blob: df83d65b0fc8829dd345235c35307b5e99ab2d1a [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.graphics;
import com.android.ide.common.rendering.api.LayoutLog;
import com.android.layoutlib.bridge.Bridge;
import com.android.layoutlib.bridge.impl.DelegateManager;
import com.android.tools.layoutlib.annotations.LayoutlibDelegate;
import android.annotation.NonNull;
import android.graphics.Path.Direction;
import android.graphics.Path.FillType;
import java.awt.Shape;
import java.awt.geom.AffineTransform;
import java.awt.geom.Arc2D;
import java.awt.geom.Area;
import java.awt.geom.Ellipse2D;
import java.awt.geom.GeneralPath;
import java.awt.geom.Path2D;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RoundRectangle2D;
import java.util.ArrayList;
import libcore.util.NativeAllocationRegistry_Delegate;
/**
* Delegate implementing the native methods of android.graphics.Path
*
* Through the layoutlib_create tool, the original native methods of Path have been replaced
* by calls to methods of the same name in this delegate class.
*
* This class behaves like the original native implementation, but in Java, keeping previously
* native data into its own objects and mapping them to int that are sent back and forth between
* it and the original Path class.
*
* @see DelegateManager
*
*/
public final class Path_Delegate {
// ---- delegate manager ----
private static final DelegateManager<Path_Delegate> sManager =
new DelegateManager<Path_Delegate>(Path_Delegate.class);
private static final float EPSILON = 1e-4f;
private static long sFinalizer = -1;
// ---- delegate data ----
private FillType mFillType = FillType.WINDING;
private Path2D mPath = new Path2D.Double();
private float mLastX = 0;
private float mLastY = 0;
// true if the path contains does not contain a curve or line.
private boolean mCachedIsEmpty = true;
// ---- Public Helper methods ----
public static Path_Delegate getDelegate(long nPath) {
return sManager.getDelegate(nPath);
}
public Path2D getJavaShape() {
return mPath;
}
public void setJavaShape(Shape shape) {
reset();
mPath.append(shape, false /*connect*/);
}
public void reset() {
mPath.reset();
mLastX = 0;
mLastY = 0;
}
public void setPathIterator(PathIterator iterator) {
reset();
mPath.append(iterator, false /*connect*/);
}
// ---- native methods ----
@LayoutlibDelegate
/*package*/ static long nInit() {
// create the delegate
Path_Delegate newDelegate = new Path_Delegate();
return sManager.addNewDelegate(newDelegate);
}
@LayoutlibDelegate
/*package*/ static long nInit(long nPath) {
// create the delegate
Path_Delegate newDelegate = new Path_Delegate();
// get the delegate to copy, which could be null if nPath is 0
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate != null) {
newDelegate.set(pathDelegate);
}
return sManager.addNewDelegate(newDelegate);
}
@LayoutlibDelegate
/*package*/ static void nReset(long nPath) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.reset();
}
@LayoutlibDelegate
/*package*/ static void nRewind(long nPath) {
// call out to reset since there's nothing to optimize in
// terms of data structs.
nReset(nPath);
}
@LayoutlibDelegate
/*package*/ static void nSet(long native_dst, long nSrc) {
Path_Delegate pathDstDelegate = sManager.getDelegate(native_dst);
if (pathDstDelegate == null) {
return;
}
Path_Delegate pathSrcDelegate = sManager.getDelegate(nSrc);
if (pathSrcDelegate == null) {
return;
}
pathDstDelegate.set(pathSrcDelegate);
}
@LayoutlibDelegate
/*package*/ static boolean nIsConvex(long nPath) {
Bridge.getLog().fidelityWarning(LayoutLog.TAG_UNSUPPORTED,
"Path.isConvex is not supported.", null, null, null);
return true;
}
@LayoutlibDelegate
/*package*/ static int nGetFillType(long nPath) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return 0;
}
return pathDelegate.mFillType.nativeInt;
}
@LayoutlibDelegate
public static void nSetFillType(long nPath, int ft) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.setFillType(Path.sFillTypeArray[ft]);
}
@LayoutlibDelegate
/*package*/ static boolean nIsEmpty(long nPath) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
return pathDelegate == null || pathDelegate.isEmpty();
}
@LayoutlibDelegate
/*package*/ static boolean nIsRect(long nPath, RectF rect) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return false;
}
// create an Area that can test if the path is a rect
Area area = new Area(pathDelegate.mPath);
if (area.isRectangular()) {
if (rect != null) {
pathDelegate.fillBounds(rect);
}
return true;
}
return false;
}
@LayoutlibDelegate
/*package*/ static void nComputeBounds(long nPath, RectF bounds) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.fillBounds(bounds);
}
@LayoutlibDelegate
/*package*/ static void nIncReserve(long nPath, int extraPtCount) {
// since we use a java2D path, there's no way to pre-allocate new points,
// so we do nothing.
}
@LayoutlibDelegate
/*package*/ static void nMoveTo(long nPath, float x, float y) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.moveTo(x, y);
}
@LayoutlibDelegate
/*package*/ static void nRMoveTo(long nPath, float dx, float dy) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.rMoveTo(dx, dy);
}
@LayoutlibDelegate
/*package*/ static void nLineTo(long nPath, float x, float y) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.lineTo(x, y);
}
@LayoutlibDelegate
/*package*/ static void nRLineTo(long nPath, float dx, float dy) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.rLineTo(dx, dy);
}
@LayoutlibDelegate
/*package*/ static void nQuadTo(long nPath, float x1, float y1, float x2, float y2) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.quadTo(x1, y1, x2, y2);
}
@LayoutlibDelegate
/*package*/ static void nRQuadTo(long nPath, float dx1, float dy1, float dx2, float dy2) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.rQuadTo(dx1, dy1, dx2, dy2);
}
@LayoutlibDelegate
/*package*/ static void nCubicTo(long nPath, float x1, float y1,
float x2, float y2, float x3, float y3) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.cubicTo(x1, y1, x2, y2, x3, y3);
}
@LayoutlibDelegate
/*package*/ static void nRCubicTo(long nPath, float x1, float y1,
float x2, float y2, float x3, float y3) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.rCubicTo(x1, y1, x2, y2, x3, y3);
}
@LayoutlibDelegate
/*package*/ static void nArcTo(long nPath, float left, float top, float right,
float bottom,
float startAngle, float sweepAngle, boolean forceMoveTo) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.arcTo(left, top, right, bottom, startAngle, sweepAngle, forceMoveTo);
}
@LayoutlibDelegate
/*package*/ static void nClose(long nPath) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.close();
}
@LayoutlibDelegate
/*package*/ static void nAddRect(long nPath,
float left, float top, float right, float bottom, int dir) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.addRect(left, top, right, bottom, dir);
}
@LayoutlibDelegate
/*package*/ static void nAddOval(long nPath, float left, float top, float right,
float bottom, int dir) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.mPath.append(new Ellipse2D.Float(
left, top, right - left, bottom - top), false);
}
@LayoutlibDelegate
/*package*/ static void nAddCircle(long nPath, float x, float y, float radius, int dir) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
// because x/y is the center of the circle, need to offset this by the radius
pathDelegate.mPath.append(new Ellipse2D.Float(
x - radius, y - radius, radius * 2, radius * 2), false);
}
@LayoutlibDelegate
/*package*/ static void nAddArc(long nPath, float left, float top, float right,
float bottom, float startAngle, float sweepAngle) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
// because x/y is the center of the circle, need to offset this by the radius
pathDelegate.mPath.append(new Arc2D.Float(
left, top, right - left, bottom - top,
-startAngle, -sweepAngle, Arc2D.OPEN), false);
}
@LayoutlibDelegate
/*package*/ static void nAddRoundRect(long nPath, float left, float top, float right,
float bottom, float rx, float ry, int dir) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.mPath.append(new RoundRectangle2D.Float(
left, top, right - left, bottom - top, rx * 2, ry * 2), false);
}
@LayoutlibDelegate
/*package*/ static void nAddRoundRect(long nPath, float left, float top, float right,
float bottom, float[] radii, int dir) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
float[] cornerDimensions = new float[radii.length];
for (int i = 0; i < radii.length; i++) {
cornerDimensions[i] = 2 * radii[i];
}
pathDelegate.mPath.append(new RoundRectangle(left, top, right - left, bottom - top,
cornerDimensions), false);
}
@LayoutlibDelegate
/*package*/ static void nAddPath(long nPath, long src, float dx, float dy) {
addPath(nPath, src, AffineTransform.getTranslateInstance(dx, dy));
}
@LayoutlibDelegate
/*package*/ static void nAddPath(long nPath, long src) {
addPath(nPath, src, null /*transform*/);
}
@LayoutlibDelegate
/*package*/ static void nAddPath(long nPath, long src, long matrix) {
Matrix_Delegate matrixDelegate = Matrix_Delegate.getDelegate(matrix);
if (matrixDelegate == null) {
return;
}
addPath(nPath, src, matrixDelegate.getAffineTransform());
}
@LayoutlibDelegate
/*package*/ static void nOffset(long nPath, float dx, float dy) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.offset(dx, dy);
}
@LayoutlibDelegate
/*package*/ static void nSetLastPoint(long nPath, float dx, float dy) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
pathDelegate.mLastX = dx;
pathDelegate.mLastY = dy;
}
@LayoutlibDelegate
/*package*/ static void nTransform(long nPath, long matrix,
long dst_path) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return;
}
Matrix_Delegate matrixDelegate = Matrix_Delegate.getDelegate(matrix);
if (matrixDelegate == null) {
return;
}
// this can be null if dst_path is 0
Path_Delegate dstDelegate = sManager.getDelegate(dst_path);
pathDelegate.transform(matrixDelegate, dstDelegate);
}
@LayoutlibDelegate
/*package*/ static void nTransform(long nPath, long matrix) {
nTransform(nPath, matrix, 0);
}
@LayoutlibDelegate
/*package*/ static boolean nOp(long nPath1, long nPath2, int op, long result) {
Bridge.getLog().error(LayoutLog.TAG_UNSUPPORTED, "Path.op() not supported", null, null);
return false;
}
@LayoutlibDelegate
/*package*/ static long nGetFinalizer() {
synchronized (Path_Delegate.class) {
if (sFinalizer == -1) {
sFinalizer = NativeAllocationRegistry_Delegate.createFinalizer(
sManager::removeJavaReferenceFor);
}
}
return sFinalizer;
}
@LayoutlibDelegate
/*package*/ static float[] nApproximate(long nPath, float error) {
Path_Delegate pathDelegate = sManager.getDelegate(nPath);
if (pathDelegate == null) {
return null;
}
// Get a FlatteningIterator
PathIterator iterator = pathDelegate.getJavaShape().getPathIterator(null, error);
float segment[] = new float[6];
float totalLength = 0;
ArrayList<Point2D.Float> points = new ArrayList<Point2D.Float>();
Point2D.Float previousPoint = null;
while (!iterator.isDone()) {
int type = iterator.currentSegment(segment);
Point2D.Float currentPoint = new Point2D.Float(segment[0], segment[1]);
// MoveTo shouldn't affect the length
if (previousPoint != null && type != PathIterator.SEG_MOVETO) {
totalLength += currentPoint.distance(previousPoint);
}
previousPoint = currentPoint;
points.add(currentPoint);
iterator.next();
}
int nPoints = points.size();
float[] result = new float[nPoints * 3];
previousPoint = null;
// Distance that we've covered so far. Used to calculate the fraction of the path that
// we've covered up to this point.
float walkedDistance = .0f;
for (int i = 0; i < nPoints; i++) {
Point2D.Float point = points.get(i);
float distance = previousPoint != null ? (float) previousPoint.distance(point) : .0f;
walkedDistance += distance;
result[i * 3] = walkedDistance / totalLength;
result[i * 3 + 1] = point.x;
result[i * 3 + 2] = point.y;
previousPoint = point;
}
return result;
}
// ---- Private helper methods ----
private void set(Path_Delegate delegate) {
mPath.reset();
setFillType(delegate.mFillType);
mPath.append(delegate.mPath, false /*connect*/);
}
private void setFillType(FillType fillType) {
mFillType = fillType;
mPath.setWindingRule(getWindingRule(fillType));
}
/**
* Returns the Java2D winding rules matching a given Android {@link FillType}.
* @param type the android fill type
* @return the matching java2d winding rule.
*/
private static int getWindingRule(FillType type) {
switch (type) {
case WINDING:
case INVERSE_WINDING:
return GeneralPath.WIND_NON_ZERO;
case EVEN_ODD:
case INVERSE_EVEN_ODD:
return GeneralPath.WIND_EVEN_ODD;
default:
assert false;
return GeneralPath.WIND_NON_ZERO;
}
}
@NonNull
private static Direction getDirection(int direction) {
for (Direction d : Direction.values()) {
if (direction == d.nativeInt) {
return d;
}
}
assert false;
return null;
}
public static void addPath(long destPath, long srcPath, AffineTransform transform) {
Path_Delegate destPathDelegate = sManager.getDelegate(destPath);
if (destPathDelegate == null) {
return;
}
Path_Delegate srcPathDelegate = sManager.getDelegate(srcPath);
if (srcPathDelegate == null) {
return;
}
if (transform != null) {
destPathDelegate.mPath.append(
srcPathDelegate.mPath.getPathIterator(transform), false);
} else {
destPathDelegate.mPath.append(srcPathDelegate.mPath, false);
}
}
/**
* Returns whether the path already contains any points.
* Note that this is different to
* {@link #isEmpty} because if all elements are {@link PathIterator#SEG_MOVETO},
* {@link #isEmpty} will return true while hasPoints will return false.
*/
public boolean hasPoints() {
return !mPath.getPathIterator(null).isDone();
}
/**
* Returns whether the path is empty (contains no lines or curves).
* @see Path#isEmpty
*/
public boolean isEmpty() {
if (!mCachedIsEmpty) {
return false;
}
float[] coords = new float[6];
mCachedIsEmpty = Boolean.TRUE;
for (PathIterator it = mPath.getPathIterator(null); !it.isDone(); it.next()) {
int type = it.currentSegment(coords);
if (type != PathIterator.SEG_MOVETO) {
// Once we know that the path is not empty, we do not need to check again unless
// Path#reset is called.
mCachedIsEmpty = false;
return false;
}
}
return true;
}
/**
* Fills the given {@link RectF} with the path bounds.
* @param bounds the RectF to be filled.
*/
public void fillBounds(RectF bounds) {
Rectangle2D rect = mPath.getBounds2D();
bounds.left = (float)rect.getMinX();
bounds.right = (float)rect.getMaxX();
bounds.top = (float)rect.getMinY();
bounds.bottom = (float)rect.getMaxY();
}
/**
* Set the beginning of the next contour to the point (x,y).
*
* @param x The x-coordinate of the start of a new contour
* @param y The y-coordinate of the start of a new contour
*/
public void moveTo(float x, float y) {
mPath.moveTo(mLastX = x, mLastY = y);
}
/**
* Set the beginning of the next contour relative to the last point on the
* previous contour. If there is no previous contour, this is treated the
* same as moveTo().
*
* @param dx The amount to add to the x-coordinate of the end of the
* previous contour, to specify the start of a new contour
* @param dy The amount to add to the y-coordinate of the end of the
* previous contour, to specify the start of a new contour
*/
public void rMoveTo(float dx, float dy) {
dx += mLastX;
dy += mLastY;
mPath.moveTo(mLastX = dx, mLastY = dy);
}
/**
* Add a line from the last point to the specified point (x,y).
* If no moveTo() call has been made for this contour, the first point is
* automatically set to (0,0).
*
* @param x The x-coordinate of the end of a line
* @param y The y-coordinate of the end of a line
*/
public void lineTo(float x, float y) {
if (!hasPoints()) {
mPath.moveTo(mLastX = 0, mLastY = 0);
}
mPath.lineTo(mLastX = x, mLastY = y);
}
/**
* Same as lineTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx The amount to add to the x-coordinate of the previous point on
* this contour, to specify a line
* @param dy The amount to add to the y-coordinate of the previous point on
* this contour, to specify a line
*/
public void rLineTo(float dx, float dy) {
if (!hasPoints()) {
mPath.moveTo(mLastX = 0, mLastY = 0);
}
if (Math.abs(dx) < EPSILON && Math.abs(dy) < EPSILON) {
// The delta is so small that this shouldn't generate a line
return;
}
dx += mLastX;
dy += mLastY;
mPath.lineTo(mLastX = dx, mLastY = dy);
}
/**
* Add a quadratic bezier from the last point, approaching control point
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
* this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the control point on a quadratic curve
* @param y1 The y-coordinate of the control point on a quadratic curve
* @param x2 The x-coordinate of the end point on a quadratic curve
* @param y2 The y-coordinate of the end point on a quadratic curve
*/
public void quadTo(float x1, float y1, float x2, float y2) {
mPath.quadTo(x1, y1, mLastX = x2, mLastY = y2);
}
/**
* Same as quadTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx1 The amount to add to the x-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dy1 The amount to add to the y-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dx2 The amount to add to the x-coordinate of the last point on
* this contour, for the end point of a quadratic curve
* @param dy2 The amount to add to the y-coordinate of the last point on
* this contour, for the end point of a quadratic curve
*/
public void rQuadTo(float dx1, float dy1, float dx2, float dy2) {
if (!hasPoints()) {
mPath.moveTo(mLastX = 0, mLastY = 0);
}
dx1 += mLastX;
dy1 += mLastY;
dx2 += mLastX;
dy2 += mLastY;
mPath.quadTo(dx1, dy1, mLastX = dx2, mLastY = dy2);
}
/**
* Add a cubic bezier from the last point, approaching control points
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
* made for this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the 1st control point on a cubic curve
* @param y1 The y-coordinate of the 1st control point on a cubic curve
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
* @param x3 The x-coordinate of the end point on a cubic curve
* @param y3 The y-coordinate of the end point on a cubic curve
*/
public void cubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
if (!hasPoints()) {
mPath.moveTo(0, 0);
}
mPath.curveTo(x1, y1, x2, y2, mLastX = x3, mLastY = y3);
}
/**
* Same as cubicTo, but the coordinates are considered relative to the
* current point on this contour. If there is no previous point, then a
* moveTo(0,0) is inserted automatically.
*/
public void rCubicTo(float dx1, float dy1, float dx2, float dy2,
float dx3, float dy3) {
if (!hasPoints()) {
mPath.moveTo(mLastX = 0, mLastY = 0);
}
dx1 += mLastX;
dy1 += mLastY;
dx2 += mLastX;
dy2 += mLastY;
dx3 += mLastX;
dy3 += mLastY;
mPath.curveTo(dx1, dy1, dx2, dy2, mLastX = dx3, mLastY = dy3);
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc. The sweep angle is tread mod 360.
*
* @param left The left of oval defining shape and size of the arc
* @param top The top of oval defining shape and size of the arc
* @param right The right of oval defining shape and size of the arc
* @param bottom The bottom of oval defining shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise, treated
* mod 360.
* @param forceMoveTo If true, always begin a new contour with the arc
*/
public void arcTo(float left, float top, float right, float bottom, float startAngle,
float sweepAngle,
boolean forceMoveTo) {
Arc2D arc = new Arc2D.Float(left, top, right - left, bottom - top, -startAngle,
-sweepAngle, Arc2D.OPEN);
mPath.append(arc, true /*connect*/);
resetLastPointFromPath();
}
/**
* Close the current contour. If the current point is not equal to the
* first point of the contour, a line segment is automatically added.
*/
public void close() {
mPath.closePath();
}
private void resetLastPointFromPath() {
Point2D last = mPath.getCurrentPoint();
mLastX = (float) last.getX();
mLastY = (float) last.getY();
}
/**
* Add a closed rectangle contour to the path
*
* @param left The left side of a rectangle to add to the path
* @param top The top of a rectangle to add to the path
* @param right The right side of a rectangle to add to the path
* @param bottom The bottom of a rectangle to add to the path
* @param dir The direction to wind the rectangle's contour
*/
public void addRect(float left, float top, float right, float bottom,
int dir) {
moveTo(left, top);
Direction direction = getDirection(dir);
switch (direction) {
case CW:
lineTo(right, top);
lineTo(right, bottom);
lineTo(left, bottom);
break;
case CCW:
lineTo(left, bottom);
lineTo(right, bottom);
lineTo(right, top);
break;
}
close();
resetLastPointFromPath();
}
/**
* Offset the path by (dx,dy), returning true on success
*
* @param dx The amount in the X direction to offset the entire path
* @param dy The amount in the Y direction to offset the entire path
*/
public void offset(float dx, float dy) {
GeneralPath newPath = new GeneralPath();
PathIterator iterator = mPath.getPathIterator(new AffineTransform(0, 0, dx, 0, 0, dy));
newPath.append(iterator, false /*connect*/);
mPath = newPath;
}
/**
* Transform the points in this path by matrix, and write the answer
* into dst. If dst is null, then the the original path is modified.
*
* @param matrix The matrix to apply to the path
* @param dst The transformed path is written here. If dst is null,
* then the the original path is modified
*/
public void transform(Matrix_Delegate matrix, Path_Delegate dst) {
if (matrix.hasPerspective()) {
assert false;
Bridge.getLog().fidelityWarning(LayoutLog.TAG_MATRIX_AFFINE,
"android.graphics.Path#transform() only " +
"supports affine transformations.", null, null, null /*data*/);
}
GeneralPath newPath = new GeneralPath();
PathIterator iterator = mPath.getPathIterator(matrix.getAffineTransform());
newPath.append(iterator, false /*connect*/);
if (dst != null) {
dst.mPath = newPath;
} else {
mPath = newPath;
}
}
}