blob: 6d3a833b5037ef22cc7b3fad2994100564b6066d [file] [log] [blame]
//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the C++ Decl subclasses, other than those for templates
/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLCXX_H
#define LLVM_CLANG_AST_DECLCXX_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTUnresolvedSet.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <vector>
namespace clang {
class ClassTemplateDecl;
class ConstructorUsingShadowDecl;
class CXXBasePath;
class CXXBasePaths;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXFinalOverriderMap;
class CXXIndirectPrimaryBaseSet;
class CXXMethodDecl;
class DecompositionDecl;
class DiagnosticBuilder;
class FriendDecl;
class FunctionTemplateDecl;
class IdentifierInfo;
class MemberSpecializationInfo;
class TemplateDecl;
class TemplateParameterList;
class UsingDecl;
/// Represents an access specifier followed by colon ':'.
///
/// An objects of this class represents sugar for the syntactic occurrence
/// of an access specifier followed by a colon in the list of member
/// specifiers of a C++ class definition.
///
/// Note that they do not represent other uses of access specifiers,
/// such as those occurring in a list of base specifiers.
/// Also note that this class has nothing to do with so-called
/// "access declarations" (C++98 11.3 [class.access.dcl]).
class AccessSpecDecl : public Decl {
/// The location of the ':'.
SourceLocation ColonLoc;
AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
SourceLocation ASLoc, SourceLocation ColonLoc)
: Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
setAccess(AS);
}
AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
virtual void anchor();
public:
/// The location of the access specifier.
SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
/// Sets the location of the access specifier.
void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
/// The location of the colon following the access specifier.
SourceLocation getColonLoc() const { return ColonLoc; }
/// Sets the location of the colon.
void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getAccessSpecifierLoc(), getColonLoc());
}
static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
DeclContext *DC, SourceLocation ASLoc,
SourceLocation ColonLoc) {
return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
}
static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == AccessSpec; }
};
/// Represents a base class of a C++ class.
///
/// Each CXXBaseSpecifier represents a single, direct base class (or
/// struct) of a C++ class (or struct). It specifies the type of that
/// base class, whether it is a virtual or non-virtual base, and what
/// level of access (public, protected, private) is used for the
/// derivation. For example:
///
/// \code
/// class A { };
/// class B { };
/// class C : public virtual A, protected B { };
/// \endcode
///
/// In this code, C will have two CXXBaseSpecifiers, one for "public
/// virtual A" and the other for "protected B".
class CXXBaseSpecifier {
/// The source code range that covers the full base
/// specifier, including the "virtual" (if present) and access
/// specifier (if present).
SourceRange Range;
/// The source location of the ellipsis, if this is a pack
/// expansion.
SourceLocation EllipsisLoc;
/// Whether this is a virtual base class or not.
unsigned Virtual : 1;
/// Whether this is the base of a class (true) or of a struct (false).
///
/// This determines the mapping from the access specifier as written in the
/// source code to the access specifier used for semantic analysis.
unsigned BaseOfClass : 1;
/// Access specifier as written in the source code (may be AS_none).
///
/// The actual type of data stored here is an AccessSpecifier, but we use
/// "unsigned" here to work around a VC++ bug.
unsigned Access : 2;
/// Whether the class contains a using declaration
/// to inherit the named class's constructors.
unsigned InheritConstructors : 1;
/// The type of the base class.
///
/// This will be a class or struct (or a typedef of such). The source code
/// range does not include the \c virtual or the access specifier.
TypeSourceInfo *BaseTypeInfo;
public:
CXXBaseSpecifier() = default;
CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
: Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
/// Retrieves the source range that contains the entire base specifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
/// Get the location at which the base class type was written.
SourceLocation getBaseTypeLoc() const LLVM_READONLY {
return BaseTypeInfo->getTypeLoc().getBeginLoc();
}
/// Determines whether the base class is a virtual base class (or not).
bool isVirtual() const { return Virtual; }
/// Determine whether this base class is a base of a class declared
/// with the 'class' keyword (vs. one declared with the 'struct' keyword).
bool isBaseOfClass() const { return BaseOfClass; }
/// Determine whether this base specifier is a pack expansion.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
/// Determine whether this base class's constructors get inherited.
bool getInheritConstructors() const { return InheritConstructors; }
/// Set that this base class's constructors should be inherited.
void setInheritConstructors(bool Inherit = true) {
InheritConstructors = Inherit;
}
/// For a pack expansion, determine the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
/// Returns the access specifier for this base specifier.
///
/// This is the actual base specifier as used for semantic analysis, so
/// the result can never be AS_none. To retrieve the access specifier as
/// written in the source code, use getAccessSpecifierAsWritten().
AccessSpecifier getAccessSpecifier() const {
if ((AccessSpecifier)Access == AS_none)
return BaseOfClass? AS_private : AS_public;
else
return (AccessSpecifier)Access;
}
/// Retrieves the access specifier as written in the source code
/// (which may mean that no access specifier was explicitly written).
///
/// Use getAccessSpecifier() to retrieve the access specifier for use in
/// semantic analysis.
AccessSpecifier getAccessSpecifierAsWritten() const {
return (AccessSpecifier)Access;
}
/// Retrieves the type of the base class.
///
/// This type will always be an unqualified class type.
QualType getType() const {
return BaseTypeInfo->getType().getUnqualifiedType();
}
/// Retrieves the type and source location of the base class.
TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
};
/// Represents a C++ struct/union/class.
class CXXRecordDecl : public RecordDecl {
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class ASTNodeImporter;
friend class ASTReader;
friend class ASTRecordWriter;
friend class ASTWriter;
friend class DeclContext;
friend class LambdaExpr;
friend void FunctionDecl::setPure(bool);
friend void TagDecl::startDefinition();
/// Values used in DefinitionData fields to represent special members.
enum SpecialMemberFlags {
SMF_DefaultConstructor = 0x1,
SMF_CopyConstructor = 0x2,
SMF_MoveConstructor = 0x4,
SMF_CopyAssignment = 0x8,
SMF_MoveAssignment = 0x10,
SMF_Destructor = 0x20,
SMF_All = 0x3f
};
struct DefinitionData {
#define FIELD(Name, Width, Merge) \
unsigned Name : Width;
#include "CXXRecordDeclDefinitionBits.def"
/// Whether this class describes a C++ lambda.
unsigned IsLambda : 1;
/// Whether we are currently parsing base specifiers.
unsigned IsParsingBaseSpecifiers : 1;
/// True when visible conversion functions are already computed
/// and are available.
unsigned ComputedVisibleConversions : 1;
unsigned HasODRHash : 1;
/// A hash of parts of the class to help in ODR checking.
unsigned ODRHash = 0;
/// The number of base class specifiers in Bases.
unsigned NumBases = 0;
/// The number of virtual base class specifiers in VBases.
unsigned NumVBases = 0;
/// Base classes of this class.
///
/// FIXME: This is wasted space for a union.
LazyCXXBaseSpecifiersPtr Bases;
/// direct and indirect virtual base classes of this class.
LazyCXXBaseSpecifiersPtr VBases;
/// The conversion functions of this C++ class (but not its
/// inherited conversion functions).
///
/// Each of the entries in this overload set is a CXXConversionDecl.
LazyASTUnresolvedSet Conversions;
/// The conversion functions of this C++ class and all those
/// inherited conversion functions that are visible in this class.
///
/// Each of the entries in this overload set is a CXXConversionDecl or a
/// FunctionTemplateDecl.
LazyASTUnresolvedSet VisibleConversions;
/// The declaration which defines this record.
CXXRecordDecl *Definition;
/// The first friend declaration in this class, or null if there
/// aren't any.
///
/// This is actually currently stored in reverse order.
LazyDeclPtr FirstFriend;
DefinitionData(CXXRecordDecl *D);
/// Retrieve the set of direct base classes.
CXXBaseSpecifier *getBases() const {
if (!Bases.isOffset())
return Bases.get(nullptr);
return getBasesSlowCase();
}
/// Retrieve the set of virtual base classes.
CXXBaseSpecifier *getVBases() const {
if (!VBases.isOffset())
return VBases.get(nullptr);
return getVBasesSlowCase();
}
ArrayRef<CXXBaseSpecifier> bases() const {
return llvm::makeArrayRef(getBases(), NumBases);
}
ArrayRef<CXXBaseSpecifier> vbases() const {
return llvm::makeArrayRef(getVBases(), NumVBases);
}
private:
CXXBaseSpecifier *getBasesSlowCase() const;
CXXBaseSpecifier *getVBasesSlowCase() const;
};
struct DefinitionData *DefinitionData;
/// Describes a C++ closure type (generated by a lambda expression).
struct LambdaDefinitionData : public DefinitionData {
using Capture = LambdaCapture;
/// Whether this lambda is known to be dependent, even if its
/// context isn't dependent.
///
/// A lambda with a non-dependent context can be dependent if it occurs
/// within the default argument of a function template, because the
/// lambda will have been created with the enclosing context as its
/// declaration context, rather than function. This is an unfortunate
/// artifact of having to parse the default arguments before.
unsigned Dependent : 1;
/// Whether this lambda is a generic lambda.
unsigned IsGenericLambda : 1;
/// The Default Capture.
unsigned CaptureDefault : 2;
/// The number of captures in this lambda is limited 2^NumCaptures.
unsigned NumCaptures : 15;
/// The number of explicit captures in this lambda.
unsigned NumExplicitCaptures : 13;
/// Has known `internal` linkage.
unsigned HasKnownInternalLinkage : 1;
/// The number used to indicate this lambda expression for name
/// mangling in the Itanium C++ ABI.
unsigned ManglingNumber : 31;
/// The declaration that provides context for this lambda, if the
/// actual DeclContext does not suffice. This is used for lambdas that
/// occur within default arguments of function parameters within the class
/// or within a data member initializer.
LazyDeclPtr ContextDecl;
/// The list of captures, both explicit and implicit, for this
/// lambda.
Capture *Captures = nullptr;
/// The type of the call method.
TypeSourceInfo *MethodTyInfo;
LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent,
bool IsGeneric, LambdaCaptureDefault CaptureDefault)
: DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
CaptureDefault(CaptureDefault), NumCaptures(0),
NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
MethodTyInfo(Info) {
IsLambda = true;
// C++1z [expr.prim.lambda]p4:
// This class type is not an aggregate type.
Aggregate = false;
PlainOldData = false;
}
};
struct DefinitionData *dataPtr() const {
// Complete the redecl chain (if necessary).
getMostRecentDecl();
return DefinitionData;
}
struct DefinitionData &data() const {
auto *DD = dataPtr();
assert(DD && "queried property of class with no definition");
return *DD;
}
struct LambdaDefinitionData &getLambdaData() const {
// No update required: a merged definition cannot change any lambda
// properties.
auto *DD = DefinitionData;
assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
return static_cast<LambdaDefinitionData&>(*DD);
}
/// The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be null. For record
/// declarations that describe a class template, this will be a
/// pointer to a ClassTemplateDecl. For member
/// classes of class template specializations, this will be the
/// MemberSpecializationInfo referring to the member class that was
/// instantiated or specialized.
llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
TemplateOrInstantiation;
/// Called from setBases and addedMember to notify the class that a
/// direct or virtual base class or a member of class type has been added.
void addedClassSubobject(CXXRecordDecl *Base);
/// Notify the class that member has been added.
///
/// This routine helps maintain information about the class based on which
/// members have been added. It will be invoked by DeclContext::addDecl()
/// whenever a member is added to this record.
void addedMember(Decl *D);
void markedVirtualFunctionPure();
/// Get the head of our list of friend declarations, possibly
/// deserializing the friends from an external AST source.
FriendDecl *getFirstFriend() const;
/// Determine whether this class has an empty base class subobject of type X
/// or of one of the types that might be at offset 0 within X (per the C++
/// "standard layout" rules).
bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
const CXXRecordDecl *X);
protected:
CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
public:
/// Iterator that traverses the base classes of a class.
using base_class_iterator = CXXBaseSpecifier *;
/// Iterator that traverses the base classes of a class.
using base_class_const_iterator = const CXXBaseSpecifier *;
CXXRecordDecl *getCanonicalDecl() override {
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
}
const CXXRecordDecl *getCanonicalDecl() const {
return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
}
CXXRecordDecl *getPreviousDecl() {
return cast_or_null<CXXRecordDecl>(
static_cast<RecordDecl *>(this)->getPreviousDecl());
}
const CXXRecordDecl *getPreviousDecl() const {
return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
}
CXXRecordDecl *getMostRecentDecl() {
return cast<CXXRecordDecl>(
static_cast<RecordDecl *>(this)->getMostRecentDecl());
}
const CXXRecordDecl *getMostRecentDecl() const {
return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
}
CXXRecordDecl *getMostRecentNonInjectedDecl() {
CXXRecordDecl *Recent =
static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
while (Recent->isInjectedClassName()) {
// FIXME: Does injected class name need to be in the redeclarations chain?
assert(Recent->getPreviousDecl());
Recent = Recent->getPreviousDecl();
}
return Recent;
}
const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
}
CXXRecordDecl *getDefinition() const {
// We only need an update if we don't already know which
// declaration is the definition.
auto *DD = DefinitionData ? DefinitionData : dataPtr();
return DD ? DD->Definition : nullptr;
}
bool hasDefinition() const { return DefinitionData || dataPtr(); }
static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id,
CXXRecordDecl *PrevDecl = nullptr,
bool DelayTypeCreation = false);
static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
TypeSourceInfo *Info, SourceLocation Loc,
bool DependentLambda, bool IsGeneric,
LambdaCaptureDefault CaptureDefault);
static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
bool isDynamicClass() const {
return data().Polymorphic || data().NumVBases != 0;
}
/// @returns true if class is dynamic or might be dynamic because the
/// definition is incomplete of dependent.
bool mayBeDynamicClass() const {
return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
}
/// @returns true if class is non dynamic or might be non dynamic because the
/// definition is incomplete of dependent.
bool mayBeNonDynamicClass() const {
return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
}
void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
bool isParsingBaseSpecifiers() const {
return data().IsParsingBaseSpecifiers;
}
unsigned getODRHash() const;
/// Sets the base classes of this struct or class.
void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
/// Retrieves the number of base classes of this class.
unsigned getNumBases() const { return data().NumBases; }
using base_class_range = llvm::iterator_range<base_class_iterator>;
using base_class_const_range =
llvm::iterator_range<base_class_const_iterator>;
base_class_range bases() {
return base_class_range(bases_begin(), bases_end());
}
base_class_const_range bases() const {
return base_class_const_range(bases_begin(), bases_end());
}
base_class_iterator bases_begin() { return data().getBases(); }
base_class_const_iterator bases_begin() const { return data().getBases(); }
base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
base_class_const_iterator bases_end() const {
return bases_begin() + data().NumBases;
}
/// Retrieves the number of virtual base classes of this class.
unsigned getNumVBases() const { return data().NumVBases; }
base_class_range vbases() {
return base_class_range(vbases_begin(), vbases_end());
}
base_class_const_range vbases() const {
return base_class_const_range(vbases_begin(), vbases_end());
}
base_class_iterator vbases_begin() { return data().getVBases(); }
base_class_const_iterator vbases_begin() const { return data().getVBases(); }
base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
base_class_const_iterator vbases_end() const {
return vbases_begin() + data().NumVBases;
}
/// Determine whether this class has any dependent base classes which
/// are not the current instantiation.
bool hasAnyDependentBases() const;
/// Iterator access to method members. The method iterator visits
/// all method members of the class, including non-instance methods,
/// special methods, etc.
using method_iterator = specific_decl_iterator<CXXMethodDecl>;
using method_range =
llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
method_range methods() const {
return method_range(method_begin(), method_end());
}
/// Method begin iterator. Iterates in the order the methods
/// were declared.
method_iterator method_begin() const {
return method_iterator(decls_begin());
}
/// Method past-the-end iterator.
method_iterator method_end() const {
return method_iterator(decls_end());
}
/// Iterator access to constructor members.
using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
using ctor_range =
llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
ctor_iterator ctor_begin() const {
return ctor_iterator(decls_begin());
}
ctor_iterator ctor_end() const {
return ctor_iterator(decls_end());
}
/// An iterator over friend declarations. All of these are defined
/// in DeclFriend.h.
class friend_iterator;
using friend_range = llvm::iterator_range<friend_iterator>;
friend_range friends() const;
friend_iterator friend_begin() const;
friend_iterator friend_end() const;
void pushFriendDecl(FriendDecl *FD);
/// Determines whether this record has any friends.
bool hasFriends() const {
return data().FirstFriend.isValid();
}
/// \c true if a defaulted copy constructor for this class would be
/// deleted.
bool defaultedCopyConstructorIsDeleted() const {
assert((!needsOverloadResolutionForCopyConstructor() ||
(data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedCopyConstructorIsDeleted;
}
/// \c true if a defaulted move constructor for this class would be
/// deleted.
bool defaultedMoveConstructorIsDeleted() const {
assert((!needsOverloadResolutionForMoveConstructor() ||
(data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedMoveConstructorIsDeleted;
}
/// \c true if a defaulted destructor for this class would be deleted.
bool defaultedDestructorIsDeleted() const {
assert((!needsOverloadResolutionForDestructor() ||
(data().DeclaredSpecialMembers & SMF_Destructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedDestructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous copy constructor that is not deleted.
bool hasSimpleCopyConstructor() const {
return !hasUserDeclaredCopyConstructor() &&
!data().DefaultedCopyConstructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous move constructor that is not deleted.
bool hasSimpleMoveConstructor() const {
return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
!data().DefaultedMoveConstructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous move assignment operator that is not deleted.
bool hasSimpleMoveAssignment() const {
return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
!data().DefaultedMoveAssignmentIsDeleted;
}
/// \c true if we know for sure that this class has an accessible
/// destructor that is not deleted.
bool hasSimpleDestructor() const {
return !hasUserDeclaredDestructor() &&
!data().DefaultedDestructorIsDeleted;
}
/// Determine whether this class has any default constructors.
bool hasDefaultConstructor() const {
return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
needsImplicitDefaultConstructor();
}
/// Determine if we need to declare a default constructor for
/// this class.
///
/// This value is used for lazy creation of default constructors.
bool needsImplicitDefaultConstructor() const {
return !data().UserDeclaredConstructor &&
!(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
(!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
}
/// Determine whether this class has any user-declared constructors.
///
/// When true, a default constructor will not be implicitly declared.
bool hasUserDeclaredConstructor() const {
return data().UserDeclaredConstructor;
}
/// Whether this class has a user-provided default constructor
/// per C++11.
bool hasUserProvidedDefaultConstructor() const {
return data().UserProvidedDefaultConstructor;
}
/// Determine whether this class has a user-declared copy constructor.
///
/// When false, a copy constructor will be implicitly declared.
bool hasUserDeclaredCopyConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
}
/// Determine whether this class needs an implicit copy
/// constructor to be lazily declared.
bool needsImplicitCopyConstructor() const {
return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
}
/// Determine whether we need to eagerly declare a defaulted copy
/// constructor for this class.
bool needsOverloadResolutionForCopyConstructor() const {
// C++17 [class.copy.ctor]p6:
// If the class definition declares a move constructor or move assignment
// operator, the implicitly declared copy constructor is defined as
// deleted.
// In MSVC mode, sometimes a declared move assignment does not delete an
// implicit copy constructor, so defer this choice to Sema.
if (data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment))
return true;
return data().NeedOverloadResolutionForCopyConstructor;
}
/// Determine whether an implicit copy constructor for this type
/// would have a parameter with a const-qualified reference type.
bool implicitCopyConstructorHasConstParam() const {
return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
(isAbstract() ||
data().ImplicitCopyConstructorCanHaveConstParamForVBase);
}
/// Determine whether this class has a copy constructor with
/// a parameter type which is a reference to a const-qualified type.
bool hasCopyConstructorWithConstParam() const {
return data().HasDeclaredCopyConstructorWithConstParam ||
(needsImplicitCopyConstructor() &&
implicitCopyConstructorHasConstParam());
}
/// Whether this class has a user-declared move constructor or
/// assignment operator.
///
/// When false, a move constructor and assignment operator may be
/// implicitly declared.
bool hasUserDeclaredMoveOperation() const {
return data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment);
}
/// Determine whether this class has had a move constructor
/// declared by the user.
bool hasUserDeclaredMoveConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
}
/// Determine whether this class has a move constructor.
bool hasMoveConstructor() const {
return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
needsImplicitMoveConstructor();
}
/// Set that we attempted to declare an implicit copy
/// constructor, but overload resolution failed so we deleted it.
void setImplicitCopyConstructorIsDeleted() {
assert((data().DefaultedCopyConstructorIsDeleted ||
needsOverloadResolutionForCopyConstructor()) &&
"Copy constructor should not be deleted");
data().DefaultedCopyConstructorIsDeleted = true;
}
/// Set that we attempted to declare an implicit move
/// constructor, but overload resolution failed so we deleted it.
void setImplicitMoveConstructorIsDeleted() {
assert((data().DefaultedMoveConstructorIsDeleted ||
needsOverloadResolutionForMoveConstructor()) &&
"move constructor should not be deleted");
data().DefaultedMoveConstructorIsDeleted = true;
}
/// Set that we attempted to declare an implicit destructor,
/// but overload resolution failed so we deleted it.
void setImplicitDestructorIsDeleted() {
assert((data().DefaultedDestructorIsDeleted ||
needsOverloadResolutionForDestructor()) &&
"destructor should not be deleted");
data().DefaultedDestructorIsDeleted = true;
}
/// Determine whether this class should get an implicit move
/// constructor or if any existing special member function inhibits this.
bool needsImplicitMoveConstructor() const {
return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveAssignment() &&
!hasUserDeclaredDestructor();
}
/// Determine whether we need to eagerly declare a defaulted move
/// constructor for this class.
bool needsOverloadResolutionForMoveConstructor() const {
return data().NeedOverloadResolutionForMoveConstructor;
}
/// Determine whether this class has a user-declared copy assignment
/// operator.
///
/// When false, a copy assignment operator will be implicitly declared.
bool hasUserDeclaredCopyAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
}
/// Determine whether this class needs an implicit copy
/// assignment operator to be lazily declared.
bool needsImplicitCopyAssignment() const {
return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
}
/// Determine whether we need to eagerly declare a defaulted copy
/// assignment operator for this class.
bool needsOverloadResolutionForCopyAssignment() const {
return data().HasMutableFields;
}
/// Determine whether an implicit copy assignment operator for this
/// type would have a parameter with a const-qualified reference type.
bool implicitCopyAssignmentHasConstParam() const {
return data().ImplicitCopyAssignmentHasConstParam;
}
/// Determine whether this class has a copy assignment operator with
/// a parameter type which is a reference to a const-qualified type or is not
/// a reference.
bool hasCopyAssignmentWithConstParam() const {
return data().HasDeclaredCopyAssignmentWithConstParam ||
(needsImplicitCopyAssignment() &&
implicitCopyAssignmentHasConstParam());
}
/// Determine whether this class has had a move assignment
/// declared by the user.
bool hasUserDeclaredMoveAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
}
/// Determine whether this class has a move assignment operator.
bool hasMoveAssignment() const {
return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
needsImplicitMoveAssignment();
}
/// Set that we attempted to declare an implicit move assignment
/// operator, but overload resolution failed so we deleted it.
void setImplicitMoveAssignmentIsDeleted() {
assert((data().DefaultedMoveAssignmentIsDeleted ||
needsOverloadResolutionForMoveAssignment()) &&
"move assignment should not be deleted");
data().DefaultedMoveAssignmentIsDeleted = true;
}
/// Determine whether this class should get an implicit move
/// assignment operator or if any existing special member function inhibits
/// this.
bool needsImplicitMoveAssignment() const {
return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveConstructor() &&
!hasUserDeclaredDestructor() &&
(!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
}
/// Determine whether we need to eagerly declare a move assignment
/// operator for this class.
bool needsOverloadResolutionForMoveAssignment() const {
return data().NeedOverloadResolutionForMoveAssignment;
}
/// Determine whether this class has a user-declared destructor.
///
/// When false, a destructor will be implicitly declared.
bool hasUserDeclaredDestructor() const {
return data().UserDeclaredSpecialMembers & SMF_Destructor;
}
/// Determine whether this class needs an implicit destructor to
/// be lazily declared.
bool needsImplicitDestructor() const {
return !(data().DeclaredSpecialMembers & SMF_Destructor);
}
/// Determine whether we need to eagerly declare a destructor for this
/// class.
bool needsOverloadResolutionForDestructor() const {
return data().NeedOverloadResolutionForDestructor;
}
/// Determine whether this class describes a lambda function object.
bool isLambda() const {
// An update record can't turn a non-lambda into a lambda.
auto *DD = DefinitionData;
return DD && DD->IsLambda;
}
/// Determine whether this class describes a generic
/// lambda function object (i.e. function call operator is
/// a template).
bool isGenericLambda() const;
/// Determine whether this lambda should have an implicit default constructor
/// and copy and move assignment operators.
bool lambdaIsDefaultConstructibleAndAssignable() const;
/// Retrieve the lambda call operator of the closure type
/// if this is a closure type.
CXXMethodDecl *getLambdaCallOperator() const;
/// Retrieve the dependent lambda call operator of the closure type
/// if this is a templated closure type.
FunctionTemplateDecl *getDependentLambdaCallOperator() const;
/// Retrieve the lambda static invoker, the address of which
/// is returned by the conversion operator, and the body of which
/// is forwarded to the lambda call operator.
CXXMethodDecl *getLambdaStaticInvoker() const;
/// Retrieve the generic lambda's template parameter list.
/// Returns null if the class does not represent a lambda or a generic
/// lambda.
TemplateParameterList *getGenericLambdaTemplateParameterList() const;
/// Retrieve the lambda template parameters that were specified explicitly.
ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
LambdaCaptureDefault getLambdaCaptureDefault() const {
assert(isLambda());
return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
}
/// For a closure type, retrieve the mapping from captured
/// variables and \c this to the non-static data members that store the
/// values or references of the captures.
///
/// \param Captures Will be populated with the mapping from captured
/// variables to the corresponding fields.
///
/// \param ThisCapture Will be set to the field declaration for the
/// \c this capture.
///
/// \note No entries will be added for init-captures, as they do not capture
/// variables.
void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const;
using capture_const_iterator = const LambdaCapture *;
using capture_const_range = llvm::iterator_range<capture_const_iterator>;
capture_const_range captures() const {
return capture_const_range(captures_begin(), captures_end());
}
capture_const_iterator captures_begin() const {
return isLambda() ? getLambdaData().Captures : nullptr;
}
capture_const_iterator captures_end() const {
return isLambda() ? captures_begin() + getLambdaData().NumCaptures
: nullptr;
}
using conversion_iterator = UnresolvedSetIterator;
conversion_iterator conversion_begin() const {
return data().Conversions.get(getASTContext()).begin();
}
conversion_iterator conversion_end() const {
return data().Conversions.get(getASTContext()).end();
}
/// Removes a conversion function from this class. The conversion
/// function must currently be a member of this class. Furthermore,
/// this class must currently be in the process of being defined.
void removeConversion(const NamedDecl *Old);
/// Get all conversion functions visible in current class,
/// including conversion function templates.
llvm::iterator_range<conversion_iterator>
getVisibleConversionFunctions() const;
/// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
/// which is a class with no user-declared constructors, no private
/// or protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1).
bool isAggregate() const { return data().Aggregate; }
/// Whether this class has any in-class initializers
/// for non-static data members (including those in anonymous unions or
/// structs).
bool hasInClassInitializer() const { return data().HasInClassInitializer; }
/// Whether this class or any of its subobjects has any members of
/// reference type which would make value-initialization ill-formed.
///
/// Per C++03 [dcl.init]p5:
/// - if T is a non-union class type without a user-declared constructor,
/// then every non-static data member and base-class component of T is
/// value-initialized [...] A program that calls for [...]
/// value-initialization of an entity of reference type is ill-formed.
bool hasUninitializedReferenceMember() const {
return !isUnion() && !hasUserDeclaredConstructor() &&
data().HasUninitializedReferenceMember;
}
/// Whether this class is a POD-type (C++ [class]p4)
///
/// For purposes of this function a class is POD if it is an aggregate
/// that has no non-static non-POD data members, no reference data
/// members, no user-defined copy assignment operator and no
/// user-defined destructor.
///
/// Note that this is the C++ TR1 definition of POD.
bool isPOD() const { return data().PlainOldData; }
/// True if this class is C-like, without C++-specific features, e.g.
/// it contains only public fields, no bases, tag kind is not 'class', etc.
bool isCLike() const;
/// Determine whether this is an empty class in the sense of
/// (C++11 [meta.unary.prop]).
///
/// The CXXRecordDecl is a class type, but not a union type,
/// with no non-static data members other than bit-fields of length 0,
/// no virtual member functions, no virtual base classes,
/// and no base class B for which is_empty<B>::value is false.
///
/// \note This does NOT include a check for union-ness.
bool isEmpty() const { return data().Empty; }
bool hasPrivateFields() const {
return data().HasPrivateFields;
}
bool hasProtectedFields() const {
return data().HasProtectedFields;
}
/// Determine whether this class has direct non-static data members.
bool hasDirectFields() const {
auto &D = data();
return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
}
/// Whether this class is polymorphic (C++ [class.virtual]),
/// which means that the class contains or inherits a virtual function.
bool isPolymorphic() const { return data().Polymorphic; }
/// Determine whether this class has a pure virtual function.
///
/// The class is is abstract per (C++ [class.abstract]p2) if it declares
/// a pure virtual function or inherits a pure virtual function that is
/// not overridden.
bool isAbstract() const { return data().Abstract; }
/// Determine whether this class is standard-layout per
/// C++ [class]p7.
bool isStandardLayout() const { return data().IsStandardLayout; }
/// Determine whether this class was standard-layout per
/// C++11 [class]p7, specifically using the C++11 rules without any DRs.
bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
/// Determine whether this class, or any of its class subobjects,
/// contains a mutable field.
bool hasMutableFields() const { return data().HasMutableFields; }
/// Determine whether this class has any variant members.
bool hasVariantMembers() const { return data().HasVariantMembers; }
/// Determine whether this class has a trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasTrivialDefaultConstructor() const {
return hasDefaultConstructor() &&
(data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
}
/// Determine whether this class has a non-trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasNonTrivialDefaultConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
(needsImplicitDefaultConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
}
/// Determine whether this class has at least one constexpr constructor
/// other than the copy or move constructors.
bool hasConstexprNonCopyMoveConstructor() const {
return data().HasConstexprNonCopyMoveConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// Determine whether a defaulted default constructor for this class
/// would be constexpr.
bool defaultedDefaultConstructorIsConstexpr() const {
return data().DefaultedDefaultConstructorIsConstexpr &&
(!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
getASTContext().getLangOpts().CPlusPlus2a);
}
/// Determine whether this class has a constexpr default constructor.
bool hasConstexprDefaultConstructor() const {
return data().HasConstexprDefaultConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// Determine whether this class has a trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasTrivialCopyConstructor() const {
return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
}
bool hasTrivialCopyConstructorForCall() const {
return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
}
/// Determine whether this class has a non-trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasNonTrivialCopyConstructor() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
!hasTrivialCopyConstructor();
}
bool hasNonTrivialCopyConstructorForCall() const {
return (data().DeclaredNonTrivialSpecialMembersForCall &
SMF_CopyConstructor) ||
!hasTrivialCopyConstructorForCall();
}
/// Determine whether this class has a trivial move constructor
/// (C++11 [class.copy]p12)
bool hasTrivialMoveConstructor() const {
return hasMoveConstructor() &&
(data().HasTrivialSpecialMembers & SMF_MoveConstructor);
}
bool hasTrivialMoveConstructorForCall() const {
return hasMoveConstructor() &&
(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
}
/// Determine whether this class has a non-trivial move constructor
/// (C++11 [class.copy]p12)
bool hasNonTrivialMoveConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
(needsImplicitMoveConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
}
bool hasNonTrivialMoveConstructorForCall() const {
return (data().DeclaredNonTrivialSpecialMembersForCall &
SMF_MoveConstructor) ||
(needsImplicitMoveConstructor() &&
!(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
}
/// Determine whether this class has a trivial copy assignment operator
/// (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasTrivialCopyAssignment() const {
return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
}
/// Determine whether this class has a non-trivial copy assignment
/// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasNonTrivialCopyAssignment() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
!hasTrivialCopyAssignment();
}
/// Determine whether this class has a trivial move assignment operator
/// (C++11 [class.copy]p25)
bool hasTrivialMoveAssignment() const {
return hasMoveAssignment() &&
(data().HasTrivialSpecialMembers & SMF_MoveAssignment);
}
/// Determine whether this class has a non-trivial move assignment
/// operator (C++11 [class.copy]p25)
bool hasNonTrivialMoveAssignment() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
(needsImplicitMoveAssignment() &&
!(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
}
/// Determine whether a defaulted default constructor for this class
/// would be constexpr.
bool defaultedDestructorIsConstexpr() const {
return data().DefaultedDestructorIsConstexpr &&
getASTContext().getLangOpts().CPlusPlus2a;
}
/// Determine whether this class has a constexpr destructor.
bool hasConstexprDestructor() const;
/// Determine whether this class has a trivial destructor
/// (C++ [class.dtor]p3)
bool hasTrivialDestructor() const {
return data().HasTrivialSpecialMembers & SMF_Destructor;
}
bool hasTrivialDestructorForCall() const {
return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
}
/// Determine whether this class has a non-trivial destructor
/// (C++ [class.dtor]p3)
bool hasNonTrivialDestructor() const {
return !(data().HasTrivialSpecialMembers & SMF_Destructor);
}
bool hasNonTrivialDestructorForCall() const {
return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
}
void setHasTrivialSpecialMemberForCall() {
data().HasTrivialSpecialMembersForCall =
(SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
}
/// Determine whether declaring a const variable with this type is ok
/// per core issue 253.
bool allowConstDefaultInit() const {
return !data().HasUninitializedFields ||
!(data().HasDefaultedDefaultConstructor ||
needsImplicitDefaultConstructor());
}
/// Determine whether this class has a destructor which has no
/// semantic effect.
///
/// Any such destructor will be trivial, public, defaulted and not deleted,
/// and will call only irrelevant destructors.
bool hasIrrelevantDestructor() const {
return data().HasIrrelevantDestructor;
}
/// Determine whether this class has a non-literal or/ volatile type
/// non-static data member or base class.
bool hasNonLiteralTypeFieldsOrBases() const {
return data().HasNonLiteralTypeFieldsOrBases;
}
/// Determine whether this class has a using-declaration that names
/// a user-declared base class constructor.
bool hasInheritedConstructor() const {
return data().HasInheritedConstructor;
}
/// Determine whether this class has a using-declaration that names
/// a base class assignment operator.
bool hasInheritedAssignment() const {
return data().HasInheritedAssignment;
}
/// Determine whether this class is considered trivially copyable per
/// (C++11 [class]p6).
bool isTriviallyCopyable() const;
/// Determine whether this class is considered trivial.
///
/// C++11 [class]p6:
/// "A trivial class is a class that has a trivial default constructor and
/// is trivially copyable."
bool isTrivial() const {
return isTriviallyCopyable() && hasTrivialDefaultConstructor();
}
/// Determine whether this class is a literal type.
///
/// C++11 [basic.types]p10:
/// A class type that has all the following properties:
/// - it has a trivial destructor
/// - every constructor call and full-expression in the
/// brace-or-equal-intializers for non-static data members (if any) is
/// a constant expression.
/// - it is an aggregate type or has at least one constexpr constructor
/// or constructor template that is not a copy or move constructor, and
/// - all of its non-static data members and base classes are of literal
/// types
///
/// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
/// treating types with trivial default constructors as literal types.
///
/// Only in C++17 and beyond, are lambdas literal types.
bool isLiteral() const {
ASTContext &Ctx = getASTContext();
return (Ctx.getLangOpts().CPlusPlus2a ? hasConstexprDestructor()
: hasTrivialDestructor()) &&
(!isLambda() || Ctx.getLangOpts().CPlusPlus17) &&
!hasNonLiteralTypeFieldsOrBases() &&
(isAggregate() || isLambda() ||
hasConstexprNonCopyMoveConstructor() ||
hasTrivialDefaultConstructor());
}
/// If this record is an instantiation of a member class,
/// retrieves the member class from which it was instantiated.
///
/// This routine will return non-null for (non-templated) member
/// classes of class templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// struct A { };
/// };
/// \endcode
///
/// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromMemberClass() will return
/// the CXXRecordDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberClass().
CXXRecordDecl *getInstantiatedFromMemberClass() const;
/// If this class is an instantiation of a member class of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// Specify that this record is an instantiation of the
/// member class \p RD.
void setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK);
/// Retrieves the class template that is described by this
/// class declaration.
///
/// Every class template is represented as a ClassTemplateDecl and a
/// CXXRecordDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
/// CXXRecordDecl that from a ClassTemplateDecl, while
/// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
/// a CXXRecordDecl.
ClassTemplateDecl *getDescribedClassTemplate() const;
void setDescribedClassTemplate(ClassTemplateDecl *Template);
/// Determine whether this particular class is a specialization or
/// instantiation of a class template or member class of a class template,
/// and how it was instantiated or specialized.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// Set the kind of specialization or template instantiation this is.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
/// Retrieve the record declaration from which this record could be
/// instantiated. Returns null if this class is not a template instantiation.
const CXXRecordDecl *getTemplateInstantiationPattern() const;
CXXRecordDecl *getTemplateInstantiationPattern() {
return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
->getTemplateInstantiationPattern());
}
/// Returns the destructor decl for this class.
CXXDestructorDecl *getDestructor() const;
/// Returns true if the class destructor, or any implicitly invoked
/// destructors are marked noreturn.
bool isAnyDestructorNoReturn() const;
/// If the class is a local class [class.local], returns
/// the enclosing function declaration.
const FunctionDecl *isLocalClass() const {
if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
return RD->isLocalClass();
return dyn_cast<FunctionDecl>(getDeclContext());
}
FunctionDecl *isLocalClass() {
return const_cast<FunctionDecl*>(
const_cast<const CXXRecordDecl*>(this)->isLocalClass());
}
/// Determine whether this dependent class is a current instantiation,
/// when viewed from within the given context.
bool isCurrentInstantiation(const DeclContext *CurContext) const;
/// Determine whether this class is derived from the class \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is derived from Base, false otherwise.
bool isDerivedFrom(const CXXRecordDecl *Base) const;
/// Determine whether this class is derived from the type \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \param Paths will contain the paths taken from the current class to the
/// given \p Base class.
///
/// \returns true if this class is derived from \p Base, false otherwise.
///
/// \todo add a separate parameter to configure IsDerivedFrom, rather than
/// tangling input and output in \p Paths
bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
/// Determine whether this class is virtually derived from
/// the class \p Base.
///
/// This routine only determines whether this class is virtually
/// derived from \p Base, but does not account for factors that may
/// make a Derived -> Base class ill-formed, such as
/// private/protected inheritance or multiple, ambiguous base class
/// subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is virtually derived from Base,
/// false otherwise.
bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
/// Determine whether this class is provably not derived from
/// the type \p Base.
bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
/// Function type used by forallBases() as a callback.
///
/// \param BaseDefinition the definition of the base class
///
/// \returns true if this base matched the search criteria
using ForallBasesCallback =
llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
/// Determines if the given callback holds for all the direct
/// or indirect base classes of this type.
///
/// The class itself does not count as a base class. This routine
/// returns false if the class has non-computable base classes.
///
/// \param BaseMatches Callback invoked for each (direct or indirect) base
/// class of this type, or if \p AllowShortCircuit is true then until a call
/// returns false.
///
/// \param AllowShortCircuit if false, forces the callback to be called
/// for every base class, even if a dependent or non-matching base was
/// found.
bool forallBases(ForallBasesCallback BaseMatches,
bool AllowShortCircuit = true) const;
/// Function type used by lookupInBases() to determine whether a
/// specific base class subobject matches the lookup criteria.
///
/// \param Specifier the base-class specifier that describes the inheritance
/// from the base class we are trying to match.
///
/// \param Path the current path, from the most-derived class down to the
/// base named by the \p Specifier.
///
/// \returns true if this base matched the search criteria, false otherwise.
using BaseMatchesCallback =
llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path)>;
/// Look for entities within the base classes of this C++ class,
/// transitively searching all base class subobjects.
///
/// This routine uses the callback function \p BaseMatches to find base
/// classes meeting some search criteria, walking all base class subobjects
/// and populating the given \p Paths structure with the paths through the
/// inheritance hierarchy that resulted in a match. On a successful search,
/// the \p Paths structure can be queried to retrieve the matching paths and
/// to determine if there were any ambiguities.
///
/// \param BaseMatches callback function used to determine whether a given
/// base matches the user-defined search criteria.
///
/// \param Paths used to record the paths from this class to its base class
/// subobjects that match the search criteria.
///
/// \param LookupInDependent can be set to true to extend the search to
/// dependent base classes.
///
/// \returns true if there exists any path from this class to a base class
/// subobject that matches the search criteria.
bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
bool LookupInDependent = false) const;
/// Base-class lookup callback that determines whether the given
/// base class specifier refers to a specific class declaration.
///
/// This callback can be used with \c lookupInBases() to determine whether
/// a given derived class has is a base class subobject of a particular type.
/// The base record pointer should refer to the canonical CXXRecordDecl of the
/// base class that we are searching for.
static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
/// Base-class lookup callback that determines whether the
/// given base class specifier refers to a specific class
/// declaration and describes virtual derivation.
///
/// This callback can be used with \c lookupInBases() to determine
/// whether a given derived class has is a virtual base class
/// subobject of a particular type. The base record pointer should
/// refer to the canonical CXXRecordDecl of the base class that we
/// are searching for.
static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
const CXXRecordDecl *BaseRecord);
/// Base-class lookup callback that determines whether there exists
/// a tag with the given name.
///
/// This callback can be used with \c lookupInBases() to find tag members
/// of the given name within a C++ class hierarchy.
static bool FindTagMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// a member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy.
static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// a member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy, including dependent
/// classes.
static bool
FindOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// an OpenMP declare reduction member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy.
static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// an OpenMP declare mapper member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy.
static bool FindOMPMapperMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// a member with the given name that can be used in a nested-name-specifier.
///
/// This callback can be used with \c lookupInBases() to find members of
/// the given name within a C++ class hierarchy that can occur within
/// nested-name-specifiers.
static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
DeclarationName Name);
/// Retrieve the final overriders for each virtual member
/// function in the class hierarchy where this class is the
/// most-derived class in the class hierarchy.
void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
/// Get the indirect primary bases for this class.
void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
/// Performs an imprecise lookup of a dependent name in this class.
///
/// This function does not follow strict semantic rules and should be used
/// only when lookup rules can be relaxed, e.g. indexing.
std::vector<const NamedDecl *>
lookupDependentName(const DeclarationName &Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
/// Renders and displays an inheritance diagram
/// for this C++ class and all of its base classes (transitively) using
/// GraphViz.
void viewInheritance(ASTContext& Context) const;
/// Calculates the access of a decl that is reached
/// along a path.
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
AccessSpecifier DeclAccess) {
assert(DeclAccess != AS_none);
if (DeclAccess == AS_private) return AS_none;
return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
}
/// Indicates that the declaration of a defaulted or deleted special
/// member function is now complete.
void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
void setTrivialForCallFlags(CXXMethodDecl *MD);
/// Indicates that the definition of this class is now complete.
void completeDefinition() override;
/// Indicates that the definition of this class is now complete,
/// and provides a final overrider map to help determine
///
/// \param FinalOverriders The final overrider map for this class, which can
/// be provided as an optimization for abstract-class checking. If NULL,
/// final overriders will be computed if they are needed to complete the
/// definition.
void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
/// Determine whether this class may end up being abstract, even though
/// it is not yet known to be abstract.
///
/// \returns true if this class is not known to be abstract but has any
/// base classes that are abstract. In this case, \c completeDefinition()
/// will need to compute final overriders to determine whether the class is
/// actually abstract.
bool mayBeAbstract() const;
/// Determine whether it's impossible for a class to be derived from this
/// class. This is best-effort, and may conservatively return false.
bool isEffectivelyFinal() const;
/// If this is the closure type of a lambda expression, retrieve the
/// number to be used for name mangling in the Itanium C++ ABI.
///
/// Zero indicates that this closure type has internal linkage, so the
/// mangling number does not matter, while a non-zero value indicates which
/// lambda expression this is in this particular context.
unsigned getLambdaManglingNumber() const {
assert(isLambda() && "Not a lambda closure type!");
return getLambdaData().ManglingNumber;
}
/// The lambda is known to has internal linkage no matter whether it has name
/// mangling number.
bool hasKnownLambdaInternalLinkage() const {
assert(isLambda() && "Not a lambda closure type!");
return getLambdaData().HasKnownInternalLinkage;
}
/// Retrieve the declaration that provides additional context for a
/// lambda, when the normal declaration context is not specific enough.
///
/// Certain contexts (default arguments of in-class function parameters and
/// the initializers of data members) have separate name mangling rules for
/// lambdas within the Itanium C++ ABI. For these cases, this routine provides
/// the declaration in which the lambda occurs, e.g., the function parameter
/// or the non-static data member. Otherwise, it returns NULL to imply that
/// the declaration context suffices.
Decl *getLambdaContextDecl() const;
/// Set the mangling number and context declaration for a lambda
/// class.
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl,
bool HasKnownInternalLinkage = false) {
assert(isLambda() && "Not a lambda closure type!");
getLambdaData().ManglingNumber = ManglingNumber;
getLambdaData().ContextDecl = ContextDecl;
getLambdaData().HasKnownInternalLinkage = HasKnownInternalLinkage;
}
/// Returns the inheritance model used for this record.
MSInheritanceModel getMSInheritanceModel() const;
/// Calculate what the inheritance model would be for this class.
MSInheritanceModel calculateInheritanceModel() const;
/// In the Microsoft C++ ABI, use zero for the field offset of a null data
/// member pointer if we can guarantee that zero is not a valid field offset,
/// or if the member pointer has multiple fields. Polymorphic classes have a
/// vfptr at offset zero, so we can use zero for null. If there are multiple
/// fields, we can use zero even if it is a valid field offset because
/// null-ness testing will check the other fields.
bool nullFieldOffsetIsZero() const;
/// Controls when vtordisps will be emitted if this record is used as a
/// virtual base.
MSVtorDispMode getMSVtorDispMode() const;
/// Determine whether this lambda expression was known to be dependent
/// at the time it was created, even if its context does not appear to be
/// dependent.
///
/// This flag is a workaround for an issue with parsing, where default
/// arguments are parsed before their enclosing function declarations have
/// been created. This means that any lambda expressions within those
/// default arguments will have as their DeclContext the context enclosing
/// the function declaration, which may be non-dependent even when the
/// function declaration itself is dependent. This flag indicates when we
/// know that the lambda is dependent despite that.
bool isDependentLambda() const {
return isLambda() && getLambdaData().Dependent;
}
TypeSourceInfo *getLambdaTypeInfo() const {
return getLambdaData().MethodTyInfo;
}
// Determine whether this type is an Interface Like type for
// __interface inheritance purposes.
bool isInterfaceLike() const;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXRecord && K <= lastCXXRecord;
}
};
/// Store information needed for an explicit specifier.
/// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
class ExplicitSpecifier {
llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
nullptr, ExplicitSpecKind::ResolvedFalse};
public:
ExplicitSpecifier() = default;
ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
: ExplicitSpec(Expression, Kind) {}
ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
Expr *getExpr() { return ExplicitSpec.getPointer(); }
/// Determine if the declaration had an explicit specifier of any kind.
bool isSpecified() const {
return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
ExplicitSpec.getPointer();
}
/// Check for equivalence of explicit specifiers.
/// \return true if the explicit specifier are equivalent, false otherwise.
bool isEquivalent(const ExplicitSpecifier Other) const;
/// Determine whether this specifier is known to correspond to an explicit
/// declaration. Returns false if the specifier is absent or has an
/// expression that is value-dependent or evaluates to false.
bool isExplicit() const {
return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
}
/// Determine if the explicit specifier is invalid.
/// This state occurs after a substitution failures.
bool isInvalid() const {
return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
!ExplicitSpec.getPointer();
}
void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
// Retrieve the explicit specifier in the given declaration, if any.
static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
return getFromDecl(const_cast<FunctionDecl *>(Function));
}
static ExplicitSpecifier Invalid() {
return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
}
};
/// Represents a C++ deduction guide declaration.
///
/// \code
/// template<typename T> struct A { A(); A(T); };
/// A() -> A<int>;
/// \endcode
///
/// In this example, there will be an explicit deduction guide from the
/// second line, and implicit deduction guide templates synthesized from
/// the constructors of \c A.
class CXXDeductionGuideDecl : public FunctionDecl {
void anchor() override;
private:
CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
ExplicitSpecifier ES,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, SourceLocation EndLocation)
: FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
SC_None, false, CSK_unspecified),
ExplicitSpec(ES) {
if (EndLocation.isValid())
setRangeEnd(EndLocation);
setIsCopyDeductionCandidate(false);
}
ExplicitSpecifier ExplicitSpec;
void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static CXXDeductionGuideDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, SourceLocation EndLocation);
static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
/// Return true if the declartion is already resolved to be explicit.
bool isExplicit() const { return ExplicitSpec.isExplicit(); }
/// Get the template for which this guide performs deduction.
TemplateDecl *getDeducedTemplate() const {
return getDeclName().getCXXDeductionGuideTemplate();
}
void setIsCopyDeductionCandidate(bool isCDC = true) {
FunctionDeclBits.IsCopyDeductionCandidate = isCDC;
}
bool isCopyDeductionCandidate() const {
return FunctionDeclBits.IsCopyDeductionCandidate;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
};
/// \brief Represents the body of a requires-expression.
///
/// This decl exists merely to serve as the DeclContext for the local
/// parameters of the requires expression as well as other declarations inside
/// it.
///
/// \code
/// template<typename T> requires requires (T t) { {t++} -> regular; }
/// \endcode
///
/// In this example, a RequiresExpr object will be generated for the expression,
/// and a RequiresExprBodyDecl will be created to hold the parameter t and the
/// template argument list imposed by the compound requirement.
class RequiresExprBodyDecl : public Decl, public DeclContext {
RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
: Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc);
static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == RequiresExprBody; }
};
/// Represents a static or instance method of a struct/union/class.
///
/// In the terminology of the C++ Standard, these are the (static and
/// non-static) member functions, whether virtual or not.
class CXXMethodDecl : public FunctionDecl {
void anchor() override;
protected:
CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo, StorageClass SC,
bool isInline, ConstexprSpecKind ConstexprKind,
SourceLocation EndLocation,
Expr *TrailingRequiresClause = nullptr)
: FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, isInline,
ConstexprKind, TrailingRequiresClause) {
if (EndLocation.isValid())
setRangeEnd(EndLocation);
}
public:
static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, StorageClass SC,
bool isInline, ConstexprSpecKind ConstexprKind,
SourceLocation EndLocation,
Expr *TrailingRequiresClause = nullptr);
static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
bool isStatic() const;
bool isInstance() const { return !isStatic(); }
/// Returns true if the given operator is implicitly static in a record
/// context.
static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
// [class.free]p1:
// Any allocation function for a class T is a static member
// (even if not explicitly declared static).
// [class.free]p6 Any deallocation function for a class X is a static member
// (even if not explicitly declared static).
return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
OOK == OO_Array_Delete;
}
bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
bool isVirtual() const {
CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
// Member function is virtual if it is marked explicitly so, or if it is
// declared in __interface -- then it is automatically pure virtual.
if (CD->isVirtualAsWritten() || CD->isPure())
return true;
return CD->size_overridden_methods() != 0;
}
/// If it's possible to devirtualize a call to this method, return the called
/// function. Otherwise, return null.
/// \param Base The object on which this virtual function is called.
/// \param IsAppleKext True if we are compiling for Apple kext.
CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
bool IsAppleKext) const {
return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
Base, IsAppleKext);
}
/// Determine whether this is a usual deallocation function (C++
/// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
/// delete[] operator with a particular signature. Populates \p PreventedBy
/// with the declarations of the functions of the same kind if they were the
/// reason for this function returning false. This is used by
/// Sema::isUsualDeallocationFunction to reconsider the answer based on the
/// context.
bool isUsualDeallocationFunction(
SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
/// Determine whether this is a copy-assignment operator, regardless
/// of whether it was declared implicitly or explicitly.
bool isCopyAssignmentOperator() const;
/// Determine whether this is a move assignment operator.
bool isMoveAssignmentOperator() const;
CXXMethodDecl *getCanonicalDecl() override {
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXMethodDecl *getCanonicalDecl() const {
return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
}
CXXMethodDecl *getMostRecentDecl() {
return cast<CXXMethodDecl>(
static_cast<FunctionDecl *>(this)->getMostRecentDecl());
}
const CXXMethodDecl *getMostRecentDecl() const {
return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
}
void addOverriddenMethod(const CXXMethodDecl *MD);
using method_iterator = const CXXMethodDecl *const *;
method_iterator begin_overridden_methods() const;
method_iterator end_overridden_methods() const;
unsigned size_overridden_methods() const;
using overridden_method_range= ASTContext::overridden_method_range;
overridden_method_range overridden_methods() const;
/// Return the parent of this method declaration, which
/// is the class in which this method is defined.
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(FunctionDecl::getParent());
}
/// Return the parent of this method declaration, which
/// is the class in which this method is defined.
CXXRecordDecl *getParent() {
return const_cast<CXXRecordDecl *>(
cast<CXXRecordDecl>(FunctionDecl::getParent()));
}
/// Return the type of the \c this pointer.
///
/// Should only be called for instance (i.e., non-static) methods. Note
/// that for the call operator of a lambda closure type, this returns the
/// desugared 'this' type (a pointer to the closure type), not the captured
/// 'this' type.
QualType getThisType() const;
/// Return the type of the object pointed by \c this.
///
/// See getThisType() for usage restriction.
QualType getThisObjectType() const;
static QualType getThisType(const FunctionProtoType *FPT,
const CXXRecordDecl *Decl);
static QualType getThisObjectType(const FunctionProtoType *FPT,
const CXXRecordDecl *Decl);
Qualifiers getMethodQualifiers() const {
return getType()->castAs<FunctionProtoType>()->getMethodQuals();
}
/// Retrieve the ref-qualifier associated with this method.
///
/// In the following example, \c f() has an lvalue ref-qualifier, \c g()
/// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
/// @code
/// struct X {
/// void f() &;
/// void g() &&;
/// void h();
/// };
/// @endcode
RefQualifierKind getRefQualifier() const {
return getType()->castAs<FunctionProtoType>()->getRefQualifier();
}
bool hasInlineBody() const;
/// Determine whether this is a lambda closure type's static member
/// function that is used for the result of the lambda's conversion to
/// function pointer (for a lambda with no captures).
///
/// The function itself, if used, will have a placeholder body that will be
/// supplied by IR generation to either forward to the function call operator
/// or clone the function call operator.
bool isLambdaStaticInvoker() const;
/// Find the method in \p RD that corresponds to this one.
///
/// Find if \p RD or one of the classes it inherits from override this method.
/// If so, return it. \p RD is assumed to be a subclass of the class defining
/// this method (or be the class itself), unless \p MayBeBase is set to true.
CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false);
const CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false) const {
return const_cast<CXXMethodDecl *>(this)
->getCorrespondingMethodInClass(RD, MayBeBase);
}
/// Find if \p RD declares a function that overrides this function, and if so,
/// return it. Does not search base classes.
CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
bool MayBeBase = false);
const CXXMethodDecl *
getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
bool MayBeBase = false) const {
return const_cast<CXXMethodDecl *>(this)
->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXMethod && K <= lastCXXMethod;
}
};
/// Represents a C++ base or member initializer.
///
/// This is part of a constructor initializer that
/// initializes one non-static member variable or one base class. For
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
/// initializers:
///
/// \code
/// class A { };
/// class B : public A {
/// float f;
/// public:
/// B(A& a) : A(a), f(3.14159) { }
/// };
/// \endcode
class CXXCtorInitializer final {
/// Either the base class name/delegating constructor type (stored as
/// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
/// (IndirectFieldDecl*) being initialized.
llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
Initializee;
/// The source location for the field name or, for a base initializer
/// pack expansion, the location of the ellipsis.
///
/// In the case of a delegating
/// constructor, it will still include the type's source location as the
/// Initializee points to the CXXConstructorDecl (to allow loop detection).
SourceLocation MemberOrEllipsisLocation;
/// The argument used to initialize the base or member, which may
/// end up constructing an object (when multiple arguments are involved).
Stmt *Init;
/// Location of the left paren of the ctor-initializer.
SourceLocation LParenLoc;
/// Location of the right paren of the ctor-initializer.
SourceLocation RParenLoc;
/// If the initializee is a type, whether that type makes this
/// a delegating initialization.
unsigned IsDelegating : 1;
/// If the initializer is a base initializer, this keeps track
/// of whether the base is virtual or not.
unsigned IsVirtual : 1;
/// Whether or not the initializer is explicitly written
/// in the sources.
unsigned IsWritten : 1;
/// If IsWritten is true, then this number keeps track of the textual order
/// of this initializer in the original sources, counting from 0.
unsigned SourceOrder : 13;
public:
/// Creates a new base-class initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init, SourceLocation R,
SourceLocation EllipsisLoc);
/// Creates a new member initializer.
explicit
CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// Creates a new anonymous field initializer.
explicit
CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// Creates a new delegating initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
SourceLocation L, Expr *Init, SourceLocation R);
/// \return Unique reproducible object identifier.
int64_t getID(const ASTContext &Context) const;
/// Determine whether this initializer is initializing a base class.
bool isBaseInitializer() const {
return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
}
/// Determine whether this initializer is initializing a non-static
/// data member.
bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
bool isAnyMemberInitializer() const {
return isMemberInitializer() || isIndirectMemberInitializer();
}
bool isIndirectMemberInitializer() const {
return Initializee.is<IndirectFieldDecl*>();
}
/// Determine whether this initializer is an implicit initializer
/// generated for a field with an initializer defined on the member
/// declaration.
///
/// In-class member initializers (also known as "non-static data member
/// initializations", NSDMIs) were introduced in C++11.
bool isInClassMemberInitializer() const {
return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
}
/// Determine whether this initializer is creating a delegating
/// constructor.
bool isDelegatingInitializer() const {
return Initializee.is<TypeSourceInfo*>() && IsDelegating;
}
/// Determine whether this initializer is a pack expansion.
bool isPackExpansion() const {
return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
}
// For a pack expansion, returns the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
assert(isPackExpansion() && "Initializer is not a pack expansion");
return MemberOrEllipsisLocation;
}
/// If this is a base class initializer, returns the type of the
/// base class with location information. Otherwise, returns an NULL
/// type location.
TypeLoc getBaseClassLoc() const;
/// If this is a base class initializer, returns the type of the base class.
/// Otherwise, returns null.
const Type *getBaseClass() const;
/// Returns whether the base is virtual or not.
bool isBaseVirtual() const {
assert(isBaseInitializer() && "Must call this on base initializer!");
return IsVirtual;
}
/// Returns the declarator information for a base class or delegating
/// initializer.
TypeSourceInfo *getTypeSourceInfo() const {
return Initializee.dyn_cast<TypeSourceInfo *>();
}
/// If this is a member initializer, returns the declaration of the
/// non-static data member being initialized. Otherwise, returns null.
FieldDecl *getMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
return nullptr;
}
FieldDecl *getAnyMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>()->getAnonField();
return nullptr;
}
IndirectFieldDecl *getIndirectMember() const {
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>();
return nullptr;
}
SourceLocation getMemberLocation() const {
return MemberOrEllipsisLocation;
}
/// Determine the source location of the initializer.
SourceLocation getSourceLocation() const;
/// Determine the source range covering the entire initializer.
SourceRange getSourceRange() const LLVM_READONLY;
/// Determine whether this initializer is explicitly written
/// in the source code.
bool isWritten() const { return IsWritten; }
/// Return the source position of the initializer, counting from 0.
/// If the initializer was implicit, -1 is returned.
int getSourceOrder() const {
return IsWritten ? static_cast<int>(SourceOrder) : -1;
}
/// Set the source order of this initializer.
///
/// This can only be called once for each initializer; it cannot be called
/// on an initializer having a positive number of (implicit) array indices.
///
/// This assumes that the initializer was written in the source code, and
/// ensures that isWritten() returns true.
void setSourceOrder(int Pos) {
assert(!IsWritten &&
"setSourceOrder() used on implicit initializer");
assert(SourceOrder == 0 &&
"calling twice setSourceOrder() on the same initializer");
assert(Pos >= 0 &&
"setSourceOrder() used to make an initializer implicit");
IsWritten = true;
SourceOrder = static_cast<unsigned>(Pos);
}
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
/// Get the initializer.
Expr *getInit() const { return static_cast<Expr *>(Init); }
};
/// Description of a constructor that was inherited from a base class.
class InheritedConstructor {
ConstructorUsingShadowDecl *Shadow = nullptr;
CXXConstructorDecl *BaseCtor = nullptr;
public:
InheritedConstructor() = default;
InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
CXXConstructorDecl *BaseCtor)
: Shadow(Shadow), BaseCtor(BaseCtor) {}
explicit operator bool() const { return Shadow; }
ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
CXXConstructorDecl *getConstructor() const { return BaseCtor; }
};
/// Represents a C++ constructor within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// explicit X(int); // represented by a CXXConstructorDecl.
/// };
/// \endcode
class CXXConstructorDecl final
: public CXXMethodDecl,
private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
ExplicitSpecifier> {
// This class stores some data in DeclContext::CXXConstructorDeclBits
// to save some space. Use the provided accessors to access it.
/// \name Support for base and member initializers.
/// \{
/// The arguments used to initialize the base or member.
LazyCXXCtorInitializersPtr CtorInitializers;
CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool isInline,
bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
InheritedConstructor Inherited,
Expr *TrailingRequiresClause);
void anchor() override;
size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
return CXXConstructorDeclBits.IsInheritingConstructor;
}
size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
}
ExplicitSpecifier getExplicitSpecifierInternal() const {
if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
return *getTrailingObjects<ExplicitSpecifier>();
return ExplicitSpecifier(
nullptr, CXXConstructorDeclBits.IsSimpleExplicit
? ExplicitSpecKind::ResolvedTrue
: ExplicitSpecKind::ResolvedFalse);
}
void setExplicitSpecifier(ExplicitSpecifier ES) {
assert((!ES.getExpr() ||
CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
"cannot set this explicit specifier. no trail-allocated space for "
"explicit");
if (ES.getExpr())
*getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
else
CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
}
enum TraillingAllocKind {
TAKInheritsConstructor = 1,
TAKHasTailExplicit = 1 << 1,
};
uint64_t getTraillingAllocKind() const {
return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
(numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
uint64_t AllocKind);
static CXXConstructorDecl *
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
ConstexprSpecKind ConstexprKind,
InheritedConstructor Inherited = InheritedConstructor(),
Expr *TrailingRequiresClause = nullptr);
ExplicitSpecifier getExplicitSpecifier() {
return getCanonicalDecl()->getExplicitSpecifierInternal();
}
const ExplicitSpecifier getExplicitSpecifier() const {
return getCanonicalDecl()->getExplicitSpecifierInternal();
}
/// Return true if the declartion is already resolved to be explicit.
bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
/// Iterates through the member/base initializer list.
using init_iterator = CXXCtorInitializer **;
/// Iterates through the member/base initializer list.
using init_const_iterator = CXXCtorInitializer *const *;
using init_range = llvm::iterator_range<init_iterator>;
using init_const_range = llvm::iterator_range<init_const_iterator>;
init_range inits() { return init_range(init_begin(), init_end()); }
init_const_range inits() const {
return init_const_range(init_begin(), init_end());
}
/// Retrieve an iterator to the first initializer.
init_iterator init_begin() {
const auto *ConstThis = this;
return const_cast<init_iterator>(ConstThis->init_begin());
}
/// Retrieve an iterator to the first initializer.
init_const_iterator init_begin() const;
/// Retrieve an iterator past the last initializer.
init_iterator init_end() {
return init_begin() + getNumCtorInitializers();
}
/// Retrieve an iterator past the last initializer.
init_const_iterator init_end() const {
return init_begin() + getNumCtorInitializers();
}
using init_reverse_iterator = std::reverse_iterator<init_iterator>;
using init_const_reverse_iterator =
std::reverse_iterator<init_const_iterator>;
init_reverse_iterator init_rbegin() {
return init_reverse_iterator(init_end());
}
init_const_reverse_iterator init_rbegin() const {
return init_const_reverse_iterator(init_end());
}
init_reverse_iterator init_rend() {
return init_reverse_iterator(init_begin());
}
init_const_reverse_iterator init_rend() const {
return init_const_reverse_iterator(init_begin());
}
/// Determine the number of arguments used to initialize the member
/// or base.
unsigned getNumCtorInitializers() const {
return CXXConstructorDeclBits.NumCtorInitializers;
}
void setNumCtorInitializers(unsigned numCtorInitializers) {
CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
// This assert added because NumCtorInitializers is stored
// in CXXConstructorDeclBits as a bitfield and its width has
// been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
assert(CXXConstructorDeclBits.NumCtorInitializers ==
numCtorInitializers && "NumCtorInitializers overflow!");
}
void setCtorInitializers(CXXCtorInitializer **Initializers) {
CtorInitializers = Initializers;
}
/// Determine whether this constructor is a delegating constructor.
bool isDelegatingConstructor() const {
return (getNumCtorInitializers() == 1) &&
init_begin()[0]->isDelegatingInitializer();
}
/// When this constructor delegates to another, retrieve the target.
CXXConstructorDecl *getTargetConstructor() const;
/// Whether this constructor is a default
/// constructor (C++ [class.ctor]p5), which can be used to
/// default-initialize a class of this type.
bool isDefaultConstructor() const;
/// Whether this constructor is a copy constructor (C++ [class.copy]p2,
/// which can be used to copy the class.
///
/// \p TypeQuals will be set to the qualifiers on the
/// argument type. For example, \p TypeQuals would be set to \c
/// Qualifiers::Const for the following copy constructor:
///
/// \code
/// class X {
/// public:
/// X(const X&);
/// };
/// \endcode
bool isCopyConstructor(unsigned &TypeQuals) const;
/// Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class.
bool isCopyConstructor() const {
unsigned TypeQuals = 0;
return isCopyConstructor(TypeQuals);
}
/// Determine whether this constructor is a move constructor
/// (C++11 [class.copy]p3), which can be used to move values of the class.
///
/// \param TypeQuals If this constructor is a move constructor, will be set
/// to the type qualifiers on the referent of the first parameter's type.
bool isMoveConstructor(unsigned &TypeQuals) const;
/// Determine whether this constructor is a move constructor
/// (C++11 [class.copy]p3), which can be used to move values of the class.
bool isMoveConstructor() const {
unsigned TypeQuals = 0;
return isMoveConstructor(TypeQuals);
}
/// Determine whether this is a copy or move constructor.
///
/// \param TypeQuals Will be set to the type qualifiers on the reference
/// parameter, if in fact this is a copy or move constructor.
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
/// Determine whether this a copy or move constructor.
bool isCopyOrMoveConstructor() const {
unsigned Quals;
return isCopyOrMoveConstructor(Quals);
}
/// Whether this constructor is a
/// converting constructor (C++ [class.conv.ctor]), which can be
/// used for user-defined conversions.
bool isConvertingConstructor(bool AllowExplicit) const;
/// Determine whether this is a member template specialization that
/// would copy the object to itself. Such constructors are never used to copy
/// an object.
bool isSpecializationCopyingObject() const;
/// Determine whether this is an implicit constructor synthesized to
/// model a call to a constructor inherited from a base class.
bool isInheritingConstructor() const {
return CXXConstructorDeclBits.IsInheritingConstructor;
}
/// State that this is an implicit constructor synthesized to
/// model a call to a constructor inherited from a base class.
void setInheritingConstructor(bool isIC = true) {
CXXConstructorDeclBits.IsInheritingConstructor = isIC;
}
/// Get the constructor that this inheriting constructor is based on.
InheritedConstructor getInheritedConstructor() const {
return isInheritingConstructor() ?
*getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
}
CXXConstructorDecl *getCanonicalDecl() override {
return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXConstructorDecl *getCanonicalDecl() const {
return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConstructor; }
};
/// Represents a C++ destructor within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// ~X(); // represented by a CXXDestructorDecl.
/// };
/// \endcode
class CXXDestructorDecl : public CXXMethodDecl {
friend class ASTDeclReader;
friend class ASTDeclWriter;
// FIXME: Don't allocate storage for these except in the first declaration
// of a virtual destructor.
FunctionDecl *OperatorDelete = nullptr;
Expr *OperatorDeleteThisArg = nullptr;
CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, bool isInline,
bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
Expr *TrailingRequiresClause = nullptr)
: CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, ConstexprKind, SourceLocation(),
TrailingRequiresClause) {
setImplicit(isImplicitlyDeclared);
}
void anchor() override;
public:
static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isImplicitlyDeclared,
ConstexprSpecKind ConstexprKind,
Expr *TrailingRequiresClause = nullptr);
static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
const FunctionDecl *getOperatorDelete() const {
return getCanonicalDecl()->OperatorDelete;
}
Expr *getOperatorDeleteThisArg() const {
return getCanonicalDecl()->OperatorDeleteThisArg;
}
CXXDestructorDecl *getCanonicalDecl() override {
return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXDestructorDecl *getCanonicalDecl() const {
return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXDestructor; }
};
/// Represents a C++ conversion function within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// operator bool();
/// };
/// \endcode
class CXXConversionDecl : public CXXMethodDecl {
CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, bool isInline, ExplicitSpecifier ES,
ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
Expr *TrailingRequiresClause = nullptr)
: CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, ConstexprKind, EndLocation,
TrailingRequiresClause),
ExplicitSpec(ES) {}
void anchor() override;
ExplicitSpecifier ExplicitSpec;
void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static CXXConversionDecl *
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
SourceLocation EndLocation, Expr *TrailingRequiresClause = nullptr);
static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ExplicitSpecifier getExplicitSpecifier() {
return getCanonicalDecl()->ExplicitSpec;
}
const ExplicitSpecifier getExplicitSpecifier() const {
return getCanonicalDecl()->ExplicitSpec;
}
/// Return true if the declartion is already resolved to be explicit.
bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
/// Returns the type that this conversion function is converting to.
QualType getConversionType() const {
return getType()->castAs<FunctionType>()->getReturnType();
}
/// Determine whether this conversion function is a conversion from
/// a lambda closure type to a block pointer.
bool isLambdaToBlockPointerConversion() const;
CXXConversionDecl *getCanonicalDecl() override {
return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXConversionDecl *getCanonicalDecl() const {
return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConversion; }
};
/// Represents a linkage specification.
///
/// For example:
/// \code
/// extern "C" void foo();
/// \endcode
class LinkageSpecDecl : public Decl, public DeclContext {
virtual void anchor();
// This class stores some data in DeclContext::LinkageSpecDeclBits to save
// some space. Use the provided accessors to access it.
public:
/// Represents the language in a linkage specification.
///
/// The values are part of the serialization ABI for
/// ASTs and cannot be changed without altering that ABI.
enum LanguageIDs { lang_c = 1, lang_cxx = 2 };
private:
/// The source location for the extern keyword.
SourceLocation ExternLoc;
/// The source location for the right brace (if valid).
SourceLocation RBraceLoc;
LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
public:
static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs Lang,
bool HasBraces);
static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Return the language specified by this linkage specification.
LanguageIDs getLanguage() const {
return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
}
/// Set the language specified by this linkage specification.
void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
/// Determines whether this linkage specification had braces in
/// its syntactic form.
bool hasBraces() const {
assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
return LinkageSpecDeclBits.HasBraces;
}
SourceLocation getExternLoc() const { return ExternLoc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setExternLoc(SourceLocation L) { ExternLoc = L; }
void setRBraceLoc(SourceLocation L) {
RBraceLoc = L;
LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
}
SourceLocation getEndLoc() const LLVM_READONLY {
if (hasBraces())
return getRBraceLoc();
// No braces: get the end location of the (only) declaration in context
// (if present).
return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(ExternLoc, getEndLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == LinkageSpec; }
static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
}
static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents C++ using-directive.
///
/// For example:
/// \code
/// using namespace std;
/// \endcode
///
/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
/// artificial names for all using-directives in order to store
/// them in DeclContext effectively.
class UsingDirectiveDecl : public NamedDecl {
/// The location of the \c using keyword.
SourceLocation UsingLoc;
/// The location of the \c namespace keyword.
SourceLocation NamespaceLoc;
/// The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// The namespace nominated by this using-directive.
NamedDecl *NominatedNamespace;
/// Enclosing context containing both using-directive and nominated
/// namespace.
DeclContext *CommonAncestor;
UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation NamespcLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor)
: NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
/// Returns special DeclarationName used by using-directives.
///
/// This is only used by DeclContext for storing UsingDirectiveDecls in
/// its lookup structure.
static DeclarationName getName() {
return DeclarationName::getUsingDirectiveName();
}
void anchor() override;
public:
friend class ASTDeclReader;
// Friend for getUsingDirectiveName.
friend class DeclContext;
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
const NamedDecl *getNominatedNamespaceAsWritten() const {
return NominatedNamespace;
}
/// Returns the namespace nominated by this using-directive.
NamespaceDecl *getNominatedNamespace();
const NamespaceDecl *getNominatedNamespace() const {
return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
}
/// Returns the common ancestor context of this using-directive and
/// its nominated namespace.
DeclContext *getCommonAncestor() { return CommonAncestor; }
const DeclContext *getCommonAncestor() const { return CommonAncestor; }
/// Return the location of the \c using keyword.
SourceLocation getUsingLoc() const { return UsingLoc; }
// FIXME: Could omit 'Key' in name.
/// Returns the location of the \c namespace keyword.
SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
/// Returns the location of this using declaration's identifier.
SourceLocation getIdentLocation() const { return getLocation(); }
static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation NamespaceLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor);
static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(UsingLoc, getLocation());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingDirective; }
};
/// Represents a C++ namespace alias.
///
/// For example:
///
/// \code
/// namespace Foo = Bar;
/// \endcode
class NamespaceAliasDecl : public NamedDecl,
public Redeclarable<NamespaceAliasDecl> {
friend class ASTDeclReader;
/// The location of the \c namespace keyword.
SourceLocation NamespaceLoc;
/// The location of the namespace's identifier.
///
/// This is accessed by TargetNameLoc.
SourceLocation IdentLoc;
/// The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// The Decl that this alias points to, either a NamespaceDecl or
/// a NamespaceAliasDecl.
NamedDecl *Namespace;
NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
SourceLocation NamespaceLoc, SourceLocation AliasLoc,
IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc, NamedDecl *Namespace)
: NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
QualifierLoc(QualifierLoc), Namespace(Namespace) {}
void anchor() override;
using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
NamespaceAliasDecl *getNextRedeclarationImpl() override;
NamespaceAliasDecl *getPreviousDeclImpl() override;
NamespaceAliasDecl *getMostRecentDeclImpl() override;
public:
static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Namespace);
static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
NamespaceAliasDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const NamespaceAliasDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// Retrieve the namespace declaration aliased by this directive.
NamespaceDecl *getNamespace() {
if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
return AD->getNamespace();
return cast<NamespaceDecl>(Namespace);
}
const NamespaceDecl *getNamespace() const {
return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
}
/// Returns the location of the alias name, i.e. 'foo' in
/// "namespace foo = ns::bar;".
SourceLocation getAliasLoc() const { return getLocation(); }
/// Returns the location of the \c namespace keyword.
SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
/// Returns the location of the identifier in the named namespace.
SourceLocation getTargetNameLoc() const { return IdentLoc; }
/// Retrieve the namespace that this alias refers to, which
/// may either be a NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *getAliasedNamespace() const { return Namespace; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(NamespaceLoc, IdentLoc);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == NamespaceAlias; }
};
/// Implicit declaration of a temporary that was materialized by
/// a MaterializeTemporaryExpr and lifetime-extended by a declaration
class LifetimeExtendedTemporaryDecl final
: public Decl,
public Mergeable<LifetimeExtendedTemporaryDecl> {
friend class MaterializeTemporaryExpr;
friend class ASTDeclReader;
Stmt *ExprWithTemporary = nullptr;
/// The declaration which lifetime-extended this reference, if any.
/// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
ValueDecl *ExtendingDecl = nullptr;
unsigned ManglingNumber;
mutable APValue *Value = nullptr;
virtual void anchor();
LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
: Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
EDecl->getLocation()),
ExprWithTemporary(Temp), ExtendingDecl(EDecl),
ManglingNumber(Mangling) {}
LifetimeExtendedTemporaryDecl(EmptyShell)
: Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
public:
static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
unsigned Mangling) {
return new (EDec->getASTContext(), EDec->getDeclContext())
LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
}
static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
}
ValueDecl *getExtendingDecl() { return ExtendingDecl; }
const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
/// Retrieve the storage duration for the materialized temporary.
StorageDuration getStorageDuration() const;
/// Retrieve the expression to which the temporary materialization conversion
/// was applied. This isn't necessarily the initializer of the temporary due
/// to the C++98 delayed materialization rules, but
/// skipRValueSubobjectAdjustments can be used to find said initializer within
/// the subexpression.
Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
unsigned getManglingNumber() const { return ManglingNumber; }
/// Get the storage for the constant value of a materialized temporary
/// of static storage duration.
APValue *getOrCreateValue(bool MayCreate) const;
APValue *getValue() const { return Value; }
// Iterators
Stmt::child_range childrenExpr() {
return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
}
Stmt::const_child_range childrenExpr() const {
return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == Decl::LifetimeExtendedTemporary;
}
};
/// Represents a shadow declaration introduced into a scope by a
/// (resolved) using declaration.
///
/// For example,
/// \code
/// namespace A {
/// void foo();
/// }
/// namespace B {
/// using A::foo; // <- a UsingDecl
/// // Also creates a UsingShadowDecl for A::foo() in B
/// }
/// \endcode
class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
friend class UsingDecl;
/// The referenced declaration.
NamedDecl *Underlying = nullptr;
/// The using declaration which introduced this decl or the next using
/// shadow declaration contained in the aforementioned using declaration.
NamedDecl *UsingOrNextShadow = nullptr;
void anchor() override;
using redeclarable_base = Redeclarable<UsingShadowDecl>;
UsingShadowDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
UsingShadowDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
UsingShadowDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
protected:
UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target);
UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target) {
return new (C, DC) UsingShadowDecl(UsingShadow, C, DC, Loc, Using, Target);
}
static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
UsingShadowDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UsingShadowDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// Gets the underlying declaration which has been brought into the
/// local scope.
NamedDecl *getTargetDecl() const { return Underlying; }
/// Sets the underlying declaration which has been brought into the
/// local scope.
void setTargetDecl(NamedDecl *ND) {
assert(ND && "Target decl is null!");
Underlying = ND;
// A UsingShadowDecl is never a friend or local extern declaration, even
// if it is a shadow declaration for one.
IdentifierNamespace =
ND->getIdentifierNamespace() &
~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
}
/// Gets the using declaration to which this declaration is tied.
UsingDecl *getUsingDecl() const;
/// The next using shadow declaration contained in the shadow decl
/// chain of the using declaration which introduced this decl.
UsingShadowDecl *getNextUsingShadowDecl() const {
return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
}
};
/// Represents a shadow constructor declaration introduced into a
/// class by a C++11 using-declaration that names a constructor.
///
/// For example:
/// \code
/// struct Base { Base(int); };
/// struct Derived {
/// using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
/// };
/// \endcode
class ConstructorUsingShadowDecl final : public UsingShadowDecl {
/// If this constructor using declaration inherted the constructor
/// from an indirect base class, this is the ConstructorUsingShadowDecl
/// in the named direct base class from which the declaration was inherited.
ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
/// If this constructor using declaration inherted the constructor
/// from an indirect base class, this is the ConstructorUsingShadowDecl
/// that will be used to construct the unique direct or virtual base class
/// that receives the constructor arguments.
ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
/// \c true if the constructor ultimately named by this using shadow
/// declaration is within a virtual base class subobject of the class that
/// contains this declaration.
unsigned IsVirtual : 1;
ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target,
bool TargetInVirtualBase)
: UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc, Using,
Target->getUnderlyingDecl()),
NominatedBaseClassShadowDecl(
dyn_cast<ConstructorUsingShadowDecl>(Target)),
ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
IsVirtual(TargetInVirtualBase) {
// If we found a constructor that chains to a constructor for a virtual
// base, we should directly call that virtual base constructor instead.
// FIXME: This logic belongs in Sema.
if (NominatedBaseClassShadowDecl &&
NominatedBaseClassShadowDecl->constructsVirtualBase()) {
ConstructedBaseClassShadowDecl =
NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
IsVirtual = true;
}
}
ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
: UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target,
bool IsVirtual);
static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
/// Returns the parent of this using shadow declaration, which
/// is the class in which this is declared.
//@{
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(getDeclContext());
}
CXXRecordDecl *getParent() {
return cast<CXXRecordDecl>(getDeclContext());
}
//@}
/// Get the inheriting constructor declaration for the direct base
/// class from which this using shadow declaration was inherited, if there is
/// one. This can be different for each redeclaration of the same shadow decl.
ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
return NominatedBaseClassShadowDecl;
}
/// Get the inheriting constructor declaration for the base class
/// for which we don't have an explicit initializer, if there is one.
ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
return ConstructedBaseClassShadowDecl;
}
/// Get the base class that was named in the using declaration. This
/// can be different for each redeclaration of this same shadow decl.
CXXRecordDecl *getNominatedBaseClass() const;
/// Get the base class whose constructor or constructor shadow
/// declaration is passed the constructor arguments.
CXXRecordDecl *getConstructedBaseClass() const {
return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
? ConstructedBaseClassShadowDecl
: getTargetDecl())
->getDeclContext());
}
/// Returns \c true if the constructed base class is a virtual base
/// class subobject of this declaration's class.
bool constructsVirtualBase() const {
return IsVirtual;
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
};
/// Represents a C++ using-declaration.
///
/// For example:
/// \code
/// using someNameSpace::someIdentifier;
/// \endcode
class UsingDecl : public NamedDecl, public Mergeable<UsingDecl> {
/// The source location of the 'using' keyword itself.
SourceLocation UsingLocation;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// Provides source/type location info for the declaration name
/// embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
/// The first shadow declaration of the shadow decl chain associated
/// with this using declaration.
///
/// The bool member of the pair store whether this decl has the \c typename
/// keyword.
llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
UsingDecl(DeclContext *DC, SourceLocation UL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
: NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
UsingLocation(UL), QualifierLoc(QualifierLoc),
DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Return the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// Set the source location of the 'using' keyword.
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
/// Return true if it is a C++03 access declaration (no 'using').
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
/// Return true if the using declaration has 'typename'.
bool hasTypename() const { return FirstUsingShadow.getInt(); }
/// Sets whether the using declaration has 'typename'.
void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
/// Iterates through the using shadow declarations associated with
/// this using declaration.
class shadow_iterator {
/// The current using shadow declaration.
UsingShadowDecl *Current = nullptr;
public:
using value_type = UsingShadowDecl *;
using reference = UsingShadowDecl *;
using pointer = UsingShadowDecl *;
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
shadow_iterator() = default;
explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
shadow_iterator& operator++() {
Current = Current->getNextUsingShadowDecl();
return *this;
}
shadow_iterator operator++(int) {
shadow_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(shadow_iterator x, shadow_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(shadow_iterator x, shadow_iterator y) {
return x.Current != y.Current;
}
};
using shadow_range = llvm::iterator_range<shadow_iterator>;
shadow_range shadows() const {
return shadow_range(shadow_begin(), shadow_end());
}
shadow_iterator shadow_begin() const {
return shadow_iterator(FirstUsingShadow.getPointer());
}
shadow_iterator shadow_end() const { return shadow_iterator(); }
/// Return the number of shadowed declarations associated with this
/// using declaration.
unsigned shadow_size() const {
return std::distance(shadow_begin(), shadow_end());
}
void addShadowDecl(UsingShadowDecl *S);
void removeShadowDecl(UsingShadowDecl *S);
static UsingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool HasTypenameKeyword);
static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this declaration.
UsingDecl *getCanonicalDecl() override { return getFirstDecl(); }
const UsingDecl *getCanonicalDecl() const { return getFirstDecl(); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Using; }
};
/// Represents a pack of using declarations that a single
/// using-declarator pack-expanded into.
///
/// \code
/// template<typename ...T> struct X : T... {
/// using T::operator()...;
/// using T::operator T...;
/// };
/// \endcode
///
/// In the second case above, the UsingPackDecl will have the name
/// 'operator T' (which contains an unexpanded pack), but the individual
/// UsingDecls and UsingShadowDecls will have more reasonable names.
class UsingPackDecl final
: public NamedDecl, public Mergeable<UsingPackDecl>,
private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
/// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
/// which this waas instantiated.
NamedDecl *InstantiatedFrom;
/// The number of using-declarations created by this pack expansion.
unsigned NumExpansions;
UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> UsingDecls)
: NamedDecl(UsingPack, DC,
InstantiatedFrom ? InstantiatedFrom->getLocation()
: SourceLocation(),
InstantiatedFrom ? InstantiatedFrom->getDeclName()
: DeclarationName()),
InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
getTrailingObjects<NamedDecl *>());
}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
/// Get the using declaration from which this was instantiated. This will
/// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
/// that is a pack expansion.
NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
/// Get the set of using declarations that this pack expanded into. Note that
/// some of these may still be unresolved.
ArrayRef<NamedDecl *> expansions() const {
return llvm::makeArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
}
static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> UsingDecls);
static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumExpansions);
SourceRange getSourceRange() const override LLVM_READONLY {
return InstantiatedFrom->getSourceRange();
}
UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingPack; }
};
/// Represents a dependent using declaration which was not marked with
/// \c typename.
///
/// Unlike non-dependent using declarations, these *only* bring through
/// non-types; otherwise they would break two-phase lookup.
///
/// \code
/// template \<class T> class A : public Base<T> {
/// using Base<T>::foo;
/// };
/// \endcode
class UnresolvedUsingValueDecl : public ValueDecl,
public Mergeable<UnresolvedUsingValueDecl> {
/// The source location of the 'using' keyword
SourceLocation UsingLocation;
/// If this is a pack expansion, the location of the '...'.
SourceLocation EllipsisLoc;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// Provides source/type location info for the declaration name
/// embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
SourceLocation EllipsisLoc)
: ValueDecl(UnresolvedUsingValue, DC,
NameInfo.getLoc(), NameInfo.getName(), Ty),
UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// Set the source location of the 'using' keyword.
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// Return true if it is a C++03 access declaration (no 'using').
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
/// Determine whether this is a pack expansion.
bool isPackExpansion() const {
return EllipsisLoc.isValid();
}
/// Get the location of the ellipsis if this is a pack expansion.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
static UnresolvedUsingValueDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
static UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this declaration.
UnresolvedUsingValueDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UnresolvedUsingValueDecl *getCanonicalDecl() const {
return getFirstDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
};
/// Represents a dependent using declaration which was marked with
/// \c typename.
///
/// \code
/// template \<class T> class A : public Base<T> {
/// using typename Base<T>::foo;
/// };
/// \endcode
///
/// The type associated with an unresolved using typename decl is
/// currently always a typename type.
class UnresolvedUsingTypenameDecl
: public TypeDecl,
public Mergeable<UnresolvedUsingTypenameDecl> {
friend class ASTDeclReader;
/// The source location of the 'typename' keyword
SourceLocation TypenameLocation;
/// If this is a pack expansion, the location of the '...'.
SourceLocation EllipsisLoc;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc,
IdentifierInfo *TargetName,
SourceLocation EllipsisLoc)
: TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
UsingLoc),
TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
QualifierLoc(QualifierLoc) {}
void anchor() override;
public:
/// Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return getBeginLoc(); }
/// Returns the source location of the 'typename' keyword.
SourceLocation getTypenameLoc() const { return TypenameLocation; }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation());
}
/// Determine whether this is a pack expansion.
bool isPackExpansion() const {
return EllipsisLoc.isValid();
}
/// Get the location of the ellipsis if this is a pack expansion.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
static UnresolvedUsingTypenameDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc, DeclarationName TargetName,
SourceLocation EllipsisLoc);
static UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
/// Retrieves the canonical declaration of this declaration.
UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
return getFirstDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
};
/// Represents a C++11 static_assert declaration.
class StaticAssertDecl : public Decl {
llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
StringLiteral *Message;
SourceLocation RParenLoc;
StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed)
: Decl(StaticAssert, DC, StaticAssertLoc),
AssertExprAndFailed(AssertExpr, Failed), Message(Message),
RParenLoc(RParenLoc) {}
virtual void anchor();
public:
friend class ASTDeclReader;
static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed);
static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
StringLiteral *getMessage() { return Message; }
const StringLiteral *getMessage() const { return Message; }
bool isFailed() const { return AssertExprAndFailed.getInt(); }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getLocation(), getRParenLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == StaticAssert; }
};
/// A binding in a decomposition declaration. For instance, given:
///
/// int n[3];
/// auto &[a, b, c] = n;
///
/// a, b, and c are BindingDecls, whose bindings are the expressions
/// x[0], x[1], and x[2] respectively, where x is the implicit
/// DecompositionDecl of type 'int (&)[3]'.
class BindingDecl : public ValueDecl {
/// The declaration that this binding binds to part of.
LazyDeclPtr Decomp;
/// The binding represented by this declaration. References to this
/// declaration are effectively equivalent to this expression (except
/// that it is only evaluated once at the point of declaration of the
/// binding).
Expr *Binding = nullptr;
BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
: ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
void anchor() override;
public:
friend class ASTDeclReader;
static BindingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc, IdentifierInfo *Id);
static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Get the expression to which this declaration is bound. This may be null
/// in two different cases: while parsing the initializer for the
/// decomposition declaration, and when the initializer is type-dependent.
Expr *getBinding() const { return Binding; }
/// Get the decomposition declaration that this binding represents a
/// decomposition of.
ValueDecl *getDecomposedDecl() const;
/// Get the variable (if any) that holds the value of evaluating the binding.
/// Only present for user-defined bindings for tuple-like types.
VarDecl *getHoldingVar() const;
/// Set the binding for this BindingDecl, along with its declared type (which
/// should be a possibly-cv-qualified form of the type of the binding, or a
/// reference to such a type).
void setBinding(QualType DeclaredType, Expr *Binding) {
setType(DeclaredType);
this->Binding = Binding;
}
/// Set the decomposed variable for this BindingDecl.
void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::Binding; }
};
/// A decomposition declaration. For instance, given:
///
/// int n[3];
/// auto &[a, b, c] = n;
///
/// the second line declares a DecompositionDecl of type 'int (&)[3]', and
/// three BindingDecls (named a, b, and c). An instance of this class is always
/// unnamed, but behaves in almost all other respects like a VarDecl.
class DecompositionDecl final
: public VarDecl,
private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
/// The number of BindingDecl*s following this object.
unsigned NumBindings;
DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation LSquareLoc, QualType T,
TypeSourceInfo *TInfo, StorageClass SC,
ArrayRef<BindingDecl *> Bindings)
: VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
SC),
NumBindings(Bindings.size()) {
std::uninitialized_copy(Bindings.begin(), Bindings.end(),
getTrailingObjects<BindingDecl *>());
for (auto *B : Bindings)
B->setDecomposedDecl(this);
}
void anchor() override;
public:
friend class ASTDeclReader;
friend TrailingObjects;
static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation LSquareLoc,
QualType T, TypeSourceInfo *TInfo,
StorageClass S,
ArrayRef<BindingDecl *> Bindings);
static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumBindings);
ArrayRef<BindingDecl *> bindings() const {
return llvm::makeArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
}
void printName(raw_ostream &os) const override;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decomposition; }
};
/// An instance of this class represents the declaration of a property
/// member. This is a Microsoft extension to C++, first introduced in
/// Visual Studio .NET 2003 as a parallel to similar features in C#
/// and Managed C++.
///
/// A property must always be a non-static class member.
///
/// A property member superficially resembles a non-static data
/// member, except preceded by a property attribute:
/// __declspec(property(get=GetX, put=PutX)) int x;
/// Either (but not both) of the 'get' and 'put' names may be omitted.
///
/// A reference to a property is always an lvalue. If the lvalue
/// undergoes lvalue-to-rvalue conversion, then a getter name is
/// required, and that member is called with no arguments.
/// If the lvalue is assigned into, then a setter name is required,
/// and that member is called with one argument, the value assigned.
/// Both operations are potentially overloaded. Compound assignments
/// are permitted, as are the increment and decrement operators.
///
/// The getter and putter methods are permitted to be overloaded,
/// although their return and parameter types are subject to certain
/// restrictions according to the type of the property.
///
/// A property declared using an incomplete array type may
/// additionally be subscripted, adding extra parameters to the getter
/// and putter methods.
class MSPropertyDecl : public DeclaratorDecl {
IdentifierInfo *GetterId, *SetterId;
MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
IdentifierInfo *Getter, IdentifierInfo *Setter)
: DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
GetterId(Getter), SetterId(Setter) {}
void anchor() override;
public:
friend class ASTDeclReader;
static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName N, QualType T,
TypeSourceInfo *TInfo, SourceLocation StartL,
IdentifierInfo *Getter, IdentifierInfo *Setter);
static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
bool hasGetter() const { return GetterId != nullptr; }
IdentifierInfo* getGetterId() const { return GetterId; }
bool hasSetter() const { return SetterId != nullptr; }
IdentifierInfo* getSetterId() const { return SetterId; }
};
/// Insertion operator for diagnostics. This allows sending an AccessSpecifier
/// into a diagnostic with <<.
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS);
const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
AccessSpecifier AS);
} // namespace clang
#endif // LLVM_CLANG_AST_DECLCXX_H