blob: 32504282d98f3e12a8db149655e3513cb2fabb0a [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
import android.annotation.SystemApi;
import android.annotation.SystemService;
import android.annotation.UnsupportedAppUsage;
import android.content.Context;
import android.os.Build;
import android.os.Handler;
import android.os.MemoryFile;
import android.util.Log;
import android.util.SparseArray;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* <p>
* SensorManager lets you access the device's {@link android.hardware.Sensor
* sensors}.
* </p>
* <p>
* Always make sure to disable sensors you don't need, especially when your
* activity is paused. Failing to do so can drain the battery in just a few
* hours. Note that the system will <i>not</i> disable sensors automatically when
* the screen turns off.
* </p>
* <p class="note">
* Note: Don't use this mechanism with a Trigger Sensor, have a look
* at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION}
* is an example of a trigger sensor.
* </p>
* <pre class="prettyprint">
* public class SensorActivity extends Activity implements SensorEventListener {
* private final SensorManager mSensorManager;
* private final Sensor mAccelerometer;
*
* public SensorActivity() {
* mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
* mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
* }
*
* protected void onResume() {
* super.onResume();
* mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
* }
*
* protected void onPause() {
* super.onPause();
* mSensorManager.unregisterListener(this);
* }
*
* public void onAccuracyChanged(Sensor sensor, int accuracy) {
* }
*
* public void onSensorChanged(SensorEvent event) {
* }
* }
* </pre>
*
* @see SensorEventListener
* @see SensorEvent
* @see Sensor
*
*/
@SystemService(Context.SENSOR_SERVICE)
public abstract class SensorManager {
/** @hide */
protected static final String TAG = "SensorManager";
private static final float[] sTempMatrix = new float[16];
// Cached lists of sensors by type. Guarded by mSensorListByType.
private final SparseArray<List<Sensor>> mSensorListByType =
new SparseArray<List<Sensor>>();
// Legacy sensor manager implementation. Guarded by mSensorListByType during initialization.
private LegacySensorManager mLegacySensorManager;
/* NOTE: sensor IDs must be a power of 2 */
/**
* A constant describing an orientation sensor. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ORIENTATION = 1 << 0;
/**
* A constant describing an accelerometer. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ACCELEROMETER = 1 << 1;
/**
* A constant describing a temperature sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_TEMPERATURE = 1 << 2;
/**
* A constant describing a magnetic sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
/**
* A constant describing an ambient light sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_LIGHT = 1 << 4;
/**
* A constant describing a proximity sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_PROXIMITY = 1 << 5;
/**
* A constant describing a Tricorder See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_TRICORDER = 1 << 6;
/**
* A constant describing an orientation sensor. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
/**
* A constant that includes all sensors
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ALL = 0x7F;
/**
* Smallest sensor ID
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MIN = SENSOR_ORIENTATION;
/**
* Largest sensor ID
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MAX = ((SENSOR_ALL + 1) >> 1);
/**
* Index of the X value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_X = 0;
/**
* Index of the Y value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_Y = 1;
/**
* Index of the Z value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_Z = 2;
/**
* Offset to the untransformed values in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_INDEX = 3;
/**
* Index of the untransformed X value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_X = 3;
/**
* Index of the untransformed Y value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_Y = 4;
/**
* Index of the untransformed Z value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_Z = 5;
/** Standard gravity (g) on Earth. This value is equivalent to 1G */
public static final float STANDARD_GRAVITY = 9.80665f;
/** Sun's gravity in SI units (m/s^2) */
public static final float GRAVITY_SUN = 275.0f;
/** Mercury's gravity in SI units (m/s^2) */
public static final float GRAVITY_MERCURY = 3.70f;
/** Venus' gravity in SI units (m/s^2) */
public static final float GRAVITY_VENUS = 8.87f;
/** Earth's gravity in SI units (m/s^2) */
public static final float GRAVITY_EARTH = 9.80665f;
/** The Moon's gravity in SI units (m/s^2) */
public static final float GRAVITY_MOON = 1.6f;
/** Mars' gravity in SI units (m/s^2) */
public static final float GRAVITY_MARS = 3.71f;
/** Jupiter's gravity in SI units (m/s^2) */
public static final float GRAVITY_JUPITER = 23.12f;
/** Saturn's gravity in SI units (m/s^2) */
public static final float GRAVITY_SATURN = 8.96f;
/** Uranus' gravity in SI units (m/s^2) */
public static final float GRAVITY_URANUS = 8.69f;
/** Neptune's gravity in SI units (m/s^2) */
public static final float GRAVITY_NEPTUNE = 11.0f;
/** Pluto's gravity in SI units (m/s^2) */
public static final float GRAVITY_PLUTO = 0.6f;
/** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f;
/** Gravity on the island */
public static final float GRAVITY_THE_ISLAND = 4.815162342f;
/** Maximum magnetic field on Earth's surface */
public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
/** Minimum magnetic field on Earth's surface */
public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
/** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
/** Maximum luminance of sunlight in lux */
public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
/** luminance of sunlight in lux */
public static final float LIGHT_SUNLIGHT = 110000.0f;
/** luminance in shade in lux */
public static final float LIGHT_SHADE = 20000.0f;
/** luminance under an overcast sky in lux */
public static final float LIGHT_OVERCAST = 10000.0f;
/** luminance at sunrise in lux */
public static final float LIGHT_SUNRISE = 400.0f;
/** luminance under a cloudy sky in lux */
public static final float LIGHT_CLOUDY = 100.0f;
/** luminance at night with full moon in lux */
public static final float LIGHT_FULLMOON = 0.25f;
/** luminance at night with no moon in lux*/
public static final float LIGHT_NO_MOON = 0.001f;
/** get sensor data as fast as possible */
public static final int SENSOR_DELAY_FASTEST = 0;
/** rate suitable for games */
public static final int SENSOR_DELAY_GAME = 1;
/** rate suitable for the user interface */
public static final int SENSOR_DELAY_UI = 2;
/** rate (default) suitable for screen orientation changes */
public static final int SENSOR_DELAY_NORMAL = 3;
/**
* The values returned by this sensor cannot be trusted because the sensor
* had no contact with what it was measuring (for example, the heart rate
* monitor is not in contact with the user).
*/
public static final int SENSOR_STATUS_NO_CONTACT = -1;
/**
* The values returned by this sensor cannot be trusted, calibration is
* needed or the environment doesn't allow readings
*/
public static final int SENSOR_STATUS_UNRELIABLE = 0;
/**
* This sensor is reporting data with low accuracy, calibration with the
* environment is needed
*/
public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
/**
* This sensor is reporting data with an average level of accuracy,
* calibration with the environment may improve the readings
*/
public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
/** This sensor is reporting data with maximum accuracy */
public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_X = 1;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_Y = 2;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_Z = 3;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_X = AXIS_X | 0x80;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
/**
* {@hide}
*/
@UnsupportedAppUsage
public SensorManager() {
}
/**
* Gets the full list of sensors that are available.
* @hide
*/
protected abstract List<Sensor> getFullSensorList();
/**
* Gets the full list of dynamic sensors that are available.
* @hide
*/
protected abstract List<Sensor> getFullDynamicSensorList();
/**
* @return available sensors.
* @deprecated This method is deprecated, use
* {@link SensorManager#getSensorList(int)} instead
*/
@Deprecated
public int getSensors() {
return getLegacySensorManager().getSensors();
}
/**
* Use this method to get the list of available sensors of a certain type.
* Make multiple calls to get sensors of different types or use
* {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
* sensors.
*
* <p class="note">
* NOTE: Both wake-up and non wake-up sensors matching the given type are
* returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
* of the returned {@link Sensor}.
* </p>
*
* @param type
* of sensors requested
*
* @return a list of sensors matching the asked type.
*
* @see #getDefaultSensor(int)
* @see Sensor
*/
public List<Sensor> getSensorList(int type) {
// cache the returned lists the first time
List<Sensor> list;
final List<Sensor> fullList = getFullSensorList();
synchronized (mSensorListByType) {
list = mSensorListByType.get(type);
if (list == null) {
if (type == Sensor.TYPE_ALL) {
list = fullList;
} else {
list = new ArrayList<Sensor>();
for (Sensor i : fullList) {
if (i.getType() == type) {
list.add(i);
}
}
}
list = Collections.unmodifiableList(list);
mSensorListByType.append(type, list);
}
}
return list;
}
/**
* Use this method to get a list of available dynamic sensors of a certain type.
* Make multiple calls to get sensors of different types or use
* {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all dynamic sensors.
*
* <p class="note">
* NOTE: Both wake-up and non wake-up sensors matching the given type are
* returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
* of the returned {@link Sensor}.
* </p>
*
* @param type of sensors requested
*
* @return a list of dynamic sensors matching the requested type.
*
* @see Sensor
*/
public List<Sensor> getDynamicSensorList(int type) {
// cache the returned lists the first time
final List<Sensor> fullList = getFullDynamicSensorList();
if (type == Sensor.TYPE_ALL) {
return Collections.unmodifiableList(fullList);
} else {
List<Sensor> list = new ArrayList();
for (Sensor i : fullList) {
if (i.getType() == type) {
list.add(i);
}
}
return Collections.unmodifiableList(list);
}
}
/**
* Use this method to get the default sensor for a given type. Note that the
* returned sensor could be a composite sensor, and its data could be
* averaged or filtered. If you need to access the raw sensors use
* {@link SensorManager#getSensorList(int) getSensorList}.
*
* @param type
* of sensors requested
*
* @return the default sensor matching the requested type if one exists and the application
* has the necessary permissions, or null otherwise.
*
* @see #getSensorList(int)
* @see Sensor
*/
public Sensor getDefaultSensor(int type) {
// TODO: need to be smarter, for now, just return the 1st sensor
List<Sensor> l = getSensorList(type);
boolean wakeUpSensor = false;
// For the following sensor types, return a wake-up sensor. These types are by default
// defined as wake-up sensors. For the rest of the SDK defined sensor types return a
// non_wake-up version.
if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION
|| type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE
|| type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE
|| type == Sensor.TYPE_WRIST_TILT_GESTURE
|| type == Sensor.TYPE_DYNAMIC_SENSOR_META) {
wakeUpSensor = true;
}
for (Sensor sensor : l) {
if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor;
}
return null;
}
/**
* Return a Sensor with the given type and wakeUp properties. If multiple sensors of this
* type exist, any one of them may be returned.
* <p>
* For example,
* <ul>
* <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up
* accelerometer sensor if it exists. </li>
* <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up
* proximity sensor if it exists. </li>
* <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity
* sensor which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li>
* </ul>
* </p>
* <p class="note">
* Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION}
* are declared as wake-up sensors by default.
* </p>
* @param type
* type of sensor requested
* @param wakeUp
* flag to indicate whether the Sensor is a wake-up or non wake-up sensor.
* @return the default sensor matching the requested type and wakeUp properties if one exists
* and the application has the necessary permissions, or null otherwise.
* @see Sensor#isWakeUpSensor()
*/
public Sensor getDefaultSensor(int type, boolean wakeUp) {
List<Sensor> l = getSensorList(type);
for (Sensor sensor : l) {
if (sensor.isWakeUpSensor() == wakeUp) {
return sensor;
}
}
return null;
}
/**
* Registers a listener for given sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
* instead.
*
* @param listener
* sensor listener object
*
* @param sensors
* a bit masks of the sensors to register to
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors) {
return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
}
/**
* Registers a SensorListener for given sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
* instead.
*
* @param listener
* sensor listener object
*
* @param sensors
* a bit masks of the sensors to register to
*
* @param rate
* rate of events. This is only a hint to the system. events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors, int rate) {
return getLegacySensorManager().registerListener(listener, sensors, rate);
}
/**
* Unregisters a listener for all sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener)}
* instead.
*
* @param listener
* a SensorListener object
*/
@Deprecated
public void unregisterListener(SensorListener listener) {
unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
* instead.
*
* @param listener
* a SensorListener object
*
* @param sensors
* a bit masks of the sensors to unregister from
*/
@Deprecated
public void unregisterListener(SensorListener listener, int sensors) {
getLegacySensorManager().unregisterListener(listener, sensors);
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
* <p class="note"></p>
* Note: Don't use this method with a one shot trigger sensor such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
* Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
* </p>
*
* @param listener
* a SensorEventListener object
*
* @param sensor
* the sensor to unregister from
*
* @see #unregisterListener(SensorEventListener)
* @see #registerListener(SensorEventListener, Sensor, int)
*/
public void unregisterListener(SensorEventListener listener, Sensor sensor) {
if (listener == null || sensor == null) {
return;
}
unregisterListenerImpl(listener, sensor);
}
/**
* Unregisters a listener for all sensors.
*
* @param listener
* a SensorListener object
*
* @see #unregisterListener(SensorEventListener, Sensor)
* @see #registerListener(SensorEventListener, Sensor, int)
*
*/
public void unregisterListener(SensorEventListener listener) {
if (listener == null) {
return;
}
unregisterListenerImpl(listener, null);
}
/** @hide */
protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor at the given sampling frequency.
* <p>
* The events will be delivered to the provided {@code SensorEventListener} as soon as they are
* available. To reduce the power consumption, applications can use
* {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
* positive non-zero maximum reporting latency.
* </p>
* <p>
* In the case of non-wake-up sensors, the events are only delivered while the Application
* Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details.
* To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the
* application registering to the sensor must hold a partial wake-lock to keep the AP awake,
* otherwise some events might be lost while the AP is asleep. Note that although events might
* be lost while the AP is asleep, the sensor will still consume power if it is not explicitly
* deactivated by the application. Applications must unregister their {@code
* SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power
* while the device is inactive. See {@link #registerListener(SensorEventListener, Sensor, int,
* int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events
* might be lost.
* </p>
* <p>
* In the case of wake-up sensors, each event generated by the sensor will cause the AP to
* wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up
* sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check
* whether a sensor is a wake-up sensor. See
* {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to
* reduce the power impact of registering to wake-up sensors.
* </p>
* <p class="note">
* Note: Don't use this method with one-shot trigger sensors such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
* {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use
* {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor.
* </p>
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
* @param sensor The {@link android.hardware.Sensor Sensor} to register to.
* @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
* delivered at. This is only a hint to the system. Events may be received faster or
* slower than the specified rate. Usually events are received faster. The value must
* be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay
* between events in microseconds. Specifying the delay in microseconds only works
* from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of
* the {@code SENSOR_DELAY_*} constants.
* @return <code>true</code> if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int, Handler)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor,
int samplingPeriodUs) {
return registerListener(listener, sensor, samplingPeriodUs, null);
}
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor at the given sampling frequency and the given maximum reporting latency.
* <p>
* This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but
* it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The
* events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once
* one of the events in the FIFO needs to be reported, all of the events in the FIFO are
* reported sequentially. This means that some events will be reported before the maximum
* reporting latency has elapsed.
* </p><p>
* When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to
* {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be
* delivered as soon as possible.
* </p><p>
* When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call
* will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}.
* </p><p>
* Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of
* interrupts the AP (Application Processor) receives, hence reducing power consumption, as the
* AP can switch to a lower power state while the sensor is capturing the data. This is
* especially important when registering to wake-up sensors, for which each interrupt causes the
* AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more
* information on wake-up sensors.
* </p>
* <p class="note">
* </p>
* Note: Don't use this method with one-shot trigger sensors such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
* {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* that will receive the sensor events. If the application is interested in receiving
* flush complete notifications, it should register with
* {@link android.hardware.SensorEventListener SensorEventListener2} instead.
* @param sensor The {@link android.hardware.Sensor Sensor} to register to.
* @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
* This is only a hint to the system. Events may be received faster or slower than
* the specified rate. Usually events are received faster. Can be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
* microseconds.
* @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
* being reported to the application. A large value allows reducing the power
* consumption associated with the sensor. If maxReportLatencyUs is set to zero,
* events are delivered as soon as they are available, which is equivalent to calling
* {@link #registerListener(SensorEventListener, Sensor, int)}.
* @return <code>true</code> if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int)
* @see #unregisterListener(SensorEventListener)
* @see #flush(SensorEventListener)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor,
int samplingPeriodUs, int maxReportLatencyUs) {
int delay = getDelay(samplingPeriodUs);
return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0);
}
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
* power consumption, applications can use
* {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
* positive non-zero maximum reporting latency.
* <p class="note">
* </p>
* Note: Don't use this method with a one shot trigger sensor such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
* {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
* @param sensor The {@link android.hardware.Sensor Sensor} to register to.
* @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
* delivered at. This is only a hint to the system. Events may be received faster or
* slower than the specified rate. Usually events are received faster. The value must
* be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired
* delay between events in microseconds. Specifying the delay in microseconds only
* works from Android 2.3 (API level 9) onwards. For earlier releases, you must use
* one of the {@code SENSOR_DELAY_*} constants.
* @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
* sensor events} will be delivered to.
* @return <code>true</code> if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor,
int samplingPeriodUs, Handler handler) {
int delay = getDelay(samplingPeriodUs);
return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
}
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor at the given sampling frequency and the given maximum reporting latency.
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* that will receive the sensor events. If the application is interested in receiving
* flush complete notifications, it should register with
* {@link android.hardware.SensorEventListener SensorEventListener2} instead.
* @param sensor The {@link android.hardware.Sensor Sensor} to register to.
* @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
* This is only a hint to the system. Events may be received faster or slower than
* the specified rate. Usually events are received faster. Can be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
* microseconds.
* @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
* being reported to the application. A large value allows reducing the power
* consumption associated with the sensor. If maxReportLatencyUs is set to zero,
* events are delivered as soon as they are available, which is equivalent to calling
* {@link #registerListener(SensorEventListener, Sensor, int)}.
* @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
* sensor events} will be delivered to.
* @return <code>true</code> if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int, int)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor,
int samplingPeriodUs, int maxReportLatencyUs, Handler handler) {
int delayUs = getDelay(samplingPeriodUs);
return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0);
}
/** @hide */
protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags);
/**
* Flushes the FIFO of all the sensors registered for this listener. If there are events
* in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has
* expired. Events are returned in the usual way through the SensorEventListener.
* This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and
* returns immediately.
* {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
* after all the events in the batch at the time of calling this method have been delivered
* successfully. If the hardware doesn't support flush, it still returns true and a trivial
* flush complete event is sent after the current event for all the clients registered for this
* sensor.
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* which was previously used in a registerListener call.
* @return <code>true</code> if the flush is initiated successfully on all the sensors
* registered for this listener, false if no sensor is previously registered for this
* listener or flush on one of the sensors fails.
* @see #registerListener(SensorEventListener, Sensor, int, int)
* @throws IllegalArgumentException when listener is null.
*/
public boolean flush(SensorEventListener listener) {
return flushImpl(listener);
}
/** @hide */
protected abstract boolean flushImpl(SensorEventListener listener);
/**
* Create a sensor direct channel backed by shared memory wrapped in MemoryFile object.
*
* The resulting channel can be used for delivering sensor events to native code, other
* processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
* for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
* and cares about sensor event latency.
*
* Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
* report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
* to free up resource in sensor system associated with the direct channel.
*
* @param mem A {@link android.os.MemoryFile} shared memory object.
* @return A {@link android.hardware.SensorDirectChannel} object.
* @throws NullPointerException when mem is null.
* @throws UncheckedIOException if not able to create channel.
* @see SensorDirectChannel#close()
*/
public SensorDirectChannel createDirectChannel(MemoryFile mem) {
return createDirectChannelImpl(mem, null);
}
/**
* Create a sensor direct channel backed by shared memory wrapped in HardwareBuffer object.
*
* The resulting channel can be used for delivering sensor events to native code, other
* processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
* for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
* and cares about sensor event latency.
*
* Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
* report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
* to free up resource in sensor system associated with the direct channel.
*
* @param mem A {@link android.hardware.HardwareBuffer} shared memory object.
* @return A {@link android.hardware.SensorDirectChannel} object.
* @throws NullPointerException when mem is null.
* @throws UncheckedIOException if not able to create channel.
* @see SensorDirectChannel#close()
*/
public SensorDirectChannel createDirectChannel(HardwareBuffer mem) {
return createDirectChannelImpl(null, mem);
}
/** @hide */
protected abstract SensorDirectChannel createDirectChannelImpl(
MemoryFile memoryFile, HardwareBuffer hardwareBuffer);
/** @hide */
void destroyDirectChannel(SensorDirectChannel channel) {
destroyDirectChannelImpl(channel);
}
/** @hide */
protected abstract void destroyDirectChannelImpl(SensorDirectChannel channel);
/** @removed */
@Deprecated
public int configureDirectChannel(SensorDirectChannel channel, Sensor sensor, int rateLevel) {
return configureDirectChannelImpl(channel, sensor, rateLevel);
}
/** @hide */
protected abstract int configureDirectChannelImpl(
SensorDirectChannel channel, Sensor s, int rate);
/**
* Used for receiving notifications from the SensorManager when dynamic sensors are connected or
* disconnected.
*/
public abstract static class DynamicSensorCallback {
/**
* Called when there is a dynamic sensor being connected to the system.
*
* @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}.
*/
public void onDynamicSensorConnected(Sensor sensor) {}
/**
* Called when there is a dynamic sensor being disconnected from the system.
*
* @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}.
*/
public void onDynamicSensorDisconnected(Sensor sensor) {}
}
/**
* Add a {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
* registration with the already registered callback object will have no additional effect.
*
* @param callback An object that implements the
* {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback}
* interface for receiving callbacks.
* @see #registerDynamicSensorCallback(DynamicSensorCallback, Handler)
*
* @throws IllegalArgumentException when callback is null.
*/
public void registerDynamicSensorCallback(DynamicSensorCallback callback) {
registerDynamicSensorCallback(callback, null);
}
/**
* Add a {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
* registration with the already registered callback object will have no additional effect.
*
* @param callback An object that implements the
* {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} interface for receiving callbacks.
* @param handler The {@link android.os.Handler Handler} the {@link
* android.hardware.SensorManager.DynamicSensorCallback
* sensor connection events} will be delivered to.
*
* @throws IllegalArgumentException when callback is null.
*/
public void registerDynamicSensorCallback(
DynamicSensorCallback callback, Handler handler) {
registerDynamicSensorCallbackImpl(callback, handler);
}
/**
* Remove a {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} to stop sending dynamic sensor connection events to that
* callback.
*
* @param callback An object that implements the
* {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback}
* interface for receiving callbacks.
*/
public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) {
unregisterDynamicSensorCallbackImpl(callback);
}
/**
* Tell if dynamic sensor discovery feature is supported by system.
*
* @return <code>true</code> if dynamic sensor discovery is supported, <code>false</code>
* otherwise.
*/
public boolean isDynamicSensorDiscoverySupported() {
List<Sensor> sensors = getSensorList(Sensor.TYPE_DYNAMIC_SENSOR_META);
return sensors.size() > 0;
}
/** @hide */
protected abstract void registerDynamicSensorCallbackImpl(
DynamicSensorCallback callback, Handler handler);
/** @hide */
protected abstract void unregisterDynamicSensorCallbackImpl(
DynamicSensorCallback callback);
/**
* <p>
* Computes the inclination matrix <b>I</b> as well as the rotation matrix
* <b>R</b> transforming a vector from the device coordinate system to the
* world's coordinate system which is defined as a direct orthonormal basis,
* where:
* </p>
*
* <ul>
* <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
* the ground at the device's current location and roughly points East).</li>
* <li>Y is tangential to the ground at the device's current location and
* points towards the magnetic North Pole.</li>
* <li>Z points towards the sky and is perpendicular to the ground.</li>
* </ul>
*
* <p>
* <center><img src="../../../images/axis_globe.png"
* alt="World coordinate-system diagram." border="0" /></center>
* </p>
*
* <p>
* <hr>
* <p>
* By definition:
* <p>
* [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
* <p>
* [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
* geomagnetic field)
* <p>
* <b>R</b> is the identity matrix when the device is aligned with the
* world's coordinate system, that is, when the device's X axis points
* toward East, the Y axis points to the North Pole and the device is facing
* the sky.
*
* <p>
* <b>I</b> is a rotation matrix transforming the geomagnetic vector into
* the same coordinate space as gravity (the world's coordinate space).
* <b>I</b> is a simple rotation around the X axis. The inclination angle in
* radians can be computed with {@link #getInclination}.
* <hr>
*
* <p>
* Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
* on the length of the passed array:
* <p>
* <u>If the array length is 16:</u>
*
* <pre>
* / M[ 0] M[ 1] M[ 2] M[ 3] \
* | M[ 4] M[ 5] M[ 6] M[ 7] |
* | M[ 8] M[ 9] M[10] M[11] |
* \ M[12] M[13] M[14] M[15] /
*</pre>
*
* This matrix is ready to be used by OpenGL ES's
* {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
* glLoadMatrixf(float[], int)}.
* <p>
* Note that because OpenGL matrices are column-major matrices you must
* transpose the matrix before using it. However, since the matrix is a
* rotation matrix, its transpose is also its inverse, conveniently, it is
* often the inverse of the rotation that is needed for rendering; it can
* therefore be used with OpenGL ES directly.
* <p>
* Also note that the returned matrices always have this form:
*
* <pre>
* / M[ 0] M[ 1] M[ 2] 0 \
* | M[ 4] M[ 5] M[ 6] 0 |
* | M[ 8] M[ 9] M[10] 0 |
* \ 0 0 0 1 /
*</pre>
*
* <p>
* <u>If the array length is 9:</u>
*
* <pre>
* / M[ 0] M[ 1] M[ 2] \
* | M[ 3] M[ 4] M[ 5] |
* \ M[ 6] M[ 7] M[ 8] /
*</pre>
*
* <hr>
* <p>
* The inverse of each matrix can be computed easily by taking its
* transpose.
*
* <p>
* The matrices returned by this function are meaningful only when the
* device is not free-falling and it is not close to the magnetic north. If
* the device is accelerating, or placed into a strong magnetic field, the
* returned matrices may be inaccurate.
*
* @param R
* is an array of 9 floats holding the rotation matrix <b>R</b> when
* this function returns. R can be null.
* <p>
*
* @param I
* is an array of 9 floats holding the rotation matrix <b>I</b> when
* this function returns. I can be null.
* <p>
*
* @param gravity
* is an array of 3 floats containing the gravity vector expressed in
* the device's coordinate. You can simply use the
* {@link android.hardware.SensorEvent#values values} returned by a
* {@link android.hardware.SensorEvent SensorEvent} of a
* {@link android.hardware.Sensor Sensor} of type
* {@link android.hardware.Sensor#TYPE_ACCELEROMETER
* TYPE_ACCELEROMETER}.
* <p>
*
* @param geomagnetic
* is an array of 3 floats containing the geomagnetic vector
* expressed in the device's coordinate. You can simply use the
* {@link android.hardware.SensorEvent#values values} returned by a
* {@link android.hardware.SensorEvent SensorEvent} of a
* {@link android.hardware.Sensor Sensor} of type
* {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
* TYPE_MAGNETIC_FIELD}.
*
* @return <code>true</code> on success, <code>false</code> on failure (for
* instance, if the device is in free fall). Free fall is defined as
* condition when the magnitude of the gravity is less than 1/10 of
* the nominal value. On failure the output matrices are not modified.
*
* @see #getInclination(float[])
* @see #getOrientation(float[], float[])
* @see #remapCoordinateSystem(float[], int, int, float[])
*/
public static boolean getRotationMatrix(float[] R, float[] I,
float[] gravity, float[] geomagnetic) {
// TODO: move this to native code for efficiency
float Ax = gravity[0];
float Ay = gravity[1];
float Az = gravity[2];
final float normsqA = (Ax * Ax + Ay * Ay + Az * Az);
final float g = 9.81f;
final float freeFallGravitySquared = 0.01f * g * g;
if (normsqA < freeFallGravitySquared) {
// gravity less than 10% of normal value
return false;
}
final float Ex = geomagnetic[0];
final float Ey = geomagnetic[1];
final float Ez = geomagnetic[2];
float Hx = Ey * Az - Ez * Ay;
float Hy = Ez * Ax - Ex * Az;
float Hz = Ex * Ay - Ey * Ax;
final float normH = (float) Math.sqrt(Hx * Hx + Hy * Hy + Hz * Hz);
if (normH < 0.1f) {
// device is close to free fall (or in space?), or close to
// magnetic north pole. Typical values are > 100.
return false;
}
final float invH = 1.0f / normH;
Hx *= invH;
Hy *= invH;
Hz *= invH;
final float invA = 1.0f / (float) Math.sqrt(Ax * Ax + Ay * Ay + Az * Az);
Ax *= invA;
Ay *= invA;
Az *= invA;
final float Mx = Ay * Hz - Az * Hy;
final float My = Az * Hx - Ax * Hz;
final float Mz = Ax * Hy - Ay * Hx;
if (R != null) {
if (R.length == 9) {
R[0] = Hx; R[1] = Hy; R[2] = Hz;
R[3] = Mx; R[4] = My; R[5] = Mz;
R[6] = Ax; R[7] = Ay; R[8] = Az;
} else if (R.length == 16) {
R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0;
R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0;
R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0;
R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1;
}
}
if (I != null) {
// compute the inclination matrix by projecting the geomagnetic
// vector onto the Z (gravity) and X (horizontal component
// of geomagnetic vector) axes.
final float invE = 1.0f / (float) Math.sqrt(Ex * Ex + Ey * Ey + Ez * Ez);
final float c = (Ex * Mx + Ey * My + Ez * Mz) * invE;
final float s = (Ex * Ax + Ey * Ay + Ez * Az) * invE;
if (I.length == 9) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[3] = 0; I[4] = c; I[5] = s;
I[6] = 0; I[7] = -s; I[8] = c;
} else if (I.length == 16) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[4] = 0; I[5] = c; I[6] = s;
I[8] = 0; I[9] = -s; I[10] = c;
I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
I[15] = 1;
}
}
return true;
}
/**
* Computes the geomagnetic inclination angle in radians from the
* inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
*
* @param I
* inclination matrix see {@link #getRotationMatrix}.
*
* @return The geomagnetic inclination angle in radians.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see #getOrientation(float[], float[])
* @see GeomagneticField
*
*/
public static float getInclination(float[] I) {
if (I.length == 9) {
return (float) Math.atan2(I[5], I[4]);
} else {
return (float) Math.atan2(I[6], I[5]);
}
}
/**
* <p>
* Rotates the supplied rotation matrix so it is expressed in a different
* coordinate system. This is typically used when an application needs to
* compute the three orientation angles of the device (see
* {@link #getOrientation}) in a different coordinate system.
* </p>
*
* <p>
* When the rotation matrix is used for drawing (for instance with OpenGL
* ES), it usually <b>doesn't need</b> to be transformed by this function,
* unless the screen is physically rotated, in which case you can use
* {@link android.view.Display#getRotation() Display.getRotation()} to
* retrieve the current rotation of the screen. Note that because the user
* is generally free to rotate their screen, you often should consider the
* rotation in deciding the parameters to use here.
* </p>
*
* <p>
* <u>Examples:</u>
* <p>
*
* <ul>
* <li>Using the camera (Y axis along the camera's axis) for an augmented
* reality application where the rotation angles are needed:</li>
*
* <p>
* <ul>
* <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
* </ul>
* </p>
*
* <li>Using the device as a mechanical compass when rotation is
* {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
*
* <p>
* <ul>
* <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
* </ul>
* </p>
*
* Beware of the above example. This call is needed only to account for a
* rotation from its natural orientation when calculating the rotation
* angles (see {@link #getOrientation}). If the rotation matrix is also used
* for rendering, it may not need to be transformed, for instance if your
* {@link android.app.Activity Activity} is running in landscape mode.
* </ul>
*
* <p>
* Since the resulting coordinate system is orthonormal, only two axes need
* to be specified.
*
* @param inR
* the rotation matrix to be transformed. Usually it is the matrix
* returned by {@link #getRotationMatrix}.
*
* @param X
* defines the axis of the new cooridinate system that coincide with the X axis of the
* original coordinate system.
*
* @param Y
* defines the axis of the new cooridinate system that coincide with the Y axis of the
* original coordinate system.
*
* @param outR
* the transformed rotation matrix. inR and outR should not be the same
* array.
*
* @return <code>true</code> on success. <code>false</code> if the input
* parameters are incorrect, for instance if X and Y define the same
* axis. Or if inR and outR don't have the same length.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
*/
public static boolean remapCoordinateSystem(float[] inR, int X, int Y, float[] outR) {
if (inR == outR) {
final float[] temp = sTempMatrix;
synchronized (temp) {
// we don't expect to have a lot of contention
if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
final int size = outR.length;
for (int i = 0; i < size; i++) {
outR[i] = temp[i];
}
return true;
}
}
}
return remapCoordinateSystemImpl(inR, X, Y, outR);
}
private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR) {
/*
* X and Y define a rotation matrix 'r':
*
* (X==1)?((X&0x80)?-1:1):0 (X==2)?((X&0x80)?-1:1):0 (X==3)?((X&0x80)?-1:1):0
* (Y==1)?((Y&0x80)?-1:1):0 (Y==2)?((Y&0x80)?-1:1):0 (Y==3)?((X&0x80)?-1:1):0
* r[0] ^ r[1]
*
* where the 3rd line is the vector product of the first 2 lines
*
*/
final int length = outR.length;
if (inR.length != length) {
return false; // invalid parameter
}
if ((X & 0x7C) != 0 || (Y & 0x7C) != 0) {
return false; // invalid parameter
}
if (((X & 0x3) == 0) || ((Y & 0x3) == 0)) {
return false; // no axis specified
}
if ((X & 0x3) == (Y & 0x3)) {
return false; // same axis specified
}
// Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
// this can be calculated by exclusive-or'ing X and Y; except for
// the sign inversion (+/-) which is calculated below.
int Z = X ^ Y;
// extract the axis (remove the sign), offset in the range 0 to 2.
final int x = (X & 0x3) - 1;
final int y = (Y & 0x3) - 1;
final int z = (Z & 0x3) - 1;
// compute the sign of Z (whether it needs to be inverted)
final int axis_y = (z + 1) % 3;
final int axis_z = (z + 2) % 3;
if (((x ^ axis_y) | (y ^ axis_z)) != 0) {
Z ^= 0x80;
}
final boolean sx = (X >= 0x80);
final boolean sy = (Y >= 0x80);
final boolean sz = (Z >= 0x80);
// Perform R * r, in avoiding actual muls and adds.
final int rowLength = ((length == 16) ? 4 : 3);
for (int j = 0; j < 3; j++) {
final int offset = j * rowLength;
for (int i = 0; i < 3; i++) {
if (x == i) outR[offset + i] = sx ? -inR[offset + 0] : inR[offset + 0];
if (y == i) outR[offset + i] = sy ? -inR[offset + 1] : inR[offset + 1];
if (z == i) outR[offset + i] = sz ? -inR[offset + 2] : inR[offset + 2];
}
}
if (length == 16) {
outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
outR[15] = 1;
}
return true;
}
/**
* Computes the device's orientation based on the rotation matrix.
* <p>
* When it returns, the array values are as follows:
* <ul>
* <li>values[0]: <i>Azimuth</i>, angle of rotation about the -z axis.
* This value represents the angle between the device's y
* axis and the magnetic north pole. When facing north, this
* angle is 0, when facing south, this angle is &pi;.
* Likewise, when facing east, this angle is &pi;/2, and
* when facing west, this angle is -&pi;/2. The range of
* values is -&pi; to &pi;.</li>
* <li>values[1]: <i>Pitch</i>, angle of rotation about the x axis.
* This value represents the angle between a plane parallel
* to the device's screen and a plane parallel to the ground.
* Assuming that the bottom edge of the device faces the
* user and that the screen is face-up, tilting the top edge
* of the device toward the ground creates a positive pitch
* angle. The range of values is -&pi; to &pi;.</li>
* <li>values[2]: <i>Roll</i>, angle of rotation about the y axis. This
* value represents the angle between a plane perpendicular
* to the device's screen and a plane perpendicular to the
* ground. Assuming that the bottom edge of the device faces
* the user and that the screen is face-up, tilting the left
* edge of the device toward the ground creates a positive
* roll angle. The range of values is -&pi;/2 to &pi;/2.</li>
* </ul>
* <p>
* Applying these three rotations in the azimuth, pitch, roll order
* transforms an identity matrix to the rotation matrix passed into this
* method. Also, note that all three orientation angles are expressed in
* <b>radians</b>.
*
* @param R
* rotation matrix see {@link #getRotationMatrix}.
*
* @param values
* an array of 3 floats to hold the result.
*
* @return The array values passed as argument.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see GeomagneticField
*/
public static float[] getOrientation(float[] R, float[] values) {
/*
* 4x4 (length=16) case:
* / R[ 0] R[ 1] R[ 2] 0 \
* | R[ 4] R[ 5] R[ 6] 0 |
* | R[ 8] R[ 9] R[10] 0 |
* \ 0 0 0 1 /
*
* 3x3 (length=9) case:
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*
*/
if (R.length == 9) {
values[0] = (float) Math.atan2(R[1], R[4]);
values[1] = (float) Math.asin(-R[7]);
values[2] = (float) Math.atan2(-R[6], R[8]);
} else {
values[0] = (float) Math.atan2(R[1], R[5]);
values[1] = (float) Math.asin(-R[9]);
values[2] = (float) Math.atan2(-R[8], R[10]);
}
return values;
}
/**
* Computes the Altitude in meters from the atmospheric pressure and the
* pressure at sea level.
* <p>
* Typically the atmospheric pressure is read from a
* {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
* known, usually it can be retrieved from airport databases in the
* vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
* as an approximation, but absolute altitudes won't be accurate.
* </p>
* <p>
* To calculate altitude differences, you must calculate the difference
* between the altitudes at both points. If you don't know the altitude
* as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
* which will give good results considering the range of pressure typically
* involved.
* </p>
* <p>
* <code><ul>
* float altitude_difference =
* getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
* - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
* </ul></code>
* </p>
*
* @param p0 pressure at sea level
* @param p atmospheric pressure
* @return Altitude in meters
*/
public static float getAltitude(float p0, float p) {
final float coef = 1.0f / 5.255f;
return 44330.0f * (1.0f - (float) Math.pow(p / p0, coef));
}
/** Helper function to compute the angle change between two rotation matrices.
* Given a current rotation matrix (R) and a previous rotation matrix
* (prevR) computes the intrinsic rotation around the z, x, and y axes which
* transforms prevR to R.
* outputs a 3 element vector containing the z, x, and y angle
* change at indexes 0, 1, and 2 respectively.
* <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
* depending on the length of the passed array:
* <p>If the array length is 9, then the array elements represent this matrix
* <pre>
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*</pre>
* <p>If the array length is 16, then the array elements represent this matrix
* <pre>
* / R[ 0] R[ 1] R[ 2] R[ 3] \
* | R[ 4] R[ 5] R[ 6] R[ 7] |
* | R[ 8] R[ 9] R[10] R[11] |
* \ R[12] R[13] R[14] R[15] /
*</pre>
*
* See {@link #getOrientation} for more detailed definition of the output.
*
* @param R current rotation matrix
* @param prevR previous rotation matrix
* @param angleChange an an array of floats (z, x, and y) in which the angle change
* (in radians) is stored
*/
public static void getAngleChange(float[] angleChange, float[] R, float[] prevR) {
float rd1 = 0, rd4 = 0, rd6 = 0, rd7 = 0, rd8 = 0;
float ri0 = 0, ri1 = 0, ri2 = 0, ri3 = 0, ri4 = 0, ri5 = 0, ri6 = 0, ri7 = 0, ri8 = 0;
float pri0 = 0, pri1 = 0, pri2 = 0, pri3 = 0, pri4 = 0;
float pri5 = 0, pri6 = 0, pri7 = 0, pri8 = 0;
if (R.length == 9) {
ri0 = R[0];
ri1 = R[1];
ri2 = R[2];
ri3 = R[3];
ri4 = R[4];
ri5 = R[5];
ri6 = R[6];
ri7 = R[7];
ri8 = R[8];
} else if (R.length == 16) {
ri0 = R[0];
ri1 = R[1];
ri2 = R[2];
ri3 = R[4];
ri4 = R[5];
ri5 = R[6];
ri6 = R[8];
ri7 = R[9];
ri8 = R[10];
}
if (prevR.length == 9) {
pri0 = prevR[0];
pri1 = prevR[1];
pri2 = prevR[2];
pri3 = prevR[3];
pri4 = prevR[4];
pri5 = prevR[5];
pri6 = prevR[6];
pri7 = prevR[7];
pri8 = prevR[8];
} else if (prevR.length == 16) {
pri0 = prevR[0];
pri1 = prevR[1];
pri2 = prevR[2];
pri3 = prevR[4];
pri4 = prevR[5];
pri5 = prevR[6];
pri6 = prevR[8];
pri7 = prevR[9];
pri8 = prevR[10];
}
// calculate the parts of the rotation difference matrix we need
// rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
angleChange[0] = (float) Math.atan2(rd1, rd4);
angleChange[1] = (float) Math.asin(-rd7);
angleChange[2] = (float) Math.atan2(-rd6, rd8);
}
/** Helper function to convert a rotation vector to a rotation matrix.
* Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
* 9 or 16 element rotation matrix in the array R. R must have length 9 or 16.
* If R.length == 9, the following matrix is returned:
* <pre>
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*</pre>
* If R.length == 16, the following matrix is returned:
* <pre>
* / R[ 0] R[ 1] R[ 2] 0 \
* | R[ 4] R[ 5] R[ 6] 0 |
* | R[ 8] R[ 9] R[10] 0 |
* \ 0 0 0 1 /
*</pre>
* @param rotationVector the rotation vector to convert
* @param R an array of floats in which to store the rotation matrix
*/
public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
float q0;
float q1 = rotationVector[0];
float q2 = rotationVector[1];
float q3 = rotationVector[2];
if (rotationVector.length >= 4) {
q0 = rotationVector[3];
} else {
q0 = 1 - q1 * q1 - q2 * q2 - q3 * q3;
q0 = (q0 > 0) ? (float) Math.sqrt(q0) : 0;
}
float sq_q1 = 2 * q1 * q1;
float sq_q2 = 2 * q2 * q2;
float sq_q3 = 2 * q3 * q3;
float q1_q2 = 2 * q1 * q2;
float q3_q0 = 2 * q3 * q0;
float q1_q3 = 2 * q1 * q3;
float q2_q0 = 2 * q2 * q0;
float q2_q3 = 2 * q2 * q3;
float q1_q0 = 2 * q1 * q0;
if (R.length == 9) {
R[0] = 1 - sq_q2 - sq_q3;
R[1] = q1_q2 - q3_q0;
R[2] = q1_q3 + q2_q0;
R[3] = q1_q2 + q3_q0;
R[4] = 1 - sq_q1 - sq_q3;
R[5] = q2_q3 - q1_q0;
R[6] = q1_q3 - q2_q0;
R[7] = q2_q3 + q1_q0;
R[8] = 1 - sq_q1 - sq_q2;
} else if (R.length == 16) {
R[0] = 1 - sq_q2 - sq_q3;
R[1] = q1_q2 - q3_q0;
R[2] = q1_q3 + q2_q0;
R[3] = 0.0f;
R[4] = q1_q2 + q3_q0;
R[5] = 1 - sq_q1 - sq_q3;
R[6] = q2_q3 - q1_q0;
R[7] = 0.0f;
R[8] = q1_q3 - q2_q0;
R[9] = q2_q3 + q1_q0;
R[10] = 1 - sq_q1 - sq_q2;
R[11] = 0.0f;
R[12] = R[13] = R[14] = 0.0f;
R[15] = 1.0f;
}
}
/** Helper function to convert a rotation vector to a normalized quaternion.
* Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
* quaternion in the array Q. The quaternion is stored as [w, x, y, z]
* @param rv the rotation vector to convert
* @param Q an array of floats in which to store the computed quaternion
*/
public static void getQuaternionFromVector(float[] Q, float[] rv) {
if (rv.length >= 4) {
Q[0] = rv[3];
} else {
Q[0] = 1 - rv[0] * rv[0] - rv[1] * rv[1] - rv[2] * rv[2];
Q[0] = (Q[0] > 0) ? (float) Math.sqrt(Q[0]) : 0;
}
Q[1] = rv[0];
Q[2] = rv[1];
Q[3] = rv[2];
}
/**
* Requests receiving trigger events for a trigger sensor.
*
* <p>
* When the sensor detects a trigger event condition, such as significant motion in
* the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
* will be invoked once and then its request to receive trigger events will be canceled.
* To continue receiving trigger events, the application must request to receive trigger
* events again.
* </p>
*
* @param listener The listener on which the
* {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered.
* @param sensor The sensor to be enabled.
*
* @return true if the sensor was successfully enabled.
*
* @throws IllegalArgumentException when sensor is null or not a trigger sensor.
*/
public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) {
return requestTriggerSensorImpl(listener, sensor);
}
/**
* @hide
*/
protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener,
Sensor sensor);
/**
* Cancels receiving trigger events for a trigger sensor.
*
* <p>
* Note that a Trigger sensor will be auto disabled if
* {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
* This method is provided in case the user wants to explicitly cancel the request
* to receive trigger events.
* </p>
*
* @param listener The listener on which the
* {@link TriggerEventListener#onTrigger(TriggerEvent)}
* is delivered.It should be the same as the one used
* in {@link #requestTriggerSensor(TriggerEventListener, Sensor)}
* @param sensor The sensor for which the trigger request should be canceled.
* If null, it cancels receiving trigger for all sensors associated
* with the listener.
*
* @return true if successfully canceled.
*
* @throws IllegalArgumentException when sensor is a trigger sensor.
*/
public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) {
return cancelTriggerSensorImpl(listener, sensor, true);
}
/**
* @hide
*/
protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener,
Sensor sensor, boolean disable);
/**
* For testing purposes only. Not for third party applications.
*
* Initialize data injection mode and create a client for data injection. SensorService should
* already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into
* DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called
* through adb. Typically this is done using a host side test. This mode is expected to be used
* only for testing purposes. If the HAL is set to data injection mode, it will ignore the input
* from physical sensors and read sensor data that is injected from the test application. This
* mode is used for testing vendor implementations for various algorithms like Rotation Vector,
* Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will
* fail in those cases. Once this method succeeds, the test can call
* {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL.
*
* @param enable True to initialize a client in DATA_INJECTION mode.
* False to clean up the native resources.
*
* @return true if the HAL supports data injection and false
* otherwise.
* @hide
*/
@SystemApi
public boolean initDataInjection(boolean enable) {
return initDataInjectionImpl(enable);
}
/**
* @hide
*/
protected abstract boolean initDataInjectionImpl(boolean enable);
/**
* For testing purposes only. Not for third party applications.
*
* This method is used to inject raw sensor data into the HAL. Call {@link
* initDataInjection(boolean)} before this method to set the HAL in data injection mode. This
* method should be called only if a previous call to initDataInjection has been successful and
* the HAL and SensorService are already opreating in data injection mode.
*
* @param sensor The sensor to inject.
* @param values Sensor values to inject. The length of this
* array must be exactly equal to the number of
* values reported by the sensor type.
* @param accuracy Accuracy of the sensor.
* @param timestamp Sensor timestamp associated with the event.
*
* @return boolean True if the data injection succeeds, false
* otherwise.
* @throws IllegalArgumentException when the sensor is null,
* data injection is not supported by the sensor, values
* are null, incorrect number of values for the sensor,
* sensor accuracy is incorrect or timestamps are
* invalid.
* @hide
*/
@SystemApi
public boolean injectSensorData(Sensor sensor, float[] values, int accuracy,
long timestamp) {
if (sensor == null) {
throw new IllegalArgumentException("sensor cannot be null");
}
if (!sensor.isDataInjectionSupported()) {
throw new IllegalArgumentException("sensor does not support data injection");
}
if (values == null) {
throw new IllegalArgumentException("sensor data cannot be null");
}
int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M);
if (values.length != expectedNumValues) {
throw new IllegalArgumentException("Wrong number of values for sensor "
+ sensor.getName() + " actual=" + values.length + " expected="
+ expectedNumValues);
}
if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) {
throw new IllegalArgumentException("Invalid sensor accuracy");
}
if (timestamp <= 0) {
throw new IllegalArgumentException("Negative or zero sensor timestamp");
}
return injectSensorDataImpl(sensor, values, accuracy, timestamp);
}
/**
* @hide
*/
protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy,
long timestamp);
private LegacySensorManager getLegacySensorManager() {
synchronized (mSensorListByType) {
if (mLegacySensorManager == null) {
Log.i(TAG, "This application is using deprecated SensorManager API which will "
+ "be removed someday. Please consider switching to the new API.");
mLegacySensorManager = new LegacySensorManager(this);
}
return mLegacySensorManager;
}
}
private static int getDelay(int rate) {
int delay = -1;
switch (rate) {
case SENSOR_DELAY_FASTEST:
delay = 0;
break;
case SENSOR_DELAY_GAME:
delay = 20000;
break;
case SENSOR_DELAY_UI:
delay = 66667;
break;
case SENSOR_DELAY_NORMAL:
delay = 200000;
break;
default:
delay = rate;
break;
}
return delay;
}
/** @hide */
public boolean setOperationParameter(SensorAdditionalInfo parameter) {
return setOperationParameterImpl(parameter);
}
/** @hide */
protected abstract boolean setOperationParameterImpl(SensorAdditionalInfo parameter);
}