].m64_u64[0] = *(ptr + 1);
+    v.val[2].m64_u64[0] = *(ptr + 2);
+    return v;
+}
+
+int8x8x3_t vld3_dup_s8(__transfersize(3) int8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0]
+#define vld3_dup_s8(ptr) vld3_dup_u8((uint8_t*)ptr)
+
+int16x4x3_t vld3_dup_s16(__transfersize(3) int16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+#define vld3_dup_s16(ptr) vld3_dup_u16((uint16_t*)ptr)
+
+int32x2x3_t vld3_dup_s32(__transfersize(3) int32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0]
+#define vld3_dup_s32(ptr) vld3_dup_u32((uint32_t*)ptr)
+
+int64x1x3_t vld3_dup_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0]
+#define vld3_dup_s64(ptr) vld3_dup_u64((uint64_t*)ptr)
+
+
+float16x4x3_t vld3_dup_f16(__transfersize(3) __fp16 const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0]
+_NEON2SSE_INLINE float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr) // VLD3.32 {d0[], d1[], d2[]}, [r0]
+{
+    float32x2x3_t v;
+    int i;
+    for (i = 0; i<3; i++) {
+        v.val[i].m64_f32[0] = *(ptr + i);
+        v.val[i].m64_f32[1] = *(ptr + i);
+    }
+    return v;
+}
+
+poly8x8x3_t vld3_dup_p8(__transfersize(3) poly8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0]
+#define vld3_dup_p8 vld3_dup_u8
+
+poly16x4x3_t vld3_dup_p16(__transfersize(3) poly16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0]
+#define vld3_dup_p16 vld3_dup_s16
+
+
+//************* Duplicate (or propagate) quadruples: *******************
+//***********************************************************************
+//ptr[0] to all val[0] lanes, ptr[1] to all val[1] lanes, ptr[2] to all val[2] lanes  and  ptr[3] to all val[3] lanes
+uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0]
+_NEON2SSE_INLINE uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr) // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0]
+{
+    uint8x8x4_t v;
+    __m128i val0, val1, val2;
+    val0 = LOAD_SI128(ptr); //0,1,2,3, x,x,x,x,x,x,x,x, x,x,x,x
+    val1 = _mm_unpacklo_epi8(val0,val0); //0,0,1,1,2,2,3,3, x,x,x,x,x,x,x,x,
+    val1 = _mm_unpacklo_epi16(val1,val1); //0,0,0,0, 1,1,1,1,2,2,2,2,3,3,3,3
+    val0 = _mm_unpacklo_epi32(val1,val1); //0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,
+    val2 = _mm_unpackhi_epi32(val1,val1); // 2,2,2,2,2,2,2,2, 3,3,3,3, 3,3,3,3
+    vst1q_u8(&v.val[0], val0);
+    vst1q_u8(&v.val[2], val2);
+    return v;
+}
+
+uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+_NEON2SSE_INLINE uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr) // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+{
+    uint16x4x4_t v;
+    __m128i val0, val1, val2, val3;
+    val3 = LOAD_SI128(ptr); //0,1,2,3, x,x,x,x
+    val0 = _mm_shufflelo_epi16(val3, 0); //00 00 00 00 (all 0)
+    val1 = _mm_shufflelo_epi16(val3, 85); //01 01 01 01 (all 1)
+    val2 = _mm_shufflelo_epi16(val3, 170); //10 10 10 10 (all 2)
+    val3 = _mm_shufflelo_epi16(val3, 255); //11 11 11 11 (all 3)
+    _M64(v.val[0], val0);
+    _M64(v.val[1], val1);
+    _M64(v.val[2], val2);
+    _M64(v.val[3], val3);
+    return v;
+}
+
+uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+_NEON2SSE_INLINE uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr) // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+{
+    uint32x2x4_t v;
+    __m128i val0, val1, val2, val3;
+    val3 = LOAD_SI128(ptr); //0,1,2,3
+    val0 = _mm_shuffle_epi32(val3,   0 | (0 << 2) | (2 << 4) | (3 << 6)); //0,0,2,3
+    val1 = _mm_shuffle_epi32(val3,   1 | (1 << 2) | (2 << 4) | (3 << 6)); //1,1,2,3
+    val2 = _mm_shuffle_epi32(val3,   2 | (2 << 2) | (3 << 4) | (3 << 6)); //2,2,3,3
+    val3 = _mm_shuffle_epi32(val3,   3 | (3 << 2) | (3 << 4) | (3 << 6)); //3,3,2,2
+    _M64(v.val[0], val0);
+    _M64(v.val[1], val1);
+    _M64(v.val[2], val2);
+    _M64(v.val[3], val3);
+    return v;
+}
+
+uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr) // VLD1.64 {d0, d1, d2, d3}, [r0]
+{
+    uint64x1x4_t v;
+    v.val[0].m64_u64[0] = *(ptr);
+    v.val[1].m64_u64[0] = *(ptr + 1);
+    v.val[2].m64_u64[0] = *(ptr + 2);
+    v.val[3].m64_u64[0] = *(ptr + 3);
+    return v;
+}
+
+int8x8x4_t vld4_dup_s8(__transfersize(4) int8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0]
+#define vld4_dup_s8(ptr) vld4_dup_u8((uint8_t*)ptr)
+
+int16x4x4_t vld4_dup_s16(__transfersize(4) int16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+#define vld4_dup_s16(ptr) vld4_dup_u16((uint16_t*)ptr)
+
+int32x2x4_t vld4_dup_s32(__transfersize(4) int32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+#define vld4_dup_s32(ptr) vld4_dup_u32((uint32_t*)ptr)
+
+int64x1x4_t vld4_dup_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0]
+#define vld4_dup_s64(ptr) vld4_dup_u64((uint64_t*)ptr)
+
+float16x4x4_t vld4_dup_f16(__transfersize(4) __fp16 const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+_NEON2SSE_INLINE float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr) // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0]
+{
+    float32x2x4_t v;
+    int i;
+    for (i = 0; i<4; i++) {
+        v.val[i].m64_f32[0] = *(ptr + i);
+        v.val[i].m64_f32[1] = *(ptr + i);
+    }
+    return v;
+}
+
+poly8x8x4_t vld4_dup_p8(__transfersize(4) poly8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0]
+#define vld4_dup_p8 vld4_dup_u8
+
+poly16x4x4_t vld4_dup_p16(__transfersize(4) poly16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0]
+#define vld4_dup_p16 vld4_dup_u16
+
+
+//**********************************************************************************
+//*******************Lane loads for  an N-element structures ***********************
+//**********************************************************************************
+//********************** Lane pairs  ************************************************
+//does vld1_lane_xx ptr[0] to src->val[0] at lane positon and ptr[1] to src->val[1] at lane positon
+//we assume  src is 16 bit aligned
+
+//!!!!!! Microsoft compiler does not allow xxxxxx_2t function arguments resulting in "formal parameter with __declspec(align('16')) won't be aligned" error
+//to fix it the all functions below work with  xxxxxx_2t pointers and the corresponding original functions are redefined
+
+//uint16x8x2_t vld2q_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x8x2_t src,__constrange(0,7) int lane);// VLD2.16 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE uint16x8x2_t vld2q_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x8x2_t* src,__constrange(0,7) int lane) // VLD2.16 {d0[0], d2[0]}, [r0]
+{
+    uint16x8x2_t v;
+    v.val[0] = vld1q_lane_s16 (ptr, src->val[0],  lane);
+    v.val[1] = vld1q_lane_s16 ((ptr + 1), src->val[1],  lane);
+    return v;
+}
+#define vld2q_lane_u16(ptr, src, lane) vld2q_lane_u16_ptr(ptr, &src, lane)
+
+//uint32x4x2_t vld2q_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x4x2_t src,__constrange(0,3) int lane);// VLD2.32 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE uint32x4x2_t vld2q_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x4x2_t* src,__constrange(0,3) int lane) // VLD2.32 {d0[0], d2[0]}, [r0]
+{
+    uint32x4x2_t v;
+    v.val[0] = _MM_INSERT_EPI32 (src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI32 (src->val[1],  ptr[1], lane);
+    return v;
+}
+#define vld2q_lane_u32(ptr, src, lane) vld2q_lane_u32_ptr(ptr, &src, lane)
+
+//int16x8x2_t vld2q_lane_s16(__transfersize(2) int16_t const * ptr, int16x8x2_t src, __constrange(0,7)int lane);// VLD2.16 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE int16x8x2_t vld2q_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x8x2_t* src, __constrange(0,7) int lane)
+{
+    int16x8x2_t v;
+    v.val[0] = vld1q_lane_s16 (ptr, src->val[0],  lane);
+    v.val[1] = vld1q_lane_s16 ((ptr + 1), src->val[1],  lane);
+    return v;
+}
+#define vld2q_lane_s16(ptr, src, lane) vld2q_lane_s16_ptr(ptr, &src, lane)
+
+//int32x4x2_t vld2q_lane_s32(__transfersize(2) int32_t const * ptr, int32x4x2_t src, __constrange(0,3)int lane);// VLD2.32 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE int32x4x2_t vld2q_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x4x2_t* src, __constrange(0,3) int lane)
+{
+    int32x4x2_t v;
+    v.val[0] = _MM_INSERT_EPI32 (src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI32 (src->val[1],  ptr[1], lane);
+    return v;
+}
+#define vld2q_lane_s32(ptr, src, lane) vld2q_lane_s32_ptr(ptr, &src, lane)
+
+//float16x8x2_t vld2q_lane_f16(__transfersize(2) __fp16 const * ptr, float16x8x2_t src, __constrange(0,7)int lane);// VLD2.16 {d0[0], d2[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+//float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t src,__constrange(0,3) int lane);// VLD2.32 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t* src,__constrange(0,3) int lane) // VLD2.32 {d0[0], d2[0]}, [r0]
+{
+    float32x4x2_t v;
+    v.val[0] = vld1q_lane_f32(ptr, src->val[0], lane);
+    v.val[1] = vld1q_lane_f32((ptr + 1), src->val[1], lane);
+    return v;
+}
+#define vld2q_lane_f32(ptr,src,lane) vld2q_lane_f32_ptr(ptr,&src,lane)
+
+//poly16x8x2_t vld2q_lane_p16(__transfersize(2) poly16_t const * ptr, poly16x8x2_t src,__constrange(0,7) int lane);// VLD2.16 {d0[0], d2[0]}, [r0]
+#define vld2q_lane_p16 vld2q_lane_u16
+
+//uint8x8x2_t vld2_lane_u8(__transfersize(2) uint8_t const * ptr, uint8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE uint8x8x2_t vld2_lane_u8_ptr(__transfersize(2) uint8_t const * ptr, uint8x8x2_t* src, __constrange(0,7) int lane) // VLD2.8 {d0[0], d1[0]}, [r0]
+{
+    uint8x8x2_t v;
+    v.val[0] = vld1_lane_u8(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_u8((ptr + 1), src->val[1], lane);
+    return v;
+}
+#define vld2_lane_u8(ptr, src, lane) vld2_lane_u8_ptr(ptr, &src, lane)
+
+//uint16x4x2_t vld2_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x4x2_t src, __constrange(0,3)int lane);// VLD2.16 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE uint16x4x2_t vld2_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x4x2_t* src, __constrange(0,3) int lane)
+{
+    uint16x4x2_t v;
+    v.val[0]  =  vld1_lane_u16(ptr, src->val[0], lane);
+    v.val[1]  = vld1_lane_u16((ptr + 1), src->val[1], lane);
+    return v;
+}
+#define vld2_lane_u16(ptr, src, lane) vld2_lane_u16_ptr(ptr, &src, lane)
+
+//uint32x2x2_t vld2_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x2x2_t src, __constrange(0,1)int lane);// VLD2.32 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE uint32x2x2_t vld2_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x2x2_t* src, __constrange(0,1) int lane)
+{
+    uint32x2x2_t v;
+    v.val[0]  =  vld1_lane_u32(ptr, src->val[0], lane);
+    v.val[1]  = vld1_lane_u32((ptr + 1), src->val[1], lane);
+    return v;
+}
+#define vld2_lane_u32(ptr, src, lane) vld2_lane_u32_ptr(ptr, &src, lane)
+
+//int8x8x2_t vld2_lane_s8(__transfersize(2) int8_t const * ptr, int8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0]
+int8x8x2_t vld2_lane_s8_ptr(__transfersize(2) int8_t const * ptr, int8x8x2_t * src, __constrange(0,7) int lane); // VLD2.8 {d0[0], d1[0]}, [r0]
+#define vld2_lane_s8(ptr, src, lane)  vld2_lane_u8(( uint8_t*) ptr, src, lane)
+
+//int16x4x2_t vld2_lane_s16(__transfersize(2) int16_t const * ptr, int16x4x2_t src, __constrange(0,3) int lane);// VLD2.16 {d0[0], d1[0]}, [r0]
+int16x4x2_t vld2_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0]
+#define vld2_lane_s16(ptr, src, lane) vld2_lane_u16(( uint16_t*) ptr, src, lane)
+
+//int32x2x2_t vld2_lane_s32(__transfersize(2) int32_t const * ptr, int32x2x2_t src, __constrange(0,1) int lane);// VLD2.32 {d0[0], d1[0]}, [r0]
+int32x2x2_t vld2_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x2x2_t * src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0]
+#define vld2_lane_s32(ptr, src, lane) vld2_lane_u32(( uint32_t*) ptr, src, lane)
+
+//float16x4x2_t vld2_lane_f16(__transfersize(2) __fp16 const * ptr, float16x4x2_t src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+float32x2x2_t vld2_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x2x2_t * src,__constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE float32x2x2_t vld2_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x2x2_t * src,__constrange(0,1) int lane)
+{
+    float32x2x2_t v;
+    v.val[0] = vld1_lane_f32(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_f32((ptr + 1), src->val[1], lane);
+    return v;
+}
+#define vld2_lane_f32(ptr, src, lane) vld2_lane_f32_ptr(ptr, &src, lane)
+
+//poly8x8x2_t vld2_lane_p8(__transfersize(2) poly8_t const * ptr, poly8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0]
+poly8x8x2_t vld2_lane_p8_ptr(__transfersize(2) poly8_t const * ptr, poly8x8x2_t * src, __constrange(0,7) int lane); // VLD2.8 {d0[0], d1[0]}, [r0]
+#define vld2_lane_p8 vld2_lane_u8
+
+//poly16x4x2_t vld2_lane_p16(__transfersize(2) poly16_t const * ptr, poly16x4x2_t src, __constrange(0,3)int lane);// VLD2.16 {d0[0], d1[0]}, [r0]
+poly16x4x2_t vld2_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0]
+#define vld2_lane_p16 vld2_lane_u16
+
+//*********** Lane triplets **********************
+//*************************************************
+//does vld1_lane_xx ptr[0] to src->val[0], ptr[1] to src->val[1] and ptr[2] to src->val[2] at lane positon
+//we assume src is 16 bit aligned
+
+//uint16x8x3_t vld3q_lane_u16(__transfersize(3) uint16_t const * ptr, uint16x8x3_t src,__constrange(0,7) int lane);// VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE uint16x8x3_t vld3q_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x8x3_t* src,__constrange(0,7) int lane) // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+{
+    uint16x8x3_t v;
+    v.val[0] = _MM_INSERT_EPI16 ( src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI16 ( src->val[1],  ptr[1], lane);
+    v.val[2] = _MM_INSERT_EPI16 ( src->val[2],  ptr[2], lane);
+    return v;
+}
+#define vld3q_lane_u16(ptr, src, lane) vld3q_lane_u16_ptr(ptr, &src, lane)
+
+//uint32x4x3_t vld3q_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x4x3_t src,__constrange(0,3) int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE uint32x4x3_t vld3q_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x4x3_t* src,__constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+{
+    uint32x4x3_t v;
+    v.val[0] = _MM_INSERT_EPI32 ( src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI32 ( src->val[1],  ptr[1], lane);
+    v.val[2] = _MM_INSERT_EPI32 ( src->val[2],  ptr[2], lane);
+    return v;
+}
+#define vld3q_lane_u32(ptr, src, lane) vld3q_lane_u32_ptr(ptr, &src, lane)
+
+//int16x8x3_t vld3q_lane_s16(__transfersize(3) int16_t const * ptr, int16x8x3_t src, __constrange(0,7)int lane);// VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE int16x8x3_t vld3q_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x8x3_t* src, __constrange(0,7) int lane) // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+{
+    int16x8x3_t v;
+    v.val[0] = _MM_INSERT_EPI16 ( src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI16 ( src->val[1],  ptr[1], lane);
+    v.val[2] = _MM_INSERT_EPI16 ( src->val[2],  ptr[2], lane);
+    return v;
+}
+#define vld3q_lane_s16(ptr, src, lane) vld3q_lane_s16_ptr(ptr, &src, lane)
+
+//int32x4x3_t vld3q_lane_s32(__transfersize(3) int32_t const * ptr, int32x4x3_t src, __constrange(0,3)int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE int32x4x3_t vld3q_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x4x3_t* src, __constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+{
+    int32x4x3_t v;
+    v.val[0] = _MM_INSERT_EPI32 ( src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI32 ( src->val[1],  ptr[1], lane);
+    v.val[2] = _MM_INSERT_EPI32 ( src->val[2],  ptr[2], lane);
+    return v;
+}
+#define vld3q_lane_s32(ptr, src, lane) vld3q_lane_s32_ptr(ptr, &src, lane)
+
+float16x8x3_t vld3q_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+//current IA SIMD doesn't support float16
+#define vld3q_lane_f16(ptr, src, lane) vld3q_lane_f16_ptr(ptr, &src, lane)
+
+
+//float32x4x3_t vld3q_lane_f32(__transfersize(3) float32_t const * ptr, float32x4x3_t src,__constrange(0,3) int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE float32x4x3_t vld3q_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x4x3_t* src,__constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0]
+{
+    float32x4x3_t v;
+    v.val[0] = vld1q_lane_f32(&ptr[0], src->val[0], lane);
+    v.val[1] = vld1q_lane_f32(&ptr[1], src->val[1], lane);
+    v.val[2] = vld1q_lane_f32(&ptr[2], src->val[2], lane);
+    return v;
+}
+#define vld3q_lane_f32(ptr,src,lane) vld3q_lane_f32_ptr(ptr,&src,lane)
+
+poly16x8x3_t vld3q_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x8x3_t * src,__constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0]
+#define vld3q_lane_p16 vld3q_lane_u16
+
+//uint8x8x3_t vld3_lane_u8(__transfersize(3) uint8_t const * ptr, uint8x8x3_t src, __constrange(0,7) int lane);// VLD3.8 {d0[0], d1[0], d2[0]}, [r0]
+_NEON2SSE_INLINE uint8x8x3_t vld3_lane_u8_ptr(__transfersize(3) uint8_t const * ptr, uint8x8x3_t* src, __constrange(0,7) int lane) // VLD3.8 {d0[0], d1[0], d2[0]}, [r0]
+{
+    uint8x8x3_t v;
+    v.val[0] = vld1_lane_u8(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_u8((ptr + 1), src->val[1], lane);
+    v.val[2] = vld1_lane_u8((ptr + 2), src->val[2], lane);
+    return v;
+}
+#define vld3_lane_u8(ptr, src, lane) vld3_lane_u8_ptr(ptr, &src, lane)
+
+//uint16x4x3_t vld3_lane_u16(__transfersize(3) uint16_t   const * ptr, uint16x4x3_t src, __constrange(0,3)int lane);// VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+_NEON2SSE_INLINE uint16x4x3_t vld3_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x4x3_t* src, __constrange(0,3) int lane) // VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+{
+    uint16x4x3_t v;
+    v.val[0] = vld1_lane_u16(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_u16((ptr + 1), src->val[1], lane);
+    v.val[2] = vld1_lane_u16((ptr + 2), src->val[2], lane);
+    return v;
+}
+#define vld3_lane_u16(ptr, src, lane) vld3_lane_u16_ptr(ptr, &src, lane)
+
+//uint32x2x3_t vld3_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x2x3_t src, __constrange(0,1)int lane);// VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+_NEON2SSE_INLINE uint32x2x3_t vld3_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x2x3_t* src, __constrange(0,1) int lane) // VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+{
+    //need to merge into 128 bit anyway
+    uint32x2x3_t v;
+    v.val[0] = vld1_lane_u32(ptr, src->val[0], lane);;
+    v.val[1] = vld1_lane_u32((ptr + 1), src->val[1], lane);;
+    v.val[2] = vld1_lane_u32((ptr + 2), src->val[2], lane);;
+    return v;
+}
+#define vld3_lane_u32(ptr, src, lane) vld3_lane_u32_ptr(ptr, &src, lane)
+
+int8x8x3_t vld3_lane_s8_ptr(__transfersize(3) int8_t const * ptr, int8x8x3_t * src, __constrange(0,7) int lane); // VLD3.8 {d0[0], d1[0], d2[0]}, [r0]
+#define vld3_lane_s8(ptr, src, lane)  vld3_lane_u8_ptr(( uint8_t*) ptr, &src, lane)
+
+int16x4x3_t vld3_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+#define vld3_lane_s16(ptr, src, lane)  vld3_lane_u16_ptr(( uint16_t*) ptr, &src, lane)
+
+int32x2x3_t vld3_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x2x3_t * src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+#define vld3_lane_s32(ptr, src, lane)  vld3_lane_u32_ptr(( uint32_t*) ptr, &src, lane)
+
+float16x4x3_t vld3_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+//float32x2x3_t vld3_lane_f32(__transfersize(3) float32_t const * ptr, float32x2x3_t src,__constrange(0,1) int lane);// VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+_NEON2SSE_INLINE float32x2x3_t vld3_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x2x3_t* src,__constrange(0,1) int lane) // VLD3.32 {d0[0], d1[0], d2[0]}, [r0]
+{
+    float32x2x3_t v;
+    v.val[0] = vld1_lane_f32(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_f32((ptr + 1), src->val[1], lane);
+    v.val[2] = vld1_lane_f32((ptr + 2), src->val[2], lane);
+    return v;
+}
+#define vld3_lane_f32(ptr,src,lane) vld3_lane_f32_ptr(ptr,&src,lane)
+
+//poly8x8x3_t vld3_lane_p8_ptr(__transfersize(3) poly8_t const * ptr, poly8x8x3_t * src, __constrange(0,7) int lane); // VLD3.8 {d0[0], d1[0], d2[0]}, [r0]
+#define vld3_lane_p8 vld3_lane_u8
+
+//poly16x4x3_t vld3_lane_p16(__transfersize(3) poly16_t const * ptr, poly16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0]
+#define vld3_lane_p16 vld3_lane_u16
+
+//******************* Lane Quadruples  load ***************************
+//*********************************************************************
+//does vld1_lane_xx ptr[0] to src->val[0], ptr[1] to src->val[1], ptr[2] to src->val[2] and ptr[3] to src->val[3] at lane positon
+//we assume src is 16 bit aligned
+
+//uint16x8x4_t vld4q_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x8x4_t src,__constrange(0,7) int lane)// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+_NEON2SSE_INLINE uint16x8x4_t vld4q_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x8x4_t* src,__constrange(0,7) int lane)
+{
+    uint16x8x4_t v;
+    v.val[0] = _MM_INSERT_EPI16 ( src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI16 ( src->val[1],  ptr[1], lane);
+    v.val[2] = _MM_INSERT_EPI16 ( src->val[2],  ptr[2], lane);
+    v.val[3] = _MM_INSERT_EPI16 ( src->val[3],  ptr[3], lane);
+    return v;
+}
+#define vld4q_lane_u16(ptr, src, lane) vld4q_lane_u16_ptr(ptr, &src, lane)
+
+//uint32x4x4_t vld4q_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x4x4_t src,__constrange(0,3) int lane)// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+_NEON2SSE_INLINE uint32x4x4_t vld4q_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x4x4_t* src,__constrange(0,3) int lane)
+{
+    uint32x4x4_t v;
+    v.val[0] = _MM_INSERT_EPI32 ( src->val[0],  ptr[0], lane);
+    v.val[1] = _MM_INSERT_EPI32 ( src->val[1],  ptr[1], lane);
+    v.val[2] = _MM_INSERT_EPI32 ( src->val[2],  ptr[2], lane);
+    v.val[3] = _MM_INSERT_EPI32 ( src->val[3],  ptr[3], lane);
+    return v;
+}
+#define vld4q_lane_u32(ptr, src, lane) vld4q_lane_u32_ptr(ptr, &src, lane)
+
+//int16x8x4_t vld4q_lane_s16(__transfersize(4) int16_t const * ptr, int16x8x4_t src, __constrange(0,7)int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+int16x8x4_t vld4q_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+#define vld4q_lane_s16(ptr, src, lane) vld4q_lane_u16(( uint16_t*) ptr, src, lane)
+
+//int32x4x4_t vld4q_lane_s32(__transfersize(4) int32_t const * ptr, int32x4x4_t src, __constrange(0,3)int lane);// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+int32x4x4_t vld4q_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+#define vld4q_lane_s32(ptr, src, lane)  vld4q_lane_u32(( uint32_t*) ptr, src, lane)
+
+//float16x8x4_t vld4q_lane_f16(__transfersize(4) __fp16 const * ptr, float16x8x4_t src, __constrange(0,7)int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+float16x8x4_t vld4q_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+//float32x4x4_t vld4q_lane_f32(__transfersize(4) float32_t const * ptr, float32x4x4_t src,__constrange(0,3) int lane)// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+_NEON2SSE_INLINE float32x4x4_t vld4q_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x4x4_t* src,__constrange(0,3) int lane)
+{
+    float32x4x4_t v;
+    v.val[0] = vld1q_lane_f32(&ptr[0], src->val[0], lane);
+    v.val[1] = vld1q_lane_f32(&ptr[1], src->val[1], lane);
+    v.val[2] = vld1q_lane_f32(&ptr[2], src->val[2], lane);
+    v.val[3] = vld1q_lane_f32(&ptr[3], src->val[3], lane);
+    return v;
+}
+#define vld4q_lane_f32(ptr,val,lane) vld4q_lane_f32_ptr(ptr,&val,lane)
+
+//poly16x8x4_t vld4q_lane_p16(__transfersize(4) poly16_t const * ptr, poly16x8x4_t src,__constrange(0,7) int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+poly16x8x4_t vld4q_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x8x4_t * src,__constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+#define vld4q_lane_p16 vld4q_lane_u16
+
+//uint8x8x4_t vld4_lane_u8(__transfersize(4) uint8_t const * ptr, uint8x8x4_t src, __constrange(0,7) int lane)// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE uint8x8x4_t vld4_lane_u8_ptr(__transfersize(4) uint8_t const * ptr, uint8x8x4_t* src, __constrange(0,7) int lane)
+{
+    uint8x8x4_t v;
+    v.val[0] = vld1_lane_u8(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_u8((ptr + 1), src->val[1], lane);
+    v.val[2] = vld1_lane_u8((ptr + 2), src->val[2], lane);
+    v.val[3] = vld1_lane_u8((ptr + 3), src->val[3], lane);
+    return v;
+}
+#define vld4_lane_u8(ptr, src, lane) vld4_lane_u8_ptr(ptr, &src, lane)
+
+//uint16x4x4_t vld4_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x4x4_t src, __constrange(0,3)int lane)// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE uint16x4x4_t vld4_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x4x4_t* src, __constrange(0,3) int lane)
+{
+    uint16x4x4_t v;
+    v.val[0] = vld1_lane_u16(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_u16((ptr + 1), src->val[1], lane);
+    v.val[2] = vld1_lane_u16((ptr + 2), src->val[2], lane);
+    v.val[3] = vld1_lane_u16((ptr + 3), src->val[3], lane);
+    return v;
+}
+#define vld4_lane_u16(ptr, src, lane) vld4_lane_u16_ptr(ptr, &src, lane)
+
+//uint32x2x4_t vld4_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x2x4_t src, __constrange(0,1)int lane)// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE uint32x2x4_t vld4_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x2x4_t* src, __constrange(0,1) int lane)
+{
+    uint32x2x4_t v;
+    v.val[0] = vld1_lane_u32(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_u32((ptr + 1), src->val[1], lane);
+    v.val[2] = vld1_lane_u32((ptr + 2), src->val[2], lane);
+    v.val[3] = vld1_lane_u32((ptr + 3), src->val[3], lane);
+    return v;
+}
+#define vld4_lane_u32(ptr, src, lane) vld4_lane_u32_ptr(ptr, &src, lane)
+
+//int8x8x4_t vld4_lane_s8(__transfersize(4) int8_t const * ptr, int8x8x4_t src, __constrange(0,7) int lane);// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+int8x8x4_t vld4_lane_s8_ptr(__transfersize(4) int8_t const * ptr, int8x8x4_t * src, __constrange(0,7) int lane);
+#define vld4_lane_s8(ptr,src,lane) vld4_lane_u8((uint8_t*)ptr,src,lane)
+
+//int16x4x4_t vld4_lane_s16(__transfersize(4) int16_t const * ptr, int16x4x4_t src, __constrange(0,3) int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+int16x4x4_t vld4_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x4x4_t * src, __constrange(0,3) int lane);
+#define vld4_lane_s16(ptr,src,lane) vld4_lane_u16((uint16_t*)ptr,src,lane)
+
+//int32x2x4_t vld4_lane_s32(__transfersize(4) int32_t const * ptr, int32x2x4_t src, __constrange(0,1) int lane);// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+int32x2x4_t vld4_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x2x4_t * src, __constrange(0,1) int lane);
+#define vld4_lane_s32(ptr,src,lane) vld4_lane_u32((uint32_t*)ptr,src,lane)
+
+//float16x4x4_t vld4_lane_f16(__transfersize(4) __fp16 const * ptr, float16x4x4_t src, __constrange(0,3)int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+float16x4x4_t vld4_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x4x4_t * src, __constrange(0,3) int lane);
+//current IA SIMD doesn't support float16
+
+//float32x2x4_t vld4_lane_f32(__transfersize(4) float32_t const * ptr, float32x2x4_t src,__constrange(0,1) int lane)// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE float32x2x4_t vld4_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x2x4_t* src,__constrange(0,1) int lane)
+{
+    //serial solution may be faster
+    float32x2x4_t v;
+    v.val[0] = vld1_lane_f32(ptr, src->val[0], lane);
+    v.val[1] = vld1_lane_f32((ptr + 1), src->val[1], lane);
+    v.val[2] = vld1_lane_f32((ptr + 2), src->val[2], lane);
+    v.val[3] = vld1_lane_f32((ptr + 3), src->val[3], lane);
+    return v;
+}
+#define vld4_lane_f32(ptr,src,lane) vld4_lane_f32_ptr(ptr,&src,lane)
+
+//poly8x8x4_t vld4_lane_p8(__transfersize(4) poly8_t const * ptr, poly8x8x4_t src, __constrange(0,7) int lane);// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+poly8x8x4_t vld4_lane_p8_ptr(__transfersize(4) poly8_t const * ptr, poly8x8x4_t * src, __constrange(0,7) int lane);
+#define vld4_lane_p8 vld4_lane_u8
+
+//poly16x4x4_t vld4_lane_p16(__transfersize(4) poly16_t const * ptr, poly16x4x4_t src, __constrange(0,3)int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+poly16x4x4_t vld4_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x4x4_t * src, __constrange(0,3) int lane);
+#define vld4_lane_p16 vld4_lane_u16
+
+//******************* Store duplets *********************************************
+//********************************************************************************
+//here we assume the ptr is 16bit aligned. If not we need to use _mm_storeu_si128 like shown in vst1q_u8 function
+//If necessary you need to modify all store functions accordingly. See more comments to "Store single" functions
+//void vst2q_u8(__transfersize(32) uint8_t * ptr, uint8x16x2_t val)// VST2.8 {d0, d2}, [r0]
+_NEON2SSE_INLINE void vst2q_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x16x2_t* val)
+{
+    uint8x16x2_t v;
+    v.val[0] = _mm_unpacklo_epi8(val->val[0], val->val[1]);
+    v.val[1] = _mm_unpackhi_epi8(val->val[0], val->val[1]);
+    vst1q_u8 (ptr, v.val[0]);
+    vst1q_u8 ((ptr + 16),  v.val[1]);
+}
+#define vst2q_u8(ptr, val) vst2q_u8_ptr(ptr, &val)
+
+//void vst2q_u16(__transfersize(16) uint16_t * ptr, uint16x8x2_t val)// VST2.16 {d0, d2}, [r0]
+_NEON2SSE_INLINE void vst2q_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x8x2_t* val)
+{
+    uint16x8x2_t v;
+    v.val[0] = _mm_unpacklo_epi16(val->val[0], val->val[1]);
+    v.val[1] = _mm_unpackhi_epi16(val->val[0], val->val[1]);
+    vst1q_u16 (ptr, v.val[0]);
+    vst1q_u16 ((ptr + 8),  v.val[1]);
+}
+#define vst2q_u16(ptr, val) vst2q_u16_ptr(ptr, &val)
+
+//void vst2q_u32(__transfersize(8) uint32_t * ptr, uint32x4x2_t val)// VST2.32 {d0, d2}, [r0]
+_NEON2SSE_INLINE void vst2q_u32_ptr(__transfersize(8) uint32_t* ptr, uint32x4x2_t* val)
+{
+    uint32x4x2_t v;
+    v.val[0] = _mm_unpacklo_epi32(val->val[0], val->val[1]);
+    v.val[1] = _mm_unpackhi_epi32(val->val[0], val->val[1]);
+    vst1q_u32 (ptr, v.val[0]);
+    vst1q_u32 ((ptr + 4),  v.val[1]);
+}
+#define vst2q_u32(ptr, val) vst2q_u32_ptr(ptr, &val)
+
+//void vst2q_s8(__transfersize(32) int8_t * ptr, int8x16x2_t val); // VST2.8 {d0, d2}, [r0]
+void vst2q_s8_ptr(__transfersize(32) int8_t * ptr, int8x16x2_t * val);
+#define vst2q_s8(ptr, val) vst2q_u8((uint8_t*)(ptr), val)
+
+//void vst2q_s16(__transfersize(16) int16_t * ptr, int16x8x2_t val);// VST2.16 {d0, d2}, [r0]
+void vst2q_s16_ptr(__transfersize(16) int16_t * ptr, int16x8x2_t * val);
+#define vst2q_s16(ptr, val) vst2q_u16((uint16_t*)(ptr), val)
+
+//void vst2q_s32(__transfersize(8) int32_t * ptr, int32x4x2_t val);// VST2.32 {d0, d2}, [r0]
+void vst2q_s32_ptr(__transfersize(8) int32_t * ptr, int32x4x2_t * val);
+#define vst2q_s32(ptr, val)  vst2q_u32((uint32_t*)(ptr), val)
+
+//void vst2q_f16(__transfersize(16) __fp16 * ptr, float16x8x2_t val);// VST2.16 {d0, d2}, [r0]
+void vst2q_f16_ptr(__transfersize(16) __fp16 * ptr, float16x8x2_t * val);
+// IA32 SIMD doesn't work with 16bit floats currently
+
+//void vst2q_f32(__transfersize(8) float32_t * ptr, float32x4x2_t val)// VST2.32 {d0, d2}, [r0]
+_NEON2SSE_INLINE void vst2q_f32_ptr(__transfersize(8) float32_t* ptr, float32x4x2_t* val)
+{
+    float32x4x2_t v;
+    v.val[0] = _mm_unpacklo_ps(val->val[0], val->val[1]);
+    v.val[1] = _mm_unpackhi_ps(val->val[0], val->val[1]);
+    vst1q_f32 (ptr, v.val[0]);
+    vst1q_f32 ((ptr + 4),  v.val[1]);
+}
+#define vst2q_f32(ptr, val) vst2q_f32_ptr(ptr, &val)
+
+//void vst2q_p8(__transfersize(32) poly8_t * ptr, poly8x16x2_t val);// VST2.8 {d0, d2}, [r0]
+void vst2q_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x16x2_t * val);
+#define vst2q_p8 vst2q_u8
+
+//void vst2q_p16(__transfersize(16) poly16_t * ptr, poly16x8x2_t val);// VST2.16 {d0, d2}, [r0]
+void vst2q_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x8x2_t * val);
+#define vst2q_p16 vst2q_u16
+
+//void vst2_u8(__transfersize(16) uint8_t * ptr, uint8x8x2_t val);// VST2.8 {d0, d1}, [r0]
+_NEON2SSE_INLINE void vst2_u8_ptr(__transfersize(16) uint8_t * ptr, uint8x8x2_t* val)
+{
+    __m128i v0;
+    v0 = _mm_unpacklo_epi8(_pM128i(val->val[0]), _pM128i(val->val[1]));
+    vst1q_u8 (ptr, v0);
+}
+#define vst2_u8(ptr, val) vst2_u8_ptr(ptr, &val)
+
+//void vst2_u16(__transfersize(8) uint16_t * ptr, uint16x4x2_t val);// VST2.16 {d0, d1}, [r0]
+_NEON2SSE_INLINE void vst2_u16_ptr(__transfersize(8) uint16_t * ptr, uint16x4x2_t* val)
+{
+    __m128i v0;
+    v0 = _mm_unpacklo_epi16(_pM128i(val->val[0]), _pM128i(val->val[1]));
+    vst1q_u16 (ptr, v0);
+}
+#define vst2_u16(ptr, val) vst2_u16_ptr(ptr, &val)
+
+//void vst2_u32(__transfersize(4) uint32_t * ptr, uint32x2x2_t val);// VST2.32 {d0, d1}, [r0]
+_NEON2SSE_INLINE void vst2_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x2_t* val)
+{
+    __m128i v0;
+    v0 = _mm_unpacklo_epi32(_pM128i(val->val[0]), _pM128i(val->val[1]));
+    vst1q_u32 (ptr, v0);
+}
+#define vst2_u32(ptr, val) vst2_u32_ptr(ptr, &val)
+
+
+//void vst2_u64(__transfersize(2) uint64_t * ptr, uint64x1x2_t val);// VST1.64 {d0, d1}, [r0]
+void vst2_u64_ptr(__transfersize(2) uint64_t * ptr, uint64x1x2_t * val);
+_NEON2SSE_INLINE void vst2_u64_ptr(__transfersize(2) uint64_t * ptr, uint64x1x2_t* val)
+{
+    *(ptr) = val->val[0].m64_u64[0];
+    *(ptr + 1) = val->val[1].m64_u64[0];
+}
+#define vst2_u64(ptr, val) vst2_u64_ptr(ptr, &val)
+
+//void vst2_s8(__transfersize(16) int8_t * ptr, int8x8x2_t val);// VST2.8 {d0, d1}, [r0]
+#define vst2_s8(ptr, val) vst2_u8((uint8_t*) ptr, val)
+
+//void vst2_s16(__transfersize(8) int16_t * ptr, int16x4x2_t val); // VST2.16 {d0, d1}, [r0]
+#define vst2_s16(ptr,val) vst2_u16((uint16_t*) ptr, val)
+
+//void vst2_s32(__transfersize(4) int32_t * ptr, int32x2x2_t val); // VST2.32 {d0, d1}, [r0]
+#define vst2_s32(ptr,val) vst2_u32((uint32_t*) ptr, val)
+
+//void vst2_s64(__transfersize(2) int64_t * ptr, int64x1x2_t val);
+#define vst2_s64(ptr,val) vst2_u64((uint64_t*) ptr,val)
+
+//void vst2_f16(__transfersize(8) __fp16 * ptr, float16x4x2_t val); // VST2.16 {d0, d1}, [r0]
+//current IA SIMD doesn't support float16
+
+//void vst2_f32(__transfersize(4) float32_t * ptr, float32x2x2_t val); // VST2.32 {d0, d1}, [r0]
+_NEON2SSE_INLINE void vst2_f32_ptr(__transfersize(4) float32_t* ptr, float32x2x2_t* val)
+{
+    *(ptr) =   val->val[0].m64_f32[0];
+    *(ptr + 1) = val->val[1].m64_f32[0];
+    *(ptr + 2) = val->val[0].m64_f32[1];
+    *(ptr + 3) = val->val[1].m64_f32[1];
+}
+#define vst2_f32(ptr, val) vst2_f32_ptr(ptr, &val)
+
+//void vst2_p8_ptr(__transfersize(16) poly8_t * ptr, poly8x8x2_t * val); // VST2.8 {d0, d1}, [r0]
+#define vst2_p8 vst2_u8
+
+//void vst2_p16_ptr(__transfersize(8) poly16_t * ptr, poly16x4x2_t * val); // VST2.16 {d0, d1}, [r0]
+#define vst2_p16 vst2_u16
+
+//******************** Triplets store  *****************************************
+//******************************************************************************
+//void vst3q_u8(__transfersize(48) uint8_t * ptr, uint8x16x3_t val)// VST3.8 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE void vst3q_u8_ptr(__transfersize(48) uint8_t * ptr, uint8x16x3_t* val)
+{
+    uint8x16x3_t v;
+    __m128i v0,v1,v2, cff, bldmask;
+    _NEON2SSE_ALIGN_16 uint8_t mask0[16]   = {0, 1, 0xff, 2, 3,0xff, 4, 5,0xff, 6,7,0xff, 8,9,0xff, 10};
+    _NEON2SSE_ALIGN_16 uint8_t mask1[16]   = {0, 0xff, 1, 2, 0xff, 3, 4, 0xff, 5, 6, 0xff, 7,8,0xff, 9,10};
+    _NEON2SSE_ALIGN_16 uint8_t mask2[16] =    {0xff, 6, 7, 0xff, 8, 9,0xff, 10, 11,0xff, 12,13,0xff, 14,15,0xff};
+    _NEON2SSE_ALIGN_16 uint8_t mask2lo[16] = {0xff,0xff, 0, 0xff,0xff, 1, 0xff,0xff, 2, 0xff,0xff, 3, 0xff,0xff, 4, 0xff};
+    _NEON2SSE_ALIGN_16 uint8_t mask2med[16] = {0xff, 5, 0xff, 0xff, 6, 0xff,0xff, 7, 0xff,0xff, 8, 0xff,0xff, 9, 0xff, 0xff};
+    _NEON2SSE_ALIGN_16 uint8_t mask2hi[16] = {10, 0xff,0xff, 11, 0xff,0xff, 12, 0xff,0xff, 13, 0xff,0xff, 14, 0xff, 0xff, 15};
+
+    v0 =  _mm_unpacklo_epi8(val->val[0], val->val[1]); //0,1, 3,4, 6,7, 9,10, 12,13, 15,16, 18,19, 21,22
+    v2 =  _mm_unpackhi_epi8(val->val[0], val->val[1]); //24,25,  27,28, 30,31, 33,34, 36,37, 39,40, 42,43, 45,46
+    v1 =  _mm_alignr_epi8(v2, v0, 11); //12,13, 15,16, 18,19, 21,22, 24,25,  27,28, 30,31, 33,34
+    v.val[0] =  _mm_shuffle_epi8(v0, *(__m128i*)mask0); //make holes for the v.val[2] data embedding
+    v.val[2] =  _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2lo); //make plugs for the v.val[2] data embedding
+    cff = _mm_cmpeq_epi8(v0, v0); //all ff
+    bldmask = _mm_cmpeq_epi8(*(__m128i*)mask0, cff);
+    v.val[0] = _MM_BLENDV_EPI8(v.val[0], v.val[2], bldmask);
+    vst1q_u8(ptr,   v.val[0]);
+    v.val[0] =  _mm_shuffle_epi8(v1, *(__m128i*)mask1); //make holes for the v.val[2] data embedding
+    v.val[2] =  _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2med); //make plugs for the v.val[2] data embedding
+    bldmask = _mm_cmpeq_epi8(*(__m128i*)mask1, cff);
+    v.val[1] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask);
+    vst1q_u8((ptr + 16),  v.val[1]);
+    v.val[0] =  _mm_shuffle_epi8(v2, *(__m128i*)mask2); //make holes for the v.val[2] data embedding
+    v.val[2] =  _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2hi); //make plugs for the v.val[2] data embedding
+    bldmask = _mm_cmpeq_epi8(*(__m128i*)mask2, cff);
+    v.val[2] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask );
+    vst1q_u8((ptr + 32),  v.val[2]);
+}
+#define vst3q_u8(ptr, val) vst3q_u8_ptr(ptr, &val)
+
+//void vst3q_u16(__transfersize(24) uint16_t * ptr, uint16x8x3_t val)// VST3.16 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE void vst3q_u16_ptr(__transfersize(24) uint16_t * ptr, uint16x8x3_t* val)
+{
+    uint16x8x3_t v;
+    __m128i v0,v1,v2, cff, bldmask;
+    _NEON2SSE_ALIGN_16 uint8_t mask0[16]   = {0,1, 2,3, 0xff,0xff, 4,5, 6,7,0xff,0xff, 8,9,10,11};
+    _NEON2SSE_ALIGN_16 uint8_t mask1[16]   = {0xff, 0xff, 0,1, 2,3, 0xff,0xff, 4,5, 6,7, 0xff,0xff, 8,9};
+    _NEON2SSE_ALIGN_16 uint8_t mask2[16] =    {6,7,0xff,0xff, 8,9,10,11, 0xff, 0xff, 12,13,14,15, 0xff, 0xff};
+    _NEON2SSE_ALIGN_16 uint8_t mask2lo[16] = {0xff,0xff, 0xff,0xff, 0,1, 0xff,0xff, 0xff,0xff, 2,3, 0xff,0xff, 0xff,0xff};
+    _NEON2SSE_ALIGN_16 uint8_t mask2med[16] = {4,5, 0xff,0xff,0xff,0xff, 6,7, 0xff, 0xff,0xff,0xff, 8,9, 0xff, 0xff};
+    _NEON2SSE_ALIGN_16 uint8_t mask2hi[16] = {0xff, 0xff, 10,11, 0xff, 0xff, 0xff, 0xff, 12,13, 0xff, 0xff, 0xff, 0xff,14,15};
+
+    v0 =  _mm_unpacklo_epi16(val->val[0], val->val[1]); //0,1, 3,4, 6,7, 9,10
+    v2 =  _mm_unpackhi_epi16(val->val[0], val->val[1]); //12,13, 15,16, 18,19, 21,22,
+    v1 =  _mm_alignr_epi8(v2, v0, 12); //9,10, 12,13, 15,16, 18,19
+    v.val[0] =  _mm_shuffle_epi8(v0, *(__m128i*)mask0); //make holes for the v.val[2] data embedding
+    v.val[2] =  _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2lo); //make plugs for the v.val[2] data embedding
+    cff = _mm_cmpeq_epi16(v0, v0); //all ff
+    bldmask = _mm_cmpeq_epi16(*(__m128i*)mask0, cff);
+    v.val[0] = _MM_BLENDV_EPI8(v.val[0], v.val[2], bldmask);
+    vst1q_u16(ptr,      v.val[0]);
+    v.val[0] =  _mm_shuffle_epi8(v1, *(__m128i*)mask1); //make holes for the v.val[2] data embedding
+    v.val[2] =  _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2med); //make plugs for the v.val[2] data embedding
+    bldmask = _mm_cmpeq_epi16(*(__m128i*)mask1, cff);
+    v.val[1] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask);
+    vst1q_u16((ptr + 8),  v.val[1]);
+    v.val[0] =  _mm_shuffle_epi8(v2, *(__m128i*)mask2); //make holes for the v.val[2] data embedding
+    v.val[2] =  _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2hi); //make plugs for the v.val[2] data embedding
+    bldmask = _mm_cmpeq_epi16(*(__m128i*)mask2, cff);
+    v.val[2] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask );
+    vst1q_u16((ptr + 16), v.val[2]);
+}
+#define vst3q_u16(ptr, val) vst3q_u16_ptr(ptr, &val)
+
+//void vst3q_u32(__transfersize(12) uint32_t * ptr, uint32x4x3_t val)// VST3.32 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE void vst3q_u32_ptr(__transfersize(12) uint32_t * ptr, uint32x4x3_t* val)
+{
+    //a0,a1,a2,a3,  b0,b1,b2,b3, c0,c1,c2,c3 -> a0,b0,c0,a1, b1,c1,a2,b2, c2,a3,b3,c3
+    uint32x4x3_t v;
+    __m128i tmp0, tmp1,tmp2;
+    tmp0 = _mm_unpacklo_epi32(val->val[0], val->val[1]); //a0,b0,a1,b1
+    tmp1 = _mm_unpackhi_epi32(val->val[0], val->val[1]); //a2,b2,a3,b3
+    tmp2 = _mm_unpacklo_epi32(val->val[1], val->val[2]); //b0,c0,b1,c1
+    v.val[1] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp2),_mm_castsi128_ps(tmp1), _MM_SHUFFLE(1,0,3,2))); //b1,c1,a2,b2,
+    v.val[2] = _mm_unpackhi_epi64(tmp1, val->val[2]); //a3,b3, c2,c3
+    v.val[2] = _mm_shuffle_epi32(v.val[2], 2 | (0 << 2) | (1 << 4) | (3 << 6)); //c2,a3,b3,c3
+    tmp1 = _mm_unpacklo_epi32(tmp2,val->val[0]); //b0,a0,c0,a1
+    v.val[0] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp0),_mm_castsi128_ps(tmp1), _MM_SHUFFLE(3,2,1,0))); //a0,b0,c0,a1,
+
+    vst1q_u32(ptr,      v.val[0]);
+    vst1q_u32((ptr + 4),  v.val[1]);
+    vst1q_u32((ptr + 8),  v.val[2]);
+}
+#define vst3q_u32(ptr, val) vst3q_u32_ptr(ptr, &val)
+
+//void vst3q_s8(__transfersize(48) int8_t * ptr, int8x16x3_t val);
+void vst3q_s8_ptr(__transfersize(48) int8_t * ptr, int8x16x3_t * val);
+#define vst3q_s8(ptr, val) vst3q_u8((uint8_t*)(ptr), val)
+
+//void vst3q_s16(__transfersize(24) int16_t * ptr, int16x8x3_t val);
+void vst3q_s16_ptr(__transfersize(24) int16_t * ptr, int16x8x3_t * val);
+#define vst3q_s16(ptr, val) vst3q_u16((uint16_t*)(ptr), val)
+
+//void vst3q_s32(__transfersize(12) int32_t * ptr, int32x4x3_t val);
+void vst3q_s32_ptr(__transfersize(12) int32_t * ptr, int32x4x3_t * val);
+#define vst3q_s32(ptr, val)  vst3q_u32((uint32_t*)(ptr), val)
+
+//void vst3q_f16(__transfersize(24) __fp16 * ptr, float16x8x3_t val);// VST3.16 {d0, d2, d4}, [r0]
+void vst3q_f16_ptr(__transfersize(24) __fp16 * ptr, float16x8x3_t * val);
+// IA32 SIMD doesn't work with 16bit floats currently
+
+//void vst3q_f32(__transfersize(12) float32_t * ptr, float32x4x3_t val)// VST3.32 {d0, d2, d4}, [r0]
+_NEON2SSE_INLINE void vst3q_f32_ptr(__transfersize(12) float32_t * ptr, float32x4x3_t* val)
+{
+    float32x4x3_t v;
+    __m128 tmp0, tmp1,tmp2;
+    tmp0 = _mm_unpacklo_ps(val->val[0], val->val[1]); //a0,b0,a1,b1
+    tmp1 = _mm_unpackhi_ps(val->val[0], val->val[1]); //a2,b2,a3,b3
+    tmp2 = _mm_unpacklo_ps(val->val[1], val->val[2]); //b0,c0,b1,c1
+    v.val[1] = _mm_shuffle_ps(tmp2,tmp1, _MM_SHUFFLE(1,0,3,2)); //b1,c1,a2,b2,
+    v.val[2] = _mm_movehl_ps(val->val[2],tmp1); //a3,b3, c2,c3
+    v.val[2] = _mm_shuffle_ps(v.val[2],v.val[2], _MM_SHUFFLE(3,1,0,2)); //c2,a3,b3,c3
+    tmp1 = _mm_unpacklo_ps(tmp2,val->val[0]); //b0,a0,c0,a1
+    v.val[0] = _mm_shuffle_ps(tmp0,tmp1, _MM_SHUFFLE(3,2,1,0)); //a0,b0,c0,a1,
+
+    vst1q_f32( ptr,    v.val[0]);
+    vst1q_f32( (ptr + 4),  v.val[1]);
+    vst1q_f32( (ptr + 8),  v.val[2]);
+}
+#define vst3q_f32(ptr, val) vst3q_f32_ptr(ptr, &val)
+
+//void vst3q_p8(__transfersize(48) poly8_t * ptr, poly8x16x3_t val);// VST3.8 {d0, d2, d4}, [r0]
+void vst3q_p8_ptr(__transfersize(48) poly8_t * ptr, poly8x16x3_t * val);
+#define vst3q_p8 vst3q_u8
+
+//void vst3q_p16(__transfersize(24) poly16_t * ptr, poly16x8x3_t val);// VST3.16 {d0, d2, d4}, [r0]
+void vst3q_p16_ptr(__transfersize(24) poly16_t * ptr, poly16x8x3_t * val);
+#define vst3q_p16 vst3q_u16
+
+//void vst3_u8(__transfersize(24) uint8_t * ptr, uint8x8x3_t val)// VST3.8 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE void vst3_u8_ptr(__transfersize(24) uint8_t * ptr, uint8x8x3_t* val)
+{
+    __m128i tmp, sh0, sh1, val0, val2;
+    _NEON2SSE_ALIGN_16 int8_t mask0[16] = { 0, 8, 16, 1, 9, 17, 2, 10, 18, 3, 11, 19, 4, 12, 20, 5};
+    _NEON2SSE_ALIGN_16 int8_t mask1[16] = {13, 21, 6, 14, 22, 7, 15, 23, 0,0,0,0,0,0,0,0};
+    _NEON2SSE_ALIGN_16 int8_t mask0_sel[16] = {0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0};
+    _NEON2SSE_ALIGN_16 int8_t mask1_sel[16] = {0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0,0,0,0,0,0,0,0};
+    tmp = _mm_unpacklo_epi64(_pM128i(val->val[0]), _pM128i(val->val[1]) );
+    sh0 =  _mm_shuffle_epi8(tmp, *(__m128i*)mask0); //for bi>15 bi is wrapped (bi-=15)
+    val2 = _pM128i(val->val[2]);
+    sh1 =  _mm_shuffle_epi8(val2, *(__m128i*)mask0);
+    val0 = _MM_BLENDV_EPI8(sh0, sh1, *(__m128i*)mask0_sel);
+    vst1q_u8(ptr,   val0); //store as 128 bit structure
+    sh0 =  _mm_shuffle_epi8(tmp, *(__m128i*)mask1); //for bi>15 bi is wrapped (bi-=15)
+    sh1 =  _mm_shuffle_epi8(val2, *(__m128i*)mask1);
+    val2 = _MM_BLENDV_EPI8(sh0, sh1, *(__m128i*)mask1_sel);
+    _M64((*(__m64_128*)(ptr + 16)),  val2); //need it to fit into *ptr memory
+}
+#define vst3_u8(ptr, val) vst3_u8_ptr(ptr, &val)
+
+//void vst3_u16(__transfersize(12) uint16_t * ptr, uint16x4x3_t val)// VST3.16 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE void vst3_u16_ptr(__transfersize(12) uint16_t * ptr, uint16x4x3_t* val)
+{
+    __m128i tmp, val0, val1, val2;
+    _NEON2SSE_ALIGN_16 int8_t mask0[16] = {0,1, 8,9, 16,17, 2,3, 10,11, 18,19, 4,5, 12,13};
+    _NEON2SSE_ALIGN_16 int8_t mask1[16] = {20,21, 6,7, 14,15, 22,23,   0,0,0,0,0,0,0,0};
+    _NEON2SSE_ALIGN_16 uint16_t mask0f[8] = {0xffff, 0xffff, 0, 0xffff, 0xffff, 0, 0xffff, 0xffff}; //if all ones we take the result from v.val[0]  otherwise from v.val[1]
+    _NEON2SSE_ALIGN_16 uint16_t mask1f[8] = {0xffff, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; //if all ones we take the result from v.val[1]  otherwise from v.val[0]
+    tmp = _mm_unpacklo_epi64(_pM128i(val->val[0]), _pM128i(val->val[1]));
+    val0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask0);
+    val2 = _pM128i(val->val[2]);
+    val1 = _mm_shuffle_epi8(val2, *(__m128i*)mask0);
+    val0 = _MM_BLENDV_EPI8(val1, val0, *(__m128i*)mask0f);
+    vst1q_u16(ptr,    val0); //store as 128 bit structure
+    val0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask1);
+    val1 = _mm_shuffle_epi8(val2, *(__m128i*)mask1);
+    val1 = _MM_BLENDV_EPI8(val0, val1,  *(__m128i*)mask1f); //change the operands order
+    _M64((*(__m64_128*)(ptr + 8)),  val1); //need it to fit into *ptr memory
+}
+#define vst3_u16(ptr, val) vst3_u16_ptr(ptr, &val)
+
+//void vst3_u32(__transfersize(6) uint32_t * ptr, uint32x2x3_t val)// VST3.32 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE void vst3_u32_ptr(__transfersize(6) uint32_t * ptr, uint32x2x3_t* val)
+{
+    //val->val[0]:0,3,val->val[1]:1,4; val->val[2]:2,5,x,x;
+    __m128i val0, val1;
+    val0 = _mm_unpacklo_epi64(_pM128i(val->val[1]), _pM128i(val->val[2])); //val[0]: 1,4,2,5
+    val0 = _mm_shuffle_epi32(val0, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //1,2,4,5
+    val1 = _mm_srli_si128(val0, 8); //4,5, x,x
+    _M64((*(__m64_128*)(ptr + 4)),  val1);
+    val0 = _mm_unpacklo_epi32(_pM128i(val->val[0]), val0); //0,1,3,2
+    val0 = _mm_shuffle_epi32(val0, 0 | (1 << 2) | (3 << 4) | (2 << 6)); //0,1,2, 3
+    vst1q_u32(ptr, val0); //store as 128 bit structure
+}
+#define vst3_u32(ptr, val) vst3_u32_ptr(ptr, &val)
+
+//void vst3_u64(__transfersize(3) uint64_t * ptr, uint64x1x3_t val)// VST1.64 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE void vst3_u64_ptr(__transfersize(3) uint64_t * ptr, uint64x1x3_t* val)
+{
+    *(ptr) = val->val[0].m64_u64[0];
+    *(ptr + 1) = val->val[1].m64_u64[0];
+    *(ptr + 2) = val->val[2].m64_u64[0];
+}
+#define vst3_u64(ptr, val) vst3_u64_ptr(ptr, &val)
+
+//void vst3_s8(__transfersize(24) int8_t * ptr, int8x8x3_t val)  // VST3.8 {d0, d1, d2}, [r0]
+#define vst3_s8(ptr, val) vst3_u8_ptr((uint8_t*)ptr, &val)
+
+//void vst3_s16(__transfersize(12) int16_t * ptr, int16x4x3_t val)  // VST3.16 {d0, d1, d2}, [r0]
+#define vst3_s16(ptr, val) vst3_u16_ptr((uint16_t*)ptr, &val)
+
+//void vst3_s32(__transfersize(6) int32_t * ptr, int32x2x3_t val); // VST3.32 {d0, d1, d2}, [r0]
+#define vst3_s32(ptr, val) vst3_u32_ptr((uint32_t*)ptr, &val)
+
+//void vst3_s64(__transfersize(3) int64_t * ptr, int64x1x3_t val) // VST1.64 {d0, d1, d2}, [r0]
+#define vst3_s64(ptr, val) vst3_u64_ptr((uint64_t*)ptr, &val)
+
+//void vst3_f16(__transfersize(12) __fp16 * ptr, float16x4x3_t val);// VST3.16 {d0, d1, d2}, [r0]
+void vst3_f16_ptr(__transfersize(12) __fp16 * ptr, float16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0]
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+//void vst3_f32(__transfersize(6) float32_t * ptr, float32x2x3_t val)// VST3.32 {d0, d1, d2}, [r0]
+_NEON2SSE_INLINE void vst3_f32_ptr(__transfersize(6) float32_t * ptr, float32x2x3_t* val)
+{
+    //val->val[0]:0,3,val->val[1]:1,4; val->val[2]:2,5,x,x;   -> 0,2, 4,1, 3,5
+    *(ptr) =   val->val[0].m64_f32[0];
+    *(ptr + 1) = val->val[1].m64_f32[0];
+    *(ptr + 2) = val->val[2].m64_f32[0];
+    *(ptr + 3) = val->val[0].m64_f32[1];
+    *(ptr + 4) = val->val[1].m64_f32[1];
+    *(ptr + 5) = val->val[2].m64_f32[1];
+}
+#define vst3_f32(ptr, val) vst3_f32_ptr(ptr, &val)
+
+//void vst3_p8(__transfersize(24) poly8_t * ptr, poly8x8x3_t val);// VST3.8 {d0, d1, d2}, [r0]
+void vst3_p8_ptr(__transfersize(24) poly8_t * ptr, poly8x8x3_t * val);
+#define vst3_p8 vst3_u8
+
+//void vst3_p16(__transfersize(12) poly16_t * ptr, poly16x4x3_t val);// VST3.16 {d0, d1, d2}, [r0]
+void vst3_p16_ptr(__transfersize(12) poly16_t * ptr, poly16x4x3_t * val);
+#define vst3_p16 vst3_s16
+
+//***************  Quadruples store ********************************
+//*********************************************************************
+//void vst4q_u8(__transfersize(64) uint8_t * ptr, uint8x16x4_t val)// VST4.8 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE void vst4q_u8_ptr(__transfersize(64) uint8_t * ptr, uint8x16x4_t* val)
+{
+    __m128i tmp1, tmp2, res;
+    tmp1 = _mm_unpacklo_epi8(val->val[0], val->val[1]); //  0,1, 4,5, 8,9, 12,13, 16,17, 20,21, 24,25, 28,29
+    tmp2 = _mm_unpacklo_epi8(val->val[2], val->val[3]); //  2,3, 6,7, 10,11, 14,15, 18,19, 22,23, 26,27, 30,31
+    res = _mm_unpacklo_epi16(tmp1, tmp2); //0,1, 2,3, 4,5, 6,7, 8,9, 10,11, 12,13, 14,15
+    vst1q_u8(ptr,  res);
+    res = _mm_unpackhi_epi16(tmp1, tmp2); //16,17, 18,19, 20,21, 22,23, 24,25, 26,27, 28,29, 30,31
+    vst1q_u8((ptr + 16), res);
+    tmp1 = _mm_unpackhi_epi8(val->val[0], val->val[1]); //
+    tmp2 = _mm_unpackhi_epi8(val->val[2], val->val[3]); //
+    res = _mm_unpacklo_epi16(tmp1, tmp2); //
+    vst1q_u8((ptr + 32), res);
+    res = _mm_unpackhi_epi16(tmp1, tmp2); //
+    vst1q_u8((ptr + 48), res);
+}
+#define vst4q_u8(ptr, val) vst4q_u8_ptr(ptr, &val)
+
+//void vst4q_u16(__transfersize(32) uint16_t * ptr, uint16x8x4_t val)// VST4.16 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE void vst4q_u16_ptr(__transfersize(32) uint16_t * ptr, uint16x8x4_t* val)
+{
+    uint16x8x4_t v;
+    __m128i tmp1, tmp2;
+    tmp1 = _mm_unpacklo_epi16(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13
+    tmp2 = _mm_unpacklo_epi16(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15
+    v.val[0] = _mm_unpacklo_epi32(tmp1, tmp2);
+    v.val[1] = _mm_unpackhi_epi32(tmp1, tmp2);
+    tmp1 = _mm_unpackhi_epi16(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13
+    tmp2 = _mm_unpackhi_epi16(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15
+    v.val[2] = _mm_unpacklo_epi32(tmp1, tmp2);
+    v.val[3] = _mm_unpackhi_epi32(tmp1, tmp2);
+    vst1q_u16(ptr,     v.val[0]);
+    vst1q_u16((ptr + 8), v.val[1]);
+    vst1q_u16((ptr + 16),v.val[2]);
+    vst1q_u16((ptr + 24), v.val[3]);
+}
+#define vst4q_u16(ptr, val) vst4q_u16_ptr(ptr, &val)
+
+//void vst4q_u32(__transfersize(16) uint32_t * ptr, uint32x4x4_t val)// VST4.32 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE void vst4q_u32_ptr(__transfersize(16) uint32_t * ptr, uint32x4x4_t* val)
+{
+    uint16x8x4_t v;
+    __m128i tmp1, tmp2;
+    tmp1 = _mm_unpacklo_epi32(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13
+    tmp2 = _mm_unpacklo_epi32(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15
+    v.val[0] = _mm_unpacklo_epi64(tmp1, tmp2);
+    v.val[1] = _mm_unpackhi_epi64(tmp1, tmp2);
+    tmp1 = _mm_unpackhi_epi32(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13
+    tmp2 = _mm_unpackhi_epi32(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15
+    v.val[2] = _mm_unpacklo_epi64(tmp1, tmp2);
+    v.val[3] = _mm_unpackhi_epi64(tmp1, tmp2);
+    vst1q_u32(ptr,      v.val[0]);
+    vst1q_u32((ptr + 4),  v.val[1]);
+    vst1q_u32((ptr + 8),  v.val[2]);
+    vst1q_u32((ptr + 12), v.val[3]);
+}
+#define vst4q_u32(ptr, val) vst4q_u32_ptr(ptr, &val)
+
+//void vst4q_s8(__transfersize(64) int8_t * ptr, int8x16x4_t val);
+void vst4q_s8_ptr(__transfersize(64) int8_t * ptr, int8x16x4_t * val);
+#define vst4q_s8(ptr, val) vst4q_u8((uint8_t*)(ptr), val)
+
+//void vst4q_s16(__transfersize(32) int16_t * ptr, int16x8x4_t val);
+void vst4q_s16_ptr(__transfersize(32) int16_t * ptr, int16x8x4_t * val);
+#define vst4q_s16(ptr, val) vst4q_u16((uint16_t*)(ptr), val)
+
+//void vst4q_s32(__transfersize(16) int32_t * ptr, int32x4x4_t val);
+void vst4q_s32_ptr(__transfersize(16) int32_t * ptr, int32x4x4_t * val);
+#define vst4q_s32(ptr, val) vst4q_u32((uint32_t*)(ptr), val)
+
+//void vst4q_f16(__transfersize(32) __fp16 * ptr, float16x8x4_t val);// VST4.16 {d0, d2, d4, d6}, [r0]
+void vst4q_f16_ptr(__transfersize(32) __fp16 * ptr, float16x8x4_t * val);
+// IA32 SIMD doesn't work with 16bit floats currently
+
+//void vst4q_f32(__transfersize(16) float32_t * ptr, float32x4x4_t val)// VST4.32 {d0, d2, d4, d6}, [r0]
+_NEON2SSE_INLINE void vst4q_f32_ptr(__transfersize(16) float32_t * ptr, float32x4x4_t* val)
+{
+    __m128 tmp3, tmp2, tmp1, tmp0;
+    float32x4x4_t v;
+    tmp0 = _mm_unpacklo_ps(val->val[0], val->val[1]);
+    tmp2 = _mm_unpacklo_ps(val->val[2], val->val[3]);
+    tmp1 = _mm_unpackhi_ps(val->val[0], val->val[1]);
+    tmp3 = _mm_unpackhi_ps(val->val[2], val->val[3]);
+    v.val[0] = _mm_movelh_ps(tmp0, tmp2);
+    v.val[1] = _mm_movehl_ps(tmp2, tmp0);
+    v.val[2] = _mm_movelh_ps(tmp1, tmp3);
+    v.val[3] = _mm_movehl_ps(tmp3, tmp1);
+    vst1q_f32(ptr,   v.val[0]);
+    vst1q_f32((ptr + 4), v.val[1]);
+    vst1q_f32((ptr + 8), v.val[2]);
+    vst1q_f32((ptr + 12), v.val[3]);
+}
+#define vst4q_f32(ptr, val) vst4q_f32_ptr(ptr, &val)
+
+//void vst4q_p8(__transfersize(64) poly8_t * ptr, poly8x16x4_t val);// VST4.8 {d0, d2, d4, d6}, [r0]
+void vst4q_p8_ptr(__transfersize(64) poly8_t * ptr, poly8x16x4_t * val);
+#define vst4q_p8 vst4q_u8
+
+//void vst4q_p16(__transfersize(32) poly16_t * ptr, poly16x8x4_t val);// VST4.16 {d0, d2, d4, d6}, [r0]
+void vst4q_p16_ptr(__transfersize(32) poly16_t * ptr, poly16x8x4_t * val);
+#define vst4q_p16 vst4q_s16
+
+//void vst4_u8(__transfersize(32) uint8_t * ptr, uint8x8x4_t val)// VST4.8 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE void vst4_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x8x4_t* val)
+{
+    __m128i sh0, sh1, val0, val2;
+    sh0 = _mm_unpacklo_epi8(_pM128i(val->val[0]),_pM128i(val->val[1])); // a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,a5,b5, a6,b6,a7,b7,
+    sh1 = _mm_unpacklo_epi8(_pM128i(val->val[2]),_pM128i(val->val[3])); // c0,d0,c1,d1,c2,d2,c3,d3, c4,d4,c5,d5,c6,d6,c7,d7
+    val0 = _mm_unpacklo_epi16(sh0,sh1); // a0,b0,c0,d0,a1,b1,c1,d1,a2,b2,c2,d2,a3,b3,c3,d3,
+    val2 = _mm_unpackhi_epi16(sh0,sh1); //a4,b4,c4,d4,a5,b5,c5,d5, a6,b6,c6,d6,a7,b7,c7,d7
+    vst1q_u8(ptr,    val0);
+    vst1q_u8((ptr + 16),  val2);
+}
+#define vst4_u8(ptr, val) vst4_u8_ptr(ptr, &val)
+
+//void vst4_u16(__transfersize(16) uint16_t * ptr, uint16x4x4_t val)// VST4.16 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE void vst4_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x4x4_t* val)
+{
+    __m128i sh0, sh1, val0, val2;
+    sh0 = _mm_unpacklo_epi16(_pM128i(val->val[0]),_pM128i(val->val[1])); //a0,a1,b0,b1,c0,c1,d0,d1,
+    sh1 = _mm_unpacklo_epi16(_pM128i(val->val[2]),_pM128i(val->val[3])); //a2,a3,b2,b3,c2,c3,d2,d3
+    val0 = _mm_unpacklo_epi32(sh0,sh1); // a0,a1,a2,a3,b0,b1,b2,b3
+    val2 = _mm_unpackhi_epi32(sh0,sh1); // c0,c1,c2,c3,d0,d1,d2,d3
+    vst1q_u16(ptr,      val0); //store as 128 bit structure
+    vst1q_u16((ptr + 8),  val2);
+}
+#define vst4_u16(ptr, val) vst4_u16_ptr(ptr, &val)
+
+//void vst4_u32(__transfersize(8) uint32_t * ptr, uint32x2x4_t val)// VST4.32 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE void vst4_u32_ptr(__transfersize(8) uint32_t * ptr, uint32x2x4_t* val)
+{
+    //0,4,   1,5,  2,6,  3,7
+    __m128i sh0, sh1, val0, val1;
+    sh0 = _mm_unpacklo_epi32(_pM128i(val->val[0]), _pM128i(val->val[1])); //0,1,4,5
+    sh1 = _mm_unpacklo_epi32(_pM128i(val->val[2]), _pM128i(val->val[3])); //2,3,6,7
+    val0 = _mm_unpacklo_epi64(sh0,sh1); //
+    val1 = _mm_unpackhi_epi64(sh0,sh1); //
+    vst1q_u32(ptr,     val0); //store as 128 bit structure
+    vst1q_u32((ptr + 4),  val1);
+}
+#define vst4_u32(ptr, val) vst4_u32_ptr(ptr, &val)
+
+//void vst4_u64(__transfersize(4) uint64_t * ptr, uint64x1x4_t val)// VST1.64 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE void vst4_u64_ptr(__transfersize(4) uint64_t * ptr, uint64x1x4_t* val)
+{
+    *(ptr) =  val->val[0].m64_u64[0];
+    *(ptr + 1) =  val->val[1].m64_u64[0];
+    *(ptr + 2) =  val->val[2].m64_u64[0];
+    *(ptr + 3) =  val->val[3].m64_u64[0];
+}
+#define vst4_u64(ptr, val) vst4_u64_ptr(ptr, &val)
+
+//void vst4_s8(__transfersize(32) int8_t * ptr, int8x8x4_t val)  //VST4.8 {d0, d1, d2, d3}, [r0]
+#define vst4_s8(ptr, val) vst4_u8((uint8_t*)ptr, val)
+
+//void vst4_s16(__transfersize(16) int16_t * ptr, int16x4x4_t val)  // VST4.16 {d0, d1, d2, d3}, [r0]
+#define vst4_s16(ptr, val) vst4_u16((uint16_t*)ptr, val)
+
+//void vst4_s32(__transfersize(8) int32_t * ptr, int32x2x4_t val) // VST4.32 {d0, d1, d2, d3}, [r0]
+#define vst4_s32(ptr, val) vst4_u32((uint32_t*)ptr, val)
+
+//void vst4_s64(__transfersize(4) int64_t * ptr, int64x1x4_t val); // VST1.64 {d0, d1, d2, d3}, [r0]
+void vst4_s64_ptr(__transfersize(4) int64_t * ptr, int64x1x4_t * val);
+#define vst4_s64(ptr, val) vst4_u64((uint64_t*)ptr, val)
+
+//void vst4_f16(__transfersize(16) __fp16 * ptr, float16x4x4_t val);// VST4.16 {d0, d1, d2, d3}, [r0]
+void vst4_f16_ptr(__transfersize(16) __fp16 * ptr, float16x4x4_t * val);
+// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example
+
+//void vst4_f32(__transfersize(8) float32_t * ptr, float32x2x4_t val)// VST4.32 {d0, d1, d2, d3}, [r0]
+_NEON2SSE_INLINE void vst4_f32_ptr(__transfersize(8) float32_t * ptr, float32x2x4_t* val)
+{
+    //0,4,   1,5,  2,6,  3,7 -> 0,1, 2,3, 4,5, 6,7
+    *(ptr) =   val->val[0].m64_f32[0];
+    *(ptr + 1) = val->val[1].m64_f32[0];
+    *(ptr + 2) = val->val[2].m64_f32[0];
+    *(ptr + 3) = val->val[3].m64_f32[0];
+    *(ptr + 4) = val->val[0].m64_f32[1];
+    *(ptr + 5) = val->val[1].m64_f32[1];
+    *(ptr + 6) = val->val[2].m64_f32[1];
+    *(ptr + 7) = val->val[3].m64_f32[1];
+}
+#define vst4_f32(ptr, val) vst4_f32_ptr(ptr, &val)
+
+//void vst4_p8(__transfersize(32) poly8_t * ptr, poly8x8x4_t val);// VST4.8 {d0, d1, d2, d3}, [r0]
+void vst4_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x8x4_t * val);
+#define vst4_p8 vst4_u8
+
+//void vst4_p16(__transfersize(16) poly16_t * ptr, poly16x4x4_t val);// VST4.16 {d0, d1, d2, d3}, [r0]
+void vst4_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x4x4_t * val);
+#define vst4_p16 vst4_u16
+
+//*********** Store a lane of a vector into memory (extract given lane) for a couple of vectors  *********************
+//********************************************************************************************************************
+//void vst2q_lane_u16(__transfersize(2) uint16_t * ptr, uint16x8x2_t val, __constrange(0,7) int lane)// VST2.16 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE void vst2q_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x8x2_t* val, __constrange(0,7) int lane)
+{
+    vst1q_lane_s16(ptr, val->val[0], lane);
+    vst1q_lane_s16((ptr + 1), val->val[1], lane);
+}
+#define vst2q_lane_u16(ptr, val, lane) vst2q_lane_u16_ptr(ptr, &val, lane)
+
+//void vst2q_lane_u32(__transfersize(2) uint32_t * ptr, uint32x4x2_t val, __constrange(0,3) int lane)// VST2.32 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE void vst2q_lane_u32_ptr(__transfersize(2) uint32_t* ptr, uint32x4x2_t* val, __constrange(0,3) int lane)
+{
+    vst1q_lane_u32(ptr, val->val[0], lane);
+    vst1q_lane_u32((ptr + 1), val->val[1], lane);
+}
+#define vst2q_lane_u32(ptr, val, lane) vst2q_lane_u32_ptr(ptr, &val, lane)
+
+//void vst2q_lane_s16(__transfersize(2) int16_t * ptr, int16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0]
+void vst2q_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x8x2_t * val, __constrange(0,7) int lane);
+#define vst2q_lane_s16(ptr, val, lane) vst2q_lane_u16((uint16_t*)ptr, val, lane)
+
+//void vst2q_lane_s32(__transfersize(2) int32_t * ptr, int32x4x2_t val, __constrange(0,3) int lane);// VST2.32 {d0[0], d2[0]}, [r0]
+void vst2q_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x4x2_t * val, __constrange(0,3) int lane);
+#define vst2q_lane_s32(ptr, val, lane)  vst2q_lane_u32((uint32_t*)ptr, val, lane)
+
+//void vst2q_lane_f16(__transfersize(2) __fp16 * ptr, float16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0]
+void vst2q_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x8x2_t * val, __constrange(0,7) int lane);
+//current IA SIMD doesn't support float16
+
+//void vst2q_lane_f32(__transfersize(2) float32_t * ptr, float32x4x2_t val, __constrange(0,3) int lane)// VST2.32 {d0[0], d2[0]}, [r0]
+_NEON2SSE_INLINE void vst2q_lane_f32_ptr(__transfersize(2) float32_t* ptr, float32x4x2_t* val, __constrange(0,3) int lane)
+{
+    vst1q_lane_f32(ptr, val->val[0], lane);
+    vst1q_lane_f32((ptr + 1), val->val[1], lane);
+}
+#define vst2q_lane_f32(ptr,src,lane) vst2q_lane_f32_ptr(ptr,&src,lane)
+
+//void vst2q_lane_p16(__transfersize(2) poly16_t * ptr, poly16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0]
+void vst2q_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x8x2_t * val, __constrange(0,7) int lane);
+#define vst2q_lane_p16 vst2q_lane_s16
+
+//void vst2_lane_u8(__transfersize(2) uint8_t * ptr, uint8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0]
+void vst2_lane_u8_ptr(__transfersize(2) uint8_t * ptr, uint8x8x2_t * val, __constrange(0,7) int lane); // VST2.8 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE void vst2_lane_u8_ptr(__transfersize(2) uint8_t * ptr, uint8x8x2_t* val, __constrange(0,7) int lane) // VST2.8 {d0[0], d1[0]}, [r0]
+{
+    *(ptr) = val->val[0].m64_u8[lane];
+    *(ptr + 1) = val->val[1].m64_u8[lane];
+}
+#define vst2_lane_u8(ptr, val, lane) vst2_lane_u8_ptr(ptr, &val, lane)
+
+//void vst2_lane_u16(__transfersize(2) uint16_t * ptr, uint16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0]
+void vst2_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x4x2_t * val, __constrange(0,3) int lane); // VST2.16 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE void vst2_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x4x2_t * val, __constrange(0,3) int lane)
+{
+    *(ptr) = val->val[0].m64_u16[lane];
+    *(ptr + 1) = val->val[1].m64_u16[lane];
+}
+#define vst2_lane_u16(ptr, val, lane) vst2_lane_u16_ptr(ptr, &val, lane)
+
+//void vst2_lane_u32(__transfersize(2) uint32_t * ptr, uint32x2x2_t val, __constrange(0,1) int lane);// VST2.32 {d0[0], d1[0]}, [r0]
+void vst2_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x2x2_t * val, __constrange(0,1) int lane); // VST2.32 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE void vst2_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x2x2_t * val, __constrange(0,1) int lane)
+{
+    *(ptr) = val->val[0].m64_u32[lane];
+    *(ptr + 1) = val->val[1].m64_u32[lane];
+}
+#define vst2_lane_u32(ptr, val, lane) vst2_lane_u32_ptr(ptr, &val, lane)
+
+//void vst2_lane_s8(__transfersize(2) int8_t * ptr, int8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0]
+void vst2_lane_s8_ptr(__transfersize(2) int8_t * ptr, int8x8x2_t * val, __constrange(0,7) int lane);
+#define vst2_lane_s8(ptr, val, lane)  vst2_lane_u8((uint8_t*)ptr, val, lane)
+
+//void vst2_lane_s16(__transfersize(2) int16_t * ptr, int16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0]
+void vst2_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x4x2_t * val, __constrange(0,3) int lane);
+#define vst2_lane_s16(ptr, val, lane)  vst2_lane_u16((uint16_t*)ptr, val, lane)
+
+//void vst2_lane_s32(__transfersize(2) int32_t * ptr, int32x2x2_t val, __constrange(0,1) int lane);// VST2.32 {d0[0], d1[0]}, [r0]
+void vst2_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x2x2_t * val, __constrange(0,1) int lane);
+#define vst2_lane_s32(ptr, val, lane)  vst2_lane_u32((uint32_t*)ptr, val, lane)
+
+//void vst2_lane_f16(__transfersize(2) __fp16 * ptr, float16x4x2_t val, __constrange(0,3) int lane); // VST2.16 {d0[0], d1[0]}, [r0]
+//current IA SIMD doesn't support float16
+
+void vst2_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x2x2_t * val, __constrange(0,1) int lane); // VST2.32 {d0[0], d1[0]}, [r0]
+_NEON2SSE_INLINE void vst2_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x2x2_t * val, __constrange(0,1) int lane)
+{
+    *(ptr) = val->val[0].m64_f32[lane];
+    *(ptr + 1) = val->val[1].m64_f32[lane];
+}
+#define vst2_lane_f32(ptr,src,lane) vst2_lane_f32_ptr(ptr,&src,lane)
+
+//void vst2_lane_p8(__transfersize(2) poly8_t * ptr, poly8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0]
+#define vst2_lane_p8 vst2_lane_u8
+
+//void vst2_lane_p16(__transfersize(2) poly16_t * ptr, poly16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0]
+#define vst2_lane_p16 vst2_lane_u16
+
+//************************* Triple lanes  stores *******************************************************
+//*******************************************************************************************************
+//void vst3q_lane_u16(__transfersize(3) uint16_t * ptr, uint16x8x3_t val, __constrange(0,7) int lane)// VST3.16 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE void vst3q_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x8x3_t* val, __constrange(0,7) int lane)
+{
+    vst2q_lane_u16_ptr(ptr, (uint16x8x2_t*)val, lane);
+    vst1q_lane_u16((ptr + 2), val->val[2], lane);
+}
+#define vst3q_lane_u16(ptr, val, lane) vst3q_lane_u16_ptr(ptr, &val, lane)
+
+//void vst3q_lane_u32(__transfersize(3) uint32_t * ptr, uint32x4x3_t val, __constrange(0,3) int lane)// VST3.32 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE void vst3q_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x4x3_t* val, __constrange(0,3) int lane)
+{
+    vst2q_lane_u32_ptr(ptr, (uint32x4x2_t*)val, lane);
+    vst1q_lane_u32((ptr + 2), val->val[2], lane);
+}
+#define vst3q_lane_u32(ptr, val, lane) vst3q_lane_u32_ptr(ptr, &val, lane)
+
+//void vst3q_lane_s16(__transfersize(3) int16_t * ptr, int16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x8x3_t * val, __constrange(0,7) int lane);
+#define vst3q_lane_s16(ptr, val, lane) vst3q_lane_u16((uint16_t *)ptr, val, lane)
+
+//void vst3q_lane_s32(__transfersize(3) int32_t * ptr, int32x4x3_t val, __constrange(0,3) int lane);// VST3.32 {d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x4x3_t * val, __constrange(0,3) int lane);
+#define vst3q_lane_s32(ptr, val, lane) vst3q_lane_u32((uint32_t *)ptr, val, lane)
+
+//void vst3q_lane_f16(__transfersize(3) __fp16 * ptr, float16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x8x3_t * val, __constrange(0,7) int lane);
+//current IA SIMD doesn't support float16
+
+//void vst3q_lane_f32(__transfersize(3) float32_t * ptr, float32x4x3_t val, __constrange(0,3) int lane)// VST3.32 {d0[0], d2[0], d4[0]}, [r0]
+_NEON2SSE_INLINE void vst3q_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x4x3_t* val, __constrange(0,3) int lane)
+{
+    vst1q_lane_f32(ptr,   val->val[0], lane);
+    vst1q_lane_f32((ptr + 1),   val->val[1], lane);
+    vst1q_lane_f32((ptr + 2), val->val[2], lane);
+}
+#define vst3q_lane_f32(ptr,val,lane) vst3q_lane_f32_ptr(ptr,&val,lane)
+
+//void vst3q_lane_p16(__transfersize(3) poly16_t * ptr, poly16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0]
+void vst3q_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x8x3_t * val, __constrange(0,7) int lane);
+#define vst3q_lane_p16 vst3q_lane_s16
+
+//void vst3_lane_u8(__transfersize(3) uint8_t * ptr, uint8x8x3_t val, __constrange(0,7) int lane)// VST3.8 {d0[0], d1[0], d2[0]}, [r0]
+_NEON2SSE_INLINE void vst3_lane_u8_ptr(__transfersize(3) uint8_t * ptr, uint8x8x3_t* val, __constrange(0,7) int lane)
+{
+    *(ptr) =     val->val[0].m64_u8[lane];
+    *(ptr + 1) = val->val[1].m64_u8[lane];
+    *(ptr + 2) = val->val[2].m64_u8[lane];
+}
+#define vst3_lane_u8(ptr, val, lane) vst3_lane_u8_ptr(ptr, &val, lane)
+
+//void vst3_lane_u16(__transfersize(3) uint16_t * ptr, uint16x4x3_t val, __constrange(0,3) int lane)// VST3.16 {d0[0], d1[0], d2[0]}, [r0]
+_NEON2SSE_INLINE void vst3_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x4x3_t* val, __constrange(0,3) int lane)
+{
+    *(ptr) =     val->val[0].m64_u16[lane];
+    *(ptr + 1) = val->val[1].m64_u16[lane];
+    *(ptr + 2) = val->val[2].m64_u16[lane];
+}
+#define vst3_lane_u16(ptr, val, lane) vst3_lane_u16_ptr(ptr, &val, lane)
+
+//void vst3_lane_u32(__transfersize(3) uint32_t * ptr, uint32x2x3_t val, __constrange(0,1) int lane)// VST3.32 {d0[0], d1[0], d2[0]}, [r0]
+_NEON2SSE_INLINE void vst3_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x2x3_t* val, __constrange(0,1) int lane)
+{
+    *(ptr) =     val->val[0].m64_u32[lane];
+    *(ptr + 1) = val->val[1].m64_u32[lane];
+    *(ptr + 2) = val->val[2].m64_u32[lane];
+}
+#define vst3_lane_u32(ptr, val, lane) vst3_lane_u32_ptr(ptr, &val, lane)
+
+//void vst3_lane_s8(__transfersize(3) int8_t * ptr, int8x8x3_t val, __constrange(0,7) int lane);// VST3.8 {d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_s8_ptr(__transfersize(3) int8_t * ptr, int8x8x3_t * val, __constrange(0,7) int lane);
+#define  vst3_lane_s8(ptr, val, lane) vst3_lane_u8((uint8_t *)ptr, val, lane)
+
+//void vst3_lane_s16(__transfersize(3) int16_t * ptr, int16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x4x3_t * val, __constrange(0,3) int lane);
+#define vst3_lane_s16(ptr, val, lane) vst3_lane_u16((uint16_t *)ptr, val, lane)
+
+//void vst3_lane_s32(__transfersize(3) int32_t * ptr, int32x2x3_t val, __constrange(0,1) int lane);// VST3.32 {d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x2x3_t * val, __constrange(0,1) int lane);
+#define vst3_lane_s32(ptr, val, lane) vst3_lane_u32((uint32_t *)ptr, val, lane)
+
+//void vst3_lane_f16(__transfersize(3) __fp16 * ptr, float16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x4x3_t * val, __constrange(0,3) int lane);
+//current IA SIMD doesn't support float16
+
+//void vst3_lane_f32(__transfersize(3) float32_t * ptr, float32x2x3_t val, __constrange(0,1) int lane)// VST3.32 {d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x2x3_t * val, __constrange(0,1) int lane);
+_NEON2SSE_INLINE void vst3_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x2x3_t * val, __constrange(0,1) int lane)
+{
+    *(ptr) = val->val[0].m64_f32[lane];
+    *(ptr + 1) = val->val[1].m64_f32[lane];
+    *(ptr + 2) = val->val[2].m64_f32[lane];
+}
+#define vst3_lane_f32(ptr,val,lane) vst3_lane_f32_ptr(ptr,&val,lane)
+
+//void vst3_lane_p8(__transfersize(3) poly8_t * ptr, poly8x8x3_t val, __constrange(0,7) int lane);// VST3.8 {d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_p8_ptr(__transfersize(3) poly8_t * ptr, poly8x8x3_t * val, __constrange(0,7) int lane);
+#define vst3_lane_p8 vst3_lane_u8
+
+//void vst3_lane_p16(__transfersize(3) poly16_t * ptr, poly16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0]
+void vst3_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x4x3_t * val, __constrange(0,3) int lane);
+#define vst3_lane_p16 vst3_lane_s16
+
+//******************************** Quadruple lanes stores ***********************************************
+//*******************************************************************************************************
+//void vst4q_lane_u16(__transfersize(4) uint16_t * ptr, uint16x8x4_t val, __constrange(0,7) int lane)// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+_NEON2SSE_INLINE void vst4q_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x8x4_t* val4, __constrange(0,7) int lane)
+{
+    vst2q_lane_u16_ptr(ptr,    (uint16x8x2_t*)val4->val, lane);
+    vst2q_lane_u16_ptr((ptr + 2),((uint16x8x2_t*)val4->val + 1), lane);
+}
+#define vst4q_lane_u16(ptr, val, lane) vst4q_lane_u16_ptr(ptr, &val, lane)
+
+//void vst4q_lane_u32(__transfersize(4) uint32_t * ptr, uint32x4x4_t val, __constrange(0,3) int lane)// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+_NEON2SSE_INLINE void vst4q_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x4x4_t* val4, __constrange(0,3) int lane)
+{
+    vst2q_lane_u32_ptr(ptr,     (uint32x4x2_t*)val4->val, lane);
+    vst2q_lane_u32_ptr((ptr + 2), ((uint32x4x2_t*)val4->val + 1), lane);
+}
+#define vst4q_lane_u32(ptr, val, lane) vst4q_lane_u32_ptr(ptr, &val, lane)
+
+//void vst4q_lane_s16(__transfersize(4) int16_t * ptr, int16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x8x4_t * val, __constrange(0,7) int lane);
+#define vst4q_lane_s16(ptr,val,lane) vst4q_lane_u16((uint16_t *)ptr,val,lane)
+
+//void vst4q_lane_s32(__transfersize(4) int32_t * ptr, int32x4x4_t val, __constrange(0,3) int lane);// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x4x4_t * val, __constrange(0,3) int lane);
+#define vst4q_lane_s32(ptr,val,lane) vst4q_lane_u32((uint32_t *)ptr,val,lane)
+
+//void vst4q_lane_f16(__transfersize(4) __fp16 * ptr, float16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x8x4_t * val, __constrange(0,7) int lane);
+//current IA SIMD doesn't support float16
+
+//void vst4q_lane_f32(__transfersize(4) float32_t * ptr, float32x4x4_t val, __constrange(0,3) int lane)// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+_NEON2SSE_INLINE void vst4q_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x4x4_t* val, __constrange(0,3) int lane)
+{
+    vst1q_lane_f32(ptr,   val->val[0], lane);
+    vst1q_lane_f32((ptr + 1), val->val[1], lane);
+    vst1q_lane_f32((ptr + 2), val->val[2], lane);
+    vst1q_lane_f32((ptr + 3), val->val[3], lane);
+}
+#define vst4q_lane_f32(ptr,val,lane) vst4q_lane_f32_ptr(ptr,&val,lane)
+
+//void vst4q_lane_p16(__transfersize(4) poly16_t * ptr, poly16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0]
+void vst4q_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x8x4_t * val, __constrange(0,7) int lane);
+#define vst4q_lane_p16 vst4q_lane_u16
+
+//void vst4_lane_u8(__transfersize(4) uint8_t * ptr, uint8x8x4_t val, __constrange(0,7) int lane)// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE void vst4_lane_u8_ptr(__transfersize(4) uint8_t * ptr, uint8x8x4_t* val, __constrange(0,7) int lane)
+{
+    *(ptr) =     val->val[0].m64_u8[lane];
+    *(ptr + 1) = val->val[1].m64_u8[lane];
+    *(ptr + 2) = val->val[2].m64_u8[lane];
+    *(ptr + 3) = val->val[3].m64_u8[lane];
+}
+#define vst4_lane_u8(ptr, val, lane) vst4_lane_u8_ptr(ptr, &val, lane)
+
+//void vst4_lane_u16(__transfersize(4) uint16_t * ptr, uint16x4x4_t val, __constrange(0,3) int lane)// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE void vst4_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x4x4_t* val, __constrange(0,3) int lane)
+{
+    *(ptr) =     val->val[0].m64_u16[lane];
+    *(ptr + 1) = val->val[1].m64_u16[lane];
+    *(ptr + 2) = val->val[2].m64_u16[lane];
+    *(ptr + 3) = val->val[3].m64_u16[lane];
+}
+#define vst4_lane_u16(ptr, val, lane) vst4_lane_u16_ptr(ptr, &val, lane)
+
+//void vst4_lane_u32(__transfersize(4) uint32_t * ptr, uint32x2x4_t val, __constrange(0,1) int lane)// VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE void vst4_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x4_t* val, __constrange(0,1) int lane)
+{
+    *(ptr) =     val->val[0].m64_u32[lane];
+    *(ptr + 1) = val->val[1].m64_u32[lane];
+    *(ptr + 2) = val->val[2].m64_u32[lane];
+    *(ptr + 3) = val->val[3].m64_u32[lane];
+}
+#define vst4_lane_u32(ptr, val, lane) vst4_lane_u32_ptr(ptr, &val, lane)
+
+//void vst4_lane_s8(__transfersize(4) int8_t * ptr, int8x8x4_t val, __constrange(0,7) int lane)// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+#define vst4_lane_s8(ptr, val, lane) vst4_lane_u8((uint8_t*)ptr, val, lane)
+
+//void vst4_lane_s16(__transfersize(4) int16_t * ptr, int16x4x4_t val, __constrange(0,3) int lane)// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+#define vst4_lane_s16(ptr, val, lane) vst4_lane_u16((uint16_t*)ptr, val, lane)
+
+//void vst4_lane_s32(__transfersize(4) int32_t * ptr, int32x2x4_t val, __constrange(0,1) int lane)// VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+#define vst4_lane_s32(ptr, val, lane) vst4_lane_u32((uint32_t*)ptr, val, lane)
+
+//void vst4_lane_f16(__transfersize(4) __fp16 * ptr, float16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x4x4_t * val, __constrange(0,3) int lane);
+//current IA SIMD doesn't support float16
+
+void vst4_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x4_t * val, __constrange(0,1) int lane); // VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+_NEON2SSE_INLINE void vst4_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x4_t* val, __constrange(0,1) int lane)
+{
+    *(ptr) = val->val[0].m64_f32[lane];
+    *(ptr + 1) = val->val[1].m64_f32[lane];
+    *(ptr + 2) = val->val[2].m64_f32[lane];
+    *(ptr + 3) = val->val[3].m64_f32[lane];
+}
+#define vst4_lane_f32(ptr,val,lane) vst4_lane_f32_ptr(ptr,&val,lane)
+
+//void vst4_lane_p8(__transfersize(4) poly8_t * ptr, poly8x8x4_t val, __constrange(0,7) int lane);// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_p8_ptr(__transfersize(4) poly8_t * ptr, poly8x8x4_t * val, __constrange(0,7) int lane);
+#define vst4_lane_p8 vst4_lane_u8
+
+//void vst4_lane_p16(__transfersize(4) poly16_t * ptr, poly16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]
+void vst4_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x4x4_t * val, __constrange(0,3) int lane);
+#define vst4_lane_p16 vst4_lane_u16
+
+//**************************************************************************************************
+//************************ Extract lanes from a vector ********************************************
+//**************************************************************************************************
+//These intrinsics extract a single lane (element) from a vector.
+uint8_t vget_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0]
+#define vget_lane_u8(vec, lane) vec.m64_u8[lane]
+
+uint16_t vget_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VMOV.s16 r0, d0[0]
+#define vget_lane_u16(vec, lane) vec.m64_u16[lane]
+
+
+uint32_t vget_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0]
+#define vget_lane_u32(vec, lane) vec.m64_u32[lane]
+
+int8_t vget_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VMOV.S8 r0, d0[0]
+#define vget_lane_s8(vec, lane) vec.m64_i8[lane]
+
+int16_t vget_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VMOV.S16 r0, d0[0]
+#define vget_lane_s16(vec, lane) vec.m64_i16[lane]
+
+int32_t vget_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0]
+#define vget_lane_s32(vec, lane) vec.m64_i32[lane]
+
+poly8_t vget_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0]
+#define vget_lane_p8 vget_lane_u8
+
+poly16_t vget_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VMOV.s16 r0, d0[0]
+#define vget_lane_p16 vget_lane_u16
+
+float32_t vget_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0]
+#define vget_lane_f32(vec, lane) vec.m64_f32[lane]
+
+uint8_t vgetq_lane_u8(uint8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0]
+#define vgetq_lane_u8 _MM_EXTRACT_EPI8
+
+uint16_t vgetq_lane_u16(uint16x8_t vec, __constrange(0,7) int lane); // VMOV.s16 r0, d0[0]
+#define  vgetq_lane_u16 _MM_EXTRACT_EPI16
+
+uint32_t vgetq_lane_u32(uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0]
+#define vgetq_lane_u32 _MM_EXTRACT_EPI32
+
+int8_t vgetq_lane_s8(int8x16_t vec, __constrange(0,15) int lane); // VMOV.S8 r0, d0[0]
+#define vgetq_lane_s8 vgetq_lane_u8
+
+int16_t vgetq_lane_s16(int16x8_t vec, __constrange(0,7) int lane); // VMOV.S16 r0, d0[0]
+#define vgetq_lane_s16 vgetq_lane_u16
+
+int32_t vgetq_lane_s32(int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0]
+#define vgetq_lane_s32 vgetq_lane_u32
+
+poly8_t vgetq_lane_p8(poly8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0]
+#define vgetq_lane_p8 vgetq_lane_u8
+
+poly16_t vgetq_lane_p16(poly16x8_t vec, __constrange(0,7) int lane); // VMOV.s16 r0, d0[0]
+#define vgetq_lane_p16 vgetq_lane_u16
+
+float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0]
+_NEON2SSE_INLINE float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane)
+{
+    int32_t ilane;
+    ilane = _MM_EXTRACT_PS(vec,lane);
+    return *(float*)&ilane;
+}
+
+int64_t vget_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0
+#define vget_lane_s64(vec, lane) vec.m64_i64[0]
+
+uint64_t vget_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0
+#define vget_lane_u64(vec, lane) vec.m64_u64[0]
+
+
+int64_t vgetq_lane_s64(int64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0
+#define vgetq_lane_s64 (int64_t) vgetq_lane_u64
+
+uint64_t vgetq_lane_u64(uint64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0
+#define vgetq_lane_u64 _MM_EXTRACT_EPI64
+
+// ***************** Set lanes within a vector ********************************************
+// **************************************************************************************
+//These intrinsics set a single lane (element) within a vector.
+//same functions as vld1_lane_xx ones, but take the value to be set directly.
+
+uint8x8_t vset_lane_u8(uint8_t value, uint8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0
+_NEON2SSE_INLINE uint8x8_t vset_lane_u8(uint8_t value, uint8x8_t vec, __constrange(0,7) int lane)
+{
+    uint8_t val;
+    val = value;
+    return vld1_lane_u8(&val, vec,  lane);
+}
+
+uint16x4_t vset_lane_u16(uint16_t value, uint16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0
+_NEON2SSE_INLINE uint16x4_t vset_lane_u16(uint16_t value, uint16x4_t vec, __constrange(0,3) int lane)
+{
+    uint16_t val;
+    val = value;
+    return vld1_lane_u16(&val, vec,  lane);
+}
+
+uint32x2_t vset_lane_u32(uint32_t value, uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0
+_NEON2SSE_INLINE uint32x2_t vset_lane_u32(uint32_t value, uint32x2_t vec, __constrange(0,1) int lane)
+{
+    uint32_t val;
+    val = value;
+    return vld1_lane_u32(&val, vec,  lane);
+}
+
+int8x8_t vset_lane_s8(int8_t value, int8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0
+_NEON2SSE_INLINE int8x8_t vset_lane_s8(int8_t value, int8x8_t vec, __constrange(0,7) int lane)
+{
+    int8_t val;
+    val = value;
+    return vld1_lane_s8(&val, vec,  lane);
+}
+
+int16x4_t vset_lane_s16(int16_t value, int16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0
+_NEON2SSE_INLINE int16x4_t vset_lane_s16(int16_t value, int16x4_t vec, __constrange(0,3) int lane)
+{
+    int16_t val;
+    val = value;
+    return vld1_lane_s16(&val, vec,  lane);
+}
+
+int32x2_t vset_lane_s32(int32_t value, int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0
+_NEON2SSE_INLINE int32x2_t vset_lane_s32(int32_t value, int32x2_t vec, __constrange(0,1) int lane)
+{
+    int32_t val;
+    val = value;
+    return vld1_lane_s32(&val, vec,  lane);
+}
+
+poly8x8_t vset_lane_p8(poly8_t value, poly8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0
+#define vset_lane_p8  vset_lane_u8
+
+poly16x4_t vset_lane_p16(poly16_t value, poly16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0
+#define vset_lane_p16  vset_lane_u16
+
+float32x2_t vset_lane_f32(float32_t value, float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0
+_NEON2SSE_INLINE float32x2_t vset_lane_f32(float32_t value, float32x2_t vec, __constrange(0,1) int lane)
+{
+    float32_t val;
+    val = value;
+    return vld1_lane_f32(&val, vec,  lane);
+}
+
+uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0
+_NEON2SSE_INLINE uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane)
+{
+    uint8_t val;
+    val = value;
+    return vld1q_lane_u8(&val, vec,  lane);
+}
+
+uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0
+_NEON2SSE_INLINE uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane)
+{
+    uint16_t val;
+    val = value;
+    return vld1q_lane_u16(&val, vec,  lane);
+}
+
+uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0
+_NEON2SSE_INLINE uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane)
+{
+    uint32_t val;
+    val = value;
+    return vld1q_lane_u32(&val, vec,  lane);
+}
+
+int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0
+_NEON2SSE_INLINE int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane)
+{
+    int8_t val;
+    val = value;
+    return vld1q_lane_s8(&val, vec,  lane);
+}
+
+int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0
+_NEON2SSE_INLINE int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane)
+{
+    int16_t val;
+    val = value;
+    return vld1q_lane_s16(&val, vec,  lane);
+}
+
+int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0
+_NEON2SSE_INLINE int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane)
+{
+    int32_t val;
+    val = value;
+    return vld1q_lane_s32(&val, vec,  lane);
+}
+
+poly8x16_t vsetq_lane_p8(poly8_t value, poly8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0
+#define vsetq_lane_p8 vsetq_lane_u8
+
+poly16x8_t vsetq_lane_p16(poly16_t value, poly16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0
+#define vsetq_lane_p16 vsetq_lane_u16
+
+float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0
+_NEON2SSE_INLINE float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane)
+{
+    float32_t val;
+    val = value;
+    return vld1q_lane_f32(&val, vec,  lane);
+}
+
+int64x1_t vset_lane_s64(int64_t value, int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0
+_NEON2SSE_INLINE int64x1_t vset_lane_s64(int64_t value, int64x1_t vec, __constrange(0,0) int lane)
+{
+    int64_t val;
+    val = value;
+    return vld1_lane_s64(&val, vec,  lane);
+}
+
+uint64x1_t vset_lane_u64(uint64_t value, uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0
+_NEON2SSE_INLINE uint64x1_t vset_lane_u64(uint64_t value, uint64x1_t vec, __constrange(0,0) int lane)
+{
+    uint64_t val;
+    val = value;
+    return vld1_lane_u64(&val, vec,  lane);
+}
+
+int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0
+_NEON2SSE_INLINE int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane)
+{
+    uint64_t val;
+    val = value;
+    return vld1q_lane_s64(&val, vec,  lane);
+}
+
+uint64x2_t vsetq_lane_u64(uint64_t value, uint64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0
+#define vsetq_lane_u64 vsetq_lane_s64
+
+// *******************************************************************************
+// **************** Initialize a vector from bit pattern ***************************
+// *******************************************************************************
+//These intrinsics create a vector from a literal bit pattern.
+int8x8_t vcreate_s8(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_s8(a)  (*(__m64_128*)&(a))
+
+
+int16x4_t vcreate_s16(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_s16  vcreate_s8
+
+int32x2_t vcreate_s32(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_s32  vcreate_s8
+
+float16x4_t vcreate_f16(uint64_t a); // VMOV d0,r0,r0
+//no IA32 SIMD avalilable
+
+float32x2_t vcreate_f32(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_f32(a)  (*(__m64_128*)&(a))
+
+uint8x8_t vcreate_u8(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_u8 vcreate_s8
+
+uint16x4_t vcreate_u16(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_u16 vcreate_s16
+
+uint32x2_t vcreate_u32(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_u32 vcreate_s32
+
+uint64x1_t vcreate_u64(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_u64  vcreate_s8
+
+
+poly8x8_t vcreate_p8(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_p8 vcreate_u8
+
+poly16x4_t vcreate_p16(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_p16 vcreate_u16
+
+int64x1_t vcreate_s64(uint64_t a); // VMOV d0,r0,r0
+#define vcreate_s64 vcreate_u64
+
+//********************* Set all lanes to same value ********************************
+//*********************************************************************************
+//These intrinsics set all lanes to the same value.
+uint8x8_t   vdup_n_u8(uint8_t value); // VDUP.8 d0,r0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t  vdup_n_u8(uint8_t value),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint8x8_t res;
+    int i;
+    for (i = 0; i<8; i++) {
+        res.m64_u8[i] = value;
+    }
+    return res;
+}
+
+uint16x4_t   vdup_n_u16(uint16_t value); // VDUP.16 d0,r0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t  vdup_n_u16(uint16_t value),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint16x4_t res;
+    int i;
+    for (i = 0; i<4; i++) {
+        res.m64_u16[i] = value;
+    }
+    return res;
+}
+
+uint32x2_t   vdup_n_u32(uint32_t value); // VDUP.32 d0,r0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t  vdup_n_u32(uint32_t value),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    uint32x2_t res;
+    res.m64_u32[0] = value;
+    res.m64_u32[1] = value;
+    return res;
+}
+
+int8x8_t   vdup_n_s8(int8_t value); // VDUP.8 d0,r0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t  vdup_n_s8(int8_t value),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int8x8_t res;
+    int i;
+    for (i = 0; i<8; i++) {
+        res.m64_i8[i] = value;
+    }
+    return res;
+}
+
+int16x4_t   vdup_n_s16(int16_t value); // VDUP.16 d0,r0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t  vdup_n_s16(int16_t value),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int16x4_t res;
+    int i;
+    for (i = 0; i<4; i++) {
+        res.m64_i16[i] = value;
+    }
+    return res;
+}
+
+int32x2_t   vdup_n_s32(int32_t value); // VDUP.32 d0,r0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t  vdup_n_s32(int32_t value),  _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int32x2_t res;
+    res.m64_i32[0] = value;
+    res.m64_i32[1] = value;
+    return res;
+}
+
+poly8x8_t vdup_n_p8(poly8_t value); // VDUP.8 d0,r0
+#define vdup_n_p8 vdup_n_u8
+
+poly16x4_t vdup_n_p16(poly16_t value); // VDUP.16 d0,r0
+#define vdup_n_p16 vdup_n_s16
+
+float32x2_t vdup_n_f32(float32_t value); // VDUP.32 d0,r0
+_NEON2SSE_INLINE float32x2_t vdup_n_f32(float32_t value)
+{
+    float32x2_t res;
+    res.m64_f32[0] = value;
+    res.m64_f32[1] = value;
+    return res;
+}
+
+uint8x16_t   vdupq_n_u8(uint8_t value); // VDUP.8 q0,r0
+#define vdupq_n_u8(value) _mm_set1_epi8((uint8_t) (value))
+
+uint16x8_t   vdupq_n_u16(uint16_t value); // VDUP.16 q0,r0
+#define vdupq_n_u16(value) _mm_set1_epi16((uint16_t) (value))
+
+uint32x4_t   vdupq_n_u32(uint32_t value); // VDUP.32 q0,r0
+#define vdupq_n_u32(value) _mm_set1_epi32((uint32_t) (value))
+
+int8x16_t   vdupq_n_s8(int8_t value); // VDUP.8 q0,r0
+#define vdupq_n_s8 _mm_set1_epi8
+
+int16x8_t   vdupq_n_s16(int16_t value); // VDUP.16 q0,r0
+#define vdupq_n_s16 _mm_set1_epi16
+
+int32x4_t   vdupq_n_s32(int32_t value); // VDUP.32 q0,r0
+#define vdupq_n_s32 _mm_set1_epi32
+
+poly8x16_t vdupq_n_p8(poly8_t value); // VDUP.8 q0,r0
+#define  vdupq_n_p8 vdupq_n_u8
+
+poly16x8_t vdupq_n_p16(poly16_t value); // VDUP.16 q0,r0
+#define  vdupq_n_p16 vdupq_n_u16
+
+float32x4_t vdupq_n_f32(float32_t value); // VDUP.32 q0,r0
+#define vdupq_n_f32 _mm_set1_ps
+
+int64x1_t vdup_n_s64(int64_t value); // VMOV d0,r0,r0
+_NEON2SSE_INLINE int64x1_t vdup_n_s64(int64_t value)
+{
+    int64x1_t res;
+    res.m64_i64[0] = value;
+    return res;
+}
+
+uint64x1_t vdup_n_u64(uint64_t value); // VMOV d0,r0,r0
+_NEON2SSE_INLINE uint64x1_t  vdup_n_u64(uint64_t value)
+{
+    uint64x1_t res;
+    res.m64_u64[0] = value;
+    return res;
+}
+
+int64x2_t   vdupq_n_s64(int64_t value); // VMOV d0,r0,r0
+_NEON2SSE_INLINE int64x2_t   vdupq_n_s64(int64_t value)
+{
+    _NEON2SSE_ALIGN_16 int64_t value2[2] = {value, value}; //value may be an immediate
+    return LOAD_SI128(value2);
+}
+
+uint64x2_t   vdupq_n_u64(uint64_t value); // VMOV d0,r0,r0
+_NEON2SSE_INLINE uint64x2_t   vdupq_n_u64(uint64_t value)
+{
+    _NEON2SSE_ALIGN_16 uint64_t val[2] = {value, value}; //value may be an immediate
+    return LOAD_SI128(val);
+}
+
+//****  Set all lanes to same value  ************************
+//Same functions as above - just aliaces.********************
+//Probably they reflect the fact that 128-bit functions versions use VMOV instruction **********
+uint8x8_t vmov_n_u8(uint8_t value); // VDUP.8 d0,r0
+#define vmov_n_u8 vdup_n_s8
+
+uint16x4_t vmov_n_u16(uint16_t value); // VDUP.16 d0,r0
+#define vmov_n_u16 vdup_n_s16
+
+uint32x2_t vmov_n_u32(uint32_t value); // VDUP.32 d0,r0
+#define vmov_n_u32 vdup_n_u32
+
+int8x8_t vmov_n_s8(int8_t value); // VDUP.8 d0,r0
+#define vmov_n_s8 vdup_n_s8
+
+int16x4_t vmov_n_s16(int16_t value); // VDUP.16 d0,r0
+#define vmov_n_s16 vdup_n_s16
+
+int32x2_t vmov_n_s32(int32_t value); // VDUP.32 d0,r0
+#define vmov_n_s32 vdup_n_s32
+
+poly8x8_t vmov_n_p8(poly8_t value); // VDUP.8 d0,r0
+#define vmov_n_p8 vdup_n_u8
+
+poly16x4_t vmov_n_p16(poly16_t value); // VDUP.16 d0,r0
+#define vmov_n_p16 vdup_n_s16
+
+float32x2_t vmov_n_f32(float32_t value); // VDUP.32 d0,r0
+#define vmov_n_f32 vdup_n_f32
+
+uint8x16_t vmovq_n_u8(uint8_t value); // VDUP.8 q0,r0
+#define vmovq_n_u8 vdupq_n_u8
+
+uint16x8_t vmovq_n_u16(uint16_t value); // VDUP.16 q0,r0
+#define vmovq_n_u16 vdupq_n_s16
+
+uint32x4_t vmovq_n_u32(uint32_t value); // VDUP.32 q0,r0
+#define vmovq_n_u32 vdupq_n_u32
+
+int8x16_t vmovq_n_s8(int8_t value); // VDUP.8 q0,r0
+#define vmovq_n_s8 vdupq_n_s8
+
+int16x8_t vmovq_n_s16(int16_t value); // VDUP.16 q0,r0
+#define vmovq_n_s16 vdupq_n_s16
+
+int32x4_t vmovq_n_s32(int32_t value); // VDUP.32 q0,r0
+#define vmovq_n_s32 vdupq_n_s32
+
+poly8x16_t vmovq_n_p8(poly8_t value); // VDUP.8 q0,r0
+#define vmovq_n_p8 vdupq_n_u8
+
+poly16x8_t vmovq_n_p16(poly16_t value); // VDUP.16 q0,r0
+#define vmovq_n_p16 vdupq_n_s16
+
+float32x4_t vmovq_n_f32(float32_t value); // VDUP.32 q0,r0
+#define vmovq_n_f32 vdupq_n_f32
+
+int64x1_t vmov_n_s64(int64_t value); // VMOV d0,r0,r0
+#define vmov_n_s64 vdup_n_s64
+
+uint64x1_t vmov_n_u64(uint64_t value); // VMOV d0,r0,r0
+#define vmov_n_u64 vdup_n_u64
+
+int64x2_t vmovq_n_s64(int64_t value); // VMOV d0,r0,r0
+#define vmovq_n_s64 vdupq_n_s64
+
+uint64x2_t vmovq_n_u64(uint64_t value); // VMOV d0,r0,r0
+#define vmovq_n_u64 vdupq_n_u64
+
+//**************Set all lanes to the value of one lane of a vector *************
+//****************************************************************************
+//here shuffle is better solution than lane extraction followed by set1 function
+uint8x8_t vdup_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0]
+_NEON2SSE_INLINE uint8x8_t vdup_lane_u8(uint8x8_t vec, __constrange(0,7) int lane)
+{
+    uint8x8_t res;
+    uint8_t valane;
+    int i = 0;
+    valane = vec.m64_u8[lane];
+    for (i = 0; i<8; i++) {
+        res.m64_u8[i] = valane;
+    }
+    return res;
+}
+
+uint16x4_t vdup_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0]
+_NEON2SSE_INLINE uint16x4_t vdup_lane_u16(uint16x4_t vec, __constrange(0,3) int lane)
+{
+    uint16x4_t res;
+    uint16_t valane;
+    valane = vec.m64_u16[lane];
+    res.m64_u16[0] = valane;
+    res.m64_u16[1] = valane;
+    res.m64_u16[2] = valane;
+    res.m64_u16[3] = valane;
+    return res;
+}
+
+uint32x2_t vdup_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0]
+_NEON2SSE_INLINE uint32x2_t vdup_lane_u32(uint32x2_t vec, __constrange(0,1) int lane)
+{
+    uint32x2_t res;
+    res.m64_u32[0] = vec.m64_u32[lane];
+    res.m64_u32[1] = res.m64_u32[0];
+    return res;
+}
+
+int8x8_t vdup_lane_s8(int8x8_t vec,  __constrange(0,7) int lane); // VDUP.8 d0,d0[0]
+#define vdup_lane_s8 vdup_lane_u8
+
+int16x4_t vdup_lane_s16(int16x4_t vec,  __constrange(0,3) int lane); // VDUP.16 d0,d0[0]
+#define vdup_lane_s16 vdup_lane_u16
+
+int32x2_t vdup_lane_s32(int32x2_t vec,  __constrange(0,1) int lane); // VDUP.32 d0,d0[0]
+#define vdup_lane_s32 vdup_lane_u32
+
+poly8x8_t vdup_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0]
+#define vdup_lane_p8 vdup_lane_u8
+
+poly16x4_t vdup_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0]
+#define vdup_lane_p16 vdup_lane_s16
+
+float32x2_t vdup_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0]
+_NEON2SSE_INLINE float32x2_t vdup_lane_f32(float32x2_t vec, __constrange(0,1) int lane)
+{
+    float32x2_t res;
+    res.m64_f32[0] = vec.m64_f32[lane];
+    res.m64_f32[1] = res.m64_f32[0];
+    return res;
+}
+
+uint8x16_t vdupq_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0]
+_NEON2SSE_INLINE uint8x16_t vdupq_lane_u8(uint8x8_t vec, __constrange(0,7) int lane) // VDUP.8 q0,d0[0]
+{
+    _NEON2SSE_ALIGN_16 int8_t lanemask8[16] = {lane, lane, lane, lane, lane, lane, lane, lane, lane, lane, lane, lane, lane, lane, lane, lane};
+    return _mm_shuffle_epi8 (_pM128i(vec), *(__m128i*) lanemask8);
+}
+
+uint16x8_t vdupq_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0]
+_NEON2SSE_INLINE uint16x8_t vdupq_lane_u16(uint16x4_t vec, __constrange(0,3) int lane) // VDUP.16 q0,d0[0]
+{
+    //we could use 8bit shuffle for 16 bit as well
+    const int8_t lane16 = ((int8_t) lane) << 1;
+    _NEON2SSE_ALIGN_16 int8_t lanemask_e16[16] = {lane16, lane16 + 1, lane16, lane16 + 1, lane16, lane16 + 1, lane16, lane16 + 1,
+                                                lane16, lane16 + 1, lane16, lane16 + 1, lane16, lane16 + 1, lane16, lane16 + 1};
+    return _mm_shuffle_epi8 (_pM128i(vec), *(__m128i*)lanemask_e16);
+}
+
+uint32x4_t vdupq_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0]
+#define vdupq_lane_u32(vec,  lane) _mm_shuffle_epi32 (_pM128i(vec),  lane | (lane << 2) | (lane << 4) | (lane << 6))
+
+int8x16_t vdupq_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0]
+#define vdupq_lane_s8 vdupq_lane_u8
+
+int16x8_t vdupq_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0]
+#define vdupq_lane_s16 vdupq_lane_u16
+
+int32x4_t vdupq_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0]
+#define vdupq_lane_s32 vdupq_lane_u32
+
+poly8x16_t vdupq_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0]
+#define vdupq_lane_p8 vdupq_lane_u8
+
+poly16x8_t vdupq_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0]
+#define vdupq_lane_p16 vdupq_lane_s16
+
+float32x4_t vdupq_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0]
+#define  vdupq_lane_f32(vec, lane)  _mm_load1_ps((vec.m64_f32 + lane))
+
+int64x1_t vdup_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0
+#define vdup_lane_s64(vec,lane) vec
+
+uint64x1_t vdup_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0
+#define vdup_lane_u64(vec,lane) vec
+
+int64x2_t vdupq_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0
+_NEON2SSE_INLINE int64x2_t vdupq_lane_s64(int64x1_t vec, __constrange(0,0) int lane)
+{
+    __m128i vec128;
+    vec128 = _pM128i(vec);
+    return _mm_unpacklo_epi64(vec128,vec128);
+}
+
+uint64x2_t vdupq_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0
+#define vdupq_lane_u64 vdupq_lane_s64
+
+// ********************************************************************
+// ********************  Combining vectors *****************************
+// ********************************************************************
+//These intrinsics join two 64 bit vectors into a single 128bit vector.
+int8x16_t   vcombine_s8(int8x8_t low, int8x8_t high); // VMOV d0,d0
+#define vcombine_s8(low, high)   _mm_unpacklo_epi64 (_pM128i(low), _pM128i(high) )
+
+int16x8_t   vcombine_s16(int16x4_t low, int16x4_t high); // VMOV d0,d0
+#define vcombine_s16(low, high)    _mm_unpacklo_epi64 (_pM128i(low), _pM128i(high) )
+
+int32x4_t   vcombine_s32(int32x2_t low, int32x2_t high); // VMOV d0,d0
+#define vcombine_s32(low, high)   _mm_unpacklo_epi64 (_pM128i(low), _pM128i(high) )
+
+int64x2_t   vcombine_s64(int64x1_t low, int64x1_t high); // VMOV d0,d0
+#define vcombine_s64(low, high)   _mm_unpacklo_epi64 (_pM128i(low), _pM128i(high) )
+
+float16x8_t vcombine_f16(float16x4_t low, float16x4_t high); // VMOV d0,d0
+//current IA SIMD doesn't support float16
+
+float32x4_t vcombine_f32(float32x2_t low, float32x2_t high); // VMOV d0,d0
+_NEON2SSE_INLINE float32x4_t vcombine_f32(float32x2_t low, float32x2_t high)
+{
+    __m128i res;
+    res = _mm_unpacklo_epi64(_pM128i(low), _pM128i(high) );
+    return _M128(res);
+}
+
+uint8x16_t   vcombine_u8(uint8x8_t low, uint8x8_t high); // VMOV d0,d0
+#define vcombine_u8 vcombine_s8
+
+uint16x8_t   vcombine_u16(uint16x4_t low, uint16x4_t high); // VMOV d0,d0
+#define vcombine_u16 vcombine_s16
+
+uint32x4_t   vcombine_u32(uint32x2_t low, uint32x2_t high); // VMOV d0,d0
+#define vcombine_u32 vcombine_s32
+
+uint64x2_t   vcombine_u64(uint64x1_t low, uint64x1_t high); // VMOV d0,d0
+#define vcombine_u64 vcombine_s64
+
+poly8x16_t   vcombine_p8(poly8x8_t low, poly8x8_t high); // VMOV d0,d0
+#define vcombine_p8 vcombine_u8
+
+poly16x8_t   vcombine_p16(poly16x4_t low, poly16x4_t high); // VMOV d0,d0
+#define vcombine_p16 vcombine_u16
+
+//**********************************************************************
+//************************* Splitting vectors **************************
+//**********************************************************************
+//**************** Get high part ******************************************
+//These intrinsics split a 128 bit vector into 2 component 64 bit vectors
+int8x8_t vget_high_s8(int8x16_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int8x8_t vget_high_s8(int8x16_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = _mm_unpackhi_epi64(a,a); //SSE2
+    return64(res);
+}
+
+int16x4_t vget_high_s16(int16x8_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int16x4_t vget_high_s16(int16x8_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res =  _mm_unpackhi_epi64(a,a); //SSE2
+    return64(res);
+}
+
+int32x2_t vget_high_s32(int32x4_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int32x2_t vget_high_s32(int32x4_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res =  _mm_unpackhi_epi64(a,a); //SSE2
+    return64(res);
+}
+
+int64x1_t vget_high_s64(int64x2_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int64x1_t vget_high_s64(int64x2_t a)
+{
+    int64x1_t res64;
+    __m128i res;
+    res =  _mm_unpackhi_epi64(a,a); //SSE2
+    return64(res);
+}
+
+float16x4_t vget_high_f16(float16x8_t a); // VMOV d0,d0
+// IA32 SIMD doesn't work with 16bit floats currently
+
+float32x2_t vget_high_f32(float32x4_t a); // VMOV d0,d0
+_NEON2SSE_INLINE float32x2_t vget_high_f32(float32x4_t a)
+{
+    __m128i res;
+    __m64_128 res64;
+    res = _mm_unpackhi_epi64(_M128i(a),_M128i(a));
+    return64(res);
+}
+
+uint8x8_t vget_high_u8(uint8x16_t a); // VMOV d0,d0
+#define vget_high_u8 vget_high_s8
+
+uint16x4_t vget_high_u16(uint16x8_t a); // VMOV d0,d0
+#define vget_high_u16 vget_high_s16
+
+uint32x2_t vget_high_u32(uint32x4_t a); // VMOV d0,d0
+#define vget_high_u32 vget_high_s32
+
+uint64x1_t vget_high_u64(uint64x2_t a); // VMOV d0,d0
+#define vget_high_u64 vget_high_s64
+
+poly8x8_t vget_high_p8(poly8x16_t a); // VMOV d0,d0
+#define vget_high_p8 vget_high_u8
+
+poly16x4_t vget_high_p16(poly16x8_t a); // VMOV d0,d0
+#define vget_high_p16 vget_high_u16
+
+//********************** Get low part **********************
+//**********************************************************
+int8x8_t vget_low_s8(int8x16_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int8x8_t vget_low_s8(int8x16_t a) // VMOV d0,d0
+{
+    int16x4_t res64;
+    return64(a);
+}
+
+int16x4_t vget_low_s16(int16x8_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int16x4_t vget_low_s16(int16x8_t a) // VMOV d0,d0
+{
+    int16x4_t res64;
+    return64(a);
+}
+
+int32x2_t vget_low_s32(int32x4_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int32x2_t vget_low_s32(int32x4_t a) // VMOV d0,d0
+{
+    int32x2_t res64;
+    return64(a);
+}
+
+int64x1_t vget_low_s64(int64x2_t a); // VMOV d0,d0
+_NEON2SSE_INLINE int64x1_t vget_low_s64(int64x2_t a) // VMOV d0,d0
+{
+    int64x1_t res64;
+    return64 (a);
+}
+
+float16x4_t vget_low_f16(float16x8_t a); // VMOV d0,d0
+// IA32 SIMD doesn't work with 16bit floats currently
+
+float32x2_t vget_low_f32(float32x4_t a); // VMOV d0,d0
+_NEON2SSE_INLINE float32x2_t vget_low_f32(float32x4_t a)
+{
+    float32x2_t res64;
+    _M64f(res64, a);
+    return res64;
+}
+
+uint8x8_t vget_low_u8(uint8x16_t a); // VMOV d0,d0
+#define vget_low_u8 vget_low_s8
+
+uint16x4_t vget_low_u16(uint16x8_t a); // VMOV d0,d0
+#define vget_low_u16 vget_low_s16
+
+uint32x2_t vget_low_u32(uint32x4_t a); // VMOV d0,d0
+#define vget_low_u32 vget_low_s32
+
+uint64x1_t vget_low_u64(uint64x2_t a); // VMOV d0,d0
+#define vget_low_u64 vget_low_s64
+
+poly8x8_t vget_low_p8(poly8x16_t a); // VMOV d0,d0
+#define vget_low_p8 vget_low_u8
+
+poly16x4_t vget_low_p16(poly16x8_t a); // VMOV d0,d0
+#define vget_low_p16 vget_low_s16
+
+//**************************************************************************
+//************************ Converting vectors **********************************
+//**************************************************************************
+//************* Convert from float ***************************************
+// need to set _MM_SET_ROUNDING_MODE ( x) accordingly
+int32x2_t   vcvt_s32_f32(float32x2_t a); // VCVT.S32.F32 d0, d0
+_NEON2SSE_INLINE int32x2_t   vcvt_s32_f32(float32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res =  _mm_cvttps_epi32(_pM128(a)); //use low 64 bits of result only
+    return64(res);
+}
+
+uint32x2_t vcvt_u32_f32(float32x2_t a); // VCVT.U32.F32 d0, d0
+_NEON2SSE_INLINE uint32x2_t vcvt_u32_f32(float32x2_t a)
+{
+    //may be not effective compared with a serial SIMD solution
+    uint32x2_t res64;
+    __m128i res;
+    res = vcvtq_u32_f32(_pM128(a));
+    return64(res);
+}
+
+int32x4_t   vcvtq_s32_f32(float32x4_t a); // VCVT.S32.F32 q0, q0
+#define vcvtq_s32_f32 _mm_cvttps_epi32
+
+uint32x4_t vcvtq_u32_f32(float32x4_t a); // VCVT.U32.F32 q0, q0
+_NEON2SSE_INLINE uint32x4_t vcvtq_u32_f32(float32x4_t a) // VCVT.U32.F32 q0, q0
+{
+    //No single instruction SSE solution  but we could implement it as following:
+    __m128i resi;
+    __m128 zero,  mask, a_pos, mask_f_max_si, res;
+    _NEON2SSE_ALIGN_16 int32_t c7fffffff[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
+    zero = _mm_setzero_ps();
+    mask = _mm_cmpgt_ps(a, zero);
+    a_pos = _mm_and_ps(a, mask);
+    mask_f_max_si = _mm_cmpgt_ps(a_pos,*(__m128*)c7fffffff);
+    res =  _mm_sub_ps(a_pos, mask_f_max_si); //if the input fits to signed we don't subtract anything
+    resi = _mm_cvttps_epi32(res);
+    return _mm_add_epi32(resi, *(__m128i*)&mask_f_max_si);
+}
+
+// ***** Convert to the fixed point  with   the number of fraction bits specified by b ***********
+//*************************************************************************************************
+int32x2_t vcvt_n_s32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.S32.F32 d0, d0, #32
+_NEON2SSE_INLINE int32x2_t vcvt_n_s32_f32(float32x2_t a, __constrange(1,32) int b)
+{
+    int32x2_t res64;
+    return64(vcvtq_n_s32_f32(_pM128(a),b));
+}
+
+uint32x2_t vcvt_n_u32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.U32.F32 d0, d0, #32
+_NEON2SSE_INLINE uint32x2_t vcvt_n_u32_f32(float32x2_t a, __constrange(1,32) int b)
+{
+    uint32x2_t res;
+    float convconst;
+    convconst = (float)((uint32_t)1 << b);
+    res.m64_u32[0] = (uint32_t) (a.m64_f32[0] * convconst);
+    res.m64_u32[1] = (uint32_t) (a.m64_f32[1] * convconst);
+    return res;
+}
+
+int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.S32.F32 q0, q0, #32
+_NEON2SSE_INLINE int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b)
+{
+    float convconst;
+    _NEON2SSE_ALIGN_16 uint32_t cmask[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    __m128 cconst128;
+    __m128i mask, res;
+    convconst = (float)(1 << b);
+    cconst128 = vdupq_n_f32(convconst);
+    res =  _mm_cvttps_epi32(_mm_mul_ps(a,cconst128));
+    mask = _mm_cmpeq_epi32 (res, *(__m128i*)cmask);
+    return _mm_xor_si128 (res,  mask); //res saturated for 0x80000000
+}
+
+uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.U32.F32 q0, q0, #32
+_NEON2SSE_INLINE uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b)
+{
+    float convconst;
+    __m128 cconst128;
+    convconst = (float)(1 << b);
+    cconst128 = vdupq_n_f32(convconst);
+    return vcvtq_u32_f32(_mm_mul_ps(a,cconst128));
+}
+
+//***************** Convert to float *************************
+//*************************************************************
+float32x2_t vcvt_f32_s32(int32x2_t a); // VCVT.F32.S32 d0, d0
+_NEON2SSE_INLINE float32x2_t vcvt_f32_s32(int32x2_t a) //use low 64 bits
+{
+    float32x2_t res;
+    res.m64_f32[0] = (float) a.m64_i32[0];
+    res.m64_f32[1] = (float) a.m64_i32[1];
+    return res;
+}
+
+float32x2_t vcvt_f32_u32(uint32x2_t a); // VCVT.F32.U32 d0, d0
+_NEON2SSE_INLINE float32x2_t vcvt_f32_u32(uint32x2_t a)
+{
+    float32x2_t res;
+    res.m64_f32[0] = (float) a.m64_u32[0];
+    res.m64_f32[1] = (float) a.m64_u32[1];
+    return res;
+}
+
+float32x4_t vcvtq_f32_s32(int32x4_t a); // VCVT.F32.S32 q0, q0
+#define vcvtq_f32_s32(a) _mm_cvtepi32_ps(a)
+
+float32x4_t vcvtq_f32_u32(uint32x4_t a); // VCVT.F32.U32 q0, q0
+_NEON2SSE_INLINE float32x4_t vcvtq_f32_u32(uint32x4_t a) // VCVT.F32.U32 q0, q0
+{
+    //solution may be not optimal
+    __m128 two16, fHi, fLo;
+    __m128i hi, lo;
+    two16 = _mm_set1_ps((float)0x10000); //2^16
+    // Avoid double rounding by doing two exact conversions
+    // of high and low 16-bit segments
+    hi = _mm_srli_epi32(a, 16);
+    lo = _mm_srli_epi32(_mm_slli_epi32(a, 16), 16);
+    fHi = _mm_mul_ps(_mm_cvtepi32_ps(hi), two16);
+    fLo = _mm_cvtepi32_ps(lo);
+    // do single rounding according to current rounding mode
+    return _mm_add_ps(fHi, fLo);
+}
+
+// ***** Convert to the float from fixed point  with   the number of fraction bits specified by b ***********
+float32x2_t vcvt_n_f32_s32(int32x2_t a, __constrange(1,32) int b); // VCVT.F32.S32 d0, d0, #32
+_NEON2SSE_INLINE float32x2_t vcvt_n_f32_s32(int32x2_t a, __constrange(1,32) int b)
+{
+    float32x2_t res;
+    float convconst;
+    convconst = (float)(1. / ((uint32_t)1 << b));
+    res.m64_f32[0] =  a.m64_i32[0] * convconst;
+    res.m64_f32[1] = a.m64_i32[1] * convconst;
+    return res;
+}
+
+float32x2_t vcvt_n_f32_u32(uint32x2_t a, __constrange(1,32) int b); // VCVT.F32.U32 d0, d0, #32
+_NEON2SSE_INLINE float32x2_t vcvt_n_f32_u32(uint32x2_t a, __constrange(1,32) int b) // VCVT.F32.U32 d0, d0, #32
+{
+    float32x2_t res;
+    float convconst;
+    convconst = (float)(1. / ((uint32_t)1 << b));
+    res.m64_f32[0] =  a.m64_u32[0] * convconst;
+    res.m64_f32[1] = a.m64_u32[1] * convconst;
+    return res;
+}
+
+float32x4_t vcvtq_n_f32_s32(int32x4_t a, __constrange(1,32) int b); // VCVT.F32.S32 q0, q0, #32
+_NEON2SSE_INLINE float32x4_t vcvtq_n_f32_s32(int32x4_t a, __constrange(1,32) int b)
+{
+    float convconst;
+    __m128 cconst128, af;
+    convconst = (float)(1. / ((uint32_t)1 << b));
+    af = _mm_cvtepi32_ps(a);
+    cconst128 = vdupq_n_f32(convconst);
+    return _mm_mul_ps(af,cconst128);
+}
+
+float32x4_t vcvtq_n_f32_u32(uint32x4_t a, __constrange(1,32) int b); // VCVT.F32.U32 q0, q0, #32
+_NEON2SSE_INLINE float32x4_t vcvtq_n_f32_u32(uint32x4_t a, __constrange(1,32) int b)
+{
+    float convconst;
+    __m128 cconst128, af;
+    convconst = (float)(1. / (1 << b));
+    af = vcvtq_f32_u32(a);
+    cconst128 = vdupq_n_f32(convconst);
+    return _mm_mul_ps(af,cconst128);
+}
+
+//**************Convert between floats ***********************
+//************************************************************
+float16x4_t vcvt_f16_f32(float32x4_t a); // VCVT.F16.F32 d0, q0
+//Intel SIMD doesn't support 16bits floats curently
+
+float32x4_t vcvt_f32_f16(float16x4_t a); // VCVT.F32.F16 q0, d0
+//Intel SIMD doesn't support 16bits floats curently, the only solution is to store 16bit floats and load as 32 bits
+
+//************Vector narrow integer conversion (truncation) ******************
+//****************************************************************************
+int8x8_t vmovn_s16(int16x8_t a); // VMOVN.I16 d0,q0
+_NEON2SSE_INLINE int8x8_t vmovn_s16(int16x8_t a) // VMOVN.I16 d0,q0
+{
+    int8x8_t res64;
+    __m128i res;
+    _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
+    res = _mm_shuffle_epi8 (a, *(__m128i*) mask8_16_even_odd); //use 64 low bits only
+    return64(res);
+}
+
+int16x4_t vmovn_s32(int32x4_t a); // VMOVN.I32 d0,q0
+_NEON2SSE_INLINE int16x4_t vmovn_s32(int32x4_t a) // VMOVN.I32 d0,q0
+{
+    int16x4_t res64;
+    __m128i res;
+    _NEON2SSE_ALIGN_16 int8_t mask8_32_even_odd[16] = { 0,1, 4,5, 8,9,  12,13,  2,3, 6,7,10,11,14,15};
+    res = _mm_shuffle_epi8 (a, *(__m128i*) mask8_32_even_odd); //use 64 low bits only
+    return64(res);
+}
+
+int32x2_t vmovn_s64(int64x2_t a); // VMOVN.I64 d0,q0
+_NEON2SSE_INLINE int32x2_t vmovn_s64(int64x2_t a)
+{
+    //may be not effective compared with a serial implementation
+    int32x2_t res64;
+    __m128i res;
+    res = _mm_shuffle_epi32 (a, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //use 64 low bits only, _MM_SHUFFLE(3, 1, 2, 0)
+    return64(res);
+}
+
+uint8x8_t vmovn_u16(uint16x8_t a); // VMOVN.I16 d0,q0
+#define vmovn_u16 vmovn_s16
+
+uint16x4_t vmovn_u32(uint32x4_t a); // VMOVN.I32 d0,q0
+#define vmovn_u32 vmovn_s32
+
+uint32x2_t vmovn_u64(uint64x2_t a); // VMOVN.I64 d0,q0
+#define vmovn_u64 vmovn_s64
+
+//**************** Vector long move   ***********************
+//***********************************************************
+int16x8_t vmovl_s8(int8x8_t a); // VMOVL.S8 q0,d0
+#define vmovl_s8(a) _MM_CVTEPI8_EPI16(_pM128i(a)) //SSE4.1
+
+int32x4_t vmovl_s16(int16x4_t a); // VMOVL.S16 q0,d0
+#define vmovl_s16(a) _MM_CVTEPI16_EPI32(_pM128i(a)) //SSE4.1
+
+int64x2_t vmovl_s32(int32x2_t a); // VMOVL.S32 q0,d0
+#define vmovl_s32(a)  _MM_CVTEPI32_EPI64(_pM128i(a)) //SSE4.1
+
+uint16x8_t vmovl_u8(uint8x8_t a); // VMOVL.U8 q0,d0
+#define vmovl_u8(a) _MM_CVTEPU8_EPI16(_pM128i(a)) //SSE4.1
+
+uint32x4_t vmovl_u16(uint16x4_t a); // VMOVL.s16 q0,d0
+#define vmovl_u16(a) _MM_CVTEPU16_EPI32(_pM128i(a)) //SSE4.1
+
+uint64x2_t vmovl_u32(uint32x2_t a); // VMOVL.U32 q0,d0
+#define vmovl_u32(a)  _MM_CVTEPU32_EPI64(_pM128i(a)) //SSE4.1
+
+//*************Vector saturating narrow integer*****************
+//**************************************************************
+int8x8_t   vqmovn_s16(int16x8_t a); // VQMOVN.S16 d0,q0
+_NEON2SSE_INLINE int8x8_t   vqmovn_s16(int16x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = _mm_packs_epi16(a, a);
+    return64(res);
+}
+
+int16x4_t   vqmovn_s32(int32x4_t a); // VQMOVN.S32 d0,q0
+_NEON2SSE_INLINE int16x4_t   vqmovn_s32(int32x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = _mm_packs_epi32(a, a);
+    return64(res);
+}
+
+int32x2_t vqmovn_s64(int64x2_t a); // VQMOVN.S64 d0,q0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqmovn_s64(int64x2_t a),_NEON2SSE_REASON_SLOW_SERIAL) //no effective SIMD solution
+{
+    int32x2_t res;
+    _NEON2SSE_ALIGN_16 int64_t atmp[2];
+    _mm_store_si128((__m128i*)atmp, a);
+    if(atmp[0]>SINT_MAX) atmp[0] = SINT_MAX;
+    if(atmp[0]<SINT_MIN) atmp[0] = SINT_MIN;
+    if(atmp[1]>SINT_MAX) atmp[1] = SINT_MAX;
+    if(atmp[1]<SINT_MIN) atmp[1] = SINT_MIN;
+    res.m64_i32[0] = (int32_t)atmp[0];
+    res.m64_i32[1] = (int32_t)atmp[1];
+    return res;
+}
+
+uint8x8_t vqmovn_u16(uint16x8_t a); // VQMOVN.s16 d0,q0
+_NEON2SSE_INLINE uint8x8_t vqmovn_u16(uint16x8_t a) // VQMOVN.s16 d0,q0
+{
+    //no uint16 to uint8 conversion in SSE, need truncate to max signed first
+    uint8x8_t res64;
+    __m128i c7fff, a_trunc;
+    c7fff = _mm_set1_epi16 (0x7fff); // 15-th bit set to zero
+    a_trunc =  _mm_and_si128(a,  c7fff); // a truncated to max signed
+    a_trunc =  _mm_packus_epi16 (a_trunc, a_trunc); //use low 64bits only
+    return64(a_trunc);
+}
+
+uint16x4_t vqmovn_u32(uint32x4_t a); // VQMOVN.U32 d0,q0
+_NEON2SSE_INLINE uint16x4_t vqmovn_u32(uint32x4_t a) // VQMOVN.U32 d0,q0
+{
+    //no uint32 to uint16 conversion in SSE, need truncate to max signed first
+    uint16x4_t res64;
+    __m128i c7fffffff, a_trunc;
+    c7fffffff = _mm_set1_epi32((uint32_t)0x7fffffff); // 31-th bit set to zero
+    a_trunc =  _mm_and_si128(a,  c7fffffff); // a truncated to max signed
+    a_trunc = _MM_PACKUS1_EPI32 (a_trunc); //use low 64bits only
+    return64(a_trunc);
+}
+
+uint32x2_t vqmovn_u64(uint64x2_t a); // VQMOVN.U64 d0,q0
+_NEON2SSE_INLINE uint32x2_t vqmovn_u64(uint64x2_t a)
+{
+    //serial solution may be faster
+    uint32x2_t res64;
+    __m128i res_hi, mask;
+    mask = _mm_setzero_si128();
+    res_hi = _mm_srli_epi64(a, 32);
+    res_hi = _mm_cmpeq_epi32(res_hi, mask);
+    mask = _mm_cmpeq_epi32(mask,mask); //all fff
+    mask = _mm_andnot_si128(res_hi,mask); //inverst res_hi to get >32 bits numbers
+    res_hi = _mm_or_si128(a, mask);
+    res_hi = _mm_shuffle_epi32(res_hi, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(res_hi);
+}
+//************* Vector saturating narrow integer signed->unsigned **************
+//*****************************************************************************
+uint8x8_t vqmovun_s16(int16x8_t a); // VQMOVUN.S16 d0,q0
+_NEON2SSE_INLINE uint8x8_t vqmovun_s16(int16x8_t a)
+{
+    uint8x8_t res64;
+    __m128i res;
+    res = _mm_packus_epi16(a, a); //use low 64bits only
+    return64(res);
+}
+
+uint16x4_t vqmovun_s32(int32x4_t a); // VQMOVUN.S32 d0,q0
+_NEON2SSE_INLINE uint16x4_t vqmovun_s32(int32x4_t a)
+{
+    uint16x4_t res64;
+    __m128i res;
+    res = _MM_PACKUS1_EPI32(a); //use low 64bits only
+    return64(res);
+}
+
+uint32x2_t vqmovun_s64(int64x2_t a); // VQMOVUN.S64 d0,q0
+_NEON2SSE_INLINE uint32x2_t vqmovun_s64(int64x2_t a)
+{
+    uint32x2_t res64;
+    __m128i res_hi,res_lo, zero, cmp;
+    zero = _mm_setzero_si128();
+    res_hi = _mm_srli_epi64(a,  32);
+    cmp = _mm_cmpgt_epi32(zero, res_hi); //if cmp<0 the result should be zero
+    res_lo = _mm_andnot_si128(cmp,a); //if cmp zero - do nothing, otherwise cmp <0  and the result is 0
+    cmp = _mm_cmpgt_epi32(res_hi,zero); //if cmp positive
+    res_lo =  _mm_or_si128(res_lo, cmp); //if cmp positive we are out of 32bits need to saturaate to 0xffffffff
+    res_lo = _mm_shuffle_epi32(res_lo, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits
+    return64(res_lo);
+}
+
+// ********************************************************
+// **************** Table look up **************************
+// ********************************************************
+//VTBL (Vector Table Lookup) uses byte indexes in a control vector to look up byte values
+//in a table and generate a new vector. Indexes out of range return 0.
+//for Intel SIMD we need to set the MSB to 1 for zero return
+uint8x8_t vtbl1_u8(uint8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0
+_NEON2SSE_INLINE uint8x8_t vtbl1_u8(uint8x8_t a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    __m128i c7, maskgt, bmask, b128;
+    c7 = _mm_set1_epi8 (7);
+    b128 = _pM128i(b);
+    maskgt = _mm_cmpgt_epi8(b128,c7);
+    bmask = _mm_or_si128(b128,maskgt);
+    bmask = _mm_shuffle_epi8(_pM128i(a),bmask);
+    return64(bmask);
+}
+
+int8x8_t vtbl1_s8(int8x8_t a,  int8x8_t b); // VTBL.8 d0, {d0}, d0
+#define vtbl1_s8 vtbl1_u8
+
+poly8x8_t vtbl1_p8(poly8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0
+#define vtbl1_p8 vtbl1_u8
+
+//Special trick to avoid __declspec(align('8')) won't be aligned" error
+//uint8x8_t vtbl2_u8(uint8x8x2_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1}, d0
+uint8x8_t vtbl2_u8_ptr(uint8x8x2_t* a, uint8x8_t b); // VTBL.8 d0, {d0, d1}, d0
+_NEON2SSE_INLINE uint8x8_t vtbl2_u8_ptr(uint8x8x2_t* a, uint8x8_t b)
+{
+    uint8x8_t res64;
+    __m128i c15, a01, maskgt15, bmask, b128;
+    c15 = _mm_set1_epi8 (15);
+    b128 = _pM128i(b);
+    maskgt15 = _mm_cmpgt_epi8(b128,c15);
+    bmask = _mm_or_si128(b128, maskgt15);
+    a01 = _mm_unpacklo_epi64(_pM128i(a->val[0]), _pM128i(a->val[1]));
+    a01 =  _mm_shuffle_epi8(a01, bmask);
+    return64(a01);
+}
+#define vtbl2_u8(a, b) vtbl2_u8_ptr(&a, b)
+
+//int8x8_t vtbl2_s8(int8x8x2_t a, int8x8_t b); // VTBL.8 d0, {d0, d1}, d0
+#define vtbl2_s8 vtbl2_u8
+
+//poly8x8_t vtbl2_p8(poly8x8x2_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1}, d0
+#define vtbl2_p8 vtbl2_u8
+
+//Special trick to avoid __declspec(align('16')) won't be aligned" error
+//uint8x8_t vtbl3_u8(uint8x8x3_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+_NEON2SSE_INLINE uint8x8_t vtbl3_u8_ptr(uint8x8x3_t* a, uint8x8_t b)
+{
+    //solution may be not optimal
+    uint8x8_t res64;
+    __m128i c15, c23, maskgt23, bmask, maskgt15, sh0, sh1, a01, b128;
+    c15 = _mm_set1_epi8 (15);
+    c23 = _mm_set1_epi8 (23);
+    b128 = _pM128i(b);
+    maskgt23 = _mm_cmpgt_epi8(b128,c23);
+    bmask = _mm_or_si128(b128, maskgt23);
+    maskgt15 = _mm_cmpgt_epi8(b128,c15);
+    a01 = _mm_unpacklo_epi64(_pM128i(a->val[0]),_pM128i(a->val[1]));
+    sh0 =  _mm_shuffle_epi8(a01, bmask);
+    sh1 =  _mm_shuffle_epi8(_pM128i(a->val[2]), bmask); //for bi>15 bi is wrapped (bi-=15)
+    sh0 = _MM_BLENDV_EPI8(sh0, sh1, maskgt15); //SSE4.1
+    return64(sh0);
+}
+#define vtbl3_u8(a,b) vtbl3_u8_ptr(&a,b)
+
+//int8x8_t vtbl3_s8(int8x8x3_t a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+int8x8_t vtbl3_s8_ptr(int8x8x3_t* a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+#define vtbl3_s8 vtbl3_u8
+
+//poly8x8_t vtbl3_p8(poly8x8x3_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+poly8x8_t vtbl3_p8_ptr(poly8x8x3_t* a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0
+#define vtbl3_p8 vtbl3_u8
+
+//uint8x8_t vtbl4_u8(uint8x8x4_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+_NEON2SSE_INLINE uint8x8_t vtbl4_u8_ptr(uint8x8x4_t* a, uint8x8_t b)
+{
+    //solution may be not optimal
+    uint8x8_t res64;
+    __m128i c15, c31, maskgt31, bmask, maskgt15, sh0, sh1, a01, a23, b128;
+    c15 = _mm_set1_epi8 (15);
+    c31 = _mm_set1_epi8 (31);
+    b128 = _pM128i(b);
+    maskgt31 = _mm_cmpgt_epi8(b128,c31);
+    bmask = _mm_or_si128(b128, maskgt31);
+    maskgt15 = _mm_cmpgt_epi8(b128,c15);
+    a01 = _mm_unpacklo_epi64(_pM128i(a->val[0]),_pM128i(a->val[1]));
+    a23 = _mm_unpacklo_epi64(_pM128i(a->val[2]),_pM128i(a->val[3]));
+    sh0 =  _mm_shuffle_epi8(a01, bmask);
+    sh1 =  _mm_shuffle_epi8(a23, bmask); //for bi>15 bi is wrapped (bi-=15)
+    sh0 = _MM_BLENDV_EPI8 (sh0, sh1, maskgt15); //SSE4.1
+    return64(sh0);
+}
+#define vtbl4_u8(a,b) vtbl4_u8_ptr(&a,b)
+
+//int8x8_t vtbl4_s8(int8x8x4_t a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+int8x8_t vtbl4_s8_ptr(int8x8x4_t* a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+#define vtbl4_s8 vtbl4_u8
+
+//poly8x8_t vtbl4_p8(poly8x8x4_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+poly8x8_t vtbl4_p8_ptr(poly8x8x4_t* a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0
+#define vtbl4_p8 vtbl4_u8
+
+//****************** Extended table look up intrinsics ***************************
+//**********************************************************************************
+//VTBX (Vector Table Extension) works in the same way as VTBL do,
+// except that indexes out of range leave the destination element unchanged.
+
+uint8x8_t vtbx1_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0
+_NEON2SSE_INLINE uint8x8_t vtbx1_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c)
+{
+    uint8x8_t res64;
+    __m128i c7, maskgt, sh, c128;
+    c7 = _mm_set1_epi8 (7);
+    c128 = _pM128i(c);
+    maskgt = _mm_cmpgt_epi8(c128,c7);
+    c7 = _mm_and_si128(maskgt,_pM128i(a));
+    sh = _mm_shuffle_epi8(_pM128i(b),c128);
+    sh = _mm_andnot_si128(maskgt,sh);
+    sh =  _mm_or_si128(sh,c7);
+    return64(sh);
+}
+
+int8x8_t vtbx1_s8(int8x8_t a,  int8x8_t b, int8x8_t c); // VTBX.8 d0, {d0}, d0
+#define vtbx1_s8 vtbx1_u8
+
+poly8x8_t vtbx1_p8(poly8x8_t a, poly8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0
+#define vtbx1_p8 vtbx1_u8
+
+//Special trick to avoid __declspec(align('8')) won't be aligned" error
+//uint8x8_t vtbx2_u8(uint8x8_t a, uint8x8x2_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0
+uint8x8_t vtbx2_u8_ptr(uint8x8_t a, uint8x8x2_t* b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0
+_NEON2SSE_INLINE uint8x8_t vtbx2_u8_ptr(uint8x8_t a, uint8x8x2_t* b, uint8x8_t c)
+{
+    uint8x8_t res64;
+    __m128i c15, b01, maskgt15, sh, c128;
+    c15 = _mm_set1_epi8 (15);
+    c128 = _pM128i(c);
+    maskgt15 = _mm_cmpgt_epi8(c128, c15);
+    c15 = _mm_and_si128(maskgt15, _pM128i(a));
+    b01 = _mm_unpacklo_epi64(_pM128i(b->val[0]), _pM128i(b->val[1]));
+    sh =  _mm_shuffle_epi8(b01, c128);
+    sh = _mm_andnot_si128(maskgt15, sh);
+    sh =  _mm_or_si128(sh,c15);
+    return64(sh);
+}
+#define vtbx2_u8(a, b, c) vtbx2_u8_ptr(a, &b, c)
+
+//int8x8_t vtbx2_s8(int8x8_t a,  int8x8x2_t b, int8x8_t c);  // VTBX.8 d0, {d0, d1}, d0
+#define vtbx2_s8 vtbx2_u8
+
+//poly8x8_t vtbx2_p8(poly8x8_t a, poly8x8x2_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0
+#define vtbx2_p8 vtbx2_u8
+
+//uint8x8_t vtbx3_u8(uint8x8_t a, uint8x8x3_t b, uint8x8_t c) // VTBX.8 d0, {d0, d1, d2}, d0
+_NEON2SSE_INLINE uint8x8_t vtbx3_u8_ptr(uint8x8_t a, uint8x8x3_t* b, uint8x8_t c)
+{
+    //solution may be not optimal
+    uint8x8_t res64;
+    __m128i c15, c23, maskgt15, maskgt23, sh0, sh1, b01, c128;
+    c15 = _mm_set1_epi8 (15);
+    c23 = _mm_set1_epi8 (23);
+    c128 = _pM128i(c);
+    maskgt15 = _mm_cmpgt_epi8(c128,c15);
+    maskgt23 = _mm_cmpgt_epi8(c128,c23);
+    c23 = _mm_and_si128(maskgt23, _pM128i(a));
+    b01 = _mm_unpacklo_epi64(_pM128i(b->val[0]),_pM128i(b->val[1]));
+    sh0 =  _mm_shuffle_epi8(b01, c128);
+    sh1 =  _mm_shuffle_epi8(_pM128i(b->val[2]), c128); //for bi>15 bi is wrapped (bi-=15)
+    sh0 = _MM_BLENDV_EPI8(sh0, sh1, maskgt15);
+    sh0 = _mm_andnot_si128(maskgt23,sh0);
+    sh0 = _mm_or_si128(sh0,c23);
+    return64(sh0);
+}
+#define vtbx3_u8(a, b, c) vtbx3_u8_ptr(a, &b, c)
+
+//int8x8_t vtbx3_s8(int8x8_t a, int8x8x3_t b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0
+int8x8_t vtbx3_s8_ptr(int8x8_t a, int8x8x3_t* b, int8x8_t c);
+#define vtbx3_s8 vtbx3_u8
+
+//poly8x8_t vtbx3_p8(poly8x8_t a, poly8x8x3_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0
+poly8x8_t vtbx3_p8_ptr(poly8x8_t a, poly8x8x3_t* b, uint8x8_t c);
+#define vtbx3_p8 vtbx3_u8
+
+//uint8x8_t vtbx4_u8(uint8x8_t a, uint8x8x4_t b, uint8x8_t c) // VTBX.8 d0, {d0, d1, d2, d3}, d0
+_NEON2SSE_INLINE uint8x8_t vtbx4_u8_ptr(uint8x8_t a, uint8x8x4_t* b, uint8x8_t c)
+{
+    //solution may be not optimal
+    uint8x8_t res64;
+    __m128i c15, c31, maskgt15, maskgt31, sh0, sh1, b01, b23, c128;
+    c15 = _mm_set1_epi8 (15);
+    c31 = _mm_set1_epi8 (31);
+    c128 = _pM128i(c);
+    maskgt15 = _mm_cmpgt_epi8(c128,c15);
+    maskgt31 = _mm_cmpgt_epi8(c128,c31);
+    c31 = _mm_and_si128(maskgt31, _pM128i(a));
+
+    b01 = _mm_unpacklo_epi64(_pM128i(b->val[0]),_pM128i(b->val[1]));
+    b23 = _mm_unpacklo_epi64(_pM128i(b->val[2]),_pM128i(b->val[3]));
+    sh0 =  _mm_shuffle_epi8(b01, c128);
+    sh1 =  _mm_shuffle_epi8(b23, c128); //for bi>15 bi is wrapped (bi-=15)
+    sh0 = _MM_BLENDV_EPI8(sh0, sh1, maskgt15);
+    sh0 = _mm_andnot_si128(maskgt31,sh0);
+    sh0 =  _mm_or_si128(sh0,c31);
+    return64(sh0);
+}
+#define vtbx4_u8(a, b, c) vtbx4_u8_ptr(a, &b, c)
+
+//int8x8_t vtbx4_s8(int8x8_t a, int8x8x4_t b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0
+int8x8_t vtbx4_s8_ptr(int8x8_t a, int8x8x4_t* b, int8x8_t c);
+#define vtbx4_s8 vtbx4_u8
+
+//poly8x8_t vtbx4_p8(poly8x8_t a, poly8x8x4_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0
+poly8x8_t vtbx4_p8_ptr(poly8x8_t a, poly8x8x4_t* b, uint8x8_t c);
+#define vtbx4_p8 vtbx4_u8
+
+//*************************************************************************************************
+// *************************** Operations with a scalar value *********************************
+//*************************************************************************************************
+
+//******* Vector multiply accumulate by scalar *************************************************
+//**********************************************************************************************
+int16x4_t vmla_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0, d0[0]
+_NEON2SSE_INLINE int16x4_t vmla_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLA.I16 d0, d0, d0[0]
+{
+    int16_t c;
+    int16x4_t scalar;
+    c = vget_lane_s16(v, l);
+    scalar = vdup_n_s16(c);
+    return vmla_s16(a, b, scalar);
+}
+
+int32x2_t vmla_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0, d0[0]
+_NEON2SSE_INLINE int32x2_t vmla_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLA.I32 d0, d0, d0[0]
+{
+    int32_t c;
+    int32x2_t scalar;
+    c = vget_lane_s32(v, l);
+    scalar = vdup_n_s32(c);
+    return vmla_s32(a, b, scalar);
+}
+
+uint16x4_t vmla_lane_u16(uint16x4_t a,  uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0, d0[0]
+#define vmla_lane_u16 vmla_lane_s16
+
+
+uint32x2_t vmla_lane_u32(uint32x2_t a,  uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0, d0[0]
+#define vmla_lane_u32 vmla_lane_s32
+
+float32x2_t vmla_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 d0, d0, d0[0]
+_NEON2SSE_INLINE float32x2_t vmla_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l)
+{
+    float32_t vlane;
+    float32x2_t c;
+    vlane = vget_lane_f32(v, l);
+    c = vdup_n_f32(vlane);
+    return vmla_f32(a,b,c);
+}
+
+int16x8_t vmlaq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0, d0[0]
+_NEON2SSE_INLINE int16x8_t vmlaq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l) // VMLA.I16 q0, q0, d0[0]
+{
+    int16_t vlane;
+    int16x8_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdupq_n_s16(vlane);
+    return vmlaq_s16(a,b,c);
+}
+
+int32x4_t vmlaq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlaq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l) // VMLA.I32 q0, q0, d0[0]
+{
+    int32_t vlane;
+    int32x4_t c;
+    vlane = vget_lane_s32(v, l);
+    c = vdupq_n_s32(vlane);
+    return vmlaq_s32(a,b,c);
+}
+
+uint16x8_t vmlaq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0, d0[0]
+#define vmlaq_lane_u16 vmlaq_lane_s16
+
+uint32x4_t vmlaq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0, d0[0]
+#define vmlaq_lane_u32 vmlaq_lane_s32
+
+float32x4_t vmlaq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 q0, q0, d0[0]
+_NEON2SSE_INLINE float32x4_t vmlaq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l) // VMLA.F32 q0, q0, d0[0]
+{
+    float32_t vlane;
+    float32x4_t c;
+    vlane = vget_lane_f32(v, l);
+    c = vdupq_n_f32(vlane);
+    return vmlaq_f32(a,b,c);
+}
+
+//***************** Vector widening multiply accumulate by scalar **********************
+//***************************************************************************************
+int32x4_t vmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLAL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLAL.S16 q0, d0, d0[0]
+{
+    int16_t vlane;
+    int16x4_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdup_n_s16(vlane);
+    return vmlal_s16(a, b, c);
+}
+
+int64x2_t vmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLAL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE int64x2_t vmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLAL.S32 q0, d0, d0[0]
+{
+    int32_t vlane;
+    int32x2_t c;
+    vlane = vget_lane_s32(v, l);
+    c = vdup_n_s32(vlane);
+    return vmlal_s32(a, b, c);
+}
+
+uint32x4_t vmlal_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLAL.s16 q0, d0, d0[0]
+_NEON2SSE_INLINE uint32x4_t vmlal_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l) // VMLAL.s16 q0, d0, d0[0]
+{
+    uint16_t vlane;
+    uint16x4_t c;
+    vlane = vget_lane_u16(v, l);
+    c = vdup_n_u16(vlane);
+    return vmlal_u16(a, b, c);
+}
+
+uint64x2_t vmlal_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLAL.U32 q0, d0, d0[0]
+_NEON2SSE_INLINE uint64x2_t vmlal_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l) // VMLAL.U32 q0, d0, d0[0]
+{
+    uint32_t vlane;
+    uint32x2_t c;
+    vlane = vget_lane_u32(v, l);
+    c = vdup_n_u32(vlane);
+    return vmlal_u32(a, b, c);
+}
+
+// ******** Vector widening saturating doubling multiply accumulate by scalar *******************************
+// ************************************************************************************************
+int32x4_t vqdmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLAL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vqdmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l)
+{
+    int16_t vlane;
+    int16x4_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdup_n_s16(vlane);
+    return vqdmlal_s16(a, b, c);
+}
+
+int64x2_t vqdmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLAL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE int64x2_t vqdmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l)
+{
+    int32_t vlane;
+    uint32x2_t c;
+    vlane = vget_lane_s32(v, l);
+    c = vdup_n_s32(vlane);
+    return vqdmlal_s32(a, b, c);
+}
+
+// ****** Vector multiply subtract by scalar *****************
+// *************************************************************
+int16x4_t vmls_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0, d0[0]
+_NEON2SSE_INLINE int16x4_t vmls_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLS.I16 d0, d0, d0[0]
+{
+    int16_t vlane;
+    int16x4_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdup_n_s16(vlane);
+    return vmls_s16(a, b, c);
+}
+
+int32x2_t vmls_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0, d0[0]
+_NEON2SSE_INLINE int32x2_t vmls_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLS.I32 d0, d0, d0[0]
+{
+    int32_t vlane;
+    int32x2_t c;
+    vlane = vget_lane_s32(v, l);
+    c = vdup_n_s32(vlane);
+    return vmls_s32(a, b, c);
+}
+
+uint16x4_t vmls_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0, d0[0]
+_NEON2SSE_INLINE uint16x4_t vmls_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l) // VMLS.I16 d0, d0, d0[0]
+{
+    uint16_t vlane;
+    uint16x4_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdup_n_s16(vlane);
+    return vmls_s16(a, b, c);
+}
+
+uint32x2_t vmls_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0, d0[0]
+_NEON2SSE_INLINE uint32x2_t vmls_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l) // VMLS.I32 d0, d0, d0[0]
+{
+    uint32_t vlane;
+    uint32x2_t c;
+    vlane = vget_lane_u32(v, l);
+    c = vdup_n_u32(vlane);
+    return vmls_u32(a, b, c);
+}
+
+float32x2_t vmls_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLS.F32 d0, d0, d0[0]
+_NEON2SSE_INLINE float32x2_t vmls_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l)
+{
+    float32_t vlane;
+    float32x2_t c;
+    vlane = (float) vget_lane_f32(v, l);
+    c = vdup_n_f32(vlane);
+    return vmls_f32(a,b,c);
+}
+
+int16x8_t vmlsq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 q0, q0, d0[0]
+_NEON2SSE_INLINE int16x8_t vmlsq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l) // VMLS.I16 q0, q0, d0[0]
+{
+    int16_t vlane;
+    int16x8_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdupq_n_s16(vlane);
+    return vmlsq_s16(a, b,c);
+}
+
+int32x4_t vmlsq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 q0, q0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlsq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l) // VMLS.I32 q0, q0, d0[0]
+{
+    int32_t vlane;
+    int32x4_t c;
+    vlane = vget_lane_s32(v, l);
+    c = vdupq_n_s32(vlane);
+    return vmlsq_s32(a,b,c);
+}
+
+uint16x8_t vmlsq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0, d0[0]
+_NEON2SSE_INLINE uint16x8_t vmlsq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l) // VMLA.I16 q0, q0, d0[0]
+{
+    uint16_t vlane;
+    uint16x8_t c;
+    vlane = vget_lane_u16(v, l);
+    c = vdupq_n_u16(vlane);
+    return vmlsq_u16(a,b,c);
+}
+
+uint32x4_t vmlsq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0, d0[0]
+_NEON2SSE_INLINE uint32x4_t vmlsq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l) // VMLA.I32 q0, q0, d0[0]
+{
+    uint32_t vlane;
+    uint32x4_t c;
+    vlane = vget_lane_u32(v, l);
+    c = vdupq_n_u32(vlane);
+    return vmlsq_u32(a,b,c);
+}
+
+float32x4_t vmlsq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 q0, q0, d0[0]
+_NEON2SSE_INLINE float32x4_t vmlsq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l) // VMLA.F32 q0, q0, d0[0]
+{
+    float32_t vlane;
+    float32x4_t c;
+    vlane = (float) vget_lane_f32(v, l);
+    c = vdupq_n_f32(vlane);
+    return vmlsq_f32(a,b,c);
+}
+
+// **** Vector widening multiply subtract by scalar ****
+// ****************************************************
+int32x4_t vmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLAL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLAL.S16 q0, d0, d0[0]
+{
+    int16_t vlane;
+    int16x4_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdup_n_s16(vlane);
+    return vmlsl_s16(a, b, c);
+}
+
+int64x2_t vmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLAL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE int64x2_t vmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLAL.S32 q0, d0, d0[0]
+{
+    int32_t vlane;
+    int32x2_t c;
+    vlane = vget_lane_s32(v, l);
+    c = vdup_n_s32(vlane);
+    return vmlsl_s32(a, b, c);
+}
+
+uint32x4_t vmlsl_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLAL.s16 q0, d0, d0[0]
+_NEON2SSE_INLINE uint32x4_t vmlsl_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l) // VMLAL.s16 q0, d0, d0[0]
+{
+    uint16_t vlane;
+    uint16x4_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdup_n_s16(vlane);
+    return vmlsl_s16(a, b, c);
+}
+
+uint64x2_t vmlsl_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLAL.U32 q0, d0, d0[0]
+_NEON2SSE_INLINE uint64x2_t vmlsl_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l) // VMLAL.U32 q0, d0, d0[0]
+{
+    uint32_t vlane;
+    uint32x2_t c;
+    vlane = vget_lane_u32(v, l);
+    c = vdup_n_u32(vlane);
+    return vmlsl_u32(a, b, c);
+}
+
+//********* Vector widening saturating doubling multiply subtract by scalar **************************
+//******************************************************************************************************
+int32x4_t vqdmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLSL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vqdmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l)
+{
+    int16_t vlane;
+    int16x4_t c;
+    vlane = vget_lane_s16(v, l);
+    c = vdup_n_s16(vlane);
+    return vqdmlsl_s16(a, b, c);
+}
+
+int64x2_t vqdmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLSL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int32_t vlane;
+    int32x2_t c;
+    vlane = vget_lane_s32(v, l);
+    c = vdup_n_s32(vlane);
+    return vqdmlsl_s32(a, b, c);
+}
+//********** Vector multiply with scalar *****************************
+int16x4_t vmul_n_s16(int16x4_t a, int16_t b); // VMUL.I16 d0,d0,d0[0]
+_NEON2SSE_INLINE int16x4_t vmul_n_s16(int16x4_t a, int16_t b) // VMUL.I16 d0,d0,d0[0]
+{
+    int16x4_t b16x4;
+    b16x4 = vdup_n_s16(b);
+    return vmul_s16(a, b16x4);
+}
+
+int32x2_t vmul_n_s32(int32x2_t a, int32_t b); // VMUL.I32 d0,d0,d0[0]
+_NEON2SSE_INLINE int32x2_t vmul_n_s32(int32x2_t a, int32_t b) // VMUL.I32 d0,d0,d0[0]
+{
+    //serial solution looks faster
+    int32x2_t b32x2;
+    b32x2 = vdup_n_s32(b);
+    return vmul_s32(a, b32x2);
+}
+
+float32x2_t vmul_n_f32(float32x2_t a, float32_t b); // VMUL.F32 d0,d0,d0[0]
+_NEON2SSE_INLINE float32x2_t vmul_n_f32(float32x2_t a, float32_t b) // VMUL.F32 d0,d0,d0[0]
+{
+    float32x2_t b32x2;
+    b32x2 = vdup_n_f32(b);
+    return vmul_f32(a, b32x2);
+}
+
+uint16x4_t vmul_n_u16(uint16x4_t a, uint16_t b); // VMUL.I16 d0,d0,d0[0]
+_NEON2SSE_INLINE uint16x4_t vmul_n_u16(uint16x4_t a, uint16_t b) // VMUL.I16 d0,d0,d0[0]
+{
+    uint16x4_t b16x4;
+    b16x4 = vdup_n_s16(b);
+    return vmul_s16(a, b16x4);
+}
+
+uint32x2_t vmul_n_u32(uint32x2_t a, uint32_t b); // VMUL.I32 d0,d0,d0[0]
+_NEON2SSE_INLINE uint32x2_t vmul_n_u32(uint32x2_t a, uint32_t b) // VMUL.I32 d0,d0,d0[0]
+{
+    //serial solution looks faster
+    uint32x2_t b32x2;
+    b32x2 = vdup_n_u32(b);
+    return vmul_u32(a, b32x2);
+}
+
+int16x8_t vmulq_n_s16(int16x8_t a, int16_t b); // VMUL.I16 q0,q0,d0[0]
+_NEON2SSE_INLINE int16x8_t vmulq_n_s16(int16x8_t a, int16_t b) // VMUL.I16 q0,q0,d0[0]
+{
+    int16x8_t b16x8;
+    b16x8 = vdupq_n_s16(b);
+    return vmulq_s16(a, b16x8);
+}
+
+int32x4_t vmulq_n_s32(int32x4_t a, int32_t b); // VMUL.I32 q0,q0,d0[0]
+_NEON2SSE_INLINE int32x4_t vmulq_n_s32(int32x4_t a, int32_t b) // VMUL.I32 q0,q0,d0[0]
+{
+    int32x4_t b32x4;
+    b32x4 = vdupq_n_s32(b);
+    return vmulq_s32(a, b32x4);
+}
+
+float32x4_t vmulq_n_f32(float32x4_t a, float32_t b); // VMUL.F32 q0,q0,d0[0]
+_NEON2SSE_INLINE float32x4_t vmulq_n_f32(float32x4_t a, float32_t b) // VMUL.F32 q0,q0,d0[0]
+{
+    float32x4_t b32x4;
+    b32x4 = vdupq_n_f32(b);
+    return vmulq_f32(a, b32x4);
+}
+
+uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b); // VMUL.I16 q0,q0,d0[0]
+_NEON2SSE_INLINE uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b) // VMUL.I16 q0,q0,d0[0]
+{
+    uint16x8_t b16x8;
+    b16x8 = vdupq_n_s16(b);
+    return vmulq_s16(a, b16x8);
+}
+
+uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b); // VMUL.I32 q0,q0,d0[0]
+_NEON2SSE_INLINE uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b) // VMUL.I32 q0,q0,d0[0]
+{
+    uint32x4_t b32x4;
+    b32x4 = vdupq_n_u32(b);
+    return vmulq_u32(a, b32x4);
+}
+
+//********** Vector multiply lane *****************************
+int16x4_t vmul_lane_s16 (int16x4_t a, int16x4_t b, __constrange(0,3) int c);
+_NEON2SSE_INLINE int16x4_t vmul_lane_s16 (int16x4_t a, int16x4_t b, __constrange(0,3) int c)
+{
+    int16x4_t b16x4;
+    int16_t vlane;
+    vlane = vget_lane_s16(b, c);
+    b16x4 = vdup_n_s16(vlane);
+    return vmul_s16(a, b16x4);
+}
+
+int32x2_t vmul_lane_s32 (int32x2_t a, int32x2_t b, __constrange(0,1) int c);
+_NEON2SSE_INLINE int32x2_t vmul_lane_s32 (int32x2_t a, int32x2_t b, __constrange(0,1) int c)
+{
+    int32x2_t b32x2;
+    int32_t vlane;
+    vlane = vget_lane_s32(b, c);
+    b32x2 = vdup_n_s32(vlane);
+    return vmul_s32(a, b32x2);
+}
+
+float32x2_t vmul_lane_f32 (float32x2_t a, float32x2_t b, __constrange(0,1) int c);
+_NEON2SSE_INLINE float32x2_t vmul_lane_f32 (float32x2_t a, float32x2_t b, __constrange(0,1) int c)
+{
+    float32x2_t b32x2;
+    float32_t vlane;
+    vlane = vget_lane_f32(b, c);
+    b32x2 = vdup_n_f32(vlane);
+    return vmul_f32(a, b32x2);
+}
+
+uint16x4_t vmul_lane_u16 (uint16x4_t a, uint16x4_t b, __constrange(0,3) int c);
+#define vmul_lane_u16 vmul_lane_s16
+
+uint32x2_t vmul_lane_u32 (uint32x2_t a, uint32x2_t b, __constrange(0,1) int c);
+#define vmul_lane_u32 vmul_lane_s32
+
+int16x8_t vmulq_lane_s16(int16x8_t a, int16x4_t b, __constrange(0,3) int c);
+_NEON2SSE_INLINE int16x8_t vmulq_lane_s16 (int16x8_t a, int16x4_t b, __constrange(0,3) int c)
+{
+    int16x8_t b16x8;
+    int16_t vlane;
+    vlane = vget_lane_s16(b, c);
+    b16x8 = vdupq_n_s16(vlane);
+    return vmulq_s16(a, b16x8);
+}
+
+int32x4_t vmulq_lane_s32 (int32x4_t a, int32x2_t b, __constrange(0,1) int c);
+_NEON2SSE_INLINE int32x4_t vmulq_lane_s32 (int32x4_t a, int32x2_t b, __constrange(0,1) int c)
+{
+    int32x4_t b32x4;
+    int32_t vlane;
+    vlane = vget_lane_s32(b, c);
+    b32x4 = vdupq_n_s32(vlane);
+    return vmulq_s32(a, b32x4);
+}
+
+float32x4_t vmulq_lane_f32 (float32x4_t a, float32x2_t b, __constrange(0,1) int c);
+_NEON2SSE_INLINE float32x4_t vmulq_lane_f32 (float32x4_t a, float32x2_t b, __constrange(0,1) int c)
+{
+    float32x4_t b32x4;
+    float32_t vlane;
+    vlane = vget_lane_f32(b, c);
+    b32x4 = vdupq_n_f32(vlane);
+    return vmulq_f32(a, b32x4);
+}
+
+uint16x8_t vmulq_lane_u16 (uint16x8_t a, uint16x4_t b, __constrange(0,3) int c);
+#define vmulq_lane_u16 vmulq_lane_s16
+
+uint32x4_t vmulq_lane_u32 (uint32x4_t a, uint32x2_t b, __constrange(0,1) int c);
+#define vmulq_lane_u32 vmulq_lane_s32
+
+//**** Vector long multiply with scalar ************
+int32x4_t vmull_n_s16(int16x4_t vec1, int16_t val2); // VMULL.S16 q0,d0,d0[0]
+_NEON2SSE_INLINE int32x4_t vmull_n_s16(int16x4_t vec1, int16_t val2) // VMULL.S16 q0,d0,d0[0]
+{
+    int16x4_t b16x4;
+    b16x4 = vdup_n_s16(val2);
+    return vmull_s16(vec1, b16x4);
+}
+
+int64x2_t vmull_n_s32(int32x2_t vec1, int32_t val2); // VMULL.S32 q0,d0,d0[0]
+_NEON2SSE_INLINE int64x2_t vmull_n_s32(int32x2_t vec1, int32_t val2) // VMULL.S32 q0,d0,d0[0]
+{
+    int32x2_t b32x2;
+    b32x2 = vdup_n_s32(val2);
+    return vmull_s32(vec1, b32x2);
+}
+
+uint32x4_t vmull_n_u16(uint16x4_t vec1, uint16_t val2); // VMULL.s16 q0,d0,d0[0]
+_NEON2SSE_INLINE uint32x4_t vmull_n_u16(uint16x4_t vec1, uint16_t val2) // VMULL.s16 q0,d0,d0[0]
+{
+    uint16x4_t b16x4;
+    b16x4 = vdup_n_s16(val2);
+    return vmull_s16(vec1, b16x4);
+}
+
+uint64x2_t vmull_n_u32(uint32x2_t vec1, uint32_t val2); // VMULL.U32 q0,d0,d0[0]
+_NEON2SSE_INLINE uint64x2_t vmull_n_u32(uint32x2_t vec1, uint32_t val2) // VMULL.U32 q0,d0,d0[0]
+{
+    uint32x2_t b32x2;
+    b32x2 = vdup_n_u32(val2);
+    return vmull_u32(vec1, b32x2);
+}
+
+//**** Vector long multiply by scalar ****
+int32x4_t vmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VMULL.S16 q0,d0,d0[0]
+_NEON2SSE_INLINE int32x4_t vmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VMULL.S16 q0,d0,d0[0]
+{
+    int16_t vlane;
+    int16x4_t b;
+    vlane = vget_lane_s16(val2, val3);
+    b = vdup_n_s16(vlane);
+    return vmull_s16(vec1, b);
+}
+
+int64x2_t vmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VMULL.S32 q0,d0,d0[0]
+_NEON2SSE_INLINE int64x2_t vmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3) // VMULL.S32 q0,d0,d0[0]
+{
+    int32_t vlane;
+    int32x2_t b;
+    vlane = vget_lane_s32(val2, val3);
+    b = vdup_n_s32(vlane);
+    return vmull_s32(vec1, b);
+}
+
+uint32x4_t vmull_lane_u16(uint16x4_t vec1, uint16x4_t val2, __constrange(0, 3) int val3); // VMULL.s16 q0,d0,d0[0]
+_NEON2SSE_INLINE uint32x4_t vmull_lane_u16(uint16x4_t vec1, uint16x4_t val2, __constrange(0, 3) int val3) // VMULL.s16 q0,d0,d0[0]
+{
+    uint16_t vlane;
+    uint16x4_t b;
+    vlane = vget_lane_s16(val2, val3);
+    b = vdup_n_s16(vlane);
+    return vmull_s16(vec1, b);
+}
+
+uint64x2_t vmull_lane_u32(uint32x2_t vec1, uint32x2_t val2, __constrange(0, 1) int val3); // VMULL.U32 q0,d0,d0[0]
+_NEON2SSE_INLINE uint64x2_t vmull_lane_u32(uint32x2_t vec1, uint32x2_t val2, __constrange(0, 1) int val3) // VMULL.U32 q0,d0,d0[0]
+{
+    uint32_t vlane;
+    uint32x2_t b;
+    vlane = vget_lane_u32(val2, val3);
+    b = vdup_n_u32(vlane);
+    return vmull_u32(vec1, b);
+}
+
+//********* Vector saturating doubling long multiply with scalar  *******************
+int32x4_t vqdmull_n_s16(int16x4_t vec1, int16_t val2); // VQDMULL.S16 q0,d0,d0[0]
+_NEON2SSE_INLINE int32x4_t vqdmull_n_s16(int16x4_t vec1, int16_t val2)
+{
+    //the serial soulution may be faster due to saturation
+    int16x4_t b;
+    b = vdup_n_s16(val2);
+    return vqdmull_s16(vec1, b);
+}
+
+int64x2_t vqdmull_n_s32(int32x2_t vec1, int32_t val2); // VQDMULL.S32 q0,d0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmull_n_s32(int32x2_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int32x2_t b;
+    b = vdup_n_s32(val2);
+    return vqdmull_s32(vec1,b); //slow serial function!!!!
+}
+
+//************* Vector saturating doubling long multiply by scalar ***********************************************
+int32x4_t vqdmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULL.S16 q0,d0,d0[0]
+_NEON2SSE_INLINE int32x4_t vqdmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3)
+{
+    int16_t c;
+    int16x4_t scalar;
+    c = vget_lane_s16(val2, val3);
+    scalar = vdup_n_s16(c);
+    return vqdmull_s16(vec1, scalar);
+}
+
+
+int64x2_t vqdmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); //  VQDMULL.S32 q0,d0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int32_t c;
+    int32x2_t scalar;
+    c = vget_lane_s32(val2, val3);
+    scalar = vdup_n_s32(c);
+    return vqdmull_s32(vec1,scalar); //slow serial function!!!!
+}
+
+// *****Vector saturating doubling multiply high with scalar *****
+int16x4_t vqdmulh_n_s16(int16x4_t vec1,  int16_t val2); //  VQDMULH.S16 d0,d0,d0[0]
+_NEON2SSE_INLINE int16x4_t vqdmulh_n_s16(int16x4_t vec1,  int16_t val2)
+{
+    int16x4_t res64;
+    return64(vqdmulhq_n_s16(_pM128i(vec1), val2));
+}
+
+int32x2_t vqdmulh_n_s32(int32x2_t vec1,  int32_t val2); //  VQDMULH.S32 d0,d0,d0[0]
+_NEON2SSE_INLINE int32x2_t vqdmulh_n_s32(int32x2_t vec1,  int32_t val2)
+{
+    int32x2_t res64;
+    return64(vqdmulhq_n_s32(_pM128i(vec1), val2));
+}
+
+int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2); //  VQDMULH.S16 q0,q0,d0[0]
+_NEON2SSE_INLINE int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2) //  VQDMULH.S16 q0,q0,d0[0]
+{
+    //solution may be not optimal
+    int16x8_t scalar;
+    scalar = vdupq_n_s16(val2);
+    return vqdmulhq_s16(vec1, scalar);
+}
+
+int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2); //  VQDMULH.S32 q0,q0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    int32x4_t scalar;
+    scalar = vdupq_n_s32(val2);
+    return vqdmulhq_s32(vec1, scalar);
+}
+
+//***** Vector saturating doubling multiply high by scalar ****************
+int16x4_t vqdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); //  VQDMULH.S16 d0,d0,d0[0]
+_NEON2SSE_INLINE int16x4_t vqdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3) //  VQDMULH.S16 d0,d0,d0[0]
+{
+    //solution may be not optimal
+    int16_t vlane;
+    int16x4_t scalar;
+    vlane = vget_lane_s16(val2, val3);
+    scalar = vdup_n_s16(vlane);
+    return vqdmulh_s16(vec1, scalar);
+}
+
+int32x2_t vqdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); //  VQDMULH.S32 d0,d0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    int32_t vlane;
+    int32x2_t scalar;
+    vlane = vget_lane_s32(val2, val3);
+    scalar = vdup_n_s32(vlane);
+    return vqdmulh_s32(vec1, scalar);
+}
+
+int16x8_t vqdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); //  VQDMULH.S16 q0,q0,d0[0]
+_NEON2SSE_INLINE int16x8_t vqdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3) //  VQDMULH.S16 q0,q0,d0[0]
+{
+    //solution may be not optimal
+    int16_t vlane;
+    int16x8_t scalar;
+    vlane = vget_lane_s16(val2, val3);
+    scalar = vdupq_n_s16(vlane );
+    return vqdmulhq_s16(vec1, scalar);
+}
+
+int32x4_t vqdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); //  VQDMULH.S32 q0,q0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    //solution may be not optimal
+    int32_t vlane;
+    int32x4_t scalar;
+    vlane = vgetq_lane_s32(_pM128i(val2), val3);
+    scalar = vdupq_n_s32(vlane );
+    return vqdmulhq_s32(vec1, scalar);
+}
+
+//******** Vector saturating rounding doubling multiply high with scalar ***
+int16x4_t vqrdmulh_n_s16(int16x4_t vec1, int16_t val2); // VQRDMULH.S16 d0,d0,d0[0]
+_NEON2SSE_INLINE int16x4_t vqrdmulh_n_s16(int16x4_t vec1, int16_t val2) // VQRDMULH.S16 d0,d0,d0[0]
+{
+    //solution may be not optimal
+    int16x4_t scalar;
+    scalar = vdup_n_s16(val2);
+    return vqrdmulh_s16(vec1, scalar);
+}
+
+int32x2_t vqrdmulh_n_s32(int32x2_t vec1, int32_t val2); // VQRDMULH.S32 d0,d0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrdmulh_n_s32(int32x2_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    int32x2_t scalar;
+    scalar = vdup_n_s32(val2);
+    return vqrdmulh_s32(vec1, scalar);
+}
+
+int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQRDMULH.S16 q0,q0,d0[0]
+_NEON2SSE_INLINE int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2) // VQRDMULH.S16 q0,q0,d0[0]
+{
+    //solution may be not optimal
+    int16x8_t scalar;
+    scalar = vdupq_n_s16(val2);
+    return vqrdmulhq_s16(vec1, scalar);
+}
+
+int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQRDMULH.S32 q0,q0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    int32x4_t scalar;
+    scalar = vdupq_n_s32(val2);
+    return vqrdmulhq_s32(vec1, scalar);
+}
+
+//********* Vector rounding saturating doubling multiply high by scalar  ****
+int16x4_t vqrdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 d0,d0,d0[0]
+_NEON2SSE_INLINE int16x4_t vqrdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VQRDMULH.S16 d0,d0,d0[0]
+{
+    //solution may be not optimal
+    int16_t vlane;
+    int16x4_t scalar;
+    vlane = vget_lane_s16(val2, val3);
+    scalar = vdup_n_s16(vlane);
+    return vqrdmulh_s16(vec1, scalar);
+}
+
+int32x2_t vqrdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 d0,d0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    int32_t vlane;
+    int32x2_t scalar;
+    vlane = vget_lane_s32(val2, val3);
+    scalar = vdup_n_s32(vlane);
+    return vqrdmulh_s32(vec1, scalar);
+}
+
+int16x8_t vqrdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 q0,q0,d0[0]
+_NEON2SSE_INLINE int16x8_t vqrdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VQRDMULH.S16 q0,q0,d0[0]
+{
+    //solution may be not optimal
+    int16_t vlane;
+    int16x8_t scalar;
+    vlane = vget_lane_s16(val2, val3);
+    scalar = vdupq_n_s16(vlane);
+    return vqrdmulhq_s16(vec1, scalar);
+}
+
+int32x4_t vqrdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 q0,q0,d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE)
+{
+    //solution may be not optimal
+    int32_t vlane;
+    int32x4_t scalar;
+    vlane = vgetq_lane_s32(_pM128i(val2), val3);
+    scalar = vdupq_n_s32(vlane );
+    return vqrdmulhq_s32(vec1, scalar);
+}
+
+//**************Vector multiply accumulate with scalar *******************
+int16x4_t vmla_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLA.I16 d0, d0, d0[0]
+_NEON2SSE_INLINE int16x4_t vmla_n_s16(int16x4_t a, int16x4_t b, int16_t c) // VMLA.I16 d0, d0, d0[0]
+{
+    int16x4_t scalar;
+    scalar = vdup_n_s16(c);
+    return vmla_s16(a, b, scalar);
+}
+
+int32x2_t vmla_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLA.I32 d0, d0, d0[0]
+_NEON2SSE_INLINE int32x2_t vmla_n_s32(int32x2_t a, int32x2_t b, int32_t c) // VMLA.I32 d0, d0, d0[0]
+{
+    int32x2_t scalar;
+    scalar = vdup_n_s32(c);
+    return vmla_s32(a, b, scalar);
+}
+
+uint16x4_t vmla_n_u16(uint16x4_t a,  uint16x4_t b, uint16_t c); // VMLA.I16 d0, d0, d0[0]
+#define vmla_n_u16 vmla_n_s16
+
+
+uint32x2_t vmla_n_u32(uint32x2_t a,  uint32x2_t b, uint32_t c); // VMLA.I32 d0, d0, d0[0]
+#define vmla_n_u32 vmla_n_s32
+
+
+float32x2_t vmla_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLA.F32 d0, d0, d0[0]
+_NEON2SSE_INLINE float32x2_t vmla_n_f32(float32x2_t a, float32x2_t b, float32_t c) // VMLA.F32 d0, d0, d0[0]
+{
+    float32x2_t scalar;
+    scalar = vdup_n_f32(c);
+    return vmla_f32(a, b, scalar);
+}
+
+int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLA.I16 q0, q0, d0[0]
+_NEON2SSE_INLINE int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c) // VMLA.I16 q0, q0, d0[0]
+{
+    int16x8_t scalar;
+    scalar = vdupq_n_s16(c);
+    return vmlaq_s16(a,b,scalar);
+}
+
+int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLA.I32 q0, q0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c) // VMLA.I32 q0, q0, d0[0]
+{
+    int32x4_t scalar;
+    scalar = vdupq_n_s32(c);
+    return vmlaq_s32(a,b,scalar);
+}
+
+uint16x8_t vmlaq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLA.I16 q0, q0, d0[0]
+#define vmlaq_n_u16 vmlaq_n_s16
+
+uint32x4_t vmlaq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLA.I32 q0, q0, d0[0]
+#define vmlaq_n_u32 vmlaq_n_s32
+
+float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLA.F32 q0, q0, d0[0]
+_NEON2SSE_INLINE float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c) // VMLA.F32 q0, q0, d0[0]
+{
+    float32x4_t scalar;
+    scalar = vdupq_n_f32(c);
+    return vmlaq_f32(a,b,scalar);
+}
+
+//************Vector widening multiply accumulate with scalar****************************
+int32x4_t vmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLAL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c) // VMLAL.S16 q0, d0, d0[0]
+{
+    int16x4_t vc;
+    vc = vdup_n_s16(c);
+    return vmlal_s16(a, b, vc);
+}
+
+int64x2_t vmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLAL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE int64x2_t vmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c) // VMLAL.S32 q0, d0, d0[0]
+{
+    int32x2_t vc;
+    vc = vdup_n_s32(c);
+    return vmlal_s32(a, b, vc);
+}
+
+uint32x4_t vmlal_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLAL.s16 q0, d0, d0[0]
+_NEON2SSE_INLINE uint32x4_t vmlal_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c) // VMLAL.s16 q0, d0, d0[0]
+{
+    uint16x4_t vc;
+    vc = vdup_n_s16(c);
+    return vmlal_s16(a, b, vc);
+}
+
+uint64x2_t vmlal_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLAL.U32 q0, d0, d0[0]
+_NEON2SSE_INLINE uint64x2_t vmlal_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c) // VMLAL.U32 q0, d0, d0[0]
+{
+    uint32x2_t vc;
+    vc = vdup_n_u32(c);
+    return vmlal_u32(a, b, vc);
+}
+
+//************ Vector widening saturating doubling multiply accumulate with scalar **************
+int32x4_t vqdmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLAL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vqdmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c)
+{
+    //not optimal SIMD soulution, serial may be faster
+    int16x4_t vc;
+    vc = vdup_n_s16(c);
+    return vqdmlal_s16(a, b, vc);
+}
+
+int64x2_t vqdmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLAL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int32x2_t vc;
+    vc = vdup_n_s32(c);
+    return vqdmlal_s32(a, b, vc);
+}
+
+//******** Vector multiply subtract with scalar **************
+int16x4_t vmls_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLS.I16 d0, d0, d0[0]
+_NEON2SSE_INLINE int16x4_t vmls_n_s16(int16x4_t a, int16x4_t b, int16_t c) // VMLS.I16 d0, d0, d0[0]
+{
+    int16x4_t vc;
+    vc = vdup_n_s16(c);
+    return vmls_s16(a, b, vc);
+}
+
+int32x2_t vmls_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLS.I32 d0, d0, d0[0]
+_NEON2SSE_INLINE int32x2_t vmls_n_s32(int32x2_t a, int32x2_t b, int32_t c) // VMLS.I32 d0, d0, d0[0]
+{
+    int32x2_t vc;
+    vc = vdup_n_s32(c);
+    return vmls_s32(a, b, vc);
+}
+
+uint16x4_t vmls_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c); // VMLS.I16 d0, d0, d0[0]
+_NEON2SSE_INLINE uint16x4_t vmls_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c) // VMLS.I16 d0, d0, d0[0]
+{
+    uint16x4_t vc;
+    vc = vdup_n_s16(c);
+    return vmls_s16(a, b, vc);
+}
+
+uint32x2_t vmls_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c); // VMLS.I32 d0, d0, d0[0]
+_NEON2SSE_INLINE uint32x2_t vmls_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c) // VMLS.I32 d0, d0, d0[0]
+{
+    uint32x2_t vc;
+    vc = vdup_n_u32(c);
+    return vmls_u32(a, b, vc);
+}
+
+float32x2_t vmls_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLS.F32 d0, d0, d0[0]
+_NEON2SSE_INLINE float32x2_t vmls_n_f32(float32x2_t a, float32x2_t b, float32_t c)
+{
+    float32x2_t res;
+    res.m64_f32[0] = a.m64_f32[0] - b.m64_f32[0] * c;
+    res.m64_f32[1] = a.m64_f32[1] - b.m64_f32[1] * c;
+    return res;
+}
+
+int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLS.I16 q0, q0, d0[0]
+_NEON2SSE_INLINE int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c) // VMLS.I16 q0, q0, d0[0]
+{
+    int16x8_t vc;
+    vc = vdupq_n_s16(c);
+    return vmlsq_s16(a, b,vc);
+}
+
+int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLS.I32 q0, q0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c) // VMLS.I32 q0, q0, d0[0]
+{
+    int32x4_t vc;
+    vc = vdupq_n_s32(c);
+    return vmlsq_s32(a,b,vc);
+}
+
+uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLS.I16 q0, q0, d0[0]
+_NEON2SSE_INLINE uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c) // VMLS.I16 q0, q0, d0[0]
+{
+    uint32x4_t vc;
+    vc = vdupq_n_u32(c);
+    return vmlsq_u32(a,b,vc);
+}
+
+uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLS.I32 q0, q0, d0[0]
+_NEON2SSE_INLINE uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c) // VMLS.I32 q0, q0, d0[0]
+{
+    uint32x4_t vc;
+    vc = vdupq_n_u32(c);
+    return vmlsq_u32(a,b,vc);
+}
+
+float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLS.F32 q0, q0, d0[0]
+_NEON2SSE_INLINE float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c)
+{
+    float32x4_t vc;
+    vc = vdupq_n_f32(c);
+    return vmlsq_f32(a,b,vc);
+}
+
+//**** Vector widening multiply subtract with scalar ******
+int32x4_t vmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLSL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c) // VMLSL.S16 q0, d0, d0[0]
+{
+    int16x4_t vc;
+    vc = vdup_n_s16(c);
+    return vmlsl_s16(a, b, vc);
+}
+
+int64x2_t vmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLSL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE int64x2_t vmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c) // VMLSL.S32 q0, d0, d0[0]
+{
+    int32x2_t vc;
+    vc = vdup_n_s32(c);
+    return vmlsl_s32(a, b, vc);
+}
+
+uint32x4_t vmlsl_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLSL.s16 q0, d0, d0[0]
+_NEON2SSE_INLINE uint32x4_t vmlsl_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c) // VMLSL.s16 q0, d0, d0[0]
+{
+    uint16x4_t vc;
+    vc = vdup_n_u16(c);
+    return vmlsl_u16(a, b, vc);
+}
+
+uint64x2_t vmlsl_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLSL.U32 q0, d0, d0[0]
+_NEON2SSE_INLINE uint64x2_t vmlsl_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c) // VMLSL.U32 q0, d0, d0[0]
+{
+    uint32x2_t vc;
+    vc = vdup_n_u32(c);
+    return vmlsl_u32(a, b, vc);
+}
+
+//***** Vector widening saturating doubling multiply subtract with scalar *********
+//**********************************************************************************
+int32x4_t vqdmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLSL.S16 q0, d0, d0[0]
+_NEON2SSE_INLINE int32x4_t vqdmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c)
+{
+    int16x4_t vc;
+    vc = vdup_n_s16(c);
+    return vqdmlsl_s16(a, b, vc);
+}
+
+int64x2_t vqdmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLSL.S32 q0, d0, d0[0]
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int32x2_t vc;
+    vc = vdup_n_s32(c);
+    return vqdmlsl_s32(a, b, vc);
+}
+
+//*******************  Vector extract ***********************************************
+//*************************************************************************************
+//VEXT (Vector Extract) extracts  elements from the bottom end of the second operand
+//vector and the top end of the first, concatenates them, and places the result in the destination vector
+//c elements from the bottom end of the second operand and (8-c) from the top end of the first
+int8x8_t vext_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vext_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c),_NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int8x8_t res;
+    int i;
+    for (i = 0; i<8 - c; i++) {
+        res.m64_i8[i] = a.m64_i8[i + c];
+    }
+    for(i = 0; i<c; i++) {
+        res.m64_i8[8 - c + i] = b.m64_i8[i];
+    }
+    return res;
+}
+
+uint8x8_t vext_u8(uint8x8_t a,  uint8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0
+#define vext_u8 vext_s8
+//same result tested
+
+poly8x8_t vext_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0
+#define vext_p8 vext_u8
+
+int16x4_t vext_s16(int16x4_t a, int16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0
+_NEON2SSE_INLINE int16x4_t  _NEON2SSE_PERFORMANCE_WARNING (vext_s16(int16x4_t a, int16x4_t b, __constrange(0,3) int c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int16x4_t res;
+    int i;
+    for (i = 0; i<4 - c; i++) {
+        res.m64_i16[i] = a.m64_i16[i + c];
+    }
+    for(i = 0; i<c; i++) {
+        res.m64_i16[4 - c + i] = b.m64_i16[i];
+    }
+    return res;
+}
+
+uint16x4_t vext_u16(uint16x4_t a,  uint16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0
+#define vext_u16 vext_s16
+
+poly16x4_t vext_p16(poly16x4_t a, poly16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0
+#define vext_p16 vext_s16
+
+int32x2_t vext_s32(int32x2_t a, int32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vext_s32(int32x2_t a, int32x2_t b, __constrange(0,1) int c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    int32x2_t res;
+    if (c==0) {
+        res.m64_i32[0] = a.m64_i32[0];
+        res.m64_i32[1] = a.m64_i32[1];
+    } else {
+        res.m64_i32[0] = a.m64_i32[1];
+        res.m64_i32[1] = b.m64_i32[0];
+    }
+    return res;
+}
+
+float32x2_t vext_f32(float32x2_t a, float32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0
+_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(float32x2_t vext_f32(float32x2_t a, float32x2_t b, __constrange(0,1) int c), _NEON2SSE_REASON_SLOW_SERIAL)
+{
+    float32x2_t res;
+    if (c==0) {
+        res.m64_f32[0] = a.m64_f32[0];
+        res.m64_f32[1] = a.m64_f32[1];
+    } else {
+        res.m64_f32[0] = a.m64_f32[1];
+        res.m64_f32[1] = b.m64_f32[0];
+    }
+    return res;
+}
+
+uint32x2_t vext_u32(uint32x2_t a,  uint32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0
+#define vext_u32 vext_s32
+
+
+int64x1_t vext_s64(int64x1_t a, int64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0
+#define vext_s64(a,b,c) a
+
+uint64x1_t vext_u64(uint64x1_t a, uint64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0
+#define vext_u64(a,b,c) a
+
+int8x16_t vextq_s8(int8x16_t a, int8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0
+#define vextq_s8(a,b,c) _MM_ALIGNR_EPI8 (b,a,c)
+
+uint8x16_t vextq_u8(uint8x16_t a, uint8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0
+#define vextq_u8(a,b,c) _MM_ALIGNR_EPI8 (b,a,c)
+
+poly8x16_t vextq_p8(poly8x16_t a, poly8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0
+#define vextq_p8 vextq_s8
+
+int16x8_t vextq_s16(int16x8_t a, int16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0
+#define vextq_s16(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 2)
+
+uint16x8_t vextq_u16(uint16x8_t a, uint16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0
+#define vextq_u16(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 2)
+
+poly16x8_t vextq_p16(poly16x8_t a, poly16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0
+#define vextq_p16 vextq_s16
+
+int32x4_t vextq_s32(int32x4_t a, int32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0
+#define vextq_s32(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 4)
+
+uint32x4_t vextq_u32(uint32x4_t a, uint32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0
+#define vextq_u32(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 4)
+
+float32x4_t vextq_f32(float32x4_t a, float32x4_t b, __constrange(0,3) float c); // VEXT.32 q0,q0,q0,#0
+#define vextq_f32(a,b,c) _M128(vextq_s32(_M128i(a),_M128i(b),c) )
+
+int64x2_t vextq_s64(int64x2_t a, int64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0
+#define vextq_s64(a,b,c) _MM_ALIGNR_EPI8(b,a,c * 8)
+
+uint64x2_t vextq_u64(uint64x2_t a, uint64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0
+#define vextq_u64(a,b,c) _MM_ALIGNR_EPI8(b,a,c * 8)
+
+//************ Reverse vector elements (swap endianness)*****************
+//*************************************************************************
+//VREVn.m reverses the order of the m-bit lanes within a set that is n bits wide.
+int8x8_t vrev64_s8(int8x8_t vec); // VREV64.8 d0,d0
+_NEON2SSE_INLINE int8x8_t vrev64_s8(int8x8_t vec)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vrev64q_s8(_pM128i(vec));
+    return64(res);
+}
+
+int16x4_t vrev64_s16(int16x4_t vec); // VREV64.16 d0,d0
+_NEON2SSE_INLINE int16x4_t vrev64_s16(int16x4_t vec)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vrev64q_s16(_pM128i(vec));
+    return64(res);
+}
+
+int32x2_t vrev64_s32(int32x2_t vec); // VREV64.32 d0,d0
+_NEON2SSE_INLINE int32x2_t vrev64_s32(int32x2_t vec)
+{
+    int32x2_t res;
+    res.m64_i32[0] = vec.m64_i32[1];
+    res.m64_i32[1] = vec.m64_i32[0];
+    return res;
+}
+
+uint8x8_t vrev64_u8(uint8x8_t vec); // VREV64.8 d0,d0
+#define vrev64_u8 vrev64_s8
+
+uint16x4_t vrev64_u16(uint16x4_t vec); // VREV64.16 d0,d0
+#define vrev64_u16 vrev64_s16
+
+uint32x2_t vrev64_u32(uint32x2_t vec); // VREV64.32 d0,d0
+#define vrev64_u32 vrev64_s32
+
+poly8x8_t vrev64_p8(poly8x8_t vec); // VREV64.8 d0,d0
+#define vrev64_p8 vrev64_u8
+
+poly16x4_t vrev64_p16(poly16x4_t vec); // VREV64.16 d0,d0
+#define vrev64_p16 vrev64_u16
+
+float32x2_t vrev64_f32(float32x2_t vec); // VREV64.32 d0,d0
+_NEON2SSE_INLINE float32x2_t vrev64_f32(float32x2_t vec)
+{
+    float32x2_t res;
+    res.m64_f32[0] = vec.m64_f32[1];
+    res.m64_f32[1] = vec.m64_f32[0];
+    return res;
+}
+
+int8x16_t vrev64q_s8(int8x16_t vec); // VREV64.8 q0,q0
+_NEON2SSE_INLINE int8x16_t vrev64q_s8(int8x16_t vec) // VREV64.8 q0,q0
+{
+    _NEON2SSE_ALIGN_16 int8_t mask_rev_e8[16] = {7,6,5,4,3,2,1,0, 15,14,13,12,11,10,9, 8};
+    return _mm_shuffle_epi8 (vec, *(__m128i*)  mask_rev_e8);
+}
+
+int16x8_t vrev64q_s16(int16x8_t vec); // VREV64.16 q0,q0
+_NEON2SSE_INLINE int16x8_t vrev64q_s16(int16x8_t vec) // VREV64.16 q0,q0
+{
+    //no _mm_shuffle_epi16, _mm_shuffle_epi8 to be used with the corresponding mask
+    _NEON2SSE_ALIGN_16 int8_t mask_rev_e16[16] = {6,7, 4,5,2,3,0,1,14,15,12,13,10,11,8,9};
+    return _mm_shuffle_epi8 (vec, *(__m128i*)mask_rev_e16);
+}
+
+int32x4_t vrev64q_s32(int32x4_t vec); // VREV64.32 q0,q0
+_NEON2SSE_INLINE int32x4_t vrev64q_s32(int32x4_t vec) // VREV64.32 q0,q0
+{
+    return _mm_shuffle_epi32 (vec, 1 | (0 << 2) | (3 << 4) | (2 << 6) );
+}
+
+uint8x16_t vrev64q_u8(uint8x16_t vec); // VREV64.8 q0,q0
+#define vrev64q_u8 vrev64q_s8
+
+uint16x8_t vrev64q_u16(uint16x8_t vec); // VREV64.16 q0,q0
+#define vrev64q_u16 vrev64q_s16
+
+uint32x4_t vrev64q_u32(uint32x4_t vec); // VREV64.32 q0,q0
+#define vrev64q_u32 vrev64q_s32
+
+poly8x16_t vrev64q_p8(poly8x16_t vec); // VREV64.8 q0,q0
+#define vrev64q_p8 vrev64q_u8
+
+poly16x8_t vrev64q_p16(poly16x8_t vec); // VREV64.16 q0,q0
+#define vrev64q_p16 vrev64q_u16
+
+float32x4_t vrev64q_f32(float32x4_t vec); // VREV64.32 q0,q0
+#define vrev64q_f32(vec) _mm_shuffle_ps (vec,  vec, _MM_SHUFFLE(2,3, 0,1))
+
+//********************  32 bit shuffles **********************
+//************************************************************
+int8x8_t vrev32_s8(int8x8_t vec); // VREV32.8 d0,d0
+_NEON2SSE_INLINE int8x8_t vrev32_s8(int8x8_t vec)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vrev32q_s8(_pM128i(vec));
+    return64(res);
+}
+
+int16x4_t vrev32_s16(int16x4_t vec); // VREV32.16 d0,d0
+_NEON2SSE_INLINE int16x4_t vrev32_s16(int16x4_t vec)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vrev32q_s16(_pM128i(vec));
+    return64(res);
+}
+
+uint8x8_t vrev32_u8(uint8x8_t vec); // VREV32.8 d0,d0
+#define vrev32_u8 vrev32_s8
+
+uint16x4_t vrev32_u16(uint16x4_t vec); // VREV32.16 d0,d0
+#define vrev32_u16 vrev32_s16
+
+poly8x8_t vrev32_p8(poly8x8_t vec); // VREV32.8 d0,d0
+#define vrev32_p8 vrev32_u8
+
+poly16x4_t vrev32_p16(poly16x4_t vec); // VREV32.16 d0,d0
+#define vrev32_p16 vrev32_u16
+
+int8x16_t vrev32q_s8(int8x16_t vec); // VREV32.8 q0,q0
+_NEON2SSE_INLINE int8x16_t vrev32q_s8(int8x16_t vec) // VREV32.8 q0,q0
+{
+    _NEON2SSE_ALIGN_16 int8_t mask_rev_e8[16] = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
+    return _mm_shuffle_epi8 (vec, *(__m128i*)  mask_rev_e8);
+}
+
+int16x8_t vrev32q_s16(int16x8_t vec); // VREV32.16 q0,q0
+_NEON2SSE_INLINE int16x8_t vrev32q_s16(int16x8_t vec) // VREV32.16 q0,q0
+{
+    _NEON2SSE_ALIGN_16 int8_t mask_rev_e8[16] = {2,3,0,1, 6,7, 4,5, 10,11, 8,9, 14,15,12,13};
+    return _mm_shuffle_epi8 (vec, *(__m128i*)  mask_rev_e8);
+}
+
+uint8x16_t vrev32q_u8(uint8x16_t vec); // VREV32.8 q0,q0
+#define vrev32q_u8 vrev32q_s8
+
+uint16x8_t vrev32q_u16(uint16x8_t vec); // VREV32.16 q0,q0
+#define vrev32q_u16 vrev32q_s16
+
+poly8x16_t vrev32q_p8(poly8x16_t vec); // VREV32.8 q0,q0
+#define vrev32q_p8 vrev32q_u8
+
+poly16x8_t vrev32q_p16(poly16x8_t vec); // VREV32.16 q0,q0
+#define vrev32q_p16 vrev32q_u16
+
+//*************  16 bit shuffles **********************
+//******************************************************
+int8x8_t vrev16_s8(int8x8_t vec); // VREV16.8 d0,d0
+_NEON2SSE_INLINE int8x8_t vrev16_s8(int8x8_t vec)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vrev16q_s8(_pM128i(vec));
+    return64(res);
+}
+
+uint8x8_t vrev16_u8(uint8x8_t vec); // VREV16.8 d0,d0
+#define vrev16_u8 vrev16_s8
+
+poly8x8_t vrev16_p8(poly8x8_t vec); // VREV16.8 d0,d0
+#define vrev16_p8 vrev16_u8
+
+int8x16_t vrev16q_s8(int8x16_t vec); // VREV16.8 q0,q0
+_NEON2SSE_INLINE int8x16_t vrev16q_s8(int8x16_t vec) // VREV16.8 q0,q0
+{
+    _NEON2SSE_ALIGN_16 int8_t mask_rev8[16] = {1,0, 3,2, 5,4, 7,6, 9,8, 11, 10, 13, 12, 15, 14};
+    return _mm_shuffle_epi8 (vec, *(__m128i*)  mask_rev8);
+}
+
+uint8x16_t vrev16q_u8(uint8x16_t vec); // VREV16.8 q0,q0
+#define vrev16q_u8 vrev16q_s8
+
+poly8x16_t vrev16q_p8(poly8x16_t vec); // VREV16.8 q0,q0
+#define vrev16q_p8 vrev16q_u8
+
+//*********************************************************************
+//**************** Other single operand arithmetic *******************
+//*********************************************************************
+
+//*********** Absolute: Vd[i] = |Va[i]| **********************************
+//************************************************************************
+int8x8_t   vabs_s8(int8x8_t a); // VABS.S8 d0,d0
+_NEON2SSE_INLINE int8x8_t   vabs_s8(int8x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = _mm_abs_epi8(_pM128i(a));
+    return64(res);
+}
+
+
+int16x4_t   vabs_s16(int16x4_t a); // VABS.S16 d0,d0
+_NEON2SSE_INLINE int16x4_t   vabs_s16(int16x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = _mm_abs_epi16(_pM128i(a));
+    return64(res);
+}
+
+int32x2_t   vabs_s32(int32x2_t a); // VABS.S32 d0,d0
+_NEON2SSE_INLINE int32x2_t   vabs_s32(int32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = _mm_abs_epi32(_pM128i(a));
+    return64(res);
+}
+
+float32x2_t vabs_f32(float32x2_t a); // VABS.F32 d0,d0
+_NEON2SSE_INLINE float32x2_t vabs_f32(float32x2_t a) // VABS.F32 d0,d0
+{
+    float32x4_t res;
+    __m64_128 res64;
+    _NEON2SSE_ALIGN_16 int32_t c7fffffff[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
+    res = _mm_and_ps (_pM128(a), *(__m128*)c7fffffff); //use 64 low bits only
+    _M64f(res64, res);
+    return res64;
+}
+
+int8x16_t   vabsq_s8(int8x16_t a); // VABS.S8 q0,q0
+#define vabsq_s8 _mm_abs_epi8
+
+int16x8_t   vabsq_s16(int16x8_t a); // VABS.S16 q0,q0
+#define vabsq_s16 _mm_abs_epi16
+
+int32x4_t   vabsq_s32(int32x4_t a); // VABS.S32 q0,q0
+#define vabsq_s32 _mm_abs_epi32
+
+float32x4_t vabsq_f32(float32x4_t a); // VABS.F32 q0,q0
+_NEON2SSE_INLINE float32x4_t vabsq_f32(float32x4_t a) // VABS.F32 q0,q0
+{
+    _NEON2SSE_ALIGN_16 int32_t c7fffffff[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
+    return _mm_and_ps (a, *(__m128*)c7fffffff);
+}
+
+//****** Saturating absolute: Vd[i] = sat(|Va[i]|) *********************
+//**********************************************************************
+//For signed-integer data types, the absolute value of the most negative value is not representable by the data type, saturation takes place
+int8x8_t vqabs_s8(int8x8_t a); // VQABS.S8 d0,d0
+_NEON2SSE_INLINE int8x8_t vqabs_s8(int8x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vqabsq_s8(_pM128i(a));
+    return64(res);
+}
+
+int16x4_t vqabs_s16(int16x4_t a); // VQABS.S16 d0,d0
+_NEON2SSE_INLINE int16x4_t vqabs_s16(int16x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vqabsq_s16(_pM128i(a));
+    return64(res);
+}
+
+int32x2_t vqabs_s32(int32x2_t a); // VQABS.S32 d0,d0
+_NEON2SSE_INLINE int32x2_t vqabs_s32(int32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = vqabsq_s32(_pM128i(a));
+    return64(res);
+}
+
+int8x16_t vqabsq_s8(int8x16_t a); // VQABS.S8 q0,q0
+_NEON2SSE_INLINE int8x16_t vqabsq_s8(int8x16_t a) // VQABS.S8 q0,q0
+{
+    __m128i c_128, abs, abs_cmp;
+    c_128 = _mm_set1_epi8 (0x80); //-128
+    abs = _mm_abs_epi8 (a);
+    abs_cmp = _mm_cmpeq_epi8 (abs, c_128);
+    return _mm_xor_si128 (abs,  abs_cmp);
+}
+
+int16x8_t vqabsq_s16(int16x8_t a); // VQABS.S16 q0,q0
+_NEON2SSE_INLINE int16x8_t vqabsq_s16(int16x8_t a) // VQABS.S16 q0,q0
+{
+    __m128i c_32768, abs, abs_cmp;
+    c_32768 = _mm_set1_epi16 (0x8000); //-32768
+    abs = _mm_abs_epi16 (a);
+    abs_cmp = _mm_cmpeq_epi16 (abs, c_32768);
+    return _mm_xor_si128 (abs,  abs_cmp);
+}
+
+int32x4_t vqabsq_s32(int32x4_t a); // VQABS.S32 q0,q0
+_NEON2SSE_INLINE int32x4_t vqabsq_s32(int32x4_t a) // VQABS.S32 q0,q0
+{
+    __m128i c80000000, abs, abs_cmp;
+    c80000000 = _mm_set1_epi32 (0x80000000); //most negative value
+    abs = _mm_abs_epi32 (a);
+    abs_cmp = _mm_cmpeq_epi32 (abs, c80000000);
+    return _mm_xor_si128 (abs,  abs_cmp);
+}
+
+//*************** Negate: Vd[i] = - Va[i] *************************************
+//*****************************************************************************
+//several Negate implementations possible for SIMD.
+//e.//function _mm_sign function(a, negative numbers vector), but the following one gives good performance:
+int8x8_t vneg_s8(int8x8_t a); // VNE//d0,d0
+_NEON2SSE_INLINE int8x8_t vneg_s8(int8x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vnegq_s8(_pM128i(a));
+    return64(res);
+}
+
+int16x4_t vneg_s16(int16x4_t a); // VNE//d0,d0
+_NEON2SSE_INLINE int16x4_t vneg_s16(int16x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vnegq_s16(_pM128i(a));
+    return64(res);
+}
+
+int32x2_t vneg_s32(int32x2_t a); // VNE//d0,d0
+_NEON2SSE_INLINE int32x2_t vneg_s32(int32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = vnegq_s32(_pM128i(a));
+    return64(res);
+}
+
+float32x2_t vneg_f32(float32x2_t a); // VNE//d0,d0
+_NEON2SSE_INLINE float32x2_t vneg_f32(float32x2_t a) // VNE//d0,d0
+{
+    float32x4_t res;
+    __m64_128 res64;
+    _NEON2SSE_ALIGN_16 int32_t c80000000[4] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    res = _mm_xor_ps (_pM128(a), *(__m128*) c80000000); //use low 64 bits
+    _M64f(res64, res);
+    return res64;
+}
+
+int8x16_t vnegq_s8(int8x16_t a); // VNE//q0,q0
+_NEON2SSE_INLINE int8x16_t vnegq_s8(int8x16_t a) // VNE//q0,q0
+{
+    __m128i zero;
+    zero = _mm_setzero_si128 ();
+    return _mm_sub_epi8 (zero, a);
+} //or _mm_sign_epi8 (a, negative numbers vector)
+
+int16x8_t vnegq_s16(int16x8_t a); // VNE//q0,q0
+_NEON2SSE_INLINE int16x8_t vnegq_s16(int16x8_t a) // VNE//q0,q0
+{
+    __m128i zero;
+    zero = _mm_setzero_si128 ();
+    return _mm_sub_epi16 (zero, a);
+} //or _mm_sign_epi16 (a, negative numbers vector)
+
+int32x4_t vnegq_s32(int32x4_t a); // VNE//q0,q0
+_NEON2SSE_INLINE int32x4_t vnegq_s32(int32x4_t a) // VNE//q0,q0
+{
+    __m128i zero;
+    zero = _mm_setzero_si128 ();
+    return _mm_sub_epi32 (zero, a);
+} //or _mm_sign_epi32 (a, negative numbers vector)
+
+float32x4_t vnegq_f32(float32x4_t a); // VNE//q0,q0
+_NEON2SSE_INLINE float32x4_t vnegq_f32(float32x4_t a) // VNE//q0,q0
+{
+    _NEON2SSE_ALIGN_16 int32_t c80000000[4] = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
+    return _mm_xor_ps (a, *(__m128*) c80000000);
+}
+
+//************** Saturating Negate: sat(Vd[i] = - Va[i]) **************************
+//***************************************************************************************
+//For signed-integer data types, the negation of the most negative value can't be produced without saturation, while with saturation it is max positive
+int8x8_t vqneg_s8(int8x8_t a); // VQNE//d0,d0
+_NEON2SSE_INLINE int8x8_t vqneg_s8(int8x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vqnegq_s8(_pM128i(a));
+    return64(res);
+}
+
+int16x4_t vqneg_s16(int16x4_t a); // VQNE//d0,d0
+_NEON2SSE_INLINE int16x4_t vqneg_s16(int16x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vqnegq_s16(_pM128i(a));
+    return64(res);
+}
+
+int32x2_t vqneg_s32(int32x2_t a); // VQNE//d0,d0
+_NEON2SSE_INLINE int32x2_t vqneg_s32(int32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = vqnegq_s32(_pM128i(a));
+    return64(res);
+}
+
+int8x16_t vqnegq_s8(int8x16_t a); // VQNE//q0,q0
+_NEON2SSE_INLINE int8x16_t vqnegq_s8(int8x16_t a) // VQNE//q0,q0
+{
+    __m128i zero;
+    zero = _mm_setzero_si128 ();
+    return _mm_subs_epi8 (zero, a); //saturating substraction
+}
+
+int16x8_t vqnegq_s16(int16x8_t a); // VQNE//q0,q0
+_NEON2SSE_INLINE int16x8_t vqnegq_s16(int16x8_t a) // VQNE//q0,q0
+{
+    __m128i zero;
+    zero = _mm_setzero_si128 ();
+    return _mm_subs_epi16 (zero, a); //saturating substraction
+}
+
+int32x4_t vqnegq_s32(int32x4_t a); // VQNE//q0,q0
+_NEON2SSE_INLINE int32x4_t vqnegq_s32(int32x4_t a) // VQNE//q0,q0
+{
+    //solution may be not optimal compared with a serial
+    __m128i c80000000, zero, sub, cmp;
+    c80000000 = _mm_set1_epi32 (0x80000000); //most negative value
+    zero = _mm_setzero_si128 ();
+    sub =  _mm_sub_epi32 (zero, a); //substraction
+    cmp = _mm_cmpeq_epi32 (a, c80000000);
+    return _mm_xor_si128 (sub,  cmp);
+}
+
+//****************** Count leading zeros ********************************
+//**************************************************************************
+//no corresponding vector intrinsics in IA32, need to implement it.  While the implementation is effective for 8 bits, it may be not for 16 and 32 bits
+int8x8_t vclz_s8(int8x8_t a); // VCLZ.I8 d0,d0
+_NEON2SSE_INLINE int8x8_t vclz_s8(int8x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vclzq_s8(_pM128i(a));
+    return64(res);
+}
+
+int16x4_t vclz_s16(int16x4_t a); // VCLZ.I16 d0,d0
+_NEON2SSE_INLINE int16x4_t vclz_s16(int16x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vclzq_s16(_pM128i(a));
+    return64(res);
+}
+
+int32x2_t vclz_s32(int32x2_t a); // VCLZ.I32 d0,d0
+_NEON2SSE_INLINE int32x2_t vclz_s32(int32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = vclzq_s32(_pM128i(a));
+    return64(res);
+}
+
+
+uint8x8_t vclz_u8(uint8x8_t a); // VCLZ.I8 d0,d0
+#define vclz_u8 vclz_s8
+
+uint16x4_t vclz_u16(uint16x4_t a); // VCLZ.I16 d0,d0
+#define vclz_u16 vclz_s16
+
+uint32x2_t vclz_u32(uint32x2_t a); // VCLZ.I32 d0,d0
+#define vclz_u32 vclz_s32
+
+int8x16_t vclzq_s8(int8x16_t a); // VCLZ.I8 q0,q0
+_NEON2SSE_INLINE int8x16_t vclzq_s8(int8x16_t a)
+{
+    _NEON2SSE_ALIGN_16 int8_t mask_CLZ[16] = { /* 0 */ 4,/* 1 */ 3,/* 2 */ 2,/* 3 */ 2,
+                                                    /* 4 */ 1,/* 5 */ 1,/* 6 */ 1,/* 7 */ 1,
+                                                    /* 8 */ 0,/* 9 */ 0,/* a */ 0,/* b */ 0,
+                                                    /* c */ 0,/* d */ 0,/* e */ 0,/* f */ 0                          };
+    __m128i maskLOW, c4, lowclz, mask, hiclz;
+    maskLOW = _mm_set1_epi8(0x0f); //low 4 bits, don't need masking low to avoid zero if MSB is set - it happens automatically
+    c4 = _mm_set1_epi8(4);
+    lowclz = _mm_shuffle_epi8( *(__m128i*)mask_CLZ, a); //uses low 4 bits anyway
+    mask =  _mm_srli_epi16(a, 4); //get high 4 bits as low bits
+    mask = _mm_and_si128(mask, maskLOW); //low 4 bits, need masking to avoid zero if MSB is set
+    hiclz = _mm_shuffle_epi8( *(__m128i*) mask_CLZ, mask); //uses low 4 bits anyway
+    mask = _mm_cmpeq_epi8(hiclz, c4); // shows the need to add lowclz zeros
+    lowclz = _mm_and_si128(lowclz,mask);
+    return _mm_add_epi8(lowclz, hiclz);
+}
+
+int16x8_t vclzq_s16(int16x8_t a); // VCLZ.I16 q0,q0
+_NEON2SSE_INLINE int16x8_t vclzq_s16(int16x8_t a)
+{
+    __m128i c7, res8x16, res8x16_swap;
+    _NEON2SSE_ALIGN_16 int8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
+    _NEON2SSE_ALIGN_16 uint16_t mask8bit[8] = {0x00ff, 0x00ff, 0x00ff, 0x00ff,0x00ff, 0x00ff, 0x00ff, 0x00ff};
+    c7 = _mm_srli_epi16(*(__m128i*)mask8bit, 5); //7
+    res8x16 = vclzq_s8(a);
+    res8x16_swap = _mm_shuffle_epi8 (res8x16, *(__m128i*) mask8_sab); //horisontal pairs swap
+    res8x16 = _mm_and_si128(res8x16, *(__m128i*)mask8bit); //lowclz
+    res8x16_swap = _mm_and_si128(res8x16_swap, *(__m128i*)mask8bit); //hiclz
+    c7 = _mm_cmpgt_epi16(res8x16_swap, c7); // shows the need to add lowclz zeros
+    res8x16 = _mm_and_si128(res8x16, c7); //lowclz
+    return _mm_add_epi16(res8x16_swap, res8x16);
+}
+
+int32x4_t vclzq_s32(int32x4_t a); // VCLZ.I32 q0,q0
+_NEON2SSE_INLINE int32x4_t vclzq_s32(int32x4_t a)
+{
+    __m128i c55555555, c33333333, c0f0f0f0f, c3f, c32, tmp, tmp1, res;
+    c55555555 = _mm_set1_epi32(0x55555555);
+    c33333333 = _mm_set1_epi32(0x33333333);
+    c0f0f0f0f = _mm_set1_epi32(0x0f0f0f0f);
+    c3f = _mm_set1_epi32(0x3f);
+    c32 = _mm_set1_epi32(32);
+    tmp = _mm_srli_epi32(a, 1);
+    res = _mm_or_si128(tmp, a); //atmp[i] |= (atmp[i] >> 1);
+    tmp = _mm_srli_epi32(res, 2);
+    res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 2);
+    tmp = _mm_srli_epi32(res, 4);
+    res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 4);
+    tmp = _mm_srli_epi32(res, 8);
+    res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 8);
+    tmp = _mm_srli_epi32(res, 16);
+    res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 16);
+
+    tmp = _mm_srli_epi32(res, 1);
+    tmp = _mm_and_si128(tmp, c55555555);
+    res = _mm_sub_epi32(res, tmp); //atmp[i] -= ((atmp[i] >> 1) & 0x55555555);
+
+    tmp = _mm_srli_epi32(res, 2);
+    tmp = _mm_and_si128(tmp, c33333333);
+    tmp1 = _mm_and_si128(res, c33333333);
+    res = _mm_add_epi32(tmp, tmp1); //atmp[i] = (((atmp[i] >> 2) & 0x33333333) + (atmp[i] & 0x33333333));
+
+    tmp = _mm_srli_epi32(res, 4);
+    tmp = _mm_add_epi32(tmp, res);
+    res = _mm_and_si128(tmp, c0f0f0f0f); //atmp[i] = (((atmp[i] >> 4) + atmp[i]) & 0x0f0f0f0f);
+
+    tmp = _mm_srli_epi32(res, 8);
+    res = _mm_add_epi32(tmp, res); //atmp[i] += (atmp[i] >> 8);
+
+    tmp = _mm_srli_epi32(res, 16);
+    res = _mm_add_epi32(tmp, res); //atmp[i] += (atmp[i] >> 16);
+
+    res = _mm_and_si128(res, c3f); //atmp[i] = atmp[i] & 0x0000003f;
+
+    return _mm_sub_epi32(c32, res); //res[i] = 32 - atmp[i];
+}
+
+uint8x16_t vclzq_u8(uint8x16_t a); // VCLZ.I8 q0,q0
+#define vclzq_u8 vclzq_s8
+
+uint16x8_t vclzq_u16(uint16x8_t a); // VCLZ.I16 q0,q0
+#define vclzq_u16 vclzq_s16
+
+uint32x4_t vclzq_u32(uint32x4_t a); // VCLZ.I32 q0,q0
+#define vclzq_u32 vclzq_s32
+
+//************** Count leading sign bits **************************
+//********************************************************************
+//VCLS (Vector Count Leading Sign bits) counts the number of consecutive bits following
+// the topmost bit, that are the same as the topmost bit, in each element in a vector
+//No corresponding vector intrinsics in IA32, need to implement it.
+//While the implementation is effective for 8 bits, it may be not for 16 and 32 bits
+int8x8_t vcls_s8(int8x8_t a); // VCLS.S8 d0,d0
+_NEON2SSE_INLINE int8x8_t vcls_s8(int8x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vclsq_s8(_pM128i(a));
+    return64(res);
+}
+
+int16x4_t vcls_s16(int16x4_t a); // VCLS.S16 d0,d0
+_NEON2SSE_INLINE int16x4_t vcls_s16(int16x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vclsq_s16(_pM128i(a));
+    return64(res);
+}
+
+int32x2_t vcls_s32(int32x2_t a); // VCLS.S32 d0,d0
+_NEON2SSE_INLINE int32x2_t vcls_s32(int32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = vclsq_s32(_pM128i(a));
+    return64(res);
+}
+
+int8x16_t vclsq_s8(int8x16_t a); // VCLS.S8 q0,q0
+_NEON2SSE_INLINE int8x16_t vclsq_s8(int8x16_t a)
+{
+    __m128i cff, c80, c1, a_mask, a_neg, a_pos, a_comb;
+    cff = _mm_cmpeq_epi8 (a,a); //0xff
+    c80 = _mm_set1_epi8(0x80);
+    c1 = _mm_set1_epi8(1);
+    a_mask = _mm_and_si128(a, c80);
+    a_mask = _mm_cmpeq_epi8(a_mask, c80); //0xff if negative input and 0 if positive
+    a_neg = _mm_xor_si128(a, cff);
+    a_neg = _mm_and_si128(a_mask, a_neg);
+    a_pos = _mm_andnot_si128(a_mask, a);
+    a_comb = _mm_or_si128(a_pos, a_neg);
+    a_comb = vclzq_s8(a_comb);
+    return _mm_sub_epi8(a_comb, c1);
+}
+
+int16x8_t vclsq_s16(int16x8_t a); // VCLS.S16 q0,q0
+_NEON2SSE_INLINE int16x8_t vclsq_s16(int16x8_t a)
+{
+    __m128i cffff, c8000, c1, a_mask, a_neg, a_pos, a_comb;
+    cffff = _mm_cmpeq_epi16(a,a);
+    c8000 =  _mm_slli_epi16(cffff, 15); //0x8000
+    c1 = _mm_srli_epi16(cffff,15); //0x1
+    a_mask = _mm_and_si128(a, c8000);
+    a_mask = _mm_cmpeq_epi16(a_mask, c8000); //0xffff if negative input and 0 if positive
+    a_neg = _mm_xor_si128(a, cffff);
+    a_neg = _mm_and_si128(a_mask, a_neg);
+    a_pos = _mm_andnot_si128(a_mask, a);
+    a_comb = _mm_or_si128(a_pos, a_neg);
+    a_comb = vclzq_s16(a_comb);
+    return _mm_sub_epi16(a_comb, c1);
+}
+
+int32x4_t vclsq_s32(int32x4_t a); // VCLS.S32 q0,q0
+_NEON2SSE_INLINE int32x4_t vclsq_s32(int32x4_t a)
+{
+    __m128i cffffffff, c80000000, c1, a_mask, a_neg, a_pos, a_comb;
+    cffffffff = _mm_cmpeq_epi32(a,a);
+    c80000000 =  _mm_slli_epi32(cffffffff, 31); //0x80000000
+    c1 = _mm_srli_epi32(cffffffff,31); //0x1
+    a_mask = _mm_and_si128(a, c80000000);
+    a_mask = _mm_cmpeq_epi32(a_mask, c80000000); //0xffffffff if negative input and 0 if positive
+    a_neg = _mm_xor_si128(a, cffffffff);
+    a_neg = _mm_and_si128(a_mask, a_neg);
+    a_pos = _mm_andnot_si128(a_mask, a);
+    a_comb = _mm_or_si128(a_pos, a_neg);
+    a_comb = vclzq_s32(a_comb);
+    return _mm_sub_epi32(a_comb, c1);
+}
+
+//************************* Count number of set bits   ********************************
+//*************************************************************************************
+//No corresponding SIMD solution. One option is to get a elements, convert it to 32 bits and then use SSE4.2  _mm_popcnt__u32 (unsigned int v) for each element
+//another option is to do the following algorithm:
+
+uint8x8_t vcnt_u8(uint8x8_t a); // VCNT.8 d0,d0
+_NEON2SSE_INLINE uint8x8_t vcnt_u8(uint8x8_t a)
+{
+    uint8x8_t res64;
+    __m128i res;
+    res = vcntq_u8(_pM128i(a));
+    return64(res);
+}
+
+int8x8_t vcnt_s8(int8x8_t a); // VCNT.8 d0,d0
+#define vcnt_s8 vcnt_u8
+
+poly8x8_t vcnt_p8(poly8x8_t a); // VCNT.8 d0,d0
+#define vcnt_p8 vcnt_u8
+
+uint8x16_t vcntq_u8(uint8x16_t a); // VCNT.8 q0,q0
+_NEON2SSE_INLINE uint8x16_t vcntq_u8(uint8x16_t a)
+{
+    _NEON2SSE_ALIGN_16 int8_t mask_POPCOUNT[16] = { /* 0 */ 0,/* 1 */ 1,/* 2 */ 1,/* 3 */ 2,
+                                                        /* 4 */ 1,/* 5 */ 2,/* 6 */ 2,/* 7 */ 3,
+                                                        /* 8 */ 1,/* 9 */ 2,/* a */ 2,/* b */ 3,
+                                                        /* c */ 2,/* d */ 3,/* e */ 3,/* f */ 4                                   };
+    __m128i maskLOW, mask, lowpopcnt, hipopcnt;
+    maskLOW = _mm_set1_epi8(0x0f); //low 4 bits, need masking to avoid zero if MSB is set
+    mask = _mm_and_si128(a, maskLOW);
+    lowpopcnt = _mm_shuffle_epi8( *(__m128i*)mask_POPCOUNT, mask); //uses low 4 bits anyway
+    mask =  _mm_srli_epi16(a, 4); //get high 4 bits as low bits
+    mask = _mm_and_si128(mask, maskLOW); //low 4 bits, need masking to avoid zero if MSB is set
+    hipopcnt = _mm_shuffle_epi8( *(__m128i*) mask_POPCOUNT, mask); //uses low 4 bits anyway
+    return _mm_add_epi8(lowpopcnt, hipopcnt);
+}
+
+int8x16_t vcntq_s8(int8x16_t a); // VCNT.8 q0,q0
+#define vcntq_s8 vcntq_u8
+
+poly8x16_t vcntq_p8(poly8x16_t a); // VCNT.8 q0,q0
+#define vcntq_p8 vcntq_u8
+
+//**************************************************************************************
+//*********************** Logical operations ****************************************
+//**************************************************************************************
+//************************** Bitwise not ***********************************
+//several Bitwise not implementations possible for SIMD. Eg "xor" with all ones, but the following one gives good performance
+int8x8_t vmvn_s8(int8x8_t a); // VMVN d0,d0
+_NEON2SSE_INLINE int8x8_t vmvn_s8(int8x8_t a)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vmvnq_s8(_pM128i(a));
+    return64(res);
+}
+
+int16x4_t vmvn_s16(int16x4_t a); // VMVN d0,d0
+_NEON2SSE_INLINE int16x4_t vmvn_s16(int16x4_t a)
+{
+    int16x4_t res64;
+    __m128i res;
+    res = vmvnq_s16(_pM128i(a));
+    return64(res);
+}
+
+int32x2_t vmvn_s32(int32x2_t a); // VMVN d0,d0
+_NEON2SSE_INLINE int32x2_t vmvn_s32(int32x2_t a)
+{
+    int32x2_t res64;
+    __m128i res;
+    res = vmvnq_s32(_pM128i(a));
+    return64(res);
+}
+
+uint8x8_t vmvn_u8(uint8x8_t a); // VMVN d0,d0
+#define vmvn_u8 vmvn_s8
+
+uint16x4_t vmvn_u16(uint16x4_t a); // VMVN d0,d0
+#define vmvn_u16 vmvn_s16
+
+uint32x2_t vmvn_u32(uint32x2_t a); // VMVN d0,d0
+#define vmvn_u32 vmvn_s32
+
+poly8x8_t vmvn_p8(poly8x8_t a); // VMVN d0,d0
+#define vmvn_p8 vmvn_u8
+
+int8x16_t vmvnq_s8(int8x16_t a); // VMVN q0,q0
+_NEON2SSE_INLINE int8x16_t vmvnq_s8(int8x16_t a) // VMVN q0,q0
+{
+    __m128i c1;
+    c1 = _mm_cmpeq_epi8 (a,a); //0xff
+    return _mm_andnot_si128 (a, c1);
+}
+
+int16x8_t vmvnq_s16(int16x8_t a); // VMVN q0,q0
+_NEON2SSE_INLINE int16x8_t vmvnq_s16(int16x8_t a) // VMVN q0,q0
+{
+    __m128i c1;
+    c1 = _mm_cmpeq_epi16 (a,a); //0xffff
+    return _mm_andnot_si128 (a, c1);
+}
+
+int32x4_t vmvnq_s32(int32x4_t a); // VMVN q0,q0
+_NEON2SSE_INLINE int32x4_t vmvnq_s32(int32x4_t a) // VMVN q0,q0
+{
+    __m128i c1;
+    c1 = _mm_cmpeq_epi32 (a,a); //0xffffffff
+    return _mm_andnot_si128 (a, c1);
+}
+
+uint8x16_t vmvnq_u8(uint8x16_t a); // VMVN q0,q0
+#define vmvnq_u8 vmvnq_s8
+
+uint16x8_t vmvnq_u16(uint16x8_t a); // VMVN q0,q0
+#define vmvnq_u16 vmvnq_s16
+
+uint32x4_t vmvnq_u32(uint32x4_t a); // VMVN q0,q0
+#define vmvnq_u32 vmvnq_s32
+
+poly8x16_t vmvnq_p8(poly8x16_t a); // VMVN q0,q0
+#define vmvnq_p8 vmvnq_u8
+
+//****************** Bitwise and ***********************
+//******************************************************
+int8x8_t vand_s8(int8x8_t a, int8x8_t b); // VAND d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vand_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_and_si128(_pM128i(a),_pM128i(b)));
+}
+
+int16x4_t vand_s16(int16x4_t a, int16x4_t b); // VAND d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vand_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_and_si128(_pM128i(a),_pM128i(b)));
+}
+
+int32x2_t vand_s32(int32x2_t a, int32x2_t b); // VAND d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vand_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    return64(_mm_and_si128(_pM128i(a),_pM128i(b)));
+}
+
+
+int64x1_t vand_s64(int64x1_t a,  int64x1_t b); // VAND d0,d0,d0
+_NEON2SSE_INLINE int64x1_t vand_s64(int64x1_t a,  int64x1_t b)
+{
+    int64x1_t res;
+    res.m64_i64[0] = a.m64_i64[0] & b.m64_i64[0];
+    return res;
+}
+
+uint8x8_t vand_u8(uint8x8_t a, uint8x8_t b); // VAND d0,d0,d0
+#define vand_u8 vand_s8
+
+uint16x4_t vand_u16(uint16x4_t a, uint16x4_t b); // VAND d0,d0,d0
+#define vand_u16 vand_s16
+
+uint32x2_t vand_u32(uint32x2_t a, uint32x2_t b); // VAND d0,d0,d0
+#define vand_u32 vand_s32
+
+uint64x1_t vand_u64(uint64x1_t a,  uint64x1_t b); // VAND d0,d0,d0
+#define vand_u64 vand_s64
+
+
+int8x16_t   vandq_s8(int8x16_t a, int8x16_t b); // VAND q0,q0,q0
+#define vandq_s8 _mm_and_si128
+
+int16x8_t   vandq_s16(int16x8_t a, int16x8_t b); // VAND q0,q0,q0
+#define vandq_s16 _mm_and_si128
+
+int32x4_t   vandq_s32(int32x4_t a, int32x4_t b); // VAND q0,q0,q0
+#define vandq_s32 _mm_and_si128
+
+int64x2_t   vandq_s64(int64x2_t a, int64x2_t b); // VAND q0,q0,q0
+#define vandq_s64 _mm_and_si128
+
+uint8x16_t   vandq_u8(uint8x16_t a, uint8x16_t b); // VAND q0,q0,q0
+#define vandq_u8 _mm_and_si128
+
+uint16x8_t   vandq_u16(uint16x8_t a, uint16x8_t b); // VAND q0,q0,q0
+#define vandq_u16 _mm_and_si128
+
+uint32x4_t   vandq_u32(uint32x4_t a, uint32x4_t b); // VAND q0,q0,q0
+#define vandq_u32 _mm_and_si128
+
+uint64x2_t   vandq_u64(uint64x2_t a, uint64x2_t b); // VAND q0,q0,q0
+#define vandq_u64 _mm_and_si128
+
+//******************** Bitwise or *********************************
+//******************************************************************
+int8x8_t vorr_s8(int8x8_t a, int8x8_t b); // VORR d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vorr_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_or_si128(_pM128i(a),_pM128i(b)));
+}
+
+
+int16x4_t vorr_s16(int16x4_t a, int16x4_t b); // VORR d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vorr_s16(int16x4_t a, int16x4_t b)
+{
+    int16x4_t res64;
+    return64(_mm_or_si128(_pM128i(a),_pM128i(b)));
+}
+
+
+int32x2_t vorr_s32(int32x2_t a, int32x2_t b); // VORR d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vorr_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2_t res64;
+    return64(_mm_or_si128(_pM128i(a),_pM128i(b)));
+}
+
+
+int64x1_t vorr_s64(int64x1_t a,  int64x1_t b); // VORR d0,d0,d0
+_NEON2SSE_INLINE int64x1_t vorr_s64(int64x1_t a,  int64x1_t b)
+{
+    int64x1_t res;
+    res.m64_i64[0] = a.m64_i64[0] | b.m64_i64[0];
+    return res;
+}
+
+uint8x8_t vorr_u8(uint8x8_t a, uint8x8_t b); // VORR d0,d0,d0
+#define vorr_u8 vorr_s8
+
+uint16x4_t vorr_u16(uint16x4_t a, uint16x4_t b); // VORR d0,d0,d0
+#define vorr_u16 vorr_s16
+
+uint32x2_t vorr_u32(uint32x2_t a, uint32x2_t b); // VORR d0,d0,d0
+#define vorr_u32 vorr_s32
+
+uint64x1_t vorr_u64(uint64x1_t a,  uint64x1_t b); // VORR d0,d0,d0
+#define vorr_u64 vorr_s64
+
+int8x16_t   vorrq_s8(int8x16_t a, int8x16_t b); // VORR q0,q0,q0
+#define vorrq_s8 _mm_or_si128
+
+int16x8_t   vorrq_s16(int16x8_t a, int16x8_t b); // VORR q0,q0,q0
+#define vorrq_s16 _mm_or_si128
+
+int32x4_t   vorrq_s32(int32x4_t a, int32x4_t b); // VORR q0,q0,q0
+#define vorrq_s32 _mm_or_si128
+
+int64x2_t   vorrq_s64(int64x2_t a, int64x2_t b); // VORR q0,q0,q0
+#define vorrq_s64 _mm_or_si128
+
+uint8x16_t   vorrq_u8(uint8x16_t a, uint8x16_t b); // VORR q0,q0,q0
+#define vorrq_u8 _mm_or_si128
+
+uint16x8_t   vorrq_u16(uint16x8_t a, uint16x8_t b); // VORR q0,q0,q0
+#define vorrq_u16 _mm_or_si128
+
+uint32x4_t   vorrq_u32(uint32x4_t a, uint32x4_t b); // VORR q0,q0,q0
+#define vorrq_u32 _mm_or_si128
+
+uint64x2_t   vorrq_u64(uint64x2_t a, uint64x2_t b); // VORR q0,q0,q0
+#define vorrq_u64 _mm_or_si128
+
+//************* Bitwise exclusive or (EOR or XOR) ******************
+//*******************************************************************
+int8x8_t veor_s8(int8x8_t a, int8x8_t b); // VEOR d0,d0,d0
+_NEON2SSE_INLINE int8x8_t veor_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_xor_si128(_pM128i(a),_pM128i(b)));
+}
+
+int16x4_t veor_s16(int16x4_t a, int16x4_t b); // VEOR d0,d0,d0
+#define veor_s16 veor_s8
+
+int32x2_t veor_s32(int32x2_t a, int32x2_t b); // VEOR d0,d0,d0
+#define veor_s32 veor_s8
+
+int64x1_t veor_s64(int64x1_t a,  int64x1_t b); // VEOR d0,d0,d0
+_NEON2SSE_INLINE int64x1_t veor_s64(int64x1_t a,  int64x1_t b)
+{
+    int64x1_t res;
+    res.m64_i64[0] = a.m64_i64[0] ^ b.m64_i64[0];
+    return res;
+}
+
+uint8x8_t veor_u8(uint8x8_t a, uint8x8_t b); // VEOR d0,d0,d0
+#define veor_u8 veor_s8
+
+uint16x4_t veor_u16(uint16x4_t a, uint16x4_t b); // VEOR d0,d0,d0
+#define veor_u16 veor_s16
+
+uint32x2_t veor_u32(uint32x2_t a, uint32x2_t b); // VEOR d0,d0,d0
+#define veor_u32 veor_s32
+
+uint64x1_t veor_u64(uint64x1_t a,  uint64x1_t b); // VEOR d0,d0,d0
+#define veor_u64 veor_s64
+
+int8x16_t   veorq_s8(int8x16_t a, int8x16_t b); // VEOR q0,q0,q0
+#define veorq_s8 _mm_xor_si128
+
+int16x8_t   veorq_s16(int16x8_t a, int16x8_t b); // VEOR q0,q0,q0
+#define veorq_s16 _mm_xor_si128
+
+int32x4_t   veorq_s32(int32x4_t a, int32x4_t b); // VEOR q0,q0,q0
+#define veorq_s32 _mm_xor_si128
+
+int64x2_t   veorq_s64(int64x2_t a, int64x2_t b); // VEOR q0,q0,q0
+#define veorq_s64 _mm_xor_si128
+
+uint8x16_t   veorq_u8(uint8x16_t a, uint8x16_t b); // VEOR q0,q0,q0
+#define veorq_u8 _mm_xor_si128
+
+uint16x8_t   veorq_u16(uint16x8_t a, uint16x8_t b); // VEOR q0,q0,q0
+#define veorq_u16 _mm_xor_si128
+
+uint32x4_t   veorq_u32(uint32x4_t a, uint32x4_t b); // VEOR q0,q0,q0
+#define veorq_u32 _mm_xor_si128
+
+uint64x2_t   veorq_u64(uint64x2_t a, uint64x2_t b); // VEOR q0,q0,q0
+#define veorq_u64 _mm_xor_si128
+
+//********************** Bit Clear **********************************
+//*******************************************************************
+//Logical AND complement (AND negation or AND NOT)
+int8x8_t   vbic_s8(int8x8_t a, int8x8_t b); // VBIC d0,d0,d0
+_NEON2SSE_INLINE int8x8_t   vbic_s8(int8x8_t a, int8x8_t b)
+{
+    int8x8_t res64;
+    return64(_mm_andnot_si128(_pM128i(b),_pM128i(a))); //notice the arguments "swap"
+}
+
+int16x4_t   vbic_s16(int16x4_t a, int16x4_t b); // VBIC d0,d0,d0
+#define vbic_s16 vbic_s8
+
+int32x2_t   vbic_s32(int32x2_t a, int32x2_t b); // VBIC d0,d0,d0
+#define vbic_s32 vbic_s8
+
+int64x1_t   vbic_s64(int64x1_t a, int64x1_t b); // VBIC d0,d0,d0
+_NEON2SSE_INLINE int64x1_t   vbic_s64(int64x1_t a, int64x1_t b)
+{
+    int64x1_t res;
+    res.m64_i64[0] = a.m64_i64[0] & (~b.m64_i64[0]);
+    return res;
+}
+
+uint8x8_t   vbic_u8(uint8x8_t a, uint8x8_t b); // VBIC d0,d0,d0
+#define vbic_u8 vbic_s8
+
+uint16x4_t   vbic_u16(uint16x4_t a, uint16x4_t b); // VBIC d0,d0,d0
+#define vbic_u16 vbic_s16
+
+uint32x2_t   vbic_u32(uint32x2_t a, uint32x2_t b); // VBIC d0,d0,d0
+#define vbic_u32 vbic_s32
+
+uint64x1_t   vbic_u64(uint64x1_t a, uint64x1_t b); // VBIC d0,d0,d0
+#define vbic_u64 vbic_s64
+
+int8x16_t   vbicq_s8(int8x16_t a, int8x16_t b); // VBIC q0,q0,q0
+#define vbicq_s8(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+int16x8_t   vbicq_s16(int16x8_t a, int16x8_t b); // VBIC q0,q0,q0
+#define vbicq_s16(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+int32x4_t   vbicq_s32(int32x4_t a, int32x4_t b); // VBIC q0,q0,q0
+#define vbicq_s32(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+int64x2_t   vbicq_s64(int64x2_t a, int64x2_t b); // VBIC q0,q0,q0
+#define vbicq_s64(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+uint8x16_t   vbicq_u8(uint8x16_t a, uint8x16_t b); // VBIC q0,q0,q0
+#define vbicq_u8(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+uint16x8_t   vbicq_u16(uint16x8_t a, uint16x8_t b); // VBIC q0,q0,q0
+#define vbicq_u16(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+uint32x4_t   vbicq_u32(uint32x4_t a, uint32x4_t b); // VBIC q0,q0,q0
+#define vbicq_u32(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+uint64x2_t   vbicq_u64(uint64x2_t a, uint64x2_t b); // VBIC q0,q0,q0
+#define vbicq_u64(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap"
+
+//**************** Bitwise OR complement ********************************
+//**************************************** ********************************
+//no exact IA 32 match, need to implement it as following
+int8x8_t vorn_s8(int8x8_t a,  int8x8_t b); // VORN d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vorn_s8(int8x8_t a,  int8x8_t b)
+{
+    int8x8_t res64;
+    return64(vornq_s8(_pM128i(a), _pM128i(b)));
+}
+
+
+int16x4_t vorn_s16(int16x4_t a,  int16x4_t b); // VORN d0,d0,d0
+_NEON2SSE_INLINE int16x4_t vorn_s16(int16x4_t a,  int16x4_t b)
+{
+    int16x4_t res64;
+    return64(vornq_s16(_pM128i(a), _pM128i(b)));
+}
+
+
+int32x2_t vorn_s32(int32x2_t a,  int32x2_t b); // VORN d0,d0,d0
+_NEON2SSE_INLINE int32x2_t vorn_s32(int32x2_t a,  int32x2_t b)
+{
+    int32x2_t res64;
+    return64(vornq_s32(_pM128i(a), _pM128i(b)));
+}
+
+
+int64x1_t vorn_s64(int64x1_t a, int64x1_t b); // VORN d0,d0,d0
+_NEON2SSE_INLINE int64x1_t vorn_s64(int64x1_t a, int64x1_t b)
+{
+    int64x1_t res;
+    res.m64_i64[0] = a.m64_i64[0] | (~b.m64_i64[0]);
+    return res;
+}
+
+uint8x8_t vorn_u8(uint8x8_t a,  uint8x8_t b); // VORN d0,d0,d0
+#define vorn_u8 vorn_s8
+
+
+uint16x4_t vorn_u16(uint16x4_t a,  uint16x4_t b); // VORN d0,d0,d0
+#define vorn_u16 vorn_s16
+
+uint32x2_t vorn_u32(uint32x2_t a,  uint32x2_t b); // VORN d0,d0,d0
+#define vorn_u32 vorn_s32
+
+uint64x1_t vorn_u64(uint64x1_t a, uint64x1_t b); // VORN d0,d0,d0
+#define vorn_u64 vorn_s64
+
+
+int8x16_t vornq_s8(int8x16_t a, int8x16_t b); // VORN q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vornq_s8(int8x16_t a, int8x16_t b) // VORN q0,q0,q0
+{
+    __m128i b1;
+    b1 = vmvnq_s8( b); //bitwise not for b
+    return _mm_or_si128 (a, b1);
+}
+
+int16x8_t vornq_s16(int16x8_t a, int16x8_t b); // VORN q0,q0,q0
+_NEON2SSE_INLINE int16x8_t vornq_s16(int16x8_t a, int16x8_t b) // VORN q0,q0,q0
+{
+    __m128i b1;
+    b1 = vmvnq_s16( b); //bitwise not for b
+    return _mm_or_si128 (a, b1);
+}
+
+int32x4_t vornq_s32(int32x4_t a, int32x4_t b); // VORN q0,q0,q0
+_NEON2SSE_INLINE int32x4_t vornq_s32(int32x4_t a, int32x4_t b) // VORN q0,q0,q0
+{
+    __m128i b1;
+    b1 = vmvnq_s32( b); //bitwise not for b
+    return _mm_or_si128 (a, b1);
+}
+
+int64x2_t vornq_s64(int64x2_t a, int64x2_t b); // VORN q0,q0,q0
+_NEON2SSE_INLINE int64x2_t vornq_s64(int64x2_t a, int64x2_t b)
+{
+    __m128i c1, b1;
+    c1 = _mm_cmpeq_epi8 (a, a); //all ones 0xfffffff...fffff
+    b1 = _mm_andnot_si128 (b, c1);
+    return _mm_or_si128 (a, b1);
+}
+
+uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b); // VORN q0,q0,q0
+_NEON2SSE_INLINE uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b) // VORN q0,q0,q0
+{
+    __m128i b1;
+    b1 = vmvnq_u8( b); //bitwise not for b
+    return _mm_or_si128 (a, b1);
+}
+
+uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b); // VORN q0,q0,q0
+_NEON2SSE_INLINE uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b) // VORN q0,q0,q0
+{
+    __m128i b1;
+    b1 = vmvnq_s16( b); //bitwise not for b
+    return _mm_or_si128 (a, b1);
+}
+
+uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b); // VORN q0,q0,q0
+_NEON2SSE_INLINE uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b) // VORN q0,q0,q0
+{
+    __m128i b1;
+    b1 = vmvnq_u32( b); //bitwise not for b
+    return _mm_or_si128 (a, b1);
+}
+uint64x2_t vornq_u64(uint64x2_t a, uint64x2_t b); // VORN q0,q0,q0
+#define vornq_u64 vornq_s64
+
+//********************* Bitwise Select *****************************
+//******************************************************************
+//Note This intrinsic can compile to any of VBSL/VBIF/VBIT depending on register allocation.(?????????)
+
+//VBSL (Bitwise Select) selects each bit for the destination from the first operand if the
+//corresponding bit of the destination is 1, or from the second operand if the corresponding bit of the destination is 0.
+
+//VBIF (Bitwise Insert if False) inserts each bit from the first operand into the destination
+//if the corresponding bit of the second operand is 0, otherwise leaves the destination bit unchanged
+
+//VBIT (Bitwise Insert if True) inserts each bit from the first operand into the destination
+//if the corresponding bit of the second operand is 1, otherwise leaves the destination bit unchanged.
+
+//VBSL only is implemented for SIMD
+int8x8_t vbsl_s8(uint8x8_t a, int8x8_t b, int8x8_t c); // VBSL d0,d0,d0
+_NEON2SSE_INLINE int8x8_t vbsl_s8(uint8x8_t a, int8x8_t b, int8x8_t c)
+{
+    int8x8_t res64;
+    __m128i res;
+    res = vbslq_s8(_pM128i(a), _pM128i(b), _pM128i(c));
+    return64(res);
+}
+
+int16x4_t vbsl_s16(uint16x4_t a, int16x4_t b, int16x4_t c); // VBSL d0,d0,d0
+#define vbsl_s16 vbsl_s8
+
+int32x2_t vbsl_s32(uint32x2_t a, int32x2_t b, int32x2_t c); // VBSL d0,d0,d0
+#define vbsl_s32 vbsl_s8
+
+int64x1_t vbsl_s64(uint64x1_t a, int64x1_t b, int64x1_t c); // VBSL d0,d0,d0
+_NEON2SSE_INLINE int64x1_t vbsl_s64(uint64x1_t a, int64x1_t b, int64x1_t c)
+{
+    int64x1_t res;
+    res.m64_i64[0] = (a.m64_i64[0] & b.m64_i64[0]) | ( (~a.m64_i64[0]) & c.m64_i64[0]);
+    return res;
+}
+
+uint8x8_t vbsl_u8(uint8x8_t a,  uint8x8_t b, uint8x8_t c); // VBSL d0,d0,d0
+#define vbsl_u8 vbsl_s8
+
+uint16x4_t vbsl_u16(uint16x4_t a,  uint16x4_t b, uint16x4_t c); // VBSL d0,d0,d0
+#define vbsl_u16 vbsl_s8
+
+uint32x2_t vbsl_u32(uint32x2_t a,  uint32x2_t b, uint32x2_t c); // VBSL d0,d0,d0
+#define vbsl_u32 vbsl_s8
+
+uint64x1_t vbsl_u64(uint64x1_t a, uint64x1_t b, uint64x1_t c); // VBSL d0,d0,d0
+#define vbsl_u64 vbsl_s64
+
+float32x2_t vbsl_f32(uint32x2_t a, float32x2_t b, float32x2_t c); // VBSL d0,d0,d0
+_NEON2SSE_INLINE float32x2_t vbsl_f32(uint32x2_t a, float32x2_t b, float32x2_t c)
+{
+    __m128 sel1, sel2;
+    __m64_128 res64;
+    sel1 = _mm_and_ps   (_pM128(a), _pM128(b));
+    sel2 = _mm_andnot_ps (_pM128(a), _pM128(c));
+    sel1 = _mm_or_ps (sel1, sel2);
+    _M64f(res64, sel1);
+    return res64;
+}
+
+poly8x8_t vbsl_p8(uint8x8_t a, poly8x8_t b, poly8x8_t c); // VBSL d0,d0,d0
+#define  vbsl_p8 vbsl_s8
+
+poly16x4_t vbsl_p16(uint16x4_t a, poly16x4_t b, poly16x4_t c); // VBSL d0,d0,d0
+#define  vbsl_p16 vbsl_s8
+
+int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c); // VBSL q0,q0,q0
+_NEON2SSE_INLINE int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c) // VBSL q0,q0,q0
+{
+    __m128i sel1, sel2;
+    sel1 = _mm_and_si128   (a, b);
+    sel2 = _mm_andnot_si128 (a, c);
+    return _mm_or_si128 (sel1, sel2);
+}
+
+int16x8_t vbslq_s16(uint16x8_t a, int16x8_t b, int16x8_t c); // VBSL q0,q0,q0
+#define vbslq_s16 vbslq_s8
+
+int32x4_t vbslq_s32(uint32x4_t a, int32x4_t b, int32x4_t c); // VBSL q0,q0,q0
+#define vbslq_s32 vbslq_s8
+
+int64x2_t vbslq_s64(uint64x2_t a, int64x2_t b, int64x2_t c); // VBSL q0,q0,q0
+#define vbslq_s64 vbslq_s8
+
+uint8x16_t vbslq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VBSL q0,q0,q0
+#define vbslq_u8 vbslq_s8
+
+uint16x8_t vbslq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VBSL q0,q0,q0
+#define vbslq_u16 vbslq_s8
+
+uint32x4_t vbslq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VBSL q0,q0,q0
+#define vbslq_u32 vbslq_s8
+
+uint64x2_t vbslq_u64(uint64x2_t a, uint64x2_t b, uint64x2_t c); // VBSL q0,q0,q0
+#define vbslq_u64 vbslq_s8
+
+float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c); // VBSL q0,q0,q0
+_NEON2SSE_INLINE float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c) // VBSL q0,q0,q0
+{
+    __m128 sel1, sel2;
+    sel1 = _mm_and_ps   (*(__m128*)&a, b);
+    sel2 = _mm_andnot_ps (*(__m128*)&a, c);
+    return _mm_or_ps (sel1, sel2);
+}
+
+poly8x16_t vbslq_p8(uint8x16_t a, poly8x16_t b, poly8x16_t c); // VBSL q0,q0,q0
+#define vbslq_p8 vbslq_u8
+
+poly16x8_t vbslq_p16(uint16x8_t a, poly16x8_t b, poly16x8_t c); // VBSL q0,q0,q0
+#define vbslq_p16 vbslq_s8
+
+//************************************************************************************
+//**************** Transposition operations ****************************************
+//************************************************************************************
+//*****************  Vector Transpose ************************************************
+//************************************************************************************
+//VTRN (Vector Transpose) treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices.
+// making the result look as (a0, b0, a2, b2, a4, b4,....) (a1, b1, a3, b3, a5, b5,.....)
+int8x8x2_t vtrn_s8(int8x8_t a, int8x8_t b); // VTRN.8 d0,d0
+_NEON2SSE_INLINE int8x8x2_t vtrn_s8(int8x8_t a, int8x8_t b) // VTRN.8 d0,d0
+{
+    int8x8x2_t val;
+    __m128i tmp, val0;
+    _NEON2SSE_ALIGN_16 int8_t mask16_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7, 10,11, 14,15}; //mask8_trnsp
+    tmp = _mm_unpacklo_epi8(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3,...,a7,b7
+    val0 = _mm_shuffle_epi8 (tmp, *(__m128i*)mask16_even_odd); //(a0, b0, a2, b2, a4, b4, a6, b6), (a1,b1, a3,b3, a5,b5, a7,b7)
+    vst1q_s8 (val.val, val0); // _mm_shuffle_epi32 (val.val[0], _SWAP_HI_LOW32); //(a1,b1, a3,b3, a5,b5, a7,b7),(a0, b0, a2, b2, a4, b4, a6, b6),
+    return val;
+}
+
+int16x4x2_t vtrn_s16(int16x4_t a, int16x4_t b); // VTRN.16 d0,d0
+_NEON2SSE_INLINE int16x4x2_t vtrn_s16(int16x4_t a, int16x4_t b) // VTRN.16 d0,d0
+{
+    int16x4x2_t val;
+    __m128i tmp, val0;
+    _NEON2SSE_ALIGN_16 int8_t maskdlv16[16] = {0,1, 2,3, 8,9, 10,11, 4,5, 6,7, 12,13, 14, 15};
+    tmp = _mm_unpacklo_epi16(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3
+    val0 =  _mm_shuffle_epi8 (tmp, *(__m128i*)maskdlv16); //a0, b0, a2, b2, a1,b1, a3, b3
+    vst1q_s16(val.val, val0); // _mm_shuffle_epi32 (val.val[0], _SWAP_HI_LOW32); //(a1,b1, a3,b3),(a0, b0, a2, b2),
+    return val;
+}
+
+int32x2x2_t vtrn_s32(int32x2_t a, int32x2_t b); // VTRN.32 d0,d0
+_NEON2SSE_INLINE int32x2x2_t vtrn_s32(int32x2_t a, int32x2_t b)
+{
+    int32x2x2_t val;
+    __m128i val0;
+    val0 = _mm_unpacklo_epi32(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1
+    vst1q_s32(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32); //a1,b1, a0,b0,
+    return val;
+}
+
+uint8x8x2_t vtrn_u8(uint8x8_t a, uint8x8_t b); // VTRN.8 d0,d0
+#define vtrn_u8 vtrn_s8
+
+uint16x4x2_t vtrn_u16(uint16x4_t a, uint16x4_t b); // VTRN.16 d0,d0
+#define vtrn_u16 vtrn_s16
+
+uint32x2x2_t vtrn_u32(uint32x2_t a, uint32x2_t b); // VTRN.32 d0,d0
+#define vtrn_u32 vtrn_s32
+
+float32x2x2_t vtrn_f32(float32x2_t a, float32x2_t b); // VTRN.32 d0,d0
+_NEON2SSE_INLINE float32x2x2_t vtrn_f32(float32x2_t a, float32x2_t b)
+{
+    float32x2x2_t val;
+    val.val[0].m64_f32[0] = a.m64_f32[0];
+    val.val[0].m64_f32[1] = b.m64_f32[0];
+    val.val[1].m64_f32[0] = a.m64_f32[1];
+    val.val[1].m64_f32[1] = b.m64_f32[1];
+    return val; //a0,b0,a1,b1
+}
+
+poly8x8x2_t vtrn_p8(poly8x8_t a, poly8x8_t b); // VTRN.8 d0,d0
+#define  vtrn_p8 vtrn_u8
+
+poly16x4x2_t vtrn_p16(poly16x4_t a, poly16x4_t b); // VTRN.16 d0,d0
+#define  vtrn_p16 vtrn_s16
+
+//int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b); // VTRN.8 q0,q0
+_NEON2SSE_INLINE int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b) // VTRN.8 q0,q0
+{
+    int8x16x2_t r8x16;
+    __m128i a_sh, b_sh;
+    _NEON2SSE_ALIGN_16 int8_t mask8_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3,5, 7, 9, 11, 13, 15};
+    a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask8_even_odd); //a0, a2, a4, a6, a8, a10, a12, a14, a1, a3, a5, a7, a9, a11, a13, a15
+    b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask8_even_odd); //b0, b2, b4, b6, b8, b10, b12, b14, b1, b3, b5, b7, b9, b11, b13, b15
+
+    r8x16.val[0] =  _mm_unpacklo_epi8(a_sh, b_sh); //(a0, b0, a2, b2, a4, b4, a6, b6, a8,b8, a10,b10, a12,b12, a14,b14)
+    r8x16.val[1] =  _mm_unpackhi_epi8(a_sh, b_sh); // (a1, b1, a3, b3, a5, b5, a7, b7, a9,b9, a11,b11, a13,b13, a15,b15)
+    return r8x16;
+}
+
+int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b); // VTRN.16 q0,q0
+_NEON2SSE_INLINE int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b) // VTRN.16 q0,q0
+{
+    int16x8x2_t v16x8;
+    __m128i a_sh, b_sh;
+    _NEON2SSE_ALIGN_16 int8_t mask16_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7, 10,11, 14,15};
+    a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask16_even_odd); //a0, a2, a4, a6,  a1, a3, a5, a7
+    b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask16_even_odd); //b0, b2, b4, b6,  b1, b3, b5, b7
+    v16x8.val[0] = _mm_unpacklo_epi16(a_sh, b_sh); //a0, b0, a2, b2, a4, b4, a6, b6
+    v16x8.val[1] = _mm_unpackhi_epi16(a_sh, b_sh); //a1, b1, a3, b3, a5, b5, a7, b7
+    return v16x8;
+}
+
+int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b); // VTRN.32 q0,q0
+_NEON2SSE_INLINE int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b) // VTRN.32 q0,q0
+{
+    //may be not optimal solution compared with serial
+    int32x4x2_t v32x4;
+    __m128i a_sh, b_sh;
+    a_sh = _mm_shuffle_epi32 (a, 216); //a0, a2, a1, a3
+    b_sh = _mm_shuffle_epi32 (b, 216); //b0, b2, b1, b3
+
+    v32x4.val[0] = _mm_unpacklo_epi32(a_sh, b_sh); //a0, b0, a2, b2
+    v32x4.val[1] = _mm_unpackhi_epi32(a_sh, b_sh); //a1, b1, a3,  b3
+    return v32x4;
+}
+
+uint8x16x2_t vtrnq_u8(uint8x16_t a, uint8x16_t b); // VTRN.8 q0,q0
+#define vtrnq_u8 vtrnq_s8
+
+uint16x8x2_t vtrnq_u16(uint16x8_t a, uint16x8_t b); // VTRN.16 q0,q0
+#define vtrnq_u16 vtrnq_s16
+
+uint32x4x2_t vtrnq_u32(uint32x4_t a, uint32x4_t b); // VTRN.32 q0,q0
+#define vtrnq_u32 vtrnq_s32
+
+float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b); // VTRN.32 q0,q0
+_NEON2SSE_INLINE float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b) // VTRN.32 q0,q0
+{
+    //may be not optimal solution compared with serial
+    float32x4x2_t f32x4;
+    __m128 a_sh, b_sh;
+    a_sh = _mm_shuffle_ps (a, a, _MM_SHUFFLE(3,1, 2, 0)); //a0, a2, a1, a3, need to check endiness
+    b_sh = _mm_shuffle_ps (b, b, _MM_SHUFFLE(3,1, 2, 0)); //b0, b2, b1, b3, need to check endiness
+
+    f32x4.val[0] = _mm_unpacklo_ps(a_sh, b_sh); //a0, b0, a2, b2
+    f32x4.val[1] = _mm_unpackhi_ps(a_sh, b_sh); //a1, b1, a3,  b3
+    return f32x4;
+}
+
+poly8x16x2_t vtrnq_p8(poly8x16_t a, poly8x16_t b); // VTRN.8 q0,q0
+#define vtrnq_p8 vtrnq_s8
+
+poly16x8x2_t vtrnq_p16(poly16x8_t a, poly16x8_t b); // VTRN.16 q0,q0
+#define vtrnq_p16 vtrnq_s16
+
+//***************** Interleave elements ***************************
+//*****************************************************************
+//output has (a0,b0,a1,b1, a2,b2,.....)
+int8x8x2_t vzip_s8(int8x8_t a, int8x8_t b); // VZIP.8 d0,d0
+_NEON2SSE_INLINE int8x8x2_t vzip_s8(int8x8_t a, int8x8_t b) // VZIP.8 d0,d0
+{
+    int8x8x2_t val;
+    __m128i val0;
+    val0 = _mm_unpacklo_epi8(_pM128i(a), _pM128i(b));
+    vst1q_s8(val.val, val0); //_mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32);
+    return val;
+}
+
+int16x4x2_t vzip_s16(int16x4_t a, int16x4_t b); // VZIP.16 d0,d0
+_NEON2SSE_INLINE int16x4x2_t vzip_s16(int16x4_t a, int16x4_t b) // VZIP.16 d0,d0
+{
+    int16x4x2_t val;
+    __m128i val0;
+    val0 = _mm_unpacklo_epi16(_pM128i(a), _pM128i(b));
+    vst1q_s16(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32);
+    return val;
+}
+
+int32x2x2_t vzip_s32(int32x2_t a, int32x2_t b); // VZIP.32 d0,d0
+#define vzip_s32 vtrn_s32
+
+uint8x8x2_t vzip_u8(uint8x8_t a, uint8x8_t b); // VZIP.8 d0,d0
+#define vzip_u8 vzip_s8
+
+uint16x4x2_t vzip_u16(uint16x4_t a, uint16x4_t b); // VZIP.16 d0,d0
+#define vzip_u16 vzip_s16
+
+uint32x2x2_t vzip_u32(uint32x2_t a, uint32x2_t b); // VZIP.32 d0,d0
+#define vzip_u32 vzip_s32
+
+float32x2x2_t vzip_f32(float32x2_t a, float32x2_t b); // VZIP.32 d0,d0
+#define vzip_f32 vtrn_f32
+
+poly8x8x2_t vzip_p8(poly8x8_t a, poly8x8_t b); // VZIP.8 d0,d0
+#define vzip_p8 vzip_u8
+
+poly16x4x2_t vzip_p16(poly16x4_t a, poly16x4_t b); // VZIP.16 d0,d0
+#define vzip_p16 vzip_u16
+
+int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b); // VZIP.8 q0,q0
+_NEON2SSE_INLINE int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b) // VZIP.8 q0,q0
+{
+    int8x16x2_t r8x16;
+    r8x16.val[0] =  _mm_unpacklo_epi8(a, b);
+    r8x16.val[1] =  _mm_unpackhi_epi8(a, b);
+    return r8x16;
+}
+
+int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b); // VZIP.16 q0,q0
+_NEON2SSE_INLINE int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b) // VZIP.16 q0,q0
+{
+    int16x8x2_t r16x8;
+    r16x8.val[0] =  _mm_unpacklo_epi16(a, b);
+    r16x8.val[1] =  _mm_unpackhi_epi16(a, b);
+    return r16x8;
+}
+
+int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b); // VZIP.32 q0,q0
+_NEON2SSE_INLINE int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b) // VZIP.32 q0,q0
+{
+    int32x4x2_t r32x4;
+    r32x4.val[0] =  _mm_unpacklo_epi32(a, b);
+    r32x4.val[1] =  _mm_unpackhi_epi32(a, b);
+    return r32x4;
+}
+
+uint8x16x2_t vzipq_u8(uint8x16_t a, uint8x16_t b); // VZIP.8 q0,q0
+#define vzipq_u8 vzipq_s8
+
+uint16x8x2_t vzipq_u16(uint16x8_t a, uint16x8_t b); // VZIP.16 q0,q0
+#define vzipq_u16 vzipq_s16
+
+uint32x4x2_t vzipq_u32(uint32x4_t a, uint32x4_t b); // VZIP.32 q0,q0
+#define vzipq_u32 vzipq_s32
+
+float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b); // VZIP.32 q0,q0
+_NEON2SSE_INLINE float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b) // VZIP.32 q0,q0
+{
+    float32x4x2_t f32x4;
+    f32x4.val[0] =   _mm_unpacklo_ps ( a,  b);
+    f32x4.val[1] =   _mm_unpackhi_ps ( a,  b);
+    return f32x4;
+}
+
+poly8x16x2_t vzipq_p8(poly8x16_t a, poly8x16_t b); // VZIP.8 q0,q0
+#define vzipq_p8 vzipq_u8
+
+poly16x8x2_t vzipq_p16(poly16x8_t a, poly16x8_t b); // VZIP.16 q0,q0
+#define vzipq_p16 vzipq_u16
+
+//*********************** De-Interleave elements *************************
+//*************************************************************************
+//As the result of these functions first val  contains (a0,a2,a4,....,b0,b2, b4,...) and the second val (a1,a3,a5,....b1,b3,b5...)
+//no such functions in IA32 SIMD, shuffle is required
+int8x8x2_t vuzp_s8(int8x8_t a, int8x8_t b); // VUZP.8 d0,d0
+_NEON2SSE_INLINE int8x8x2_t vuzp_s8(int8x8_t a, int8x8_t b) // VUZP.8 d0,d0
+{
+    int8x8x2_t val;
+    __m128i tmp, val0;
+    _NEON2SSE_ALIGN_16 int8_t maskdlv8[16] = { 0, 4, 8, 12, 1, 5, 9, 13,  2, 6, 10, 14, 3, 7, 11,15};
+    tmp = _mm_unpacklo_epi8(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3,...,a7,b7
+    val0 = _mm_shuffle_epi8 (tmp, *(__m128i*)maskdlv8); //(a0, a2, a4, a6, b0, b2, b4, b6),  (a1, a3, a5, a7, b1,b3, b5, b7)
+    vst1q_s8(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32);
+    return val;
+}
+
+int16x4x2_t vuzp_s16(int16x4_t a, int16x4_t b); // VUZP.16 d0,d0
+_NEON2SSE_INLINE int16x4x2_t vuzp_s16(int16x4_t a, int16x4_t b) // VUZP.16 d0,d0
+{
+    int16x4x2_t val;
+    __m128i tmp, val0;
+    _NEON2SSE_ALIGN_16 int8_t maskdlv16[16] = {0,1,  8,9,  2,3, 10,11,  4,5, 12,13, 6,7, 14,15};
+    tmp = _mm_unpacklo_epi16(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3
+    val0 = _mm_shuffle_epi8 (tmp, *(__m128i*)maskdlv16); //a0,a2, b0, b2, a1,a3, b1,b3
+    vst1q_s16(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32);
+    return val;
+}
+
+int32x2x2_t vuzp_s32(int32x2_t a, int32x2_t b); // VUZP.32 d0,d0
+_NEON2SSE_INLINE int32x2x2_t vuzp_s32(int32x2_t a, int32x2_t b) // VUZP.32 d0,d0
+{
+    int32x2x2_t val;
+    __m128i val0;
+    val0 = _mm_unpacklo_epi32(_pM128i(a), _pM128i(b)); //a0,b0, a1,b1
+    vst1q_s32(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32);
+    return val;
+}
+
+uint8x8x2_t vuzp_u8(uint8x8_t a, uint8x8_t b); // VUZP.8 d0,d0
+#define vuzp_u8 vuzp_s8
+
+uint16x4x2_t vuzp_u16(uint16x4_t a, uint16x4_t b); // VUZP.16 d0,d0
+#define vuzp_u16 vuzp_s16
+
+uint32x2x2_t vuzp_u32(uint32x2_t a, uint32x2_t b); // VUZP.32 d0,d0
+#define vuzp_u32 vuzp_s32
+
+float32x2x2_t vuzp_f32(float32x2_t a, float32x2_t b); // VUZP.32 d0,d0
+#define vuzp_f32 vzip_f32
+
+poly8x8x2_t vuzp_p8(poly8x8_t a, poly8x8_t b); // VUZP.8 d0,d0
+#define vuzp_p8 vuzp_u8
+
+poly16x4x2_t vuzp_p16(poly16x4_t a, poly16x4_t b); // VUZP.16 d0,d0
+#define vuzp_p16 vuzp_u16
+
+int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b); // VUZP.8 q0,q0
+_NEON2SSE_INLINE int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b) // VUZP.8 q0,q0
+{
+    int8x16x2_t v8x16;
+    __m128i a_sh, b_sh;
+    _NEON2SSE_ALIGN_16 int8_t mask8_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3,5, 7, 9, 11, 13, 15};
+    a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask8_even_odd); //a0, a2, a4, a6, a8, a10, a12, a14, a1, a3, a5, a7, a9, a11, a13, a15
+    b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask8_even_odd); //b0, b2, b4, b6, b8, b10, b12, b14, b1, b3, b5, b7, b9, b11, b13, b15
+    //we need unpack64 to combine lower (upper) 64 bits from a with lower (upper) 64 bits from b
+    v8x16.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); ///a0, a2, a4, a6, a8, a10, a12, a14,  b0, b2, b4, b6, b8, b10, b12, b14,
+    v8x16.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, a5, a7, a9, a11, a13, a15,  b1, b3, b5, b7, b9, b11, b13, b15
+    return v8x16;
+}
+
+int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b); // VUZP.16 q0,q0
+_NEON2SSE_INLINE int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b) // VUZP.16 q0,q0
+{
+    int16x8x2_t v16x8;
+    __m128i a_sh, b_sh;
+    _NEON2SSE_ALIGN_16 int8_t mask16_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7, 10,11, 14,15};
+    a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask16_even_odd); //a0, a2, a4, a6,  a1, a3, a5, a7
+    b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask16_even_odd); //b0, b2, b4, b6,  b1, b3, b5, b7
+    v16x8.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); //a0, a2, a4, a6, b0, b2, b4, b6
+    v16x8.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, a5, a7, b1, b3, b5, b7
+    return v16x8;
+}
+
+int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b); // VUZP.32 q0,q0
+_NEON2SSE_INLINE int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b) // VUZP.32 q0,q0
+{
+    //may be not optimal solution compared with serial
+    int32x4x2_t v32x4;
+    __m128i a_sh, b_sh;
+    a_sh = _mm_shuffle_epi32 (a, 216); //a0, a2, a1, a3
+    b_sh = _mm_shuffle_epi32 (b, 216); //b0, b2, b1, b3
+
+    v32x4.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); //a0, a2, b0, b2
+    v32x4.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, b1, b3
+    return v32x4;
+}
+
+uint8x16x2_t vuzpq_u8(uint8x16_t a, uint8x16_t b); // VUZP.8 q0,q0
+#define vuzpq_u8 vuzpq_s8
+
+uint16x8x2_t vuzpq_u16(uint16x8_t a, uint16x8_t b); // VUZP.16 q0,q0
+#define vuzpq_u16 vuzpq_s16
+
+uint32x4x2_t vuzpq_u32(uint32x4_t a, uint32x4_t b); // VUZP.32 q0,q0
+#define vuzpq_u32 vuzpq_s32
+
+float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b); // VUZP.32 q0,q0
+_NEON2SSE_INLINE float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b) // VUZP.32 q0,q0
+{
+    float32x4x2_t v32x4;
+    v32x4.val[0] = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2,0, 2, 0)); //a0, a2, b0, b2 , need to check endianess however
+    v32x4.val[1] = _mm_shuffle_ps(a, b, _MM_SHUFFLE(3,1, 3, 1)); //a1, a3, b1, b3, need to check endianess however
+    return v32x4;
+}
+
+poly8x16x2_t vuzpq_p8(poly8x16_t a, poly8x16_t b); // VUZP.8 q0,q0
+#define vuzpq_p8 vuzpq_u8
+
+poly16x8x2_t vuzpq_p16(poly16x8_t a, poly16x8_t b); // VUZP.16 q0,q0
+#define vuzpq_p16 vuzpq_u16
+
+//##############################################################################################
+//*********************** Reinterpret cast intrinsics.******************************************
+//##############################################################################################
+// Not a part of oficial NEON instruction set but available in gcc compiler *********************
+poly8x8_t vreinterpret_p8_u32 (uint32x2_t t);
+#define vreinterpret_p8_u32
+
+poly8x8_t vreinterpret_p8_u16 (uint16x4_t t);
+#define vreinterpret_p8_u16
+
+poly8x8_t vreinterpret_p8_u8 (uint8x8_t t);
+#define vreinterpret_p8_u8
+
+poly8x8_t vreinterpret_p8_s32 (int32x2_t t);
+#define vreinterpret_p8_s32
+
+poly8x8_t vreinterpret_p8_s16 (int16x4_t t);
+#define vreinterpret_p8_s16
+
+poly8x8_t vreinterpret_p8_s8 (int8x8_t t);
+#define vreinterpret_p8_s8
+
+poly8x8_t vreinterpret_p8_u64 (uint64x1_t t);
+#define vreinterpret_p8_u64
+
+poly8x8_t vreinterpret_p8_s64 (int64x1_t t);
+#define vreinterpret_p8_s64
+
+poly8x8_t vreinterpret_p8_f32 (float32x2_t t);
+#define vreinterpret_p8_f32
+
+poly8x8_t vreinterpret_p8_p16 (poly16x4_t t);
+#define vreinterpret_p8_p16
+
+poly8x16_t vreinterpretq_p8_u32 (uint32x4_t t);
+#define vreinterpretq_p8_u32
+
+poly8x16_t vreinterpretq_p8_u16 (uint16x8_t t);
+#define vreinterpretq_p8_u16
+
+poly8x16_t vreinterpretq_p8_u8 (uint8x16_t t);
+#define vreinterpretq_p8_u8
+
+poly8x16_t vreinterpretq_p8_s32 (int32x4_t t);
+#define vreinterpretq_p8_s32
+
+poly8x16_t vreinterpretq_p8_s16 (int16x8_t t);
+#define vreinterpretq_p8_s16
+
+poly8x16_t vreinterpretq_p8_s8 (int8x16_t t);
+#define vreinterpretq_p8_s8
+
+poly8x16_t vreinterpretq_p8_u64 (uint64x2_t t);
+#define vreinterpretq_p8_u64
+
+poly8x16_t vreinterpretq_p8_s64 (int64x2_t t);
+#define vreinterpretq_p8_s64
+
+poly8x16_t vreinterpretq_p8_f32 (float32x4_t t);
+#define vreinterpretq_p8_f32(t) _M128i(t)
+
+poly8x16_t vreinterpretq_p8_p16 (poly16x8_t t);
+#define vreinterpretq_p8_p16
+
+poly16x4_t vreinterpret_p16_u32 (uint32x2_t t);
+#define vreinterpret_p16_u32
+
+poly16x4_t vreinterpret_p16_u16 (uint16x4_t t);
+#define vreinterpret_p16_u16
+
+poly16x4_t vreinterpret_p16_u8 (uint8x8_t t);
+#define vreinterpret_p16_u8
+
+poly16x4_t vreinterpret_p16_s32 (int32x2_t t);
+#define vreinterpret_p16_s32
+
+poly16x4_t vreinterpret_p16_s16 (int16x4_t t);
+#define vreinterpret_p16_s16
+
+poly16x4_t vreinterpret_p16_s8 (int8x8_t t);
+#define vreinterpret_p16_s8
+
+poly16x4_t vreinterpret_p16_u64 (uint64x1_t t);
+#define vreinterpret_p16_u64
+
+poly16x4_t vreinterpret_p16_s64 (int64x1_t t);
+#define vreinterpret_p16_s64
+
+poly16x4_t vreinterpret_p16_f32 (float32x2_t t);
+#define vreinterpret_p16_f32
+
+poly16x4_t vreinterpret_p16_p8 (poly8x8_t t);
+#define vreinterpret_p16_p8
+
+poly16x8_t vreinterpretq_p16_u32 (uint32x4_t t);
+#define vreinterpretq_p16_u32
+
+poly16x8_t vreinterpretq_p16_u16 (uint16x8_t t);
+#define vreinterpretq_p16_u16
+
+poly16x8_t vreinterpretq_p16_s32 (int32x4_t t);
+#define vreinterpretq_p16_s32
+
+poly16x8_t vreinterpretq_p16_s16 (int16x8_t t);
+#define vreinterpretq_p16_s16
+
+poly16x8_t vreinterpretq_p16_s8 (int8x16_t t);
+#define vreinterpretq_p16_s8
+
+poly16x8_t vreinterpretq_p16_u64 (uint64x2_t t);
+#define vreinterpretq_p16_u64
+
+poly16x8_t vreinterpretq_p16_s64 (int64x2_t t);
+#define vreinterpretq_p16_s64
+
+poly16x8_t vreinterpretq_p16_f32 (float32x4_t t);
+#define vreinterpretq_p16_f32(t) _M128i(t)
+
+poly16x8_t vreinterpretq_p16_p8 (poly8x16_t t);
+#define vreinterpretq_p16_p8  vreinterpretq_s16_p8
+
+//****  Integer to float  ******
+float32x2_t vreinterpret_f32_u32 (uint32x2_t t);
+#define vreinterpret_f32_u32(t) (*(__m64_128*)&(t))
+
+
+float32x2_t vreinterpret_f32_u16 (uint16x4_t t);
+#define vreinterpret_f32_u16 vreinterpret_f32_u32
+
+
+float32x2_t vreinterpret_f32_u8 (uint8x8_t t);
+#define vreinterpret_f32_u8 vreinterpret_f32_u32
+
+
+float32x2_t vreinterpret_f32_s32 (int32x2_t t);
+#define vreinterpret_f32_s32 vreinterpret_f32_u32
+
+
+float32x2_t vreinterpret_f32_s16 (int16x4_t t);
+#define vreinterpret_f32_s16 vreinterpret_f32_u32
+
+float32x2_t vreinterpret_f32_s8 (int8x8_t t);
+#define vreinterpret_f32_s8 vreinterpret_f32_u32
+
+
+float32x2_t vreinterpret_f32_u64(uint64x1_t t);
+#define vreinterpret_f32_u64 vreinterpret_f32_u32
+
+
+float32x2_t vreinterpret_f32_s64 (int64x1_t t);
+#define vreinterpret_f32_s64 vreinterpret_f32_u32
+
+
+float32x2_t vreinterpret_f32_p16 (poly16x4_t t);
+#define vreinterpret_f32_p16 vreinterpret_f32_u32
+
+float32x2_t vreinterpret_f32_p8 (poly8x8_t t);
+#define vreinterpret_f32_p8 vreinterpret_f32_u32
+
+float32x4_t vreinterpretq_f32_u32 (uint32x4_t t);
+#define  vreinterpretq_f32_u32(t) *(__m128*)&(t)
+
+float32x4_t vreinterpretq_f32_u16 (uint16x8_t t);
+#define vreinterpretq_f32_u16 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_u8 (uint8x16_t t);
+#define vreinterpretq_f32_u8 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_s32 (int32x4_t t);
+#define vreinterpretq_f32_s32 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_s16 (int16x8_t t);
+#define vreinterpretq_f32_s16 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_s8 (int8x16_t t);
+#define vreinterpretq_f32_s8 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_u64 (uint64x2_t t);
+#define vreinterpretq_f32_u64 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_s64 (int64x2_t t);
+#define vreinterpretq_f32_s64 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_p16 (poly16x8_t t);
+#define vreinterpretq_f32_p16 vreinterpretq_f32_u32
+
+float32x4_t vreinterpretq_f32_p8 (poly8x16_t t);
+#define vreinterpretq_f32_p8 vreinterpretq_f32_u32
+
+//*** Integer type conversions ******************
+//no conversion necessary for the following functions because it is same data type
+int64x1_t vreinterpret_s64_u32 (uint32x2_t t);
+#define vreinterpret_s64_u32
+
+int64x1_t vreinterpret_s64_u16 (uint16x4_t t);
+#define vreinterpret_s64_u16
+
+int64x1_t vreinterpret_s64_u8 (uint8x8_t t);
+#define vreinterpret_s64_u8
+
+int64x1_t vreinterpret_s64_s32 (int32x2_t t);
+#define  vreinterpret_s64_s32
+
+int64x1_t vreinterpret_s64_s16 (int16x4_t t);
+#define vreinterpret_s64_s16
+
+int64x1_t vreinterpret_s64_s8 (int8x8_t t);
+#define  vreinterpret_s64_s8
+
+int64x1_t vreinterpret_s64_u64 (uint64x1_t t);
+#define  vreinterpret_s64_u64
+
+int64x1_t vreinterpret_s64_f32 (float32x2_t t);
+#define  vreinterpret_s64_f32
+
+int64x1_t vreinterpret_s64_p16 (poly16x4_t t);
+#define vreinterpret_s64_p16
+
+int64x1_t vreinterpret_s64_p8 (poly8x8_t t);
+#define vreinterpret_s64_p8
+
+int64x2_t vreinterpretq_s64_u32 (uint32x4_t t);
+#define vreinterpretq_s64_u32
+
+int64x2_t vreinterpretq_s64_s16 (uint16x8_t t);
+#define vreinterpretq_s64_s16
+
+int64x2_t vreinterpretq_s64_u8 (uint8x16_t t);
+#define vreinterpretq_s64_u8
+
+int64x2_t vreinterpretq_s64_s32 (int32x4_t t);
+#define vreinterpretq_s64_s32
+
+int64x2_t vreinterpretq_s64_u16 (int16x8_t t);
+#define vreinterpretq_s64_u16
+
+int64x2_t vreinterpretq_s64_s8 (int8x16_t t);
+#define vreinterpretq_s64_s8
+
+int64x2_t vreinterpretq_s64_u64 (uint64x2_t t);
+#define vreinterpretq_s64_u64
+
+int64x2_t vreinterpretq_s64_f32 (float32x4_t t);
+#define vreinterpretq_s64_f32(t) _M128i(t)
+
+int64x2_t vreinterpretq_s64_p16 (poly16x8_t t);
+#define vreinterpretq_s64_p16
+
+int64x2_t vreinterpretq_s64_p8 (poly8x16_t t);
+#define vreinterpretq_s64_p8
+
+uint64x1_t vreinterpret_u64_u32 (uint32x2_t t);
+#define vreinterpret_u64_u32
+
+uint64x1_t vreinterpret_u64_u16 (uint16x4_t t);
+#define vreinterpret_u64_u16
+
+uint64x1_t vreinterpret_u64_u8 (uint8x8_t t);
+#define vreinterpret_u64_u8
+
+uint64x1_t vreinterpret_u64_s32 (int32x2_t t);
+#define vreinterpret_u64_s32
+
+uint64x1_t vreinterpret_u64_s16 (int16x4_t t);
+#define vreinterpret_u64_s16
+
+uint64x1_t vreinterpret_u64_s8 (int8x8_t t);
+#define vreinterpret_u64_s8
+
+uint64x1_t vreinterpret_u64_s64 (int64x1_t t);
+#define vreinterpret_u64_s64
+
+uint64x1_t vreinterpret_u64_f32 (float32x2_t t);
+#define vreinterpret_u64_f32
+
+uint64x1_t vreinterpret_u64_p16 (poly16x4_t t);
+#define vreinterpret_u64_p16
+
+uint64x1_t vreinterpret_u64_p8 (poly8x8_t t);
+#define vreinterpret_u64_p8
+
+uint64x2_t vreinterpretq_u64_u32 (uint32x4_t t);
+#define vreinterpretq_u64_u32
+
+uint64x2_t vreinterpretq_u64_u16 (uint16x8_t t);
+#define vreinterpretq_u64_u16
+
+uint64x2_t vreinterpretq_u64_u8 (uint8x16_t t);
+#define vreinterpretq_u64_u8
+
+uint64x2_t vreinterpretq_u64_s32 (int32x4_t t);
+#define vreinterpretq_u64_s32
+
+uint64x2_t vreinterpretq_u64_s16 (int16x8_t t);
+#define vreinterpretq_u64_s16
+
+uint64x2_t vreinterpretq_u64_s8 (int8x16_t t);
+#define vreinterpretq_u64_s8
+
+uint64x2_t vreinterpretq_u64_s64 (int64x2_t t);
+#define vreinterpretq_u64_s64
+
+uint64x2_t vreinterpretq_u64_f32 (float32x4_t t);
+#define vreinterpretq_u64_f32(t) _M128i(t)
+
+uint64x2_t vreinterpretq_u64_p16 (poly16x8_t t);
+#define vreinterpretq_u64_p16
+
+uint64x2_t vreinterpretq_u64_p8 (poly8x16_t t);
+#define vreinterpretq_u64_p8
+
+int8x8_t vreinterpret_s8_u32 (uint32x2_t t);
+#define vreinterpret_s8_u32
+
+int8x8_t vreinterpret_s8_u16 (uint16x4_t t);
+#define vreinterpret_s8_u16
+
+int8x8_t vreinterpret_s8_u8 (uint8x8_t t);
+#define vreinterpret_s8_u8
+
+int8x8_t vreinterpret_s8_s32 (int32x2_t t);
+#define vreinterpret_s8_s32
+
+int8x8_t vreinterpret_s8_s16 (int16x4_t t);
+#define vreinterpret_s8_s16
+
+int8x8_t vreinterpret_s8_u64 (uint64x1_t t);
+#define vreinterpret_s8_u64
+
+int8x8_t vreinterpret_s8_s64 (int64x1_t t);
+#define vreinterpret_s8_s64
+
+int8x8_t vreinterpret_s8_f32 (float32x2_t t);
+#define vreinterpret_s8_f32
+
+int8x8_t vreinterpret_s8_p16 (poly16x4_t t);
+#define vreinterpret_s8_p16
+
+int8x8_t vreinterpret_s8_p8 (poly8x8_t t);
+#define vreinterpret_s8_p8
+
+int8x16_t vreinterpretq_s8_u32 (uint32x4_t t);
+#define vreinterpretq_s8_u32
+
+int8x16_t vreinterpretq_s8_u16 (uint16x8_t t);
+#define vreinterpretq_s8_u16
+
+int8x16_t vreinterpretq_s8_u8 (uint8x16_t t);
+#define vreinterpretq_s8_u8
+
+int8x16_t vreinterpretq_s8_s32 (int32x4_t t);
+#define vreinterpretq_s8_s32
+
+int8x16_t vreinterpretq_s8_s16 (int16x8_t t);
+#define vreinterpretq_s8_s16
+
+int8x16_t vreinterpretq_s8_u64 (uint64x2_t t);
+#define vreinterpretq_s8_u64
+
+int8x16_t vreinterpretq_s8_s64 (int64x2_t t);
+#define vreinterpretq_s8_s64
+
+int8x16_t vreinterpretq_s8_f32 (float32x4_t t);
+#define vreinterpretq_s8_f32(t) _M128i(t)
+
+int8x16_t vreinterpretq_s8_p16 (poly16x8_t t);
+#define vreinterpretq_s8_p16
+
+int8x16_t vreinterpretq_s8_p8 (poly8x16_t t);
+#define vreinterpretq_s8_p8
+
+int16x4_t vreinterpret_s16_u32 (uint32x2_t t);
+#define vreinterpret_s16_u32
+
+int16x4_t vreinterpret_s16_u16 (uint16x4_t t);
+#define vreinterpret_s16_u16
+
+int16x4_t vreinterpret_s16_u8 (uint8x8_t t);
+#define vreinterpret_s16_u8
+
+int16x4_t vreinterpret_s16_s32 (int32x2_t t);
+#define vreinterpret_s16_s32
+
+int16x4_t vreinterpret_s16_s8 (int8x8_t t);
+#define vreinterpret_s16_s8
+
+int16x4_t vreinterpret_s16_u64 (uint64x1_t t);
+#define vreinterpret_s16_u64
+
+int16x4_t vreinterpret_s16_s64 (int64x1_t t);
+#define vreinterpret_s16_s64
+
+int16x4_t vreinterpret_s16_f32 (float32x2_t t);
+#define vreinterpret_s16_f32
+
+
+int16x4_t vreinterpret_s16_p16 (poly16x4_t t);
+#define vreinterpret_s16_p16
+
+int16x4_t vreinterpret_s16_p8 (poly8x8_t t);
+#define vreinterpret_s16_p8
+
+int16x8_t vreinterpretq_s16_u32 (uint32x4_t t);
+#define vreinterpretq_s16_u32
+
+int16x8_t vreinterpretq_s16_u16 (uint16x8_t t);
+#define vreinterpretq_s16_u16
+
+int16x8_t vreinterpretq_s16_u8 (uint8x16_t t);
+#define vreinterpretq_s16_u8
+
+int16x8_t vreinterpretq_s16_s32 (int32x4_t t);
+#define vreinterpretq_s16_s32
+
+int16x8_t vreinterpretq_s16_s8 (int8x16_t t);
+#define vreinterpretq_s16_s8
+
+int16x8_t vreinterpretq_s16_u64 (uint64x2_t t);
+#define vreinterpretq_s16_u64
+
+int16x8_t vreinterpretq_s16_s64 (int64x2_t t);
+#define vreinterpretq_s16_s64
+
+int16x8_t vreinterpretq_s16_f32 (float32x4_t t);
+#define vreinterpretq_s16_f32(t) _M128i(t)
+
+int16x8_t vreinterpretq_s16_p16 (poly16x8_t t);
+#define vreinterpretq_s16_p16
+
+int16x8_t vreinterpretq_s16_p8 (poly8x16_t t);
+#define vreinterpretq_s16_p8
+
+int32x2_t vreinterpret_s32_u32 (uint32x2_t t);
+#define vreinterpret_s32_u32
+
+int32x2_t vreinterpret_s32_u16 (uint16x4_t t);
+#define vreinterpret_s32_u16
+
+int32x2_t vreinterpret_s32_u8 (uint8x8_t t);
+#define vreinterpret_s32_u8
+
+int32x2_t vreinterpret_s32_s16 (int16x4_t t);
+#define vreinterpret_s32_s16
+
+int32x2_t vreinterpret_s32_s8 (int8x8_t t);
+#define vreinterpret_s32_s8
+
+int32x2_t vreinterpret_s32_u64 (uint64x1_t t);
+#define vreinterpret_s32_u64
+
+int32x2_t vreinterpret_s32_s64 (int64x1_t t);
+#define vreinterpret_s32_s64
+
+int32x2_t vreinterpret_s32_f32 (float32x2_t t);
+#define vreinterpret_s32_f32
+
+int32x2_t vreinterpret_s32_p16 (poly16x4_t t);
+#define vreinterpret_s32_p16
+
+int32x2_t vreinterpret_s32_p8 (poly8x8_t t);
+#define vreinterpret_s32_p8
+
+int32x4_t vreinterpretq_s32_u32 (uint32x4_t t);
+#define vreinterpretq_s32_u32
+
+int32x4_t vreinterpretq_s32_u16 (uint16x8_t t);
+#define vreinterpretq_s32_u16
+
+int32x4_t vreinterpretq_s32_u8 (uint8x16_t t);
+#define vreinterpretq_s32_u8
+
+int32x4_t vreinterpretq_s32_s16 (int16x8_t t);
+#define vreinterpretq_s32_s16
+
+int32x4_t vreinterpretq_s32_s8 (int8x16_t t);
+#define vreinterpretq_s32_s8
+
+int32x4_t vreinterpretq_s32_u64 (uint64x2_t t);
+#define vreinterpretq_s32_u64
+
+int32x4_t vreinterpretq_s32_s64 (int64x2_t t);
+#define vreinterpretq_s32_s64
+
+int32x4_t vreinterpretq_s32_f32 (float32x4_t t);
+#define vreinterpretq_s32_f32(t)  _mm_castps_si128(t) //(*(__m128i*)&(t))
+
+int32x4_t vreinterpretq_s32_p16 (poly16x8_t t);
+#define vreinterpretq_s32_p16
+
+int32x4_t vreinterpretq_s32_p8 (poly8x16_t t);
+#define vreinterpretq_s32_p8
+
+uint8x8_t vreinterpret_u8_u32 (uint32x2_t t);
+#define vreinterpret_u8_u32
+
+uint8x8_t vreinterpret_u8_u16 (uint16x4_t t);
+#define vreinterpret_u8_u16
+
+uint8x8_t vreinterpret_u8_s32 (int32x2_t t);
+#define vreinterpret_u8_s32
+
+uint8x8_t vreinterpret_u8_s16 (int16x4_t t);
+#define vreinterpret_u8_s16
+
+uint8x8_t vreinterpret_u8_s8 (int8x8_t t);
+#define vreinterpret_u8_s8
+
+uint8x8_t vreinterpret_u8_u64 (uint64x1_t t);
+#define vreinterpret_u8_u64
+
+uint8x8_t vreinterpret_u8_s64 (int64x1_t t);
+#define vreinterpret_u8_s64
+
+uint8x8_t vreinterpret_u8_f32 (float32x2_t t);
+#define vreinterpret_u8_f32
+
+uint8x8_t vreinterpret_u8_p16 (poly16x4_t t);
+#define vreinterpret_u8_p16
+
+uint8x8_t vreinterpret_u8_p8 (poly8x8_t t);
+#define vreinterpret_u8_p8
+
+uint8x16_t vreinterpretq_u8_u32 (uint32x4_t t);
+#define vreinterpretq_u8_u32
+
+uint8x16_t vreinterpretq_u8_u16 (uint16x8_t t);
+#define vreinterpretq_u8_u16
+
+uint8x16_t vreinterpretq_u8_s32 (int32x4_t t);
+#define vreinterpretq_u8_s32
+
+uint8x16_t vreinterpretq_u8_s16 (int16x8_t t);
+#define vreinterpretq_u8_s16
+
+uint8x16_t vreinterpretq_u8_s8 (int8x16_t t);
+#define vreinterpretq_u8_s8
+
+uint8x16_t vreinterpretq_u8_u64 (uint64x2_t t);
+#define vreinterpretq_u8_u64
+
+uint8x16_t vreinterpretq_u8_s64 (int64x2_t t);
+#define vreinterpretq_u8_s64
+
+uint8x16_t vreinterpretq_u8_f32 (float32x4_t t);
+#define vreinterpretq_u8_f32(t) _M128i(t)
+
+
+uint8x16_t vreinterpretq_u8_p16 (poly16x8_t t);
+#define vreinterpretq_u8_p16
+
+uint8x16_t vreinterpretq_u8_p8 (poly8x16_t t);
+#define vreinterpretq_u8_p8
+
+uint16x4_t vreinterpret_u16_u32 (uint32x2_t t);
+#define vreinterpret_u16_u32
+
+uint16x4_t vreinterpret_u16_u8 (uint8x8_t t);
+#define vreinterpret_u16_u8
+
+uint16x4_t vreinterpret_u16_s32 (int32x2_t t);
+#define vreinterpret_u16_s32
+
+uint16x4_t vreinterpret_u16_s16 (int16x4_t t);
+#define vreinterpret_u16_s16
+
+uint16x4_t vreinterpret_u16_s8 (int8x8_t t);
+#define vreinterpret_u16_s8
+
+uint16x4_t vreinterpret_u16_u64 (uint64x1_t t);
+#define vreinterpret_u16_u64
+
+uint16x4_t vreinterpret_u16_s64 (int64x1_t t);
+#define vreinterpret_u16_s64
+
+uint16x4_t vreinterpret_u16_f32 (float32x2_t t);
+#define vreinterpret_u16_f32
+
+uint16x4_t vreinterpret_u16_p16 (poly16x4_t t);
+#define vreinterpret_u16_p16
+
+uint16x4_t vreinterpret_u16_p8 (poly8x8_t t);
+#define vreinterpret_u16_p8
+
+uint16x8_t vreinterpretq_u16_u32 (uint32x4_t t);
+#define vreinterpretq_u16_u32
+
+uint16x8_t vreinterpretq_u16_u8 (uint8x16_t t);
+#define vreinterpretq_u16_u8
+
+uint16x8_t vreinterpretq_u16_s32 (int32x4_t t);
+#define vreinterpretq_u16_s32
+
+uint16x8_t vreinterpretq_u16_s16 (int16x8_t t);
+#define vreinterpretq_u16_s16
+
+uint16x8_t vreinterpretq_u16_s8 (int8x16_t t);
+#define vreinterpretq_u16_s8
+
+uint16x8_t vreinterpretq_u16_u64 (uint64x2_t t);
+#define vreinterpretq_u16_u64
+
+uint16x8_t vreinterpretq_u16_s64 (int64x2_t t);
+#define vreinterpretq_u16_s64
+
+uint16x8_t vreinterpretq_u16_f32 (float32x4_t t);
+#define vreinterpretq_u16_f32(t) _M128i(t)
+
+uint16x8_t vreinterpretq_u16_p16 (poly16x8_t t);
+#define vreinterpretq_u16_p16
+
+uint16x8_t vreinterpretq_u16_p8 (poly8x16_t t);
+#define vreinterpretq_u16_p8
+
+uint32x2_t vreinterpret_u32_u16 (uint16x4_t t);
+#define vreinterpret_u32_u16
+
+uint32x2_t vreinterpret_u32_u8 (uint8x8_t t);
+#define vreinterpret_u32_u8
+
+uint32x2_t vreinterpret_u32_s32 (int32x2_t t);
+#define vreinterpret_u32_s32
+
+uint32x2_t vreinterpret_u32_s16 (int16x4_t t);
+#define vreinterpret_u32_s16
+
+uint32x2_t vreinterpret_u32_s8 (int8x8_t t);
+#define vreinterpret_u32_s8
+
+uint32x2_t vreinterpret_u32_u64 (uint64x1_t t);
+#define vreinterpret_u32_u64
+
+uint32x2_t vreinterpret_u32_s64 (int64x1_t t);
+#define vreinterpret_u32_s64
+
+uint32x2_t vreinterpret_u32_f32 (float32x2_t t);
+#define vreinterpret_u32_f32
+
+uint32x2_t vreinterpret_u32_p16 (poly16x4_t t);
+#define vreinterpret_u32_p16
+
+uint32x2_t vreinterpret_u32_p8 (poly8x8_t t);
+#define vreinterpret_u32_p8
+
+uint32x4_t vreinterpretq_u32_u16 (uint16x8_t t);
+#define vreinterpretq_u32_u16
+
+uint32x4_t vreinterpretq_u32_u8 (uint8x16_t t);
+#define vreinterpretq_u32_u8
+
+uint32x4_t vreinterpretq_u32_s32 (int32x4_t t);
+#define vreinterpretq_u32_s32
+
+uint32x4_t vreinterpretq_u32_s16 (int16x8_t t);
+#define vreinterpretq_u32_s16
+
+uint32x4_t vreinterpretq_u32_s8 (int8x16_t t);
+#define vreinterpretq_u32_s8
+
+uint32x4_t vreinterpretq_u32_u64 (uint64x2_t t);
+#define vreinterpretq_u32_u64
+
+uint32x4_t vreinterpretq_u32_s64 (int64x2_t t);
+#define vreinterpretq_u32_s64
+
+uint32x4_t vreinterpretq_u32_f32 (float32x4_t t);
+#define  vreinterpretq_u32_f32(t) _M128i(t)
+
+uint32x4_t vreinterpretq_u32_p16 (poly16x8_t t);
+#define vreinterpretq_u32_p16
+
+uint32x4_t vreinterpretq_u32_p8 (poly8x16_t t);
+#define vreinterpretq_u32_p8
+
+#endif /* NEON2SSE_H */
diff --git a/lib/gcc/x86_64-linux-android/4.8/include/f16cintrin.h b/lib/gcc/x86_64-linux-android/4.8/include/f16cintrin.h
index 88903c1..4a29fcc 100644
--- a/lib/gcc/x86_64-linux-android/4.8/include/f16cintrin.h
+++ b/lib/gcc/x86_64-linux-android/4.8/include/f16cintrin.h
@@ -35,7 +35,7 @@
 extern __inline float __attribute__((__gnu_inline__, __always_inline__, __artificial__))
 _cvtsh_ss (unsigned short __S)
 {
-  __v8hi __H = __extension__ (__v8hi){ __S, 0, 0, 0, 0, 0, 0, 0 };
+  __v8hi __H = __extension__ (__v8hi){ (short) __S, 0, 0, 0, 0, 0, 0, 0 };
   __v4sf __A = __builtin_ia32_vcvtph2ps (__H);
   return __builtin_ia32_vec_ext_v4sf (__A, 0);
 }
diff --git a/lib/gcc/x86_64-linux-android/4.8/include/xopintrin.h b/lib/gcc/x86_64-linux-android/4.8/include/xopintrin.h
index 66b0f0d..d2a99a1 100644
--- a/lib/gcc/x86_64-linux-android/4.8/include/xopintrin.h
+++ b/lib/gcc/x86_64-linux-android/4.8/include/xopintrin.h
@@ -745,13 +745,17 @@
 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
 _mm_frcz_ss (__m128 __A, __m128 __B)
 {
-  return (__m128) __builtin_ia32_vfrczss ((__v4sf)__A, (__v4sf)__B);
+  return (__m128) __builtin_ia32_movss ((__v4sf)__A,
+					(__v4sf)
+					__builtin_ia32_vfrczss ((__v4sf)__B));
 }
 
 extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__))
 _mm_frcz_sd (__m128d __A, __m128d __B)
 {
-  return (__m128d) __builtin_ia32_vfrczsd ((__v2df)__A, (__v2df)__B);
+  return (__m128d) __builtin_ia32_movsd ((__v2df)__A,
+					 (__v2df)
+					 __builtin_ia32_vfrczsd ((__v2df)__B));
 }
 
 extern __inline __m256 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
diff --git a/lib/gcc/x86_64-linux-android/4.8/libgcc.a b/lib/gcc/x86_64-linux-android/4.8/libgcc.a
index f22a0e8..9decb55 100644
--- a/lib/gcc/x86_64-linux-android/4.8/libgcc.a
+++ b/lib/gcc/x86_64-linux-android/4.8/libgcc.a
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/libgcov.a b/lib/gcc/x86_64-linux-android/4.8/libgcov.a
index f3e4704..ef31d49 100644
--- a/lib/gcc/x86_64-linux-android/4.8/libgcov.a
+++ b/lib/gcc/x86_64-linux-android/4.8/libgcov.a
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/crtbegin.o b/lib/gcc/x86_64-linux-android/4.8/x32/crtbegin.o
index d377006..5eaa128 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/crtbegin.o
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/crtbegin.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginS.o b/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginS.o
index b188b5f..91a4ca7 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginS.o
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginS.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginT.o b/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginT.o
index d377006..5eaa128 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginT.o
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/crtbeginT.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/crtfastmath.o b/lib/gcc/x86_64-linux-android/4.8/x32/crtfastmath.o
index 50b2627..a4dfe40 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/crtfastmath.o
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/crtfastmath.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/crtprec32.o b/lib/gcc/x86_64-linux-android/4.8/x32/crtprec32.o
index 64ad6cd..16a61a1 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/crtprec32.o
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/crtprec32.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/crtprec64.o b/lib/gcc/x86_64-linux-android/4.8/x32/crtprec64.o
index 1ea08ef..dcd675c 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/crtprec64.o
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/crtprec64.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/crtprec80.o b/lib/gcc/x86_64-linux-android/4.8/x32/crtprec80.o
index d4fb082..ec8a919 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/crtprec80.o
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/crtprec80.o
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/libgcc.a b/lib/gcc/x86_64-linux-android/4.8/x32/libgcc.a
index d7dcedc..28fda5f 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/libgcc.a
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/libgcc.a
Binary files differ
diff --git a/lib/gcc/x86_64-linux-android/4.8/x32/libgcov.a b/lib/gcc/x86_64-linux-android/4.8/x32/libgcov.a
index 66a13cc..1e755ec 100644
--- a/lib/gcc/x86_64-linux-android/4.8/x32/libgcov.a
+++ b/lib/gcc/x86_64-linux-android/4.8/x32/libgcov.a
Binary files differ
diff --git a/lib/x86_64/libiberty.a b/lib/x86_64/libiberty.a
index e180d0b..b81ce95 100644
--- a/lib/x86_64/libiberty.a
+++ b/lib/x86_64/libiberty.a
Binary files differ
diff --git a/libexec/gcc/x86_64-linux-android/4.8/cc1 b/libexec/gcc/x86_64-linux-android/4.8/cc1
index 2305007..636d105 100755
--- a/libexec/gcc/x86_64-linux-android/4.8/cc1
+++ b/libexec/gcc/x86_64-linux-android/4.8/cc1
Binary files differ
diff --git a/libexec/gcc/x86_64-linux-android/4.8/cc1plus b/libexec/gcc/x86_64-linux-android/4.8/cc1plus
index 16ab6ea..524da93 100755
--- a/libexec/gcc/x86_64-linux-android/4.8/cc1plus
+++ b/libexec/gcc/x86_64-linux-android/4.8/cc1plus
Binary files differ
diff --git a/libexec/gcc/x86_64-linux-android/4.8/collect2 b/libexec/gcc/x86_64-linux-android/4.8/collect2
index ca47772..1720a2f 100755
--- a/libexec/gcc/x86_64-linux-android/4.8/collect2
+++ b/libexec/gcc/x86_64-linux-android/4.8/collect2
Binary files differ
diff --git a/libexec/gcc/x86_64-linux-android/4.8/liblto_plugin.0.so b/libexec/gcc/x86_64-linux-android/4.8/liblto_plugin.0.so
index ab3974e..615eebc 100755
--- a/libexec/gcc/x86_64-linux-android/4.8/liblto_plugin.0.so
+++ b/libexec/gcc/x86_64-linux-android/4.8/liblto_plugin.0.so
Binary files differ
diff --git a/libexec/gcc/x86_64-linux-android/4.8/lto-wrapper b/libexec/gcc/x86_64-linux-android/4.8/lto-wrapper
index 242ec6a..0b65476 100755
--- a/libexec/gcc/x86_64-linux-android/4.8/lto-wrapper
+++ b/libexec/gcc/x86_64-linux-android/4.8/lto-wrapper
Binary files differ
diff --git a/libexec/gcc/x86_64-linux-android/4.8/lto1 b/libexec/gcc/x86_64-linux-android/4.8/lto1
index 24056ad..ab4e503 100755
--- a/libexec/gcc/x86_64-linux-android/4.8/lto1
+++ b/libexec/gcc/x86_64-linux-android/4.8/lto1
Binary files differ
diff --git a/libexec/gcc/x86_64-linux-android/4.8/plugin/gengtype b/libexec/gcc/x86_64-linux-android/4.8/plugin/gengtype
index d328f8b..dfc59a7 100755
--- a/libexec/gcc/x86_64-linux-android/4.8/plugin/gengtype
+++ b/libexec/gcc/x86_64-linux-android/4.8/plugin/gengtype
Binary files differ
diff --git a/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xr b/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xr
index de6c8da..ca82fef 100644
--- a/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xr
+++ b/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xr
@@ -75,7 +75,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xu b/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xu
index 5c5fd9f..881dafd 100644
--- a/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xu
+++ b/x86_64-linux-android/lib/ldscripts/elf32_x86_64.xu
@@ -75,7 +75,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_i386.xr b/x86_64-linux-android/lib/ldscripts/elf_i386.xr
index 0062568..6a84459 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_i386.xr
+++ b/x86_64-linux-android/lib/ldscripts/elf_i386.xr
@@ -72,7 +72,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_i386.xu b/x86_64-linux-android/lib/ldscripts/elf_i386.xu
index 5726faa..42cca6d 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_i386.xu
+++ b/x86_64-linux-android/lib/ldscripts/elf_i386.xu
@@ -72,7 +72,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.x b/x86_64-linux-android/lib/ldscripts/elf_k1om.x
index f20c044..2990d71 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.x
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.x
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xbn b/x86_64-linux-android/lib/ldscripts/elf_k1om.xbn
index 1694fe1..c0d2912 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xbn
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xbn
@@ -87,7 +87,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xc b/x86_64-linux-android/lib/ldscripts/elf_k1om.xc
index 93708bb..19b532a 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xc
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xc
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xd b/x86_64-linux-android/lib/ldscripts/elf_k1om.xd
index ab78d27..b6b3a99 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xd
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xd
@@ -87,7 +87,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xdc b/x86_64-linux-android/lib/ldscripts/elf_k1om.xdc
index 6943233..78d8292 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xdc
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xdc
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xdw b/x86_64-linux-android/lib/ldscripts/elf_k1om.xdw
index ed7be82..bd1d78f 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xdw
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xdw
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xn b/x86_64-linux-android/lib/ldscripts/elf_k1om.xn
index 977e042..1f64c0a 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xn
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xn
@@ -87,7 +87,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xr b/x86_64-linux-android/lib/ldscripts/elf_k1om.xr
index fb08769..fb38fee 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xr
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xr
@@ -79,7 +79,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xs b/x86_64-linux-android/lib/ldscripts/elf_k1om.xs
index e953374..7acdd5d 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xs
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xs
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xsc b/x86_64-linux-android/lib/ldscripts/elf_k1om.xsc
index f98f7a9..03787d8 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xsc
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xsc
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xsw b/x86_64-linux-android/lib/ldscripts/elf_k1om.xsw
index e620cd3..82edf36 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xsw
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xsw
@@ -83,7 +83,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xu b/x86_64-linux-android/lib/ldscripts/elf_k1om.xu
index 321a32a..e78e1c7 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xu
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xu
@@ -79,7 +79,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_k1om.xw b/x86_64-linux-android/lib/ldscripts/elf_k1om.xw
index 2dea8c1..2b43914 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_k1om.xw
+++ b/x86_64-linux-android/lib/ldscripts/elf_k1om.xw
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.x b/x86_64-linux-android/lib/ldscripts/elf_l1om.x
index ae3103c..7794a13 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.x
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.x
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xbn b/x86_64-linux-android/lib/ldscripts/elf_l1om.xbn
index 433891e..b6befd6 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xbn
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xbn
@@ -87,7 +87,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xc b/x86_64-linux-android/lib/ldscripts/elf_l1om.xc
index 6d3e65e..1b05981 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xc
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xc
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xd b/x86_64-linux-android/lib/ldscripts/elf_l1om.xd
index 36b49fb..89fb0e4 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xd
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xd
@@ -87,7 +87,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xdc b/x86_64-linux-android/lib/ldscripts/elf_l1om.xdc
index 33a359e..b91a287 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xdc
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xdc
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xdw b/x86_64-linux-android/lib/ldscripts/elf_l1om.xdw
index 412a745..8a8704b 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xdw
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xdw
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xn b/x86_64-linux-android/lib/ldscripts/elf_l1om.xn
index 2a035b3..4d6db18 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xn
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xn
@@ -87,7 +87,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xr b/x86_64-linux-android/lib/ldscripts/elf_l1om.xr
index f9bd3e9..ead9c53 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xr
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xr
@@ -79,7 +79,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xs b/x86_64-linux-android/lib/ldscripts/elf_l1om.xs
index bc8107a..d9cbe01 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xs
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xs
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xsc b/x86_64-linux-android/lib/ldscripts/elf_l1om.xsc
index 3b6e2b5..e252f9f 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xsc
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xsc
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xsw b/x86_64-linux-android/lib/ldscripts/elf_l1om.xsw
index 23422b2..f583d68 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xsw
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xsw
@@ -83,7 +83,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xu b/x86_64-linux-android/lib/ldscripts/elf_l1om.xu
index 1a53594..c6247bb 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xu
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xu
@@ -79,7 +79,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_l1om.xw b/x86_64-linux-android/lib/ldscripts/elf_l1om.xw
index dccca0a..44ebc93 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_l1om.xw
+++ b/x86_64-linux-android/lib/ldscripts/elf_l1om.xw
@@ -88,7 +88,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.x b/x86_64-linux-android/lib/ldscripts/elf_x86_64.x
index b7ad5ec..575d2ab 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.x
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.x
@@ -85,7 +85,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xbn b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xbn
index 67a92e0..f0f36ad 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xbn
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xbn
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xc b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xc
index 7b2a9c5..9ac8216 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xc
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xc
@@ -86,7 +86,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xd b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xd
index 0f41ca0..944b71a 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xd
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xd
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdc b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdc
index 6aedb53..4b8571a 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdc
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdc
@@ -86,7 +86,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdw b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdw
index 4631e1d..c5e0ce0 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdw
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xdw
@@ -86,7 +86,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xn b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xn
index 6aa7208..6fde39b 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xn
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xn
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xr b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xr
index 7f92872..b7f1e1c 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xr
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xr
@@ -75,7 +75,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xs b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xs
index d75a7f8..2d2b8ff 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xs
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xs
@@ -81,7 +81,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsc b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsc
index 379c1cd..5c41a31 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsc
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsc
@@ -84,7 +84,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsw b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsw
index ada2e50..3f77038 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsw
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xsw
@@ -83,7 +83,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   .preinit_array     :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xu b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xu
index b1d4b5b..07a5422 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xu
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xu
@@ -75,7 +75,6 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
   .preinit_array   0 :
   {
     KEEP (*(.preinit_array))
diff --git a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xw b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xw
index 21309d9..e131e33 100644
--- a/x86_64-linux-android/lib/ldscripts/elf_x86_64.xw
+++ b/x86_64-linux-android/lib/ldscripts/elf_x86_64.xw
@@ -86,7 +86,7 @@
      could instead move the label definition inside the section, but
      the linker would then create the section even if it turns out to
      be empty, which isn't pretty.  */
-  . = ALIGN(32 / 8);
+  . = ALIGN(64 / 8);
   PROVIDE_HIDDEN (__preinit_array_start = .);
   .preinit_array     :
   {
diff --git a/x86_64-linux-android/lib/libatomic.a b/x86_64-linux-android/lib/libatomic.a
index 70c76fb..0167b50 100644
--- a/x86_64-linux-android/lib/libatomic.a
+++ b/x86_64-linux-android/lib/libatomic.a
Binary files differ
diff --git a/x86_64-linux-android/lib/libgomp.a b/x86_64-linux-android/lib/libgomp.a
index 2f3204f..d0a1e79 100644
--- a/x86_64-linux-android/lib/libgomp.a
+++ b/x86_64-linux-android/lib/libgomp.a
Binary files differ
diff --git a/x86_64-linux-android/lib64/libatomic.a b/x86_64-linux-android/lib64/libatomic.a
index 9379ae1..58a0a71 100644
--- a/x86_64-linux-android/lib64/libatomic.a
+++ b/x86_64-linux-android/lib64/libatomic.a
Binary files differ
diff --git a/x86_64-linux-android/lib64/libgomp.a b/x86_64-linux-android/lib64/libgomp.a
index b3cfdd7..e36c111 100644
--- a/x86_64-linux-android/lib64/libgomp.a
+++ b/x86_64-linux-android/lib64/libgomp.a
Binary files differ
diff --git a/x86_64-linux-android/libx32/libatomic.a b/x86_64-linux-android/libx32/libatomic.a
index bac37d4..a510c74 100644
--- a/x86_64-linux-android/libx32/libatomic.a
+++ b/x86_64-linux-android/libx32/libatomic.a
Binary files differ
diff --git a/x86_64-linux-android/libx32/libgomp.a b/x86_64-linux-android/libx32/libgomp.a
index 4ccedfc..6303d2a 100644
--- a/x86_64-linux-android/libx32/libgomp.a
+++ b/x86_64-linux-android/libx32/libgomp.a
Binary files differ