blob: d30ac14e02fee7d01a607637c5f9c3524c5c5492 [file] [log] [blame]
//===- Diagnostic.h - C Language Family Diagnostic Handling -----*- C++ -*-===//
// The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
/// \file
/// Defines the Diagnostic-related interfaces.
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstdint>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
namespace clang {
class DeclContext;
class DiagnosticBuilder;
class DiagnosticConsumer;
class IdentifierInfo;
class LangOptions;
class Preprocessor;
class SourceManager;
class StoredDiagnostic;
namespace tok {
enum TokenKind : unsigned short;
} // namespace tok
/// Annotates a diagnostic with some code that should be
/// inserted, removed, or replaced to fix the problem.
/// This kind of hint should be used when we are certain that the
/// introduction, removal, or modification of a particular (small!)
/// amount of code will correct a compilation error. The compiler
/// should also provide full recovery from such errors, such that
/// suppressing the diagnostic output can still result in successful
/// compilation.
class FixItHint {
/// Code that should be replaced to correct the error. Empty for an
/// insertion hint.
CharSourceRange RemoveRange;
/// Code in the specific range that should be inserted in the insertion
/// location.
CharSourceRange InsertFromRange;
/// The actual code to insert at the insertion location, as a
/// string.
std::string CodeToInsert;
bool BeforePreviousInsertions = false;
/// Empty code modification hint, indicating that no code
/// modification is known.
FixItHint() = default;
bool isNull() const {
return !RemoveRange.isValid();
/// Create a code modification hint that inserts the given
/// code string at a specific location.
static FixItHint CreateInsertion(SourceLocation InsertionLoc,
StringRef Code,
bool BeforePreviousInsertions = false) {
FixItHint Hint;
Hint.RemoveRange =
CharSourceRange::getCharRange(InsertionLoc, InsertionLoc);
Hint.CodeToInsert = Code;
Hint.BeforePreviousInsertions = BeforePreviousInsertions;
return Hint;
/// Create a code modification hint that inserts the given
/// code from \p FromRange at a specific location.
static FixItHint CreateInsertionFromRange(SourceLocation InsertionLoc,
CharSourceRange FromRange,
bool BeforePreviousInsertions = false) {
FixItHint Hint;
Hint.RemoveRange =
CharSourceRange::getCharRange(InsertionLoc, InsertionLoc);
Hint.InsertFromRange = FromRange;
Hint.BeforePreviousInsertions = BeforePreviousInsertions;
return Hint;
/// Create a code modification hint that removes the given
/// source range.
static FixItHint CreateRemoval(CharSourceRange RemoveRange) {
FixItHint Hint;
Hint.RemoveRange = RemoveRange;
return Hint;
static FixItHint CreateRemoval(SourceRange RemoveRange) {
return CreateRemoval(CharSourceRange::getTokenRange(RemoveRange));
/// Create a code modification hint that replaces the given
/// source range with the given code string.
static FixItHint CreateReplacement(CharSourceRange RemoveRange,
StringRef Code) {
FixItHint Hint;
Hint.RemoveRange = RemoveRange;
Hint.CodeToInsert = Code;
return Hint;
static FixItHint CreateReplacement(SourceRange RemoveRange,
StringRef Code) {
return CreateReplacement(CharSourceRange::getTokenRange(RemoveRange), Code);
/// Concrete class used by the front-end to report problems and issues.
/// This massages the diagnostics (e.g. handling things like "report warnings
/// as errors" and passes them off to the DiagnosticConsumer for reporting to
/// the user. DiagnosticsEngine is tied to one translation unit and one
/// SourceManager.
class DiagnosticsEngine : public RefCountedBase<DiagnosticsEngine> {
/// The level of the diagnostic, after it has been through mapping.
enum Level {
Ignored = DiagnosticIDs::Ignored,
Note = DiagnosticIDs::Note,
Remark = DiagnosticIDs::Remark,
Warning = DiagnosticIDs::Warning,
Error = DiagnosticIDs::Error,
Fatal = DiagnosticIDs::Fatal
enum ArgumentKind {
/// std::string
/// const char *
/// int
/// unsigned
/// enum TokenKind : unsigned
/// IdentifierInfo
/// QualType
/// DeclarationName
/// NamedDecl *
/// NestedNameSpecifier *
/// DeclContext *
/// pair<QualType, QualType>
/// Attr *
/// Represents on argument value, which is a union discriminated
/// by ArgumentKind, with a value.
using ArgumentValue = std::pair<ArgumentKind, intptr_t>;
// Used by __extension__
unsigned char AllExtensionsSilenced = 0;
// Suppress diagnostics after a fatal error?
bool SuppressAfterFatalError = true;
// Suppress all diagnostics.
bool SuppressAllDiagnostics = false;
// Elide common types of templates.
bool ElideType = true;
// Print a tree when comparing templates.
bool PrintTemplateTree = false;
// Color printing is enabled.
bool ShowColors = false;
// Which overload candidates to show.
OverloadsShown ShowOverloads = Ovl_All;
// Cap of # errors emitted, 0 -> no limit.
unsigned ErrorLimit = 0;
// Cap on depth of template backtrace stack, 0 -> no limit.
unsigned TemplateBacktraceLimit = 0;
// Cap on depth of constexpr evaluation backtrace stack, 0 -> no limit.
unsigned ConstexprBacktraceLimit = 0;
IntrusiveRefCntPtr<DiagnosticIDs> Diags;
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts;
DiagnosticConsumer *Client = nullptr;
std::unique_ptr<DiagnosticConsumer> Owner;
SourceManager *SourceMgr = nullptr;
/// Mapping information for diagnostics.
/// Mapping info is packed into four bits per diagnostic. The low three
/// bits are the mapping (an instance of diag::Severity), or zero if unset.
/// The high bit is set when the mapping was established as a user mapping.
/// If the high bit is clear, then the low bits are set to the default
/// value, and should be mapped with -pedantic, -Werror, etc.
/// A new DiagState is created and kept around when diagnostic pragmas modify
/// the state so that we know what is the diagnostic state at any given
/// source location.
class DiagState {
llvm::DenseMap<unsigned, DiagnosticMapping> DiagMap;
// "Global" configuration state that can actually vary between modules.
// Ignore all warnings: -w
unsigned IgnoreAllWarnings : 1;
// Enable all warnings.
unsigned EnableAllWarnings : 1;
// Treat warnings like errors.
unsigned WarningsAsErrors : 1;
// Treat errors like fatal errors.
unsigned ErrorsAsFatal : 1;
// Suppress warnings in system headers.
unsigned SuppressSystemWarnings : 1;
// Map extensions to warnings or errors?
diag::Severity ExtBehavior = diag::Severity::Ignored;
: IgnoreAllWarnings(false), EnableAllWarnings(false),
WarningsAsErrors(false), ErrorsAsFatal(false),
SuppressSystemWarnings(false) {}
using iterator = llvm::DenseMap<unsigned, DiagnosticMapping>::iterator;
using const_iterator =
llvm::DenseMap<unsigned, DiagnosticMapping>::const_iterator;
void setMapping(diag::kind Diag, DiagnosticMapping Info) {
DiagMap[Diag] = Info;
DiagnosticMapping lookupMapping(diag::kind Diag) const {
return DiagMap.lookup(Diag);
DiagnosticMapping &getOrAddMapping(diag::kind Diag);
const_iterator begin() const { return DiagMap.begin(); }
const_iterator end() const { return DiagMap.end(); }
/// Keeps and automatically disposes all DiagStates that we create.
std::list<DiagState> DiagStates;
/// A mapping from files to the diagnostic states for those files. Lazily
/// built on demand for files in which the diagnostic state has not changed.
class DiagStateMap {
/// Add an initial diagnostic state.
void appendFirst(DiagState *State);
/// Add a new latest state point.
void append(SourceManager &SrcMgr, SourceLocation Loc, DiagState *State);
/// Look up the diagnostic state at a given source location.
DiagState *lookup(SourceManager &SrcMgr, SourceLocation Loc) const;
/// Determine whether this map is empty.
bool empty() const { return Files.empty(); }
/// Clear out this map.
void clear() {
FirstDiagState = CurDiagState = nullptr;
CurDiagStateLoc = SourceLocation();
/// Produce a debugging dump of the diagnostic state.
LLVM_DUMP_METHOD void dump(SourceManager &SrcMgr,
StringRef DiagName = StringRef()) const;
/// Grab the most-recently-added state point.
DiagState *getCurDiagState() const { return CurDiagState; }
/// Get the location at which a diagnostic state was last added.
SourceLocation getCurDiagStateLoc() const { return CurDiagStateLoc; }
friend class ASTReader;
friend class ASTWriter;
/// Represents a point in source where the diagnostic state was
/// modified because of a pragma.
/// 'Loc' can be null if the point represents the diagnostic state
/// modifications done through the command-line.
struct DiagStatePoint {
DiagState *State;
unsigned Offset;
DiagStatePoint(DiagState *State, unsigned Offset)
: State(State), Offset(Offset) {}
/// Description of the diagnostic states and state transitions for a
/// particular FileID.
struct File {
/// The diagnostic state for the parent file. This is strictly redundant,
/// as looking up the DecomposedIncludedLoc for the FileID in the Files
/// map would give us this, but we cache it here for performance.
File *Parent = nullptr;
/// The offset of this file within its parent.
unsigned ParentOffset = 0;
/// Whether this file has any local (not imported from an AST file)
/// diagnostic state transitions.
bool HasLocalTransitions = false;
/// The points within the file where the state changes. There will always
/// be at least one of these (the state on entry to the file).
llvm::SmallVector<DiagStatePoint, 4> StateTransitions;
DiagState *lookup(unsigned Offset) const;
/// The diagnostic states for each file.
mutable std::map<FileID, File> Files;
/// The initial diagnostic state.
DiagState *FirstDiagState;
/// The current diagnostic state.
DiagState *CurDiagState;
/// The location at which the current diagnostic state was established.
SourceLocation CurDiagStateLoc;
/// Get the diagnostic state information for a file.
File *getFile(SourceManager &SrcMgr, FileID ID) const;
DiagStateMap DiagStatesByLoc;
/// Keeps the DiagState that was active during each diagnostic 'push'
/// so we can get back at it when we 'pop'.
std::vector<DiagState *> DiagStateOnPushStack;
DiagState *GetCurDiagState() const {
return DiagStatesByLoc.getCurDiagState();
void PushDiagStatePoint(DiagState *State, SourceLocation L);
/// Finds the DiagStatePoint that contains the diagnostic state of
/// the given source location.
DiagState *GetDiagStateForLoc(SourceLocation Loc) const {
return SourceMgr ? DiagStatesByLoc.lookup(*SourceMgr, Loc)
: DiagStatesByLoc.getCurDiagState();
/// Sticky flag set to \c true when an error is emitted.
bool ErrorOccurred;
/// Sticky flag set to \c true when an "uncompilable error" occurs.
/// I.e. an error that was not upgraded from a warning by -Werror.
bool UncompilableErrorOccurred;
/// Sticky flag set to \c true when a fatal error is emitted.
bool FatalErrorOccurred;
/// Indicates that an unrecoverable error has occurred.
bool UnrecoverableErrorOccurred;
/// Counts for DiagnosticErrorTrap to check whether an error occurred
/// during a parsing section, e.g. during parsing a function.
unsigned TrapNumErrorsOccurred;
unsigned TrapNumUnrecoverableErrorsOccurred;
/// The level of the last diagnostic emitted.
/// This is used to emit continuation diagnostics with the same level as the
/// diagnostic that they follow.
DiagnosticIDs::Level LastDiagLevel;
/// Number of warnings reported
unsigned NumWarnings;
/// Number of errors reported
unsigned NumErrors;
/// A function pointer that converts an opaque diagnostic
/// argument to a strings.
/// This takes the modifiers and argument that was present in the diagnostic.
/// The PrevArgs array indicates the previous arguments formatted for this
/// diagnostic. Implementations of this function can use this information to
/// avoid redundancy across arguments.
/// This is a hack to avoid a layering violation between libbasic and libsema.
using ArgToStringFnTy = void (*)(
ArgumentKind Kind, intptr_t Val,
StringRef Modifier, StringRef Argument,
ArrayRef<ArgumentValue> PrevArgs,
SmallVectorImpl<char> &Output,
void *Cookie,
ArrayRef<intptr_t> QualTypeVals);
void *ArgToStringCookie = nullptr;
ArgToStringFnTy ArgToStringFn;
/// ID of the "delayed" diagnostic, which is a (typically
/// fatal) diagnostic that had to be delayed because it was found
/// while emitting another diagnostic.
unsigned DelayedDiagID;
/// First string argument for the delayed diagnostic.
std::string DelayedDiagArg1;
/// Second string argument for the delayed diagnostic.
std::string DelayedDiagArg2;
/// Optional flag value.
/// Some flags accept values, for instance: -Wframe-larger-than=<value> and
/// -Rpass=<value>. The content of this string is emitted after the flag name
/// and '='.
std::string FlagValue;
explicit DiagnosticsEngine(IntrusiveRefCntPtr<DiagnosticIDs> Diags,
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts,
DiagnosticConsumer *client = nullptr,
bool ShouldOwnClient = true);
DiagnosticsEngine(const DiagnosticsEngine &) = delete;
DiagnosticsEngine &operator=(const DiagnosticsEngine &) = delete;
LLVM_DUMP_METHOD void dump() const { DiagStatesByLoc.dump(*SourceMgr); }
LLVM_DUMP_METHOD void dump(StringRef DiagName) const {
DiagStatesByLoc.dump(*SourceMgr, DiagName);
const IntrusiveRefCntPtr<DiagnosticIDs> &getDiagnosticIDs() const {
return Diags;
/// Retrieve the diagnostic options.
DiagnosticOptions &getDiagnosticOptions() const { return *DiagOpts; }
using diag_mapping_range = llvm::iterator_range<DiagState::const_iterator>;
/// Get the current set of diagnostic mappings.
diag_mapping_range getDiagnosticMappings() const {
const DiagState &DS = *GetCurDiagState();
return diag_mapping_range(DS.begin(), DS.end());
DiagnosticConsumer *getClient() { return Client; }
const DiagnosticConsumer *getClient() const { return Client; }
/// Determine whether this \c DiagnosticsEngine object own its client.
bool ownsClient() const { return Owner != nullptr; }
/// Return the current diagnostic client along with ownership of that
/// client.
std::unique_ptr<DiagnosticConsumer> takeClient() { return std::move(Owner); }
bool hasSourceManager() const { return SourceMgr != nullptr; }
SourceManager &getSourceManager() const {
assert(SourceMgr && "SourceManager not set!");
return *SourceMgr;
void setSourceManager(SourceManager *SrcMgr) {
assert(DiagStatesByLoc.empty() &&
"Leftover diag state from a different SourceManager.");
SourceMgr = SrcMgr;
// DiagnosticsEngine characterization methods, used by a client to customize
// how diagnostics are emitted.
/// Copies the current DiagMappings and pushes the new copy
/// onto the top of the stack.
void pushMappings(SourceLocation Loc);
/// Pops the current DiagMappings off the top of the stack,
/// causing the new top of the stack to be the active mappings.
/// \returns \c true if the pop happens, \c false if there is only one
/// DiagMapping on the stack.
bool popMappings(SourceLocation Loc);
/// Set the diagnostic client associated with this diagnostic object.
/// \param ShouldOwnClient true if the diagnostic object should take
/// ownership of \c client.
void setClient(DiagnosticConsumer *client, bool ShouldOwnClient = true);
/// Specify a limit for the number of errors we should
/// emit before giving up.
/// Zero disables the limit.
void setErrorLimit(unsigned Limit) { ErrorLimit = Limit; }
/// Specify the maximum number of template instantiation
/// notes to emit along with a given diagnostic.
void setTemplateBacktraceLimit(unsigned Limit) {
TemplateBacktraceLimit = Limit;
/// Retrieve the maximum number of template instantiation
/// notes to emit along with a given diagnostic.
unsigned getTemplateBacktraceLimit() const {
return TemplateBacktraceLimit;
/// Specify the maximum number of constexpr evaluation
/// notes to emit along with a given diagnostic.
void setConstexprBacktraceLimit(unsigned Limit) {
ConstexprBacktraceLimit = Limit;
/// Retrieve the maximum number of constexpr evaluation
/// notes to emit along with a given diagnostic.
unsigned getConstexprBacktraceLimit() const {
return ConstexprBacktraceLimit;
/// When set to true, any unmapped warnings are ignored.
/// If this and WarningsAsErrors are both set, then this one wins.
void setIgnoreAllWarnings(bool Val) {
GetCurDiagState()->IgnoreAllWarnings = Val;
bool getIgnoreAllWarnings() const {
return GetCurDiagState()->IgnoreAllWarnings;
/// When set to true, any unmapped ignored warnings are no longer
/// ignored.
/// If this and IgnoreAllWarnings are both set, then that one wins.
void setEnableAllWarnings(bool Val) {
GetCurDiagState()->EnableAllWarnings = Val;
bool getEnableAllWarnings() const {
return GetCurDiagState()->EnableAllWarnings;
/// When set to true, any warnings reported are issued as errors.
void setWarningsAsErrors(bool Val) {
GetCurDiagState()->WarningsAsErrors = Val;
bool getWarningsAsErrors() const {
return GetCurDiagState()->WarningsAsErrors;
/// When set to true, any error reported is made a fatal error.
void setErrorsAsFatal(bool Val) { GetCurDiagState()->ErrorsAsFatal = Val; }
bool getErrorsAsFatal() const { return GetCurDiagState()->ErrorsAsFatal; }
/// When set to true (the default), suppress further diagnostics after
/// a fatal error.
void setSuppressAfterFatalError(bool Val) { SuppressAfterFatalError = Val; }
/// When set to true mask warnings that come from system headers.
void setSuppressSystemWarnings(bool Val) {
GetCurDiagState()->SuppressSystemWarnings = Val;
bool getSuppressSystemWarnings() const {
return GetCurDiagState()->SuppressSystemWarnings;
/// Suppress all diagnostics, to silence the front end when we
/// know that we don't want any more diagnostics to be passed along to the
/// client
void setSuppressAllDiagnostics(bool Val = true) {
SuppressAllDiagnostics = Val;
bool getSuppressAllDiagnostics() const { return SuppressAllDiagnostics; }
/// Set type eliding, to skip outputting same types occurring in
/// template types.
void setElideType(bool Val = true) { ElideType = Val; }
bool getElideType() { return ElideType; }
/// Set tree printing, to outputting the template difference in a
/// tree format.
void setPrintTemplateTree(bool Val = false) { PrintTemplateTree = Val; }
bool getPrintTemplateTree() { return PrintTemplateTree; }
/// Set color printing, so the type diffing will inject color markers
/// into the output.
void setShowColors(bool Val = false) { ShowColors = Val; }
bool getShowColors() { return ShowColors; }
/// Specify which overload candidates to show when overload resolution
/// fails.
/// By default, we show all candidates.
void setShowOverloads(OverloadsShown Val) {
ShowOverloads = Val;
OverloadsShown getShowOverloads() const { return ShowOverloads; }
/// Pretend that the last diagnostic issued was ignored, so any
/// subsequent notes will be suppressed, or restore a prior ignoring
/// state after ignoring some diagnostics and their notes, possibly in
/// the middle of another diagnostic.
/// This can be used by clients who suppress diagnostics themselves.
void setLastDiagnosticIgnored(bool Ignored = true) {
if (LastDiagLevel == DiagnosticIDs::Fatal)
FatalErrorOccurred = true;
LastDiagLevel = Ignored ? DiagnosticIDs::Ignored : DiagnosticIDs::Warning;
/// Determine whether the previous diagnostic was ignored. This can
/// be used by clients that want to determine whether notes attached to a
/// diagnostic will be suppressed.
bool isLastDiagnosticIgnored() const {
return LastDiagLevel == DiagnosticIDs::Ignored;
/// Controls whether otherwise-unmapped extension diagnostics are
/// mapped onto ignore/warning/error.
/// This corresponds to the GCC -pedantic and -pedantic-errors option.
void setExtensionHandlingBehavior(diag::Severity H) {
GetCurDiagState()->ExtBehavior = H;
diag::Severity getExtensionHandlingBehavior() const {
return GetCurDiagState()->ExtBehavior;
/// Counter bumped when an __extension__ block is/ encountered.
/// When non-zero, all extension diagnostics are entirely silenced, no
/// matter how they are mapped.
void IncrementAllExtensionsSilenced() { ++AllExtensionsSilenced; }
void DecrementAllExtensionsSilenced() { --AllExtensionsSilenced; }
bool hasAllExtensionsSilenced() { return AllExtensionsSilenced != 0; }
/// This allows the client to specify that certain warnings are
/// ignored.
/// Notes can never be mapped, errors can only be mapped to fatal, and
/// WARNINGs and EXTENSIONs can be mapped arbitrarily.
/// \param Loc The source location that this change of diagnostic state should
/// take affect. It can be null if we are setting the latest state.
void setSeverity(diag::kind Diag, diag::Severity Map, SourceLocation Loc);
/// Change an entire diagnostic group (e.g. "unknown-pragmas") to
/// have the specified mapping.
/// \returns true (and ignores the request) if "Group" was unknown, false
/// otherwise.
/// \param Flavor The flavor of group to affect. -Rfoo does not affect the
/// state of the -Wfoo group and vice versa.
/// \param Loc The source location that this change of diagnostic state should
/// take affect. It can be null if we are setting the state from command-line.
bool setSeverityForGroup(diag::Flavor Flavor, StringRef Group,
diag::Severity Map,
SourceLocation Loc = SourceLocation());
/// Set the warning-as-error flag for the given diagnostic group.
/// This function always only operates on the current diagnostic state.
/// \returns True if the given group is unknown, false otherwise.
bool setDiagnosticGroupWarningAsError(StringRef Group, bool Enabled);
/// Set the error-as-fatal flag for the given diagnostic group.
/// This function always only operates on the current diagnostic state.
/// \returns True if the given group is unknown, false otherwise.
bool setDiagnosticGroupErrorAsFatal(StringRef Group, bool Enabled);
/// Add the specified mapping to all diagnostics of the specified
/// flavor.
/// Mainly to be used by -Wno-everything to disable all warnings but allow
/// subsequent -W options to enable specific warnings.
void setSeverityForAll(diag::Flavor Flavor, diag::Severity Map,
SourceLocation Loc = SourceLocation());
bool hasErrorOccurred() const { return ErrorOccurred; }
/// Errors that actually prevent compilation, not those that are
/// upgraded from a warning by -Werror.
bool hasUncompilableErrorOccurred() const {
return UncompilableErrorOccurred;
bool hasFatalErrorOccurred() const { return FatalErrorOccurred; }
/// Determine whether any kind of unrecoverable error has occurred.
bool hasUnrecoverableErrorOccurred() const {
return FatalErrorOccurred || UnrecoverableErrorOccurred;
unsigned getNumWarnings() const { return NumWarnings; }
void setNumWarnings(unsigned NumWarnings) {
this->NumWarnings = NumWarnings;
/// Return an ID for a diagnostic with the specified format string and
/// level.
/// If this is the first request for this diagnostic, it is registered and
/// created, otherwise the existing ID is returned.
/// \param FormatString A fixed diagnostic format string that will be hashed
/// and mapped to a unique DiagID.
template <unsigned N>
unsigned getCustomDiagID(Level L, const char (&FormatString)[N]) {
return Diags->getCustomDiagID((DiagnosticIDs::Level)L,
StringRef(FormatString, N - 1));
/// Converts a diagnostic argument (as an intptr_t) into the string
/// that represents it.
void ConvertArgToString(ArgumentKind Kind, intptr_t Val,
StringRef Modifier, StringRef Argument,
ArrayRef<ArgumentValue> PrevArgs,
SmallVectorImpl<char> &Output,
ArrayRef<intptr_t> QualTypeVals) const {
ArgToStringFn(Kind, Val, Modifier, Argument, PrevArgs, Output,
ArgToStringCookie, QualTypeVals);
void SetArgToStringFn(ArgToStringFnTy Fn, void *Cookie) {
ArgToStringFn = Fn;
ArgToStringCookie = Cookie;
/// Note that the prior diagnostic was emitted by some other
/// \c DiagnosticsEngine, and we may be attaching a note to that diagnostic.
void notePriorDiagnosticFrom(const DiagnosticsEngine &Other) {
LastDiagLevel = Other.LastDiagLevel;
/// Reset the state of the diagnostic object to its initial
/// configuration.
void Reset();
// DiagnosticsEngine classification and reporting interfaces.
/// Determine whether the diagnostic is known to be ignored.
/// This can be used to opportunistically avoid expensive checks when it's
/// known for certain that the diagnostic has been suppressed at the
/// specified location \p Loc.
/// \param Loc The source location we are interested in finding out the
/// diagnostic state. Can be null in order to query the latest state.
bool isIgnored(unsigned DiagID, SourceLocation Loc) const {
return Diags->getDiagnosticSeverity(DiagID, Loc, *this) ==
/// Based on the way the client configured the DiagnosticsEngine
/// object, classify the specified diagnostic ID into a Level, consumable by
/// the DiagnosticConsumer.
/// To preserve invariant assumptions, this function should not be used to
/// influence parse or semantic analysis actions. Instead consider using
/// \c isIgnored().
/// \param Loc The source location we are interested in finding out the
/// diagnostic state. Can be null in order to query the latest state.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const {
return (Level)Diags->getDiagnosticLevel(DiagID, Loc, *this);
/// Issue the message to the client.
/// This actually returns an instance of DiagnosticBuilder which emits the
/// diagnostics (through @c ProcessDiag) when it is destroyed.
/// \param DiagID A member of the @c diag::kind enum.
/// \param Loc Represents the source location associated with the diagnostic,
/// which can be an invalid location if no position information is available.
inline DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID);
inline DiagnosticBuilder Report(unsigned DiagID);
void Report(const StoredDiagnostic &storedDiag);
/// Determine whethere there is already a diagnostic in flight.
bool isDiagnosticInFlight() const {
return CurDiagID != std::numeric_limits<unsigned>::max();
/// Set the "delayed" diagnostic that will be emitted once
/// the current diagnostic completes.
/// If a diagnostic is already in-flight but the front end must
/// report a problem (e.g., with an inconsistent file system
/// state), this routine sets a "delayed" diagnostic that will be
/// emitted after the current diagnostic completes. This should
/// only be used for fatal errors detected at inconvenient
/// times. If emitting a delayed diagnostic causes a second delayed
/// diagnostic to be introduced, that second delayed diagnostic
/// will be ignored.
/// \param DiagID The ID of the diagnostic being delayed.
/// \param Arg1 A string argument that will be provided to the
/// diagnostic. A copy of this string will be stored in the
/// DiagnosticsEngine object itself.
/// \param Arg2 A string argument that will be provided to the
/// diagnostic. A copy of this string will be stored in the
/// DiagnosticsEngine object itself.
void SetDelayedDiagnostic(unsigned DiagID, StringRef Arg1 = "",
StringRef Arg2 = "");
/// Clear out the current diagnostic.
void Clear() { CurDiagID = std::numeric_limits<unsigned>::max(); }
/// Return the value associated with this diagnostic flag.
StringRef getFlagValue() const { return FlagValue; }
// This is private state used by DiagnosticBuilder. We put it here instead of
// in DiagnosticBuilder in order to keep DiagnosticBuilder a small lightweight
// object. This implementation choice means that we can only have one
// diagnostic "in flight" at a time, but this seems to be a reasonable
// tradeoff to keep these objects small. Assertions verify that only one
// diagnostic is in flight at a time.
friend class Diagnostic;
friend class DiagnosticBuilder;
friend class DiagnosticErrorTrap;
friend class DiagnosticIDs;
friend class PartialDiagnostic;
/// Report the delayed diagnostic.
void ReportDelayed();
/// The location of the current diagnostic that is in flight.
SourceLocation CurDiagLoc;
/// The ID of the current diagnostic that is in flight.
/// This is set to std::numeric_limits<unsigned>::max() when there is no
/// diagnostic in flight.
unsigned CurDiagID;
enum {
/// The maximum number of arguments we can hold.
/// We currently only support up to 10 arguments (%0-%9). A single
/// diagnostic with more than that almost certainly has to be simplified
/// anyway.
MaxArguments = 10,
/// The number of entries in Arguments.
signed char NumDiagArgs;
/// Specifies whether an argument is in DiagArgumentsStr or
/// in DiagArguments.
/// This is an array of ArgumentKind::ArgumentKind enum values, one for each
/// argument.
unsigned char DiagArgumentsKind[MaxArguments];
/// Holds the values of each string argument for the current
/// diagnostic.
/// This is only used when the corresponding ArgumentKind is ak_std_string.
std::string DiagArgumentsStr[MaxArguments];
/// The values for the various substitution positions.
/// This is used when the argument is not an std::string. The specific
/// value is mangled into an intptr_t and the interpretation depends on
/// exactly what sort of argument kind it is.
intptr_t DiagArgumentsVal[MaxArguments];
/// The list of ranges added to this diagnostic.
SmallVector<CharSourceRange, 8> DiagRanges;
/// If valid, provides a hint with some code to insert, remove,
/// or modify at a particular position.
SmallVector<FixItHint, 8> DiagFixItHints;
DiagnosticMapping makeUserMapping(diag::Severity Map, SourceLocation L) {
bool isPragma = L.isValid();
DiagnosticMapping Mapping =
DiagnosticMapping::Make(Map, /*IsUser=*/true, isPragma);
// If this is a pragma mapping, then set the diagnostic mapping flags so
// that we override command line options.
if (isPragma) {
return Mapping;
/// Used to report a diagnostic that is finally fully formed.
/// \returns true if the diagnostic was emitted, false if it was suppressed.
bool ProcessDiag() {
return Diags->ProcessDiag(*this);
/// @name Diagnostic Emission
/// @{
friend class ASTReader;
friend class ASTWriter;
// Sema requires access to the following functions because the current design
// of SFINAE requires it to use its own SemaDiagnosticBuilder, which needs to
// access us directly to ensure we minimize the emitted code for the common
// Sema::Diag() patterns.
friend class Sema;
/// Emit the current diagnostic and clear the diagnostic state.
/// \param Force Emit the diagnostic regardless of suppression settings.
bool EmitCurrentDiagnostic(bool Force = false);
unsigned getCurrentDiagID() const { return CurDiagID; }
SourceLocation getCurrentDiagLoc() const { return CurDiagLoc; }
/// @}
/// RAII class that determines when any errors have occurred
/// between the time the instance was created and the time it was
/// queried.
class DiagnosticErrorTrap {
DiagnosticsEngine &Diag;
unsigned NumErrors;
unsigned NumUnrecoverableErrors;
explicit DiagnosticErrorTrap(DiagnosticsEngine &Diag)
: Diag(Diag) { reset(); }
/// Determine whether any errors have occurred since this
/// object instance was created.
bool hasErrorOccurred() const {
return Diag.TrapNumErrorsOccurred > NumErrors;
/// Determine whether any unrecoverable errors have occurred since this
/// object instance was created.
bool hasUnrecoverableErrorOccurred() const {
return Diag.TrapNumUnrecoverableErrorsOccurred > NumUnrecoverableErrors;
/// Set to initial state of "no errors occurred".
void reset() {
NumErrors = Diag.TrapNumErrorsOccurred;
NumUnrecoverableErrors = Diag.TrapNumUnrecoverableErrorsOccurred;
// DiagnosticBuilder
/// A little helper class used to produce diagnostics.
/// This is constructed by the DiagnosticsEngine::Report method, and
/// allows insertion of extra information (arguments and source ranges) into
/// the currently "in flight" diagnostic. When the temporary for the builder
/// is destroyed, the diagnostic is issued.
/// Note that many of these will be created as temporary objects (many call
/// sites), so we want them to be small and we never want their address taken.
/// This ensures that compilers with somewhat reasonable optimizers will promote
/// the common fields to registers, eliminating increments of the NumArgs field,
/// for example.
class DiagnosticBuilder {
friend class DiagnosticsEngine;
friend class PartialDiagnostic;
mutable DiagnosticsEngine *DiagObj = nullptr;
mutable unsigned NumArgs = 0;
/// Status variable indicating if this diagnostic is still active.
// NOTE: This field is redundant with DiagObj (IsActive iff (DiagObj == 0)),
// but LLVM is not currently smart enough to eliminate the null check that
// Emit() would end up with if we used that as our status variable.
mutable bool IsActive = false;
/// Flag indicating that this diagnostic is being emitted via a
/// call to ForceEmit.
mutable bool IsForceEmit = false;
DiagnosticBuilder() = default;
explicit DiagnosticBuilder(DiagnosticsEngine *diagObj)
: DiagObj(diagObj), IsActive(true) {
assert(diagObj && "DiagnosticBuilder requires a valid DiagnosticsEngine!");
void FlushCounts() {
DiagObj->NumDiagArgs = NumArgs;
/// Clear out the current diagnostic.
void Clear() const {
DiagObj = nullptr;
IsActive = false;
IsForceEmit = false;
/// Determine whether this diagnostic is still active.
bool isActive() const { return IsActive; }
/// Force the diagnostic builder to emit the diagnostic now.
/// Once this function has been called, the DiagnosticBuilder object
/// should not be used again before it is destroyed.
/// \returns true if a diagnostic was emitted, false if the
/// diagnostic was suppressed.
bool Emit() {
// If this diagnostic is inactive, then its soul was stolen by the copy ctor
// (or by a subclass, as in SemaDiagnosticBuilder).
if (!isActive()) return false;
// When emitting diagnostics, we set the final argument count into
// the DiagnosticsEngine object.
// Process the diagnostic.
bool Result = DiagObj->EmitCurrentDiagnostic(IsForceEmit);
// This diagnostic is dead.
return Result;
/// Copy constructor. When copied, this "takes" the diagnostic info from the
/// input and neuters it.
DiagnosticBuilder(const DiagnosticBuilder &D) {
DiagObj = D.DiagObj;
IsActive = D.IsActive;
IsForceEmit = D.IsForceEmit;
NumArgs = D.NumArgs;
DiagnosticBuilder &operator=(const DiagnosticBuilder &) = delete;
/// Emits the diagnostic.
~DiagnosticBuilder() {
/// Retrieve an empty diagnostic builder.
static DiagnosticBuilder getEmpty() {
return {};
/// Forces the diagnostic to be emitted.
const DiagnosticBuilder &setForceEmit() const {
IsForceEmit = true;
return *this;
/// Conversion of DiagnosticBuilder to bool always returns \c true.
/// This allows is to be used in boolean error contexts (where \c true is
/// used to indicate that an error has occurred), like:
/// \code
/// return Diag(...);
/// \endcode
operator bool() const { return true; }
void AddString(StringRef S) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
assert(NumArgs < DiagnosticsEngine::MaxArguments &&
"Too many arguments to diagnostic!");
DiagObj->DiagArgumentsKind[NumArgs] = DiagnosticsEngine::ak_std_string;
DiagObj->DiagArgumentsStr[NumArgs++] = S;
void AddTaggedVal(intptr_t V, DiagnosticsEngine::ArgumentKind Kind) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
assert(NumArgs < DiagnosticsEngine::MaxArguments &&
"Too many arguments to diagnostic!");
DiagObj->DiagArgumentsKind[NumArgs] = Kind;
DiagObj->DiagArgumentsVal[NumArgs++] = V;
void AddSourceRange(const CharSourceRange &R) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
void AddFixItHint(const FixItHint &Hint) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
if (!Hint.isNull())
void addFlagValue(StringRef V) const { DiagObj->FlagValue = V; }
struct AddFlagValue {
StringRef Val;
explicit AddFlagValue(StringRef V) : Val(V) {}
/// Register a value for the flag in the current diagnostic. This
/// value will be shown as the suffix "=value" after the flag name. It is
/// useful in cases where the diagnostic flag accepts values (e.g.,
/// -Rpass or -Wframe-larger-than).
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const AddFlagValue V) {
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
StringRef S) {
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const char *Str) {
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, int I) {
DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint);
return DB;
// We use enable_if here to prevent that this overload is selected for
// pointers or other arguments that are implicitly convertible to bool.
template <typename T>
typename std::enable_if<std::is_same<T, bool>::value,
const DiagnosticBuilder &>::type
operator<<(const DiagnosticBuilder &DB, T I) {
DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint);
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
unsigned I) {
DB.AddTaggedVal(I, DiagnosticsEngine::ak_uint);
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
tok::TokenKind I) {
DB.AddTaggedVal(static_cast<unsigned>(I), DiagnosticsEngine::ak_tokenkind);
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const IdentifierInfo *II) {
return DB;
// Adds a DeclContext to the diagnostic. The enable_if template magic is here
// so that we only match those arguments that are (statically) DeclContexts;
// other arguments that derive from DeclContext (e.g., RecordDecls) will not
// match.
template <typename T>
inline typename std::enable_if<
std::is_same<typename std::remove_const<T>::type, DeclContext>::value,
const DiagnosticBuilder &>::type
operator<<(const DiagnosticBuilder &DB, T *DC) {
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
SourceRange R) {
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
ArrayRef<SourceRange> Ranges) {
for (SourceRange R : Ranges)
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const CharSourceRange &R) {
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const FixItHint &Hint) {
return DB;
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
ArrayRef<FixItHint> Hints) {
for (const FixItHint &Hint : Hints)
return DB;
/// A nullability kind paired with a bit indicating whether it used a
/// context-sensitive keyword.
using DiagNullabilityKind = std::pair<NullabilityKind, bool>;
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
DiagNullabilityKind nullability);
inline DiagnosticBuilder DiagnosticsEngine::Report(SourceLocation Loc,
unsigned DiagID) {
assert(CurDiagID == std::numeric_limits<unsigned>::max() &&
"Multiple diagnostics in flight at once!");
CurDiagLoc = Loc;
CurDiagID = DiagID;
return DiagnosticBuilder(this);
inline DiagnosticBuilder DiagnosticsEngine::Report(unsigned DiagID) {
return Report(SourceLocation(), DiagID);
// Diagnostic
/// A little helper class (which is basically a smart pointer that forwards
/// info from DiagnosticsEngine) that allows clients to enquire about the
/// currently in-flight diagnostic.
class Diagnostic {
const DiagnosticsEngine *DiagObj;
StringRef StoredDiagMessage;
explicit Diagnostic(const DiagnosticsEngine *DO) : DiagObj(DO) {}
Diagnostic(const DiagnosticsEngine *DO, StringRef storedDiagMessage)
: DiagObj(DO), StoredDiagMessage(storedDiagMessage) {}
const DiagnosticsEngine *getDiags() const { return DiagObj; }
unsigned getID() const { return DiagObj->CurDiagID; }
const SourceLocation &getLocation() const { return DiagObj->CurDiagLoc; }
bool hasSourceManager() const { return DiagObj->hasSourceManager(); }
SourceManager &getSourceManager() const { return DiagObj->getSourceManager();}
unsigned getNumArgs() const { return DiagObj->NumDiagArgs; }
/// Return the kind of the specified index.
/// Based on the kind of argument, the accessors below can be used to get
/// the value.
/// \pre Idx < getNumArgs()
DiagnosticsEngine::ArgumentKind getArgKind(unsigned Idx) const {
assert(Idx < getNumArgs() && "Argument index out of range!");
return (DiagnosticsEngine::ArgumentKind)DiagObj->DiagArgumentsKind[Idx];
/// Return the provided argument string specified by \p Idx.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_std_string
const std::string &getArgStdStr(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_std_string &&
"invalid argument accessor!");
return DiagObj->DiagArgumentsStr[Idx];
/// Return the specified C string argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_c_string
const char *getArgCStr(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_c_string &&
"invalid argument accessor!");
return reinterpret_cast<const char*>(DiagObj->DiagArgumentsVal[Idx]);
/// Return the specified signed integer argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_sint
int getArgSInt(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_sint &&
"invalid argument accessor!");
return (int)DiagObj->DiagArgumentsVal[Idx];
/// Return the specified unsigned integer argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_uint
unsigned getArgUInt(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_uint &&
"invalid argument accessor!");
return (unsigned)DiagObj->DiagArgumentsVal[Idx];
/// Return the specified IdentifierInfo argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo
const IdentifierInfo *getArgIdentifier(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo &&
"invalid argument accessor!");
return reinterpret_cast<IdentifierInfo*>(DiagObj->DiagArgumentsVal[Idx]);
/// Return the specified non-string argument in an opaque form.
/// \pre getArgKind(Idx) != DiagnosticsEngine::ak_std_string
intptr_t getRawArg(unsigned Idx) const {
assert(getArgKind(Idx) != DiagnosticsEngine::ak_std_string &&
"invalid argument accessor!");
return DiagObj->DiagArgumentsVal[Idx];
/// Return the number of source ranges associated with this diagnostic.
unsigned getNumRanges() const {
return DiagObj->DiagRanges.size();
/// \pre Idx < getNumRanges()
const CharSourceRange &getRange(unsigned Idx) const {
assert(Idx < getNumRanges() && "Invalid diagnostic range index!");
return DiagObj->DiagRanges[Idx];
/// Return an array reference for this diagnostic's ranges.
ArrayRef<CharSourceRange> getRanges() const {
return DiagObj->DiagRanges;
unsigned getNumFixItHints() const {
return DiagObj->DiagFixItHints.size();
const FixItHint &getFixItHint(unsigned Idx) const {
assert(Idx < getNumFixItHints() && "Invalid index!");
return DiagObj->DiagFixItHints[Idx];
ArrayRef<FixItHint> getFixItHints() const {
return DiagObj->DiagFixItHints;
/// Format this diagnostic into a string, substituting the
/// formal arguments into the %0 slots.
/// The result is appended onto the \p OutStr array.
void FormatDiagnostic(SmallVectorImpl<char> &OutStr) const;
/// Format the given format-string into the output buffer using the
/// arguments stored in this diagnostic.
void FormatDiagnostic(const char *DiagStr, const char *DiagEnd,
SmallVectorImpl<char> &OutStr) const;
* Represents a diagnostic in a form that can be retained until its
* corresponding source manager is destroyed.
class StoredDiagnostic {
unsigned ID;
DiagnosticsEngine::Level Level;
FullSourceLoc Loc;
std::string Message;
std::vector<CharSourceRange> Ranges;
std::vector<FixItHint> FixIts;
StoredDiagnostic() = default;
StoredDiagnostic(DiagnosticsEngine::Level Level, const Diagnostic &Info);
StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID,
StringRef Message);
StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID,
StringRef Message, FullSourceLoc Loc,
ArrayRef<CharSourceRange> Ranges,
ArrayRef<FixItHint> Fixits);
/// Evaluates true when this object stores a diagnostic.
explicit operator bool() const { return !Message.empty(); }
unsigned getID() const { return ID; }
DiagnosticsEngine::Level getLevel() const { return Level; }
const FullSourceLoc &getLocation() const { return Loc; }
StringRef getMessage() const { return Message; }
void setLocation(FullSourceLoc Loc) { this->Loc = Loc; }
using range_iterator = std::vector<CharSourceRange>::const_iterator;
range_iterator range_begin() const { return Ranges.begin(); }
range_iterator range_end() const { return Ranges.end(); }
unsigned range_size() const { return Ranges.size(); }
ArrayRef<CharSourceRange> getRanges() const {
return llvm::makeArrayRef(Ranges);
using fixit_iterator = std::vector<FixItHint>::const_iterator;
fixit_iterator fixit_begin() const { return FixIts.begin(); }
fixit_iterator fixit_end() const { return FixIts.end(); }
unsigned fixit_size() const { return FixIts.size(); }
ArrayRef<FixItHint> getFixIts() const {
return llvm::makeArrayRef(FixIts);
/// Abstract interface, implemented by clients of the front-end, which
/// formats and prints fully processed diagnostics.
class DiagnosticConsumer {
unsigned NumWarnings = 0; ///< Number of warnings reported
unsigned NumErrors = 0; ///< Number of errors reported
DiagnosticConsumer() = default;
virtual ~DiagnosticConsumer();
unsigned getNumErrors() const { return NumErrors; }
unsigned getNumWarnings() const { return NumWarnings; }
virtual void clear() { NumWarnings = NumErrors = 0; }
/// Callback to inform the diagnostic client that processing
/// of a source file is beginning.
/// Note that diagnostics may be emitted outside the processing of a source
/// file, for example during the parsing of command line options. However,
/// diagnostics with source range information are required to only be emitted
/// in between BeginSourceFile() and EndSourceFile().
/// \param LangOpts The language options for the source file being processed.
/// \param PP The preprocessor object being used for the source; this is
/// optional, e.g., it may not be present when processing AST source files.
virtual void BeginSourceFile(const LangOptions &LangOpts,
const Preprocessor *PP = nullptr) {}
/// Callback to inform the diagnostic client that processing
/// of a source file has ended.
/// The diagnostic client should assume that any objects made available via
/// BeginSourceFile() are inaccessible.
virtual void EndSourceFile() {}
/// Callback to inform the diagnostic client that processing of all
/// source files has ended.
virtual void finish() {}
/// Indicates whether the diagnostics handled by this
/// DiagnosticConsumer should be included in the number of diagnostics
/// reported by DiagnosticsEngine.
/// The default implementation returns true.
virtual bool IncludeInDiagnosticCounts() const;
/// Handle this diagnostic, reporting it to the user or
/// capturing it to a log as needed.
/// The default implementation just keeps track of the total number of
/// warnings and errors.
virtual void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info);
/// A diagnostic client that ignores all diagnostics.
class IgnoringDiagConsumer : public DiagnosticConsumer {
virtual void anchor();
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override {
// Just ignore it.
/// Diagnostic consumer that forwards diagnostics along to an
/// existing, already-initialized diagnostic consumer.
class ForwardingDiagnosticConsumer : public DiagnosticConsumer {
DiagnosticConsumer &Target;
ForwardingDiagnosticConsumer(DiagnosticConsumer &Target) : Target(Target) {}
~ForwardingDiagnosticConsumer() override;
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override;
void clear() override;
bool IncludeInDiagnosticCounts() const override;
// Struct used for sending info about how a type should be printed.
struct TemplateDiffTypes {
intptr_t FromType;
intptr_t ToType;
unsigned PrintTree : 1;
unsigned PrintFromType : 1;
unsigned ElideType : 1;
unsigned ShowColors : 1;
// The printer sets this variable to true if the template diff was used.
unsigned TemplateDiffUsed : 1;
/// Special character that the diagnostic printer will use to toggle the bold
/// attribute. The character itself will be not be printed.
const char ToggleHighlight = 127;
/// ProcessWarningOptions - Initialize the diagnostic client and process the
/// warning options specified on the command line.
void ProcessWarningOptions(DiagnosticsEngine &Diags,
const DiagnosticOptions &Opts,
bool ReportDiags = true);
} // namespace clang