blob: f69e1172ace19f835ae56ec187123a256ee5bf22 [file] [log] [blame]
//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// C Language Family Type Representation
///
/// This file defines the clang::Type interface and subclasses, used to
/// represent types for languages in the C family.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/AttrKinds.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/type_traits.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
#include <type_traits>
#include <utility>
namespace clang {
class ExtQuals;
class QualType;
class TagDecl;
class Type;
enum {
TypeAlignmentInBits = 4,
TypeAlignment = 1 << TypeAlignmentInBits
};
} // namespace clang
namespace llvm {
template <typename T>
struct PointerLikeTypeTraits;
template<>
struct PointerLikeTypeTraits< ::clang::Type*> {
static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
static inline ::clang::Type *getFromVoidPointer(void *P) {
return static_cast< ::clang::Type*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template<>
struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
return static_cast< ::clang::ExtQuals*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template <>
struct isPodLike<clang::QualType> { static const bool value = true; };
} // namespace llvm
namespace clang {
class ASTContext;
template <typename> class CanQual;
class CXXRecordDecl;
class DeclContext;
class EnumDecl;
class Expr;
class ExtQualsTypeCommonBase;
class FunctionDecl;
class IdentifierInfo;
class NamedDecl;
class ObjCInterfaceDecl;
class ObjCProtocolDecl;
class ObjCTypeParamDecl;
struct PrintingPolicy;
class RecordDecl;
class Stmt;
class TagDecl;
class TemplateArgument;
class TemplateArgumentListInfo;
class TemplateArgumentLoc;
class TemplateTypeParmDecl;
class TypedefNameDecl;
class UnresolvedUsingTypenameDecl;
using CanQualType = CanQual<Type>;
// Provide forward declarations for all of the *Type classes.
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.def"
/// The collection of all-type qualifiers we support.
/// Clang supports five independent qualifiers:
/// * C99: const, volatile, and restrict
/// * MS: __unaligned
/// * Embedded C (TR18037): address spaces
/// * Objective C: the GC attributes (none, weak, or strong)
class Qualifiers {
public:
enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
Const = 0x1,
Restrict = 0x2,
Volatile = 0x4,
CVRMask = Const | Volatile | Restrict
};
enum GC {
GCNone = 0,
Weak,
Strong
};
enum ObjCLifetime {
/// There is no lifetime qualification on this type.
OCL_None,
/// This object can be modified without requiring retains or
/// releases.
OCL_ExplicitNone,
/// Assigning into this object requires the old value to be
/// released and the new value to be retained. The timing of the
/// release of the old value is inexact: it may be moved to
/// immediately after the last known point where the value is
/// live.
OCL_Strong,
/// Reading or writing from this object requires a barrier call.
OCL_Weak,
/// Assigning into this object requires a lifetime extension.
OCL_Autoreleasing
};
enum {
/// The maximum supported address space number.
/// 23 bits should be enough for anyone.
MaxAddressSpace = 0x7fffffu,
/// The width of the "fast" qualifier mask.
FastWidth = 3,
/// The fast qualifier mask.
FastMask = (1 << FastWidth) - 1
};
/// Returns the common set of qualifiers while removing them from
/// the given sets.
static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
// If both are only CVR-qualified, bit operations are sufficient.
if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
Qualifiers Q;
Q.Mask = L.Mask & R.Mask;
L.Mask &= ~Q.Mask;
R.Mask &= ~Q.Mask;
return Q;
}
Qualifiers Q;
unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
Q.addCVRQualifiers(CommonCRV);
L.removeCVRQualifiers(CommonCRV);
R.removeCVRQualifiers(CommonCRV);
if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
Q.setObjCGCAttr(L.getObjCGCAttr());
L.removeObjCGCAttr();
R.removeObjCGCAttr();
}
if (L.getObjCLifetime() == R.getObjCLifetime()) {
Q.setObjCLifetime(L.getObjCLifetime());
L.removeObjCLifetime();
R.removeObjCLifetime();
}
if (L.getAddressSpace() == R.getAddressSpace()) {
Q.setAddressSpace(L.getAddressSpace());
L.removeAddressSpace();
R.removeAddressSpace();
}
return Q;
}
static Qualifiers fromFastMask(unsigned Mask) {
Qualifiers Qs;
Qs.addFastQualifiers(Mask);
return Qs;
}
static Qualifiers fromCVRMask(unsigned CVR) {
Qualifiers Qs;
Qs.addCVRQualifiers(CVR);
return Qs;
}
static Qualifiers fromCVRUMask(unsigned CVRU) {
Qualifiers Qs;
Qs.addCVRUQualifiers(CVRU);
return Qs;
}
// Deserialize qualifiers from an opaque representation.
static Qualifiers fromOpaqueValue(unsigned opaque) {
Qualifiers Qs;
Qs.Mask = opaque;
return Qs;
}
// Serialize these qualifiers into an opaque representation.
unsigned getAsOpaqueValue() const {
return Mask;
}
bool hasConst() const { return Mask & Const; }
void setConst(bool flag) {
Mask = (Mask & ~Const) | (flag ? Const : 0);
}
void removeConst() { Mask &= ~Const; }
void addConst() { Mask |= Const; }
bool hasVolatile() const { return Mask & Volatile; }
void setVolatile(bool flag) {
Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
}
void removeVolatile() { Mask &= ~Volatile; }
void addVolatile() { Mask |= Volatile; }
bool hasRestrict() const { return Mask & Restrict; }
void setRestrict(bool flag) {
Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
}
void removeRestrict() { Mask &= ~Restrict; }
void addRestrict() { Mask |= Restrict; }
bool hasCVRQualifiers() const { return getCVRQualifiers(); }
unsigned getCVRQualifiers() const { return Mask & CVRMask; }
void setCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask = (Mask & ~CVRMask) | mask;
}
void removeCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask &= ~mask;
}
void removeCVRQualifiers() {
removeCVRQualifiers(CVRMask);
}
void addCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask |= mask;
}
void addCVRUQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
Mask |= mask;
}
bool hasUnaligned() const { return Mask & UMask; }
void setUnaligned(bool flag) {
Mask = (Mask & ~UMask) | (flag ? UMask : 0);
}
void removeUnaligned() { Mask &= ~UMask; }
void addUnaligned() { Mask |= UMask; }
bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
void setObjCGCAttr(GC type) {
Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
}
void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
void addObjCGCAttr(GC type) {
assert(type);
setObjCGCAttr(type);
}
Qualifiers withoutObjCGCAttr() const {
Qualifiers qs = *this;
qs.removeObjCGCAttr();
return qs;
}
Qualifiers withoutObjCLifetime() const {
Qualifiers qs = *this;
qs.removeObjCLifetime();
return qs;
}
bool hasObjCLifetime() const { return Mask & LifetimeMask; }
ObjCLifetime getObjCLifetime() const {
return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
}
void setObjCLifetime(ObjCLifetime type) {
Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
}
void removeObjCLifetime() { setObjCLifetime(OCL_None); }
void addObjCLifetime(ObjCLifetime type) {
assert(type);
assert(!hasObjCLifetime());
Mask |= (type << LifetimeShift);
}
/// True if the lifetime is neither None or ExplicitNone.
bool hasNonTrivialObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime > OCL_ExplicitNone);
}
/// True if the lifetime is either strong or weak.
bool hasStrongOrWeakObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime == OCL_Strong || lifetime == OCL_Weak);
}
bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
LangAS getAddressSpace() const {
return static_cast<LangAS>(Mask >> AddressSpaceShift);
}
bool hasTargetSpecificAddressSpace() const {
return isTargetAddressSpace(getAddressSpace());
}
/// Get the address space attribute value to be printed by diagnostics.
unsigned getAddressSpaceAttributePrintValue() const {
auto Addr = getAddressSpace();
// This function is not supposed to be used with language specific
// address spaces. If that happens, the diagnostic message should consider
// printing the QualType instead of the address space value.
assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace());
if (Addr != LangAS::Default)
return toTargetAddressSpace(Addr);
// TODO: The diagnostic messages where Addr may be 0 should be fixed
// since it cannot differentiate the situation where 0 denotes the default
// address space or user specified __attribute__((address_space(0))).
return 0;
}
void setAddressSpace(LangAS space) {
assert((unsigned)space <= MaxAddressSpace);
Mask = (Mask & ~AddressSpaceMask)
| (((uint32_t) space) << AddressSpaceShift);
}
void removeAddressSpace() { setAddressSpace(LangAS::Default); }
void addAddressSpace(LangAS space) {
assert(space != LangAS::Default);
setAddressSpace(space);
}
// Fast qualifiers are those that can be allocated directly
// on a QualType object.
bool hasFastQualifiers() const { return getFastQualifiers(); }
unsigned getFastQualifiers() const { return Mask & FastMask; }
void setFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask = (Mask & ~FastMask) | mask;
}
void removeFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask &= ~mask;
}
void removeFastQualifiers() {
removeFastQualifiers(FastMask);
}
void addFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask |= mask;
}
/// Return true if the set contains any qualifiers which require an ExtQuals
/// node to be allocated.
bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
Qualifiers getNonFastQualifiers() const {
Qualifiers Quals = *this;
Quals.setFastQualifiers(0);
return Quals;
}
/// Return true if the set contains any qualifiers.
bool hasQualifiers() const { return Mask; }
bool empty() const { return !Mask; }
/// Add the qualifiers from the given set to this set.
void addQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-or it in.
if (!(Q.Mask & ~CVRMask))
Mask |= Q.Mask;
else {
Mask |= (Q.Mask & CVRMask);
if (Q.hasAddressSpace())
addAddressSpace(Q.getAddressSpace());
if (Q.hasObjCGCAttr())
addObjCGCAttr(Q.getObjCGCAttr());
if (Q.hasObjCLifetime())
addObjCLifetime(Q.getObjCLifetime());
}
}
/// Remove the qualifiers from the given set from this set.
void removeQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-and the inverse in.
if (!(Q.Mask & ~CVRMask))
Mask &= ~Q.Mask;
else {
Mask &= ~(Q.Mask & CVRMask);
if (getObjCGCAttr() == Q.getObjCGCAttr())
removeObjCGCAttr();
if (getObjCLifetime() == Q.getObjCLifetime())
removeObjCLifetime();
if (getAddressSpace() == Q.getAddressSpace())
removeAddressSpace();
}
}
/// Add the qualifiers from the given set to this set, given that
/// they don't conflict.
void addConsistentQualifiers(Qualifiers qs) {
assert(getAddressSpace() == qs.getAddressSpace() ||
!hasAddressSpace() || !qs.hasAddressSpace());
assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
!hasObjCGCAttr() || !qs.hasObjCGCAttr());
assert(getObjCLifetime() == qs.getObjCLifetime() ||
!hasObjCLifetime() || !qs.hasObjCLifetime());
Mask |= qs.Mask;
}
/// Returns true if this address space is a superset of the other one.
/// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
/// overlapping address spaces.
/// CL1.1 or CL1.2:
/// every address space is a superset of itself.
/// CL2.0 adds:
/// __generic is a superset of any address space except for __constant.
bool isAddressSpaceSupersetOf(Qualifiers other) const {
return
// Address spaces must match exactly.
getAddressSpace() == other.getAddressSpace() ||
// Otherwise in OpenCLC v2.0 s6.5.5: every address space except
// for __constant can be used as __generic.
(getAddressSpace() == LangAS::opencl_generic &&
other.getAddressSpace() != LangAS::opencl_constant);
}
/// Determines if these qualifiers compatibly include another set.
/// Generally this answers the question of whether an object with the other
/// qualifiers can be safely used as an object with these qualifiers.
bool compatiblyIncludes(Qualifiers other) const {
return isAddressSpaceSupersetOf(other) &&
// ObjC GC qualifiers can match, be added, or be removed, but can't
// be changed.
(getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
!other.hasObjCGCAttr()) &&
// ObjC lifetime qualifiers must match exactly.
getObjCLifetime() == other.getObjCLifetime() &&
// CVR qualifiers may subset.
(((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
// U qualifier may superset.
(!other.hasUnaligned() || hasUnaligned());
}
/// Determines if these qualifiers compatibly include another set of
/// qualifiers from the narrow perspective of Objective-C ARC lifetime.
///
/// One set of Objective-C lifetime qualifiers compatibly includes the other
/// if the lifetime qualifiers match, or if both are non-__weak and the
/// including set also contains the 'const' qualifier, or both are non-__weak
/// and one is None (which can only happen in non-ARC modes).
bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
if (getObjCLifetime() == other.getObjCLifetime())
return true;
if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
return false;
if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
return true;
return hasConst();
}
/// Determine whether this set of qualifiers is a strict superset of
/// another set of qualifiers, not considering qualifier compatibility.
bool isStrictSupersetOf(Qualifiers Other) const;
bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
explicit operator bool() const { return hasQualifiers(); }
Qualifiers &operator+=(Qualifiers R) {
addQualifiers(R);
return *this;
}
// Union two qualifier sets. If an enumerated qualifier appears
// in both sets, use the one from the right.
friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
L += R;
return L;
}
Qualifiers &operator-=(Qualifiers R) {
removeQualifiers(R);
return *this;
}
/// Compute the difference between two qualifier sets.
friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
L -= R;
return L;
}
std::string getAsString() const;
std::string getAsString(const PrintingPolicy &Policy) const;
bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
void print(raw_ostream &OS, const PrintingPolicy &Policy,
bool appendSpaceIfNonEmpty = false) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Mask);
}
private:
// bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
// |C R V|U|GCAttr|Lifetime|AddressSpace|
uint32_t Mask = 0;
static const uint32_t UMask = 0x8;
static const uint32_t UShift = 3;
static const uint32_t GCAttrMask = 0x30;
static const uint32_t GCAttrShift = 4;
static const uint32_t LifetimeMask = 0x1C0;
static const uint32_t LifetimeShift = 6;
static const uint32_t AddressSpaceMask =
~(CVRMask | UMask | GCAttrMask | LifetimeMask);
static const uint32_t AddressSpaceShift = 9;
};
/// A std::pair-like structure for storing a qualified type split
/// into its local qualifiers and its locally-unqualified type.
struct SplitQualType {
/// The locally-unqualified type.
const Type *Ty = nullptr;
/// The local qualifiers.
Qualifiers Quals;
SplitQualType() = default;
SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
SplitQualType getSingleStepDesugaredType() const; // end of this file
// Make std::tie work.
std::pair<const Type *,Qualifiers> asPair() const {
return std::pair<const Type *, Qualifiers>(Ty, Quals);
}
friend bool operator==(SplitQualType a, SplitQualType b) {
return a.Ty == b.Ty && a.Quals == b.Quals;
}
friend bool operator!=(SplitQualType a, SplitQualType b) {
return a.Ty != b.Ty || a.Quals != b.Quals;
}
};
/// The kind of type we are substituting Objective-C type arguments into.
///
/// The kind of substitution affects the replacement of type parameters when
/// no concrete type information is provided, e.g., when dealing with an
/// unspecialized type.
enum class ObjCSubstitutionContext {
/// An ordinary type.
Ordinary,
/// The result type of a method or function.
Result,
/// The parameter type of a method or function.
Parameter,
/// The type of a property.
Property,
/// The superclass of a type.
Superclass,
};
/// A (possibly-)qualified type.
///
/// For efficiency, we don't store CV-qualified types as nodes on their
/// own: instead each reference to a type stores the qualifiers. This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we
/// just store the two bits we care about in the low bits of the
/// pointer. To handle the packing/unpacking, we make QualType be a
/// simple wrapper class that acts like a smart pointer. A third bit
/// indicates whether there are extended qualifiers present, in which
/// case the pointer points to a special structure.
class QualType {
friend class QualifierCollector;
// Thankfully, these are efficiently composable.
llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
Qualifiers::FastWidth> Value;
const ExtQuals *getExtQualsUnsafe() const {
return Value.getPointer().get<const ExtQuals*>();
}
const Type *getTypePtrUnsafe() const {
return Value.getPointer().get<const Type*>();
}
const ExtQualsTypeCommonBase *getCommonPtr() const {
assert(!isNull() && "Cannot retrieve a NULL type pointer");
auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
}
public:
QualType() = default;
QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
unsigned getLocalFastQualifiers() const { return Value.getInt(); }
void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
/// Retrieves a pointer to the underlying (unqualified) type.
///
/// This function requires that the type not be NULL. If the type might be
/// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
const Type *getTypePtr() const;
const Type *getTypePtrOrNull() const;
/// Retrieves a pointer to the name of the base type.
const IdentifierInfo *getBaseTypeIdentifier() const;
/// Divides a QualType into its unqualified type and a set of local
/// qualifiers.
SplitQualType split() const;
void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
static QualType getFromOpaquePtr(const void *Ptr) {
QualType T;
T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
return T;
}
const Type &operator*() const {
return *getTypePtr();
}
const Type *operator->() const {
return getTypePtr();
}
bool isCanonical() const;
bool isCanonicalAsParam() const;
/// Return true if this QualType doesn't point to a type yet.
bool isNull() const {
return Value.getPointer().isNull();
}
/// Determine whether this particular QualType instance has the
/// "const" qualifier set, without looking through typedefs that may have
/// added "const" at a different level.
bool isLocalConstQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Const);
}
/// Determine whether this type is const-qualified.
bool isConstQualified() const;
/// Determine whether this particular QualType instance has the
/// "restrict" qualifier set, without looking through typedefs that may have
/// added "restrict" at a different level.
bool isLocalRestrictQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Restrict);
}
/// Determine whether this type is restrict-qualified.
bool isRestrictQualified() const;
/// Determine whether this particular QualType instance has the
/// "volatile" qualifier set, without looking through typedefs that may have
/// added "volatile" at a different level.
bool isLocalVolatileQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Volatile);
}
/// Determine whether this type is volatile-qualified.
bool isVolatileQualified() const;
/// Determine whether this particular QualType instance has any
/// qualifiers, without looking through any typedefs that might add
/// qualifiers at a different level.
bool hasLocalQualifiers() const {
return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
}
/// Determine whether this type has any qualifiers.
bool hasQualifiers() const;
/// Determine whether this particular QualType instance has any
/// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
/// instance.
bool hasLocalNonFastQualifiers() const {
return Value.getPointer().is<const ExtQuals*>();
}
/// Retrieve the set of qualifiers local to this particular QualType
/// instance, not including any qualifiers acquired through typedefs or
/// other sugar.
Qualifiers getLocalQualifiers() const;
/// Retrieve the set of qualifiers applied to this type.
Qualifiers getQualifiers() const;
/// Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// local to this particular QualType instance, not including any qualifiers
/// acquired through typedefs or other sugar.
unsigned getLocalCVRQualifiers() const {
return getLocalFastQualifiers();
}
/// Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// applied to this type.
unsigned getCVRQualifiers() const;
bool isConstant(const ASTContext& Ctx) const {
return QualType::isConstant(*this, Ctx);
}
/// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
bool isPODType(const ASTContext &Context) const;
/// Return true if this is a POD type according to the rules of the C++98
/// standard, regardless of the current compilation's language.
bool isCXX98PODType(const ASTContext &Context) const;
/// Return true if this is a POD type according to the more relaxed rules
/// of the C++11 standard, regardless of the current compilation's language.
/// (C++0x [basic.types]p9). Note that, unlike
/// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
bool isCXX11PODType(const ASTContext &Context) const;
/// Return true if this is a trivial type per (C++0x [basic.types]p9)
bool isTrivialType(const ASTContext &Context) const;
/// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
bool isTriviallyCopyableType(const ASTContext &Context) const;
/// Returns true if it is a class and it might be dynamic.
bool mayBeDynamicClass() const;
/// Returns true if it is not a class or if the class might not be dynamic.
bool mayBeNotDynamicClass() const;
// Don't promise in the API that anything besides 'const' can be
// easily added.
/// Add the `const` type qualifier to this QualType.
void addConst() {
addFastQualifiers(Qualifiers::Const);
}
QualType withConst() const {
return withFastQualifiers(Qualifiers::Const);
}
/// Add the `volatile` type qualifier to this QualType.
void addVolatile() {
addFastQualifiers(Qualifiers::Volatile);
}
QualType withVolatile() const {
return withFastQualifiers(Qualifiers::Volatile);
}
/// Add the `restrict` qualifier to this QualType.
void addRestrict() {
addFastQualifiers(Qualifiers::Restrict);
}
QualType withRestrict() const {
return withFastQualifiers(Qualifiers::Restrict);
}
QualType withCVRQualifiers(unsigned CVR) const {
return withFastQualifiers(CVR);
}
void addFastQualifiers(unsigned TQs) {
assert(!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!");
Value.setInt(Value.getInt() | TQs);
}
void removeLocalConst();
void removeLocalVolatile();
void removeLocalRestrict();
void removeLocalCVRQualifiers(unsigned Mask);
void removeLocalFastQualifiers() { Value.setInt(0); }
void removeLocalFastQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
Value.setInt(Value.getInt() & ~Mask);
}
// Creates a type with the given qualifiers in addition to any
// qualifiers already on this type.
QualType withFastQualifiers(unsigned TQs) const {
QualType T = *this;
T.addFastQualifiers(TQs);
return T;
}
// Creates a type with exactly the given fast qualifiers, removing
// any existing fast qualifiers.
QualType withExactLocalFastQualifiers(unsigned TQs) const {
return withoutLocalFastQualifiers().withFastQualifiers(TQs);
}
// Removes fast qualifiers, but leaves any extended qualifiers in place.
QualType withoutLocalFastQualifiers() const {
QualType T = *this;
T.removeLocalFastQualifiers();
return T;
}
QualType getCanonicalType() const;
/// Return this type with all of the instance-specific qualifiers
/// removed, but without removing any qualifiers that may have been applied
/// through typedefs.
QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
/// Retrieve the unqualified variant of the given type,
/// removing as little sugar as possible.
///
/// This routine looks through various kinds of sugar to find the
/// least-desugared type that is unqualified. For example, given:
///
/// \code
/// typedef int Integer;
/// typedef const Integer CInteger;
/// typedef CInteger DifferenceType;
/// \endcode
///
/// Executing \c getUnqualifiedType() on the type \c DifferenceType will
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
///
/// The resulting type might still be qualified if it's sugar for an array
/// type. To strip qualifiers even from within a sugared array type, use
/// ASTContext::getUnqualifiedArrayType.
inline QualType getUnqualifiedType() const;
/// Retrieve the unqualified variant of the given type, removing as little
/// sugar as possible.
///
/// Like getUnqualifiedType(), but also returns the set of
/// qualifiers that were built up.
///
/// The resulting type might still be qualified if it's sugar for an array
/// type. To strip qualifiers even from within a sugared array type, use
/// ASTContext::getUnqualifiedArrayType.
inline SplitQualType getSplitUnqualifiedType() const;
/// Determine whether this type is more qualified than the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isMoreQualifiedThan(QualType Other) const;
/// Determine whether this type is at least as qualified as the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isAtLeastAsQualifiedAs(QualType Other) const;
QualType getNonReferenceType() const;
/// Determine the type of a (typically non-lvalue) expression with the
/// specified result type.
///
/// This routine should be used for expressions for which the return type is
/// explicitly specified (e.g., in a cast or call) and isn't necessarily
/// an lvalue. It removes a top-level reference (since there are no
/// expressions of reference type) and deletes top-level cvr-qualifiers
/// from non-class types (in C++) or all types (in C).
QualType getNonLValueExprType(const ASTContext &Context) const;
/// Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
///
/// Qualifiers are left in place.
QualType getDesugaredType(const ASTContext &Context) const {
return getDesugaredType(*this, Context);
}
SplitQualType getSplitDesugaredType() const {
return getSplitDesugaredType(*this);
}
/// Return the specified type with one level of "sugar" removed from
/// the type.
///
/// This routine takes off the first typedef, typeof, etc. If the outer level
/// of the type is already concrete, it returns it unmodified.
QualType getSingleStepDesugaredType(const ASTContext &Context) const {
return getSingleStepDesugaredTypeImpl(*this, Context);
}
/// Returns the specified type after dropping any
/// outer-level parentheses.
QualType IgnoreParens() const {
if (isa<ParenType>(*this))
return QualType::IgnoreParens(*this);
return *this;
}
/// Indicate whether the specified types and qualifiers are identical.
friend bool operator==(const QualType &LHS, const QualType &RHS) {
return LHS.Value == RHS.Value;
}
friend bool operator!=(const QualType &LHS, const QualType &RHS) {
return LHS.Value != RHS.Value;
}
static std::string getAsString(SplitQualType split,
const PrintingPolicy &Policy) {
return getAsString(split.Ty, split.Quals, Policy);
}
static std::string getAsString(const Type *ty, Qualifiers qs,
const PrintingPolicy &Policy);
std::string getAsString() const;
std::string getAsString(const PrintingPolicy &Policy) const;
void print(raw_ostream &OS, const PrintingPolicy &Policy,
const Twine &PlaceHolder = Twine(),
unsigned Indentation = 0) const {
print(split(), OS, Policy, PlaceHolder, Indentation);
}
static void print(SplitQualType split, raw_ostream &OS,
const PrintingPolicy &policy, const Twine &PlaceHolder,
unsigned Indentation = 0) {
return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
}
static void print(const Type *ty, Qualifiers qs,
raw_ostream &OS, const PrintingPolicy &policy,
const Twine &PlaceHolder,
unsigned Indentation = 0);
void getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
return getAsStringInternal(split(), Str, Policy);
}
static void getAsStringInternal(SplitQualType split, std::string &out,
const PrintingPolicy &policy) {
return getAsStringInternal(split.Ty, split.Quals, out, policy);
}
static void getAsStringInternal(const Type *ty, Qualifiers qs,
std::string &out,
const PrintingPolicy &policy);
class StreamedQualTypeHelper {
const QualType &T;
const PrintingPolicy &Policy;
const Twine &PlaceHolder;
unsigned Indentation;
public:
StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
const Twine &PlaceHolder, unsigned Indentation)
: T(T), Policy(Policy), PlaceHolder(PlaceHolder),
Indentation(Indentation) {}
friend raw_ostream &operator<<(raw_ostream &OS,
const StreamedQualTypeHelper &SQT) {
SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
return OS;
}
};
StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
const Twine &PlaceHolder = Twine(),
unsigned Indentation = 0) const {
return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
}
void dump(const char *s) const;
void dump() const;
void dump(llvm::raw_ostream &OS) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(getAsOpaquePtr());
}
/// Return the address space of this type.
inline LangAS getAddressSpace() const;
/// Returns gc attribute of this type.
inline Qualifiers::GC getObjCGCAttr() const;
/// true when Type is objc's weak.
bool isObjCGCWeak() const {
return getObjCGCAttr() == Qualifiers::Weak;
}
/// true when Type is objc's strong.
bool isObjCGCStrong() const {
return getObjCGCAttr() == Qualifiers::Strong;
}
/// Returns lifetime attribute of this type.
Qualifiers::ObjCLifetime getObjCLifetime() const {
return getQualifiers().getObjCLifetime();
}
bool hasNonTrivialObjCLifetime() const {
return getQualifiers().hasNonTrivialObjCLifetime();
}
bool hasStrongOrWeakObjCLifetime() const {
return getQualifiers().hasStrongOrWeakObjCLifetime();
}
// true when Type is objc's weak and weak is enabled but ARC isn't.
bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
enum PrimitiveDefaultInitializeKind {
/// The type does not fall into any of the following categories. Note that
/// this case is zero-valued so that values of this enum can be used as a
/// boolean condition for non-triviality.
PDIK_Trivial,
/// The type is an Objective-C retainable pointer type that is qualified
/// with the ARC __strong qualifier.
PDIK_ARCStrong,
/// The type is an Objective-C retainable pointer type that is qualified
/// with the ARC __weak qualifier.
PDIK_ARCWeak,
/// The type is a struct containing a field whose type is not PCK_Trivial.
PDIK_Struct
};
/// Functions to query basic properties of non-trivial C struct types.
/// Check if this is a non-trivial type that would cause a C struct
/// transitively containing this type to be non-trivial to default initialize
/// and return the kind.
PrimitiveDefaultInitializeKind
isNonTrivialToPrimitiveDefaultInitialize() const;
enum PrimitiveCopyKind {
/// The type does not fall into any of the following categories. Note that
/// this case is zero-valued so that values of this enum can be used as a
/// boolean condition for non-triviality.
PCK_Trivial,
/// The type would be trivial except that it is volatile-qualified. Types
/// that fall into one of the other non-trivial cases may additionally be
/// volatile-qualified.
PCK_VolatileTrivial,
/// The type is an Objective-C retainable pointer type that is qualified
/// with the ARC __strong qualifier.
PCK_ARCStrong,
/// The type is an Objective-C retainable pointer type that is qualified
/// with the ARC __weak qualifier.
PCK_ARCWeak,
/// The type is a struct containing a field whose type is neither
/// PCK_Trivial nor PCK_VolatileTrivial.
/// Note that a C++ struct type does not necessarily match this; C++ copying
/// semantics are too complex to express here, in part because they depend
/// on the exact constructor or assignment operator that is chosen by
/// overload resolution to do the copy.
PCK_Struct
};
/// Check if this is a non-trivial type that would cause a C struct
/// transitively containing this type to be non-trivial to copy and return the
/// kind.
PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
/// Check if this is a non-trivial type that would cause a C struct
/// transitively containing this type to be non-trivial to destructively
/// move and return the kind. Destructive move in this context is a C++-style
/// move in which the source object is placed in a valid but unspecified state
/// after it is moved, as opposed to a truly destructive move in which the
/// source object is placed in an uninitialized state.
PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
enum DestructionKind {
DK_none,
DK_cxx_destructor,
DK_objc_strong_lifetime,
DK_objc_weak_lifetime,
DK_nontrivial_c_struct
};
/// Returns a nonzero value if objects of this type require
/// non-trivial work to clean up after. Non-zero because it's
/// conceivable that qualifiers (objc_gc(weak)?) could make
/// something require destruction.
DestructionKind isDestructedType() const {
return isDestructedTypeImpl(*this);
}
/// Determine whether expressions of the given type are forbidden
/// from being lvalues in C.
///
/// The expression types that are forbidden to be lvalues are:
/// - 'void', but not qualified void
/// - function types
///
/// The exact rule here is C99 6.3.2.1:
/// An lvalue is an expression with an object type or an incomplete
/// type other than void.
bool isCForbiddenLValueType() const;
/// Substitute type arguments for the Objective-C type parameters used in the
/// subject type.
///
/// \param ctx ASTContext in which the type exists.
///
/// \param typeArgs The type arguments that will be substituted for the
/// Objective-C type parameters in the subject type, which are generally
/// computed via \c Type::getObjCSubstitutions. If empty, the type
/// parameters will be replaced with their bounds or id/Class, as appropriate
/// for the context.
///
/// \param context The context in which the subject type was written.
///
/// \returns the resulting type.
QualType substObjCTypeArgs(ASTContext &ctx,
ArrayRef<QualType> typeArgs,
ObjCSubstitutionContext context) const;
/// Substitute type arguments from an object type for the Objective-C type
/// parameters used in the subject type.
///
/// This operation combines the computation of type arguments for
/// substitution (\c Type::getObjCSubstitutions) with the actual process of
/// substitution (\c QualType::substObjCTypeArgs) for the convenience of
/// callers that need to perform a single substitution in isolation.
///
/// \param objectType The type of the object whose member type we're
/// substituting into. For example, this might be the receiver of a message
/// or the base of a property access.
///
/// \param dc The declaration context from which the subject type was
/// retrieved, which indicates (for example) which type parameters should
/// be substituted.
///
/// \param context The context in which the subject type was written.
///
/// \returns the subject type after replacing all of the Objective-C type
/// parameters with their corresponding arguments.
QualType substObjCMemberType(QualType objectType,
const DeclContext *dc,
ObjCSubstitutionContext context) const;
/// Strip Objective-C "__kindof" types from the given type.
QualType stripObjCKindOfType(const ASTContext &ctx) const;
/// Remove all qualifiers including _Atomic.
QualType getAtomicUnqualifiedType() const;
private:
// These methods are implemented in a separate translation unit;
// "static"-ize them to avoid creating temporary QualTypes in the
// caller.
static bool isConstant(QualType T, const ASTContext& Ctx);
static QualType getDesugaredType(QualType T, const ASTContext &Context);
static SplitQualType getSplitDesugaredType(QualType T);
static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
static QualType getSingleStepDesugaredTypeImpl(QualType type,
const ASTContext &C);
static QualType IgnoreParens(QualType T);
static DestructionKind isDestructedTypeImpl(QualType type);
};
} // namespace clang
namespace llvm {
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type< ::clang::QualType> {
using SimpleType = const ::clang::Type *;
static SimpleType getSimplifiedValue(::clang::QualType Val) {
return Val.getTypePtr();
}
};
// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
struct PointerLikeTypeTraits<clang::QualType> {
static inline void *getAsVoidPointer(clang::QualType P) {
return P.getAsOpaquePtr();
}
static inline clang::QualType getFromVoidPointer(void *P) {
return clang::QualType::getFromOpaquePtr(P);
}
// Various qualifiers go in low bits.
enum { NumLowBitsAvailable = 0 };
};
} // namespace llvm
namespace clang {
/// Base class that is common to both the \c ExtQuals and \c Type
/// classes, which allows \c QualType to access the common fields between the
/// two.
class ExtQualsTypeCommonBase {
friend class ExtQuals;
friend class QualType;
friend class Type;
/// The "base" type of an extended qualifiers type (\c ExtQuals) or
/// a self-referential pointer (for \c Type).
///
/// This pointer allows an efficient mapping from a QualType to its
/// underlying type pointer.
const Type *const BaseType;
/// The canonical type of this type. A QualType.
QualType CanonicalType;
ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
: BaseType(baseType), CanonicalType(canon) {}
};
/// We can encode up to four bits in the low bits of a
/// type pointer, but there are many more type qualifiers that we want
/// to be able to apply to an arbitrary type. Therefore we have this
/// struct, intended to be heap-allocated and used by QualType to
/// store qualifiers.
///
/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
/// in three low bits on the QualType pointer; a fourth bit records whether
/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
/// Objective-C GC attributes) are much more rare.
class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
// NOTE: changing the fast qualifiers should be straightforward as
// long as you don't make 'const' non-fast.
// 1. Qualifiers:
// a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
// Fast qualifiers must occupy the low-order bits.
// b) Update Qualifiers::FastWidth and FastMask.
// 2. QualType:
// a) Update is{Volatile,Restrict}Qualified(), defined inline.
// b) Update remove{Volatile,Restrict}, defined near the end of
// this header.
// 3. ASTContext:
// a) Update get{Volatile,Restrict}Type.
/// The immutable set of qualifiers applied by this node. Always contains
/// extended qualifiers.
Qualifiers Quals;
ExtQuals *this_() { return this; }
public:
ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
: ExtQualsTypeCommonBase(baseType,
canon.isNull() ? QualType(this_(), 0) : canon),
Quals(quals) {
assert(Quals.hasNonFastQualifiers()
&& "ExtQuals created with no fast qualifiers");
assert(!Quals.hasFastQualifiers()
&& "ExtQuals created with fast qualifiers");
}
Qualifiers getQualifiers() const { return Quals; }
bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
Qualifiers::ObjCLifetime getObjCLifetime() const {
return Quals.getObjCLifetime();
}
bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
const Type *getBaseType() const { return BaseType; }
public:
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, getBaseType(), Quals);
}
static void Profile(llvm::FoldingSetNodeID &ID,
const Type *BaseType,
Qualifiers Quals) {
assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
ID.AddPointer(BaseType);
Quals.Profile(ID);
}
};
/// The kind of C++11 ref-qualifier associated with a function type.
/// This determines whether a member function's "this" object can be an
/// lvalue, rvalue, or neither.
enum RefQualifierKind {
/// No ref-qualifier was provided.
RQ_None = 0,
/// An lvalue ref-qualifier was provided (\c &).
RQ_LValue,
/// An rvalue ref-qualifier was provided (\c &&).
RQ_RValue
};
/// Which keyword(s) were used to create an AutoType.
enum class AutoTypeKeyword {
/// auto
Auto,
/// decltype(auto)
DecltypeAuto,
/// __auto_type (GNU extension)
GNUAutoType
};
/// The base class of the type hierarchy.
///
/// A central concept with types is that each type always has a canonical
/// type. A canonical type is the type with any typedef names stripped out
/// of it or the types it references. For example, consider:
///
/// typedef int foo;
/// typedef foo* bar;
/// 'int *' 'foo *' 'bar'
///
/// There will be a Type object created for 'int'. Since int is canonical, its
/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used. Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class Type : public ExtQualsTypeCommonBase {
public:
enum TypeClass {
#define TYPE(Class, Base) Class,
#define LAST_TYPE(Class) TypeLast = Class,
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
TagFirst = Record, TagLast = Enum
};
private:
/// Bitfields required by the Type class.
class TypeBitfields {
friend class Type;
template <class T> friend class TypePropertyCache;
/// TypeClass bitfield - Enum that specifies what subclass this belongs to.
unsigned TC : 8;
/// Whether this type is a dependent type (C++ [temp.dep.type]).
unsigned Dependent : 1;
/// Whether this type somehow involves a template parameter, even
/// if the resolution of the type does not depend on a template parameter.
unsigned InstantiationDependent : 1;
/// Whether this type is a variably-modified type (C99 6.7.5).
unsigned VariablyModified : 1;
/// Whether this type contains an unexpanded parameter pack
/// (for C++11 variadic templates).
unsigned ContainsUnexpandedParameterPack : 1;
/// True if the cache (i.e. the bitfields here starting with
/// 'Cache') is valid.
mutable unsigned CacheValid : 1;
/// Linkage of this type.
mutable unsigned CachedLinkage : 3;
/// Whether this type involves and local or unnamed types.
mutable unsigned CachedLocalOrUnnamed : 1;
/// Whether this type comes from an AST file.
mutable unsigned FromAST : 1;
bool isCacheValid() const {
return CacheValid;
}
Linkage getLinkage() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return static_cast<Linkage>(CachedLinkage);
}
bool hasLocalOrUnnamedType() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return CachedLocalOrUnnamed;
}
};
enum { NumTypeBits = 18 };
protected:
// These classes allow subclasses to somewhat cleanly pack bitfields
// into Type.
class ArrayTypeBitfields {
friend class ArrayType;
unsigned : NumTypeBits;
/// CVR qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
unsigned IndexTypeQuals : 3;
/// Storage class qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
/// Actually an ArrayType::ArraySizeModifier.
unsigned SizeModifier : 3;
};
class BuiltinTypeBitfields {
friend class BuiltinType;
unsigned : NumTypeBits;
/// The kind (BuiltinType::Kind) of builtin type this is.
unsigned Kind : 8;
};
/// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
/// Only common bits are stored here. Additional uncommon bits are stored
/// in a trailing object after FunctionProtoType.
class FunctionTypeBitfields {
friend class FunctionProtoType;
friend class FunctionType;
unsigned : NumTypeBits;
/// Extra information which affects how the function is called, like
/// regparm and the calling convention.
unsigned ExtInfo : 12;
/// The ref-qualifier associated with a \c FunctionProtoType.
///
/// This is a value of type \c RefQualifierKind.
unsigned RefQualifier : 2;
/// Used only by FunctionProtoType, put here to pack with the
/// other bitfields.
/// The qualifiers are part of FunctionProtoType because...
///
/// C++ 8.3.5p4: The return type, the parameter type list and the
/// cv-qualifier-seq, [...], are part of the function type.
unsigned TypeQuals : 4;
/// The number of parameters this function has, not counting '...'.
/// According to [implimits] 8 bits should be enough here but this is
/// somewhat easy to exceed with metaprogramming and so we would like to
/// keep NumParams as wide as reasonably possible.
unsigned NumParams : 16;
/// The type of exception specification this function has.
unsigned ExceptionSpecType : 4;
/// Whether this function has extended parameter information.
unsigned HasExtParameterInfos : 1;
/// Whether the function is variadic.
unsigned Variadic : 1;
/// Whether this function has a trailing return type.
unsigned HasTrailingReturn : 1;
};
class ObjCObjectTypeBitfields {
friend class ObjCObjectType;
unsigned : NumTypeBits;
/// The number of type arguments stored directly on this object type.
unsigned NumTypeArgs : 7;
/// The number of protocols stored directly on this object type.
unsigned NumProtocols : 6;
/// Whether this is a "kindof" type.
unsigned IsKindOf : 1;
};
class ReferenceTypeBitfields {
friend class ReferenceType;
unsigned : NumTypeBits;
/// True if the type was originally spelled with an lvalue sigil.
/// This is never true of rvalue references but can also be false
/// on lvalue references because of C++0x [dcl.typedef]p9,
/// as follows:
///
/// typedef int &ref; // lvalue, spelled lvalue
/// typedef int &&rvref; // rvalue
/// ref &a; // lvalue, inner ref, spelled lvalue
/// ref &&a; // lvalue, inner ref
/// rvref &a; // lvalue, inner ref, spelled lvalue
/// rvref &&a; // rvalue, inner ref
unsigned SpelledAsLValue : 1;
/// True if the inner type is a reference type. This only happens
/// in non-canonical forms.
unsigned InnerRef : 1;
};
class TypeWithKeywordBitfields {
friend class TypeWithKeyword;
unsigned : NumTypeBits;
/// An ElaboratedTypeKeyword. 8 bits for efficient access.
unsigned Keyword : 8;
};
enum { NumTypeWithKeywordBits = 8 };
class ElaboratedTypeBitfields {
friend class ElaboratedType;
unsigned : NumTypeBits;
unsigned : NumTypeWithKeywordBits;
/// Whether the ElaboratedType has a trailing OwnedTagDecl.
unsigned HasOwnedTagDecl : 1;
};
class VectorTypeBitfields {
friend class VectorType;
friend class DependentVectorType;
unsigned : NumTypeBits;
/// The kind of vector, either a generic vector type or some
/// target-specific vector type such as for AltiVec or Neon.
unsigned VecKind : 3;
/// The number of elements in the vector.
unsigned NumElements : 29 - NumTypeBits;
enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
};
class AttributedTypeBitfields {
friend class AttributedType;
unsigned : NumTypeBits;
/// An AttributedType::Kind
unsigned AttrKind : 32 - NumTypeBits;
};
class AutoTypeBitfields {
friend class AutoType;
unsigned : NumTypeBits;
/// Was this placeholder type spelled as 'auto', 'decltype(auto)',
/// or '__auto_type'? AutoTypeKeyword value.
unsigned Keyword : 2;
};
class SubstTemplateTypeParmPackTypeBitfields {
friend class SubstTemplateTypeParmPackType;
unsigned : NumTypeBits;
/// The number of template arguments in \c Arguments, which is
/// expected to be able to hold at least 1024 according to [implimits].
/// However as this limit is somewhat easy to hit with template
/// metaprogramming we'd prefer to keep it as large as possible.
/// At the moment it has been left as a non-bitfield since this type
/// safely fits in 64 bits as an unsigned, so there is no reason to
/// introduce the performance impact of a bitfield.
unsigned NumArgs;
};
class TemplateSpecializationTypeBitfields {
friend class TemplateSpecializationType;
unsigned : NumTypeBits;
/// Whether this template specialization type is a substituted type alias.
unsigned TypeAlias : 1;
/// The number of template arguments named in this class template
/// specialization, which is expected to be able to hold at least 1024
/// according to [implimits]. However, as this limit is somewhat easy to
/// hit with template metaprogramming we'd prefer to keep it as large
/// as possible. At the moment it has been left as a non-bitfield since
/// this type safely fits in 64 bits as an unsigned, so there is no reason
/// to introduce the performance impact of a bitfield.
unsigned NumArgs;
};
class DependentTemplateSpecializationTypeBitfields {
friend class DependentTemplateSpecializationType;
unsigned : NumTypeBits;
unsigned : NumTypeWithKeywordBits;
/// The number of template arguments named in this class template
/// specialization, which is expected to be able to hold at least 1024
/// according to [implimits]. However, as this limit is somewhat easy to
/// hit with template metaprogramming we'd prefer to keep it as large
/// as possible. At the moment it has been left as a non-bitfield since
/// this type safely fits in 64 bits as an unsigned, so there is no reason
/// to introduce the performance impact of a bitfield.
unsigned NumArgs;
};
class PackExpansionTypeBitfields {
friend class PackExpansionType;
unsigned : NumTypeBits;
/// The number of expansions that this pack expansion will
/// generate when substituted (+1), which is expected to be able to
/// hold at least 1024 according to [implimits]. However, as this limit
/// is somewhat easy to hit with template metaprogramming we'd prefer to
/// keep it as large as possible. At the moment it has been left as a
/// non-bitfield since this type safely fits in 64 bits as an unsigned, so
/// there is no reason to introduce the performance impact of a bitfield.
///
/// This field will only have a non-zero value when some of the parameter
/// packs that occur within the pattern have been substituted but others
/// have not.
unsigned NumExpansions;
};
union {
TypeBitfields TypeBits;
ArrayTypeBitfields ArrayTypeBits;
AttributedTypeBitfields AttributedTypeBits;
AutoTypeBitfields AutoTypeBits;
BuiltinTypeBitfields BuiltinTypeBits;
FunctionTypeBitfields FunctionTypeBits;
ObjCObjectTypeBitfields ObjCObjectTypeBits;
ReferenceTypeBitfields ReferenceTypeBits;
TypeWithKeywordBitfields TypeWithKeywordBits;
ElaboratedTypeBitfields ElaboratedTypeBits;
VectorTypeBitfields VectorTypeBits;
SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
DependentTemplateSpecializationTypeBitfields
DependentTemplateSpecializationTypeBits;
PackExpansionTypeBitfields PackExpansionTypeBits;
static_assert(sizeof(TypeBitfields) <= 8,
"TypeBitfields is larger than 8 bytes!");
static_assert(sizeof(ArrayTypeBitfields) <= 8,
"ArrayTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(AttributedTypeBitfields) <= 8,
"AttributedTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(AutoTypeBitfields) <= 8,
"AutoTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(BuiltinTypeBitfields) <= 8,
"BuiltinTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(FunctionTypeBitfields) <= 8,
"FunctionTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
"ObjCObjectTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(ReferenceTypeBitfields) <= 8,
"ReferenceTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
"TypeWithKeywordBitfields is larger than 8 bytes!");
static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
"ElaboratedTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(VectorTypeBitfields) <= 8,
"VectorTypeBitfields is larger than 8 bytes!");
static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
"SubstTemplateTypeParmPackTypeBitfields is larger"
" than 8 bytes!");
static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
"TemplateSpecializationTypeBitfields is larger"
" than 8 bytes!");
static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
"DependentTemplateSpecializationTypeBitfields is larger"
" than 8 bytes!");
static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
"PackExpansionTypeBitfields is larger than 8 bytes");
};
private:
template <class T> friend class TypePropertyCache;
/// Set whether this type comes from an AST file.
void setFromAST(bool V = true) const {
TypeBits.FromAST = V;
}
protected:
friend class ASTContext;
Type(TypeClass tc, QualType canon, bool Dependent,
bool InstantiationDependent, bool VariablyModified,
bool ContainsUnexpandedParameterPack)
: ExtQualsTypeCommonBase(this,
canon.isNull() ? QualType(this_(), 0) : canon) {
TypeBits.TC = tc;
TypeBits.Dependent = Dependent;
TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
TypeBits.VariablyModified = VariablyModified;
TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
TypeBits.CacheValid = false;
TypeBits.CachedLocalOrUnnamed = false;
TypeBits.CachedLinkage = NoLinkage;
TypeBits.FromAST = false;
}
// silence VC++ warning C4355: 'this' : used in base member initializer list
Type *this_() { return this; }
void setDependent(bool D = true) {
TypeBits.Dependent = D;
if (D)
TypeBits.InstantiationDependent = true;
}
void setInstantiationDependent(bool D = true) {
TypeBits.InstantiationDependent = D; }
void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
void setContainsUnexpandedParameterPack(bool PP = true) {
TypeBits.ContainsUnexpandedParameterPack = PP;
}
public:
friend class ASTReader;
friend class ASTWriter;
Type(const Type &) = delete;
Type &operator=(const Type &) = delete;
TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
/// Whether this type comes from an AST file.
bool isFromAST() const { return TypeBits.FromAST; }
/// Whether this type is or contains an unexpanded parameter
/// pack, used to support C++0x variadic templates.
///
/// A type that contains a parameter pack shall be expanded by the
/// ellipsis operator at some point. For example, the typedef in the
/// following example contains an unexpanded parameter pack 'T':
///
/// \code
/// template<typename ...T>
/// struct X {
/// typedef T* pointer_types; // ill-formed; T is a parameter pack.
/// };
/// \endcode
///
/// Note that this routine does not specify which
bool containsUnexpandedParameterPack() const {
return TypeBits.ContainsUnexpandedParameterPack;
}
/// Determines if this type would be canonical if it had no further
/// qualification.
bool isCanonicalUnqualified() const {
return CanonicalType == QualType(this, 0);
}
/// Pull a single level of sugar off of this locally-unqualified type.
/// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
/// or QualType::getSingleStepDesugaredType(const ASTContext&).
QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
/// Types are partitioned into 3 broad categories (C99 6.2.5p1):
/// object types, function types, and incomplete types.
/// Return true if this is an incomplete type.
/// A type that can describe objects, but which lacks information needed to
/// determine its size (e.g. void, or a fwd declared struct). Clients of this
/// routine will need to determine if the size is actually required.
///
/// Def If non-null, and the type refers to some kind of declaration
/// that can be completed (such as a C struct, C++ class, or Objective-C
/// class), will be set to the declaration.
bool isIncompleteType(NamedDecl **Def = nullptr) const;
/// Return true if this is an incomplete or object
/// type, in other words, not a function type.
bool isIncompleteOrObjectType() const {
return !isFunctionType();
}
/// Determine whether this type is an object type.
bool isObjectType() const {
// C++ [basic.types]p8:
// An object type is a (possibly cv-qualified) type that is not a
// function type, not a reference type, and not a void type.
return !isReferenceType() && !isFunctionType() && !isVoidType();
}
/// Return true if this is a literal type
/// (C++11 [basic.types]p10)
bool isLiteralType(const ASTContext &Ctx) const;
/// Test if this type is a standard-layout type.
/// (C++0x [basic.type]p9)
bool isStandardLayoutType() const;
/// Helper methods to distinguish type categories. All type predicates
/// operate on the canonical type, ignoring typedefs and qualifiers.
/// Returns true if the type is a builtin type.
bool isBuiltinType() const;
/// Test for a particular builtin type.
bool isSpecificBuiltinType(unsigned K) const;
/// Test for a type which does not represent an actual type-system type but
/// is instead used as a placeholder for various convenient purposes within
/// Clang. All such types are BuiltinTypes.
bool isPlaceholderType() const;
const BuiltinType *getAsPlaceholderType() const;
/// Test for a specific placeholder type.
bool isSpecificPlaceholderType(unsigned K) const;
/// Test for a placeholder type other than Overload; see
/// BuiltinType::isNonOverloadPlaceholderType.
bool isNonOverloadPlaceholderType() const;
/// isIntegerType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
bool isEnumeralType() const;
/// Determine whether this type is a scoped enumeration type.
bool isScopedEnumeralType() const;
bool isBooleanType() const;
bool isCharType() const;
bool isWideCharType() const;
bool isChar8Type() const;
bool isChar16Type() const;
bool isChar32Type() const;
bool isAnyCharacterType() const;
bool isIntegralType(const ASTContext &Ctx) const;
/// Determine whether this type is an integral or enumeration type.
bool isIntegralOrEnumerationType() const;
/// Determine whether this type is an integral or unscoped enumeration type.
bool isIntegralOrUnscopedEnumerationType() const;
/// Floating point categories.
bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
/// isComplexType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isComplexType() const; // C99 6.2.5p11 (complex)
bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
bool isFloat128Type() const;
bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
bool isVoidType() const; // C99 6.2.5p19
bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
bool isAggregateType() const;
bool isFundamentalType() const;
bool isCompoundType() const;
// Type Predicates: Check to see if this type is structurally the specified
// type, ignoring typedefs and qualifiers.
bool isFunctionType() const;
bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
bool isPointerType() const;
bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
bool isBlockPointerType() const;
bool isVoidPointerType() const;
bool isReferenceType() const;
bool isLValueReferenceType() const;
bool isRValueReferenceType() const;
bool isFunctionPointerType() const;
bool isMemberPointerType() const;
bool isMemberFunctionPointerType() const;
bool isMemberDataPointerType() const;
bool isArrayType() const;
bool isConstantArrayType() const;
bool isIncompleteArrayType() const;
bool isVariableArrayType() const;
bool isDependentSizedArrayType() const;
bool isRecordType() const;
bool isClassType() const;
bool isStructureType() const;
bool isObjCBoxableRecordType() const;
bool isInterfaceType() const;
bool isStructureOrClassType() const;
bool isUnionType() const;
bool isComplexIntegerType() const; // GCC _Complex integer type.
bool isVectorType() const; // GCC vector type.
bool isExtVectorType() const; // Extended vector type.
bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
bool isObjCObjectPointerType() const; // pointer to ObjC object
bool isObjCRetainableType() const; // ObjC object or block pointer
bool isObjCLifetimeType() const; // (array of)* retainable type
bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
bool isObjCNSObjectType() const; // __attribute__((NSObject))
bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
// FIXME: change this to 'raw' interface type, so we can used 'interface' type
// for the common case.
bool isObjCObjectType() const; // NSString or typeof(*(id)0)
bool isObjCQualifiedInterfaceType() const; // NSString<foo>
bool isObjCQualifiedIdType() const; // id<foo>
bool isObjCQualifiedClassType() const; // Class<foo>
bool isObjCObjectOrInterfaceType() const;
bool isObjCIdType() const; // id
/// Was this type written with the special inert-in-ARC __unsafe_unretained
/// qualifier?
///
/// This approximates the answer to the following question: if this
/// translation unit were compiled in ARC, would this type be qualified
/// with __unsafe_unretained?
bool isObjCInertUnsafeUnretainedType() const {
return hasAttr(attr::ObjCInertUnsafeUnretained);
}
/// Whether the type is Objective-C 'id' or a __kindof type of an
/// object type, e.g., __kindof NSView * or __kindof id
/// <NSCopying>.
///
/// \param bound Will be set to the bound on non-id subtype types,
/// which will be (possibly specialized) Objective-C class type, or
/// null for 'id.
bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
const ObjCObjectType *&bound) const;
bool isObjCClassType() const; // Class
/// Whether the type is Objective-C 'Class' or a __kindof type of an
/// Class type, e.g., __kindof Class <NSCopying>.
///
/// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
/// here because Objective-C's type system cannot express "a class
/// object for a subclass of NSFoo".
bool isObjCClassOrClassKindOfType() const;
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
bool isObjCSelType() const; // Class
bool isObjCBuiltinType() const; // 'id' or 'Class'
bool isObjCARCBridgableType() const;
bool isCARCBridgableType() const;
bool isTemplateTypeParmType() const; // C++ template type parameter
bool isNullPtrType() const; // C++11 std::nullptr_t
bool isAlignValT() const; // C++17 std::align_val_t
bool isStdByteType() const; // C++17 std::byte
bool isAtomicType() const; // C11 _Atomic()
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
bool is##Id##Type() const;
#include "clang/Basic/OpenCLImageTypes.def"
bool isImageType() const; // Any OpenCL image type
bool isSamplerT() const; // OpenCL sampler_t
bool isEventT() const; // OpenCL event_t
bool isClkEventT() const; // OpenCL clk_event_t
bool isQueueT() const; // OpenCL queue_t
bool isReserveIDT() const; // OpenCL reserve_id_t
bool isPipeType() const; // OpenCL pipe type
bool isOpenCLSpecificType() const; // Any OpenCL specific type
/// Determines if this type, which must satisfy
/// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
/// than implicitly __strong.
bool isObjCARCImplicitlyUnretainedType() const;
/// Return the implicit lifetime for this type, which must not be dependent.
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
enum ScalarTypeKind {
STK_CPointer,
STK_BlockPointer,
STK_ObjCObjectPointer,
STK_MemberPointer,
STK_Bool,
STK_Integral,
STK_Floating,
STK_IntegralComplex,
STK_FloatingComplex,
STK_FixedPoint
};
/// Given that this is a scalar type, classify it.
ScalarTypeKind getScalarTypeKind() const;
/// Whether this type is a dependent type, meaning that its definition
/// somehow depends on a template parameter (C++ [temp.dep.type]).
bool isDependentType() const { return TypeBits.Dependent; }
/// Determine whether this type is an instantiation-dependent type,
/// meaning that the type involves a template parameter (even if the
/// definition does not actually depend on the type substituted for that
/// template parameter).
bool isInstantiationDependentType() const {
return TypeBits.InstantiationDependent;
}
/// Determine whether this type is an undeduced type, meaning that
/// it somehow involves a C++11 'auto' type or similar which has not yet been
/// deduced.
bool isUndeducedType() const;
/// Whether this type is a variably-modified type (C99 6.7.5).
bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
/// Whether this type involves a variable-length array type
/// with a definite size.
bool hasSizedVLAType() const;
/// Whether this type is or contains a local or unnamed type.
bool hasUnnamedOrLocalType() const;
bool isOverloadableType() const;
/// Determine wither this type is a C++ elaborated-type-specifier.
bool isElaboratedTypeSpecifier() const;
bool canDecayToPointerType() const;
/// Whether this type is represented natively as a pointer. This includes
/// pointers, references, block pointers, and Objective-C interface,
/// qualified id, and qualified interface types, as well as nullptr_t.
bool hasPointerRepresentation() const;
/// Whether this type can represent an objective pointer type for the
/// purpose of GC'ability
bool hasObjCPointerRepresentation() const;
/// Determine whether this type has an integer representation
/// of some sort, e.g., it is an integer type or a vector.
bool hasIntegerRepresentation() const;
/// Determine whether this type has an signed integer representation
/// of some sort, e.g., it is an signed integer type or a vector.
bool hasSignedIntegerRepresentation() const;
/// Determine whether this type has an unsigned integer representation
/// of some sort, e.g., it is an unsigned integer type or a vector.
bool hasUnsignedIntegerRepresentation() const;
/// Determine whether this type has a floating-point representation
/// of some sort, e.g., it is a floating-point type or a vector thereof.
bool hasFloatingRepresentation() const;
// Type Checking Functions: Check to see if this type is structurally the
// specified type, ignoring typedefs and qualifiers, and return a pointer to
// the best type we can.
const RecordType *getAsStructureType() const;
/// NOTE: getAs*ArrayType are methods on ASTContext.
const RecordType *getAsUnionType() const;
const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
const ObjCObjectType *getAsObjCInterfaceType() const;
// The following is a convenience method that returns an ObjCObjectPointerType
// for object declared using an interface.
const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
/// Retrieves the CXXRecordDecl that this type refers to, either
/// because the type is a RecordType or because it is the injected-class-name
/// type of a class template or class template partial specialization.
CXXRecordDecl *getAsCXXRecordDecl() const;
/// Retrieves the RecordDecl this type refers to.
RecordDecl *getAsRecordDecl() const;
/// Retrieves the TagDecl that this type refers to, either
/// because the type is a TagType or because it is the injected-class-name
/// type of a class template or class template partial specialization.
TagDecl *getAsTagDecl() const;
/// If this is a pointer or reference to a RecordType, return the
/// CXXRecordDecl that the type refers to.
///
/// If this is not a pointer or reference, or the type being pointed to does
/// not refer to a CXXRecordDecl, returns NULL.
const CXXRecordDecl *getPointeeCXXRecordDecl() const;
/// Get the DeducedType whose type will be deduced for a variable with
/// an initializer of this type. This looks through declarators like pointer
/// types, but not through decltype or typedefs.
DeducedType *getContainedDeducedType() const;
/// Get the AutoType whose type will be deduced for a variable with
/// an initializer of this type. This looks through declarators like pointer
/// types, but not through decltype or typedefs.
AutoType *getContainedAutoType() const {
return dyn_cast_or_null<AutoType>(getContainedDeducedType());
}
/// Determine whether this type was written with a leading 'auto'
/// corresponding to a trailing return type (possibly for a nested
/// function type within a pointer to function type or similar).
bool hasAutoForTrailingReturnType() const;
/// Member-template getAs<specific type>'. Look through sugar for
/// an instance of \<specific type>. This scheme will eventually
/// replace the specific getAsXXXX methods above.
///
/// There are some specializations of this member template listed
/// immediately following this class.
template <typename T> const T *getAs() const;
/// Member-template getAsAdjusted<specific type>. Look through specific kinds
/// of sugar (parens, attributes, etc) for an instance of \<specific type>.
/// This is used when you need to walk over sugar nodes that represent some
/// kind of type adjustment from a type that was written as a \<specific type>
/// to another type that is still canonically a \<specific type>.
template <typename T> const T *getAsAdjusted() const;
/// A variant of getAs<> for array types which silently discards
/// qualifiers from the outermost type.
const ArrayType *getAsArrayTypeUnsafe() const;
/// Member-template castAs<specific type>. Look through sugar for
/// the underlying instance of \<specific type>.
///
/// This method has the same relationship to getAs<T> as cast<T> has
/// to dyn_cast<T>; which is to say, the underlying type *must*
/// have the intended type, and this method will never return null.
template <typename T> const T *castAs() const;
/// A variant of castAs<> for array type which silently discards
/// qualifiers from the outermost type.
const ArrayType *castAsArrayTypeUnsafe() const;
/// Determine whether this type had the specified attribute applied to it
/// (looking through top-level type sugar).
bool hasAttr(attr::Kind AK) const;
/// Get the base element type of this type, potentially discarding type
/// qualifiers. This should never be used when type qualifiers
/// are meaningful.
const Type *getBaseElementTypeUnsafe() const;
/// If this is an array type, return the element type of the array,
/// potentially with type qualifiers missing.
/// This should never be used when type qualifiers are meaningful.
const Type *getArrayElementTypeNoTypeQual() const;
/// If this is a pointer type, return the pointee type.
/// If this is an array type, return the array element type.
/// This should never be used when type qualifiers are meaningful.
const Type *getPointeeOrArrayElementType() const;
/// If this is a pointer, ObjC object pointer, or block
/// pointer, this returns the respective pointee.
QualType getPointeeType() const;
/// Return the specified type with any "sugar" removed from the type,
/// removing any typedefs, typeofs, etc., as well as any qualifiers.
const Type *getUnqualifiedDesugaredType() const;
/// More type predicates useful for type checking/promotion
bool isPromotableIntegerType() const; // C99 6.3.1.1p2
/// Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// or an enum decl which has a signed representation.
bool isSignedIntegerType() const;
/// Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
/// or an enum decl which has an unsigned representation.
bool isUnsignedIntegerType() const;
/// Determines whether this is an integer type that is signed or an
/// enumeration types whose underlying type is a signed integer type.
bool isSignedIntegerOrEnumerationType() const;
/// Determines whether this is an integer type that is unsigned or an
/// enumeration types whose underlying type is a unsigned integer type.
bool isUnsignedIntegerOrEnumerationType() const;
/// Return true if this is a fixed point type according to
/// ISO/IEC JTC1 SC22 WG14 N1169.
bool isFixedPointType() const;
/// Return true if this is a saturated fixed point type according to
/// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
bool isSaturatedFixedPointType() const;
/// Return true if this is a saturated fixed point type according to
/// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
bool isUnsaturatedFixedPointType() const;
/// Return true if this is a fixed point type that is signed according
/// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
bool isSignedFixedPointType() const;
/// Return true if this is a fixed point type that is unsigned according
/// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
bool isUnsignedFixedPointType() const;
/// Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types.
bool isConstantSizeType() const;
/// Returns true if this type can be represented by some
/// set of type specifiers.
bool isSpecifierType() const;
/// Determine the linkage of this type.
Linkage getLinkage() const;
/// Determine the visibility of this type.
Visibility getVisibility() const {
return getLinkageAndVisibility().getVisibility();
}
/// Return true if the visibility was explicitly set is the code.
bool isVisibilityExplicit() const {
return getLinkageAndVisibility().isVisibilityExplicit();
}
/// Determine the linkage and visibility of this type.
LinkageInfo getLinkageAndVisibility() const;
/// True if the computed linkage is valid. Used for consistency
/// checking. Should always return true.
bool isLinkageValid() const;
/// Determine the nullability of the given type.
///
/// Note that nullability is only captured as sugar within the type
/// system, not as part of the canonical type, so nullability will
/// be lost by canonicalization and desugaring.
Optional<NullabilityKind> getNullability(const ASTContext &context) const;
/// Determine whether the given type can have a nullability
/// specifier applied to it, i.e., if it is any kind of pointer type.
///
/// \param ResultIfUnknown The value to return if we don't yet know whether
/// this type can have nullability because it is dependent.
bool canHaveNullability(bool ResultIfUnknown = true) const;
/// Retrieve the set of substitutions required when accessing a member
/// of the Objective-C receiver type that is declared in the given context.
///
/// \c *this is the type of the object we're operating on, e.g., the
/// receiver for a message send or the base of a property access, and is
/// expected to be of some object or object pointer type.
///
/// \param dc The declaration context for which we are building up a
/// substitution mapping, which should be an Objective-C class, extension,
/// category, or method within.
///
/// \returns an array of type arguments that can be substituted for
/// the type parameters of the given declaration context in any type described
/// within that context, or an empty optional to indicate that no
/// substitution is required.
Optional<ArrayRef<QualType>>
getObjCSubstitutions(const DeclContext *dc) const;
/// Determines if this is an ObjC interface type that may accept type
/// parameters.
bool acceptsObjCTypeParams() const;
const char *getTypeClassName() const;
QualType getCanonicalTypeInternal() const {
return CanonicalType;
}
CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
void dump() const;
void dump(llvm::raw_ostream &OS) const;
};
/// This will check for a TypedefType by removing any existing sugar
/// until it reaches a TypedefType or a non-sugared type.
template <> const TypedefType *Type::getAs() const;
/// This will check for a TemplateSpecializationType by removing any
/// existing sugar until it reaches a TemplateSpecializationType or a
/// non-sugared type.
template <> const TemplateSpecializationType *Type::getAs() const;
/// This will check for an AttributedType by removing any existing sugar
/// until it reaches an AttributedType or a non-sugared type.
template <> const AttributedType *Type::getAs() const;
// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
return dyn_cast<Class##Type>(CanonicalType); \
} \
template <> inline const Class##Type *Type::castAs() const { \
return cast<Class##Type>(CanonicalType); \
}
#include "clang/AST/TypeNodes.def"
/// This class is used for builtin types like 'int'. Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
enum Kind {
// OpenCL image types
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
#include "clang/Basic/OpenCLImageTypes.def"
// All other builtin types
#define BUILTIN_TYPE(Id, SingletonId) Id,
#define LAST_BUILTIN_TYPE(Id) LastKind = Id
#include "clang/AST/BuiltinTypes.def"
};
private:
friend class ASTContext; // ASTContext creates these.
BuiltinType(Kind K)
: Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
/*InstantiationDependent=*/(K == Dependent),
/*VariablyModified=*/false,
/*Unexpanded parameter pack=*/false) {
BuiltinTypeBits.Kind = K;
}
public:
Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
StringRef getName(const PrintingPolicy &Policy) const;
const char *getNameAsCString(const PrintingPolicy &Policy) const {
// The StringRef is null-terminated.
StringRef str = getName(Policy);
assert(!str.empty() && str.data()[str.size()] == '\0');
return str.data();
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
bool isInteger() const {
return getKind() >= Bool && getKind() <= Int128;
}
bool isSignedInteger() const {
return getKind() >= Char_S && getKind() <= Int128;
}
bool isUnsignedInteger() const {
return getKind() >= Bool && getKind() <= UInt128;
}
bool isFloatingPoint() const {
return getKind() >= Half && getKind() <= Float128;
}
/// Determines whether the given kind corresponds to a placeholder type.
static bool isPlaceholderTypeKind(Kind K) {
return K >= Overload;
}
/// Determines whether this type is a placeholder type, i.e. a type
/// which cannot appear in arbitrary positions in a fully-formed
/// expression.
bool isPlaceholderType() const {
return isPlaceholderTypeKind(getKind());
}
/// Determines whether this type is a placeholder type other than
/// Overload. Most placeholder types require only syntactic
/// information about their context in order to be resolved (e.g.
/// whether it is a call expression), which means they can (and
/// should) be resolved in an earlier "phase" of analysis.
/// Overload expressions sometimes pick up further information
/// from their context, like whether the context expects a
/// specific function-pointer type, and so frequently need
/// special treatment.
bool isNonOverloadPlaceholderType() const {
return getKind() > Overload;
}
static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
};
/// Complex values, per C99 6.2.5p11. This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
class ComplexType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
QualType ElementType;
ComplexType(QualType Element, QualType CanonicalPtr)
: Type(Complex, CanonicalPtr, Element->isDependentType(),
Element->isInstantiationDependentType(),
Element->isVariablyModifiedType(),
Element->containsUnexpandedParameterPack()),
ElementType(Element) {}
public:
QualType getElementType() const { return ElementType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
ID.AddPointer(Element.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
};
/// Sugar for parentheses used when specifying types.
class ParenType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
QualType Inner;
ParenType(QualType InnerType, QualType CanonType)
: Type(Paren, CanonType, InnerType->isDependentType(),
InnerType->isInstantiationDependentType(),
InnerType->isVariablyModifiedType(),
InnerType->containsUnexpandedParameterPack()),
Inner(InnerType) {}
public:
QualType getInnerType() const { return Inner; }
bool isSugared() const { return true; }
QualType desugar() const { return getInnerType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getInnerType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
Inner.Profile(ID);
}
static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
};
/// PointerType - C99 6.7.5.1 - Pointer Declarators.
class PointerType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
QualType PointeeType;
PointerType(QualType Pointee, QualType CanonicalPtr)
: Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {}
public:
QualType getPointeeType() const { return PointeeType; }
/// Returns true if address spaces of pointers overlap.
/// OpenCL v2.0 defines conversion rules for pointers to different
/// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
/// address spaces.
/// CL1.1 or CL1.2:
/// address spaces overlap iff they are they same.
/// CL2.0 adds:
/// __generic overlaps with any address space except for __constant.
bool isAddressSpaceOverlapping(const PointerType &other) const {
Qualifiers thisQuals = PointeeType.getQualifiers();
Qualifiers otherQuals = other.getPointeeType().getQualifiers();
// Address spaces overlap if at least one of them is a superset of another
return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
otherQuals.isAddressSpaceSupersetOf(thisQuals);
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
};
/// Represents a type which was implicitly adjusted by the semantic
/// engine for arbitrary reasons. For example, array and function types can
/// decay, and function types can have their calling conventions adjusted.
class AdjustedType : public Type, public llvm::FoldingSetNode {
QualType OriginalTy;
QualType AdjustedTy;
protected:
friend class ASTContext; // ASTContext creates these.
AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
QualType CanonicalPtr)
: Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
OriginalTy->isInstantiationDependentType(),
OriginalTy->isVariablyModifiedType(),
OriginalTy->containsUnexpandedParameterPack()),
OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
public:
QualType getOriginalType() const { return OriginalTy; }
QualType getAdjustedType() const { return AdjustedTy; }
bool isSugared() const { return true; }
QualType desugar() const { return AdjustedTy; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, OriginalTy, AdjustedTy);
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
ID.AddPointer(Orig.getAsOpaquePtr());
ID.AddPointer(New.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
}
};
/// Represents a pointer type decayed from an array or function type.
class DecayedType : public AdjustedType {
friend class ASTContext; // ASTContext creates these.
inline
DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
public:
QualType getDecayedType() const { return getAdjustedType(); }
inline QualType getPointeeType() const;
static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
};
/// Pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
class BlockPointerType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
// Block is some kind of pointer type
QualType PointeeType;
BlockPointerType(QualType Pointee, QualType CanonicalCls)
: Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {}
public:
// Get the pointee type. Pointee is required to always be a function type.
QualType getPointeeType() const { return PointeeType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == BlockPointer;
}
};
/// Base for LValueReferenceType and RValueReferenceType
class ReferenceType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
protected:
ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue)
: Type(tc, CanonicalRef, Referencee->isDependentType(),
Referencee->isInstantiationDependentType(),
Referencee->isVariablyModifiedType(),
Referencee->containsUnexpandedParameterPack()),
PointeeType(Referencee) {
ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
}
public:
bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
QualType getPointeeTypeAsWritten() const { return PointeeType; }
QualType getPointeeType() const {
// FIXME: this might strip inner qualifiers; okay?
const ReferenceType *T = this;
while (T->isInnerRef())
T = T->PointeeType->castAs<ReferenceType>();
return T->PointeeType;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, PointeeType, isSpelledAsLValue());
}
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Referencee,
bool SpelledAsLValue) {
ID.AddPointer(Referencee.getAsOpaquePtr());
ID.AddBoolean(SpelledAsLValue);
}
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference ||
T->getTypeClass() == RValueReference;
}
};
/// An lvalue reference type, per C++11 [dcl.ref].
class LValueReferenceType : public ReferenceType {
friend class ASTContext; // ASTContext creates these
LValueReferenceType(QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue)
: ReferenceType(LValueReference, Referencee, CanonicalRef,
SpelledAsLValue) {}
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference;
}
};
/// An rvalue reference type, per C++11 [dcl.ref].
class RValueReferenceType : public ReferenceType {
friend class ASTContext; // ASTContext creates these
RValueReferenceType(QualType Referencee, QualType CanonicalRef)
: ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == RValueReference;
}
};
/// A pointer to member type per C++ 8.3.3 - Pointers to members.
///
/// This includes both pointers to data members and pointer to member functions.
class MemberPointerType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
QualType PointeeType;
/// The class of which the pointee is a member. Must ultimately be a
/// RecordType, but could be a typedef or a template parameter too.
const Type *Class;
MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
: Type(MemberPointer, CanonicalPtr,
Cls->isDependentType() || Pointee->isDependentType(),
(Cls->isInstantiationDependentType() ||
Pointee->isInstantiationDependentType()),
Pointee->isVariablyModifiedType(),
(Cls->containsUnexpandedParameterPack() ||
Pointee->containsUnexpandedParameterPack())),
PointeeType(Pointee), Class(Cls) {}
public:
QualType getPointeeType() const { return PointeeType; }
/// Returns true if the member type (i.e. the pointee type) is a
/// function type rather than a data-member type.
bool isMemberFunctionPointer() const {
return PointeeType->isFunctionProtoType();
}
/// Returns true if the member type (i.e. the pointee type) is a
/// data type rather than a function type.
bool isMemberDataPointer() const {
return !PointeeType->isFunctionProtoType();
}
const Type *getClass() const { return Class; }
CXXRecordDecl *getMostRecentCXXRecordDecl() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType(), getClass());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
const Type *Class) {
ID.AddPointer(Pointee.getAsOpaquePtr());
ID.AddPointer(Class);
}
static bool classof(const Type *T) {
return T->getTypeClass() == MemberPointer;
}
};
/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
/// Capture whether this is a normal array (e.g. int X[4])
/// an array with a static size (e.g. int X[static 4]), or an array
/// with a star size (e.g. int X[*]).
/// 'static' is only allowed on function parameters.
enum ArraySizeModifier {
Normal, Static, Star
};
private:
/// The element type of the array.
QualType ElementType;
protected:
friend class ASTContext; // ASTContext creates these.
// C++ [temp.dep.type]p1:
// A type is dependent if it is...
// - an array type constructed from any dependent type or whose
// size is specified by a constant expression that is
// value-dependent,
ArrayType(TypeClass tc, QualType et, QualType can,
ArraySizeModifier sm, unsigned tq,
bool ContainsUnexpandedParameterPack)
: Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
et->isInstantiationDependentType() || tc == DependentSizedArray,
(tc == VariableArray || et->isVariablyModifiedType()),
ContainsUnexpandedParameterPack),
ElementType(et) {
ArrayTypeBits.IndexTypeQuals = tq;
ArrayTypeBits.SizeModifier = sm;
}
public:
QualType getElementType() const { return ElementType; }
ArraySizeModifier getSizeModifier() const {
return ArraySizeModifier(ArrayTypeBits.SizeModifier);
}
Qualifiers getIndexTypeQualifiers() const {
return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
}
unsigned getIndexTypeCVRQualifiers() const {
return ArrayTypeBits.IndexTypeQuals;
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray ||
T->getTypeClass() == VariableArray ||
T->getTypeClass() == IncompleteArray ||
T->getTypeClass() == DependentSizedArray;
}
};
/// Represents the canonical version of C arrays with a specified constant size.
/// For example, the canonical type for 'int A[4 + 4*100]' is a
/// ConstantArrayType where the element type is 'int' and the size is 404.
class ConstantArrayType : public ArrayType {
llvm::APInt Size; // Allows us to unique the type.
ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
ArraySizeModifier sm, unsigned tq)
: ArrayType(ConstantArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
Size(size) {}
protected:
friend class ASTContext; // ASTContext creates these.
ConstantArrayType(TypeClass tc, QualType et, QualType can,
const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
: ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
Size(size) {}
public:
const llvm::APInt &getSize() const { return Size; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
/// Determine the number of bits required to address a member of
// an array with the given element type and number of elements.
static unsigned getNumAddressingBits(const ASTContext &Context,
QualType ElementType,
const llvm::APInt &NumElements);
/// Determine the maximum number of active bits that an array's size
/// can require, which limits the maximum size of the array.
static unsigned getMaxSizeBits(const ASTContext &Context);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSize(),
getSizeModifier(), getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(ArraySize.getZExtValue());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray;
}
};
/// Represents a C array with an unspecified size. For example 'int A[]' has
/// an IncompleteArrayType where the element type is 'int' and the size is
/// unspecified.
class IncompleteArrayType : public ArrayType {
friend class ASTContext; // ASTContext creates these.
IncompleteArrayType(QualType et, QualType can,
ArraySizeModifier sm, unsigned tq)
: ArrayType(IncompleteArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()) {}
public:
friend class StmtIteratorBase;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == IncompleteArray;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSizeModifier(),
getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
ArraySizeModifier SizeMod, unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
};
/// Represents a C array with a specified size that is not an
/// integer-constant-expression. For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
/// int Y[x];
/// ++x;
/// int Z[x];
/// }
class VariableArrayType : public ArrayType {
friend class ASTContext; // ASTContext creates these.
/// An assignment-expression. VLA's are only permitted within
/// a function block.
Stmt *SizeExpr;
/// The range spanned by the left and right array brackets.
SourceRange Brackets;
VariableArrayType(QualType et, QualType can, Expr *e,
ArraySizeModifier sm, unsigned tq,
SourceRange brackets)
: ArrayType(VariableArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
SizeExpr((Stmt*) e), Brackets(brackets) {}
public:
friend class StmtIteratorBase;
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == VariableArray;
}
void Profile(llvm::FoldingSetNodeID &ID) {
llvm_unreachable("Cannot unique VariableArrayTypes.");
}
};
/// Represents an array type in C++ whose size is a value-dependent expression.
///
/// For example:
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };
/// \endcode
///
/// For these types, we won't actually know what the array bound is
/// until template instantiation occurs, at which point this will
/// become either a ConstantArrayType or a VariableArrayType.
class DependentSizedArrayType : public ArrayType {
friend class ASTContext; // ASTContext creates these.
const ASTContext &Context;
/// An assignment expression that will instantiate to the
/// size of the array.
///
/// The expression itself might be null, in which case the array
/// type will have its size deduced from an initializer.
Stmt *SizeExpr;
/// The range spanned by the left and right array brackets.
SourceRange Brackets;
DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
Expr *e, ArraySizeModifier sm, unsigned tq,
SourceRange brackets);
public:
friend class StmtIteratorBase;
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedArray;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(),
getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType ET, ArraySizeModifier SizeMod,
unsigned TypeQuals, Expr *E);
};
/// Represents an extended address space qualifier where the input address space
/// value is dependent. Non-dependent address spaces are not represented with a
/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
///
/// For example:
/// \code
/// template<typename T, int AddrSpace>
/// class AddressSpace {
/// typedef T __attribute__((address_space(AddrSpace))) type;
/// }
/// \endcode
class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
friend class ASTContext;
const ASTContext &Context;
Expr *AddrSpaceExpr;
QualType PointeeType;
SourceLocation loc;
DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
QualType can, Expr *AddrSpaceExpr,
SourceLocation loc);
public:
Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
QualType getPointeeType() const { return PointeeType; }
SourceLocation getAttributeLoc() const { return loc; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentAddressSpace;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType PointeeType, Expr *AddrSpaceExpr);
};
/// Represents an extended vector type where either the type or size is
/// dependent.
///
/// For example:
/// \code
/// template<typename T, int Size>
/// class vector {
/// typedef T __attribute__((ext_vector_type(Size))) type;
/// }
/// \endcode
class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
friend class ASTContext;
const ASTContext &Context;
Expr *SizeExpr;
/// The element type of the array.
QualType ElementType;
SourceLocation loc;
DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
QualType can, Expr *SizeExpr, SourceLocation loc);
public:
Expr *getSizeExpr() const { return SizeExpr; }
QualType getElementType() const { return ElementType; }
SourceLocation getAttributeLoc() const { return loc; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedExtVector;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType ElementType, Expr *SizeExpr);
};
/// Represents a GCC generic vector type. This type is created using
/// __attribute__((vector_size(n)), where "n" specifies the vector size in
/// bytes; or from an Altivec __vector or vector declaration.
/// Since the constructor takes the number of vector elements, the
/// client is responsible for converting the size into the number of elements.
class VectorType : public Type, public llvm::FoldingSetNode {
public:
enum VectorKind {
/// not a target-specific vector type
GenericVector,
/// is AltiVec vector
AltiVecVector,
/// is AltiVec 'vector Pixel'
AltiVecPixel,
/// is AltiVec 'vector bool ...'
AltiVecBool,
/// is ARM Neon vector
NeonVector,
/// is ARM Neon polynomial vector
NeonPolyVector
};
protected:
friend class ASTContext; // ASTContext creates these.
/// The element type of the vector.
QualType ElementType;
VectorType(QualType vecType, unsigned nElements, QualType canonType,
VectorKind vecKind);
VectorType(TypeClass tc, QualType vecType, unsigned nElements,
QualType canonType, VectorKind vecKind);
public:
QualType getElementType() const { return ElementType; }
unsigned getNumElements() const { return VectorTypeBits.NumElements; }
static bool isVectorSizeTooLarge(unsigned NumElements) {
return NumElements > VectorTypeBitfields::MaxNumElements;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
VectorKind getVectorKind() const {
return VectorKind(VectorTypeBits.VecKind);
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getNumElements(),
getTypeClass(), getVectorKind());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
unsigned NumElements, TypeClass TypeClass,
VectorKind VecKind) {
ID.AddPointer(ElementType.getAsOpaquePtr());
ID.AddInteger(NumElements);
ID.AddInteger(TypeClass);
ID.AddInteger(VecKind);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
}
};
/// Represents a vector type where either the type or size is dependent.
////
/// For example:
/// \code
/// template<typename T, int Size>
/// class vector {
/// typedef T __attribute__((vector_size(Size))) type;
/// }
/// \endcode
class DependentVectorType : public Type, public llvm::FoldingSetNode {
friend class ASTContext;
const ASTContext &Context;
QualType ElementType;
Expr *SizeExpr;
SourceLocation Loc;
DependentVectorType(const ASTContext &Context, QualType ElementType,
QualType CanonType, Expr *SizeExpr,
SourceLocation Loc, VectorType::VectorKind vecKind);
public:
Expr *getSizeExpr() const { return SizeExpr; }
QualType getElementType() const { return ElementType; }
SourceLocation getAttributeLoc() const { return Loc; }
VectorType::VectorKind getVectorKind() const {
return VectorType::VectorKind(VectorTypeBits.VecKind);
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentVector;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType ElementType, const Expr *SizeExpr,
VectorType::VectorKind VecKind);
};
/// ExtVectorType - Extended vector type. This type is created using
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
/// class enables syntactic extensions, like Vector Components for accessing
/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
/// Shading Language).
class ExtVectorType : public VectorType {
friend class ASTContext; // ASTContext creates these.
ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
: VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
public:
static int getPointAccessorIdx(char c) {
switch (c) {
default: return -1;
case 'x': case 'r': return 0;
case 'y': case 'g': return 1;
case 'z': case 'b': return 2;
case 'w': case 'a': return 3;
}
}
static int getNumericAccessorIdx(char c) {
switch (c) {
default: return -1;
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'A':
case 'a': return 10;
case 'B':
case 'b': return 11;
case 'C':
case 'c': return 12;
case 'D':
case 'd': return 13;
case 'E':
case 'e': return 14;
case 'F':
case 'f': return 15;
}
}
static int getAccessorIdx(char c, bool isNumericAccessor) {
if (isNumericAccessor)
return getNumericAccessorIdx(c);
else
return getPointAccessorIdx(c);
}
bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
return unsigned(idx-1) < getNumElements();
return false;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ExtVector;
}
};
/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
/// class of FunctionNoProtoType and FunctionProtoType.
class FunctionType : public Type {
// The type returned by the function.
QualType ResultType;
public:
/// Interesting information about a specific parameter that can't simply
/// be reflected in parameter's type. This is only used by FunctionProtoType
/// but is in FunctionType to make this class available during the
/// specification of the bases of FunctionProtoType.
///
/// It makes sense to model language features this way when there's some
/// sort of parameter-specific override (such as an attribute) that
/// affects how the function is called. For example, the ARC ns_consumed
/// attribute changes whether a parameter is passed at +0 (the default)
/// or +1 (ns_consumed). This must be reflected in the function type,
/// but isn't really a change to the parameter type.
///
/// One serious disadvantage of modelling language features this way is
/// that they generally do not work with language features that attempt
/// to destructure types. For example, template argument deduction will
/// not be able to match a parameter declared as
/// T (*)(U)
/// against an argument of type
/// void (*)(__attribute__((ns_consumed)) id)
/// because the substitution of T=void, U=id into the former will
/// not produce the latter.
class ExtParameterInfo {
enum {
ABIMask = 0x0F,
IsConsumed = 0x10,
HasPassObjSize = 0x20,
IsNoEscape = 0x40,
};
unsigned char Data = 0;
public:
ExtParameterInfo() = default;
/// Return the ABI treatment of this parameter.
ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
ExtParameterInfo withABI(ParameterABI kind) const {
ExtParameterInfo copy = *this;
copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
return copy;
}
/// Is this parameter considered "consumed" by Objective-C ARC?
/// Consumed parameters must have retainable object type.
bool isConsumed() const { return (Data & IsConsumed); }
ExtParameterInfo withIsConsumed(bool consumed) const {
ExtParameterInfo copy = *this;
if (consumed)
copy.Data |= IsConsumed;
else
copy.Data &= ~IsConsumed;
return copy;
}
bool hasPassObjectSize() const { return Data & HasPassObjSize; }
ExtParameterInfo withHasPassObjectSize() const {
ExtParameterInfo Copy = *this;
Copy.Data |= HasPassObjSize;
return Copy;
}
bool isNoEscape() const { return Data & IsNoEscape; }
ExtParameterInfo withIsNoEscape(bool NoEscape) const {
ExtParameterInfo Copy = *this;
if (NoEscape)
Copy.Data |= IsNoEscape;
else
Copy.Data &= ~IsNoEscape;
return Copy;
}
unsigned char getOpaqueValue() const { return Data; }
static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
ExtParameterInfo result;
result.Data = data;
return result;
}
friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
return lhs.Data == rhs.Data;
}
friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
return lhs.Data != rhs.Data;
}
};
/// A class which abstracts out some details necessary for
/// making a call.
///
/// It is not actually used directly for storing this information in
/// a FunctionType, although FunctionType does currently use the
/// same bit-pattern.
///
// If you add a field (say Foo), other than the obvious places (both,
// constructors, compile failures), what you need to update is
// * Operator==
// * getFoo
// * withFoo
// * functionType. Add Foo, getFoo.
// * ASTContext::getFooType
// * ASTContext::mergeFunctionTypes
// * FunctionNoProtoType::Profile
// * FunctionProtoType::Profile
// * TypePrinter::PrintFunctionProto
// * AST read and write
// * Codegen
class ExtInfo {
friend class FunctionType;
// Feel free to rearrange or add bits, but if you go over 12,
// you'll need to adjust both the Bits field below and
// Type::FunctionTypeBitfields.
// | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
// |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
//
// regparm is either 0 (no regparm attribute) or the regparm value+1.
enum { CallConvMask = 0x1F };
enum { NoReturnMask = 0x20 };
enum { ProducesResultMask = 0x40 };
enum { NoCallerSavedRegsMask = 0x80 };
enum { NoCfCheckMask = 0x800 };
enum {
RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
NoCallerSavedRegsMask | NoCfCheckMask),
RegParmOffset = 8
}; // Assumed to be the last field
uint16_t Bits = CC_C;
ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
public:
// Constructor with no defaults. Use this when you know that you
// have all the elements (when reading an AST file for example).
ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
(producesResult ? ProducesResultMask : 0) |
(noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
(hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
(NoCfCheck ? NoCfCheckMask : 0);
}
// Constructor with all defaults. Use when for example creating a
// function known to use defaults.
ExtInfo() = default;
// Constructor with just the calling convention, which is an important part
// of the canonical type.
ExtInfo(CallingConv CC) : Bits(CC) {}
bool getNoReturn() const { return Bits & NoReturnMask; }
bool getProducesResult() const { return Bits & ProducesResultMask; }
bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
unsigned getRegParm() const {
unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
if (RegParm > 0)
--RegParm;
return RegParm;
}
CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
bool operator==(ExtInfo Other) const {
return Bits == Other.Bits;
}
bool operator!=(ExtInfo Other) const {
return Bits != Other.Bits;
}
// Note that we don't have setters. That is by design, use
// the following with methods instead of mutating these objects.
ExtInfo withNoReturn(bool noReturn) const {
if (noReturn)
return ExtInfo(Bits | NoReturnMask);
else
return ExtInfo(Bits & ~NoReturnMask);
}
ExtInfo withProducesResult(bool producesResult) const {
if (producesResult)
return ExtInfo(Bits | ProducesResultMask);
else
return ExtInfo(Bits & ~ProducesResultMask);
}
ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
if (noCallerSavedRegs)
return ExtInfo(Bits | NoCallerSavedRegsMask);
else
return ExtInfo(Bits & ~NoCallerSavedRegsMask);
}
ExtInfo withNoCfCheck(bool noCfCheck) const {
if (noCfCheck)
return ExtInfo(Bits | NoCfCheckMask);
else
return ExtInfo(Bits & ~NoCfCheckMask);
}
ExtInfo withRegParm(unsigned RegParm) const {
assert(RegParm < 7 && "Invalid regparm value");
return ExtInfo((Bits & ~RegParmMask) |
((RegParm + 1) << RegParmOffset));
}
ExtInfo withCallingConv(CallingConv cc) const {
return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Bits);
}
};
/// A simple holder for a QualType representing a type in an
/// exception specification. Unfortunately needed by FunctionProtoType
/// because TrailingObjects cannot handle repeated types.
struct ExceptionType { QualType Type; };
/// A simple holder for various uncommon bits which do not fit in
/// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
/// alignment of subsequent objects in TrailingObjects. You must update
/// hasExtraBitfields in FunctionProtoType after adding extra data here.
struct alignas(void *) FunctionTypeExtraBitfields {
/// The number of types in the exception specification.
/// A whole unsigned is not needed here and according to
/// [implimits] 8 bits would be enough here.
unsigned NumExceptionType;
};
protected:
FunctionType(TypeClass tc, QualType res,
QualType Canonical, bool Dependent,
bool InstantiationDependent,
bool VariablyModified, bool ContainsUnexpandedParameterPack,
ExtInfo Info)
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
ContainsUnexpandedParameterPack),
ResultType(res) {
FunctionTypeBits.ExtInfo = Info.Bits;
}
unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
public:
QualType getReturnType() const { return ResultType; }
bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
/// Determine whether this function type includes the GNU noreturn
/// attribute. The C++11 [[noreturn]] attribute does not affect the function
/// type.
bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
CallingConv getCallConv() const { return getExtInfo().getCC(); }
ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
/// Determine the type of an expression that calls a function of
/// this type.
QualType getCallResultType(const ASTContext &Context) const {
return getReturnType().getNonLValueExprType(Context);
}
static StringRef getNameForCallConv(CallingConv CC);
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto ||
T->getTypeClass() == FunctionProto;
}
};
/// Represents a K&R-style 'int foo()' function, which has
/// no information available about its arguments.
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
: FunctionType(FunctionNoProto, Result, Canonical,
/*Dependent=*/false, /*InstantiationDependent=*/false,
Result->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false, Info) {}
public:
// No additional state past what FunctionType provides.
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReturnType(), getExtInfo());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
ExtInfo Info) {
Info.Profile(ID);
ID.AddPointer(ResultType.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto;
}
};
/// Represents a prototype with parameter type info, e.g.
/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
/// parameters, not as having a single void parameter. Such a type can have
/// an exception specification, but this specification is not part of the
/// canonical type. FunctionProtoType has several trailing objects, some of
/// which optional. For more information about the trailing objects see
/// the first comment inside FunctionProtoType.
class FunctionProtoType final
: public FunctionType,
public llvm::FoldingSetNode,
private llvm::TrailingObjects<
FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
FunctionType::ExceptionType, Expr *, FunctionDecl *,
FunctionType::ExtParameterInfo> {
friend class ASTContext; // ASTContext creates these.
friend TrailingObjects;
// FunctionProtoType is followed by several trailing objects, some of
// which optional. They are in order:
//
// * An array of getNumParams() QualType holding the parameter types.
// Always present. Note that for the vast majority of FunctionProtoType,
// these will be the only trailing objects.
//
// * Optionally if some extra data is stored in FunctionTypeExtraBitfields
// (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
// a single FunctionTypeExtraBitfields. Present if and only if
// hasExtraBitfields() is true.
//
// * Optionally exactly one of:
// * an array of getNumExceptions() ExceptionType,
// * a single Expr *,
// * a pair of FunctionDecl *,
// * a single FunctionDecl *
// used to store information about the various types of exception
// specification. See getExceptionSpecSize for the details.
//
// * Optionally an array of getNumParams() ExtParameterInfo holding
// an ExtParameterInfo for each of the parameters. Present if and
// only if hasExtParameterInfos() is true.
//
// The optional FunctionTypeExtraBitfields has to be before the data
// related to the exception specification since it contains the number
// of exception types.
//
// We put the ExtParameterInfos last. If all were equal, it would make
// more sense to put these before the exception specification, because
// it's much easier to skip past them compared to the elaborate switch
// required to skip the exception specification. However, all is not
// equal; ExtParameterInfos are used to model very uncommon features,
// and it's better not to burden the more common paths.
public:
/// Holds information about the various types of exception specification.
/// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
/// used to group together the various bits of information about the
/// exception specification.
struct ExceptionSpecInfo {
/// The kind of exception specification this is.
ExceptionSpecificationType Type = EST_None;
/// Explicitly-specified list of exception types.
ArrayRef<QualType> Exceptions;
/// Noexcept expression, if this is a computed noexcept specification.
Expr *NoexceptExpr = nullptr;
/// The function whose exception specification this is, for
/// EST_Unevaluated and EST_Uninstantiated.
FunctionDecl *SourceDecl = nullptr;
/// The function template whose exception specification this is instantiated
/// from, for EST_Uninstantiated.
FunctionDecl *SourceTemplate = nullptr;
ExceptionSpecInfo() = default;
ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
};
/// Extra information about a function prototype. ExtProtoInfo is not
/// stored as such in FunctionProtoType but is used to group together
/// the various bits of extra information about a function prototype.
struct ExtProtoInfo {
FunctionType::ExtInfo ExtInfo;
bool Variadic : 1;
bool HasTrailingReturn : 1;
unsigned char TypeQuals = 0;
RefQualifierKind RefQualifier = RQ_None;
ExceptionSpecInfo ExceptionSpec;
const ExtParameterInfo *ExtParameterInfos = nullptr;
ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
ExtProtoInfo(CallingConv CC)
: ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
ExtProtoInfo Result(*this);
Result.ExceptionSpec = ESI;
return Result;
}
};
private:
unsigned numTrailingObjects(OverloadToken<QualType>) const {
return getNumParams();
}
unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
return hasExtraBitfields();
}
unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
return getExceptionSpecSize().NumExceptionType;
}
unsigned numTrailingObjects(OverloadToken<Expr *>) const {
return getExceptionSpecSize().NumExprPtr;
}
unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
return getExceptionSpecSize().NumFunctionDeclPtr;
}
unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
return hasExtParameterInfos() ? getNumParams() : 0;
}
/// Determine whether there are any argument types that
/// contain an unexpanded parameter pack.
static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
unsigned numArgs) {
for (unsigned Idx = 0; Idx < numArgs; ++Idx)
if (ArgArray[Idx]->containsUnexpandedParameterPack())
return true;
return false;
}
FunctionProtoType(QualType result, ArrayRef<QualType> params,
QualType canonical, const ExtProtoInfo &epi);
/// This struct is returned by getExceptionSpecSize and is used to
/// translate an ExceptionSpecificationType to the number and kind
/// of trailing objects related to the exception specification.
struct ExceptionSpecSizeHolder {
unsigned NumExceptionType;
unsigned NumExprPtr;
unsigned NumFunctionDeclPtr;
};
/// Return the number and kind of trailing objects
/// related to the exception specification.
static ExceptionSpecSizeHolder
getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
switch (EST) {
case EST_None:
case EST_DynamicNone:
case EST_MSAny:
case EST_BasicNoexcept:
case EST_Unparsed:
return {0, 0, 0};
case EST_Dynamic:
return {NumExceptions, 0, 0};
case EST_DependentNoexcept:
case EST_NoexceptFalse:
case EST_NoexceptTrue:
return {0, 1, 0};
case EST_Uninstantiated:
return {0, 0, 2};
case EST_Unevaluated:
return {0, 0, 1};
}
llvm_unreachable("bad exception specification kind");
}
/// Return the number and kind of trailing objects
/// related to the exception specification.
ExceptionSpecSizeHolder getExceptionSpecSize() const {
return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
}
/// Whether the trailing FunctionTypeExtraBitfields is present.
static bool hasExtraBitfields(ExceptionSpecificationType EST) {
// If the exception spec type is EST_Dynamic then we have > 0 exception
// types and the exact number is stored in FunctionTypeExtraBitfields.
return EST == EST_Dynamic;
}
/// Whether the trailing FunctionTypeExtraBitfields is present.
bool hasExtraBitfields() const {
return hasExtraBitfields(getExceptionSpecType());
}
public:
unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
QualType getParamType(unsigned i) const {
assert(i < getNumParams() && "invalid parameter index");
return param_type_begin()[i];
}
ArrayRef<QualType> getParamTypes() const {
return llvm::makeArrayRef(param_type_begin(), param_type_end());
}
ExtProtoInfo getExtProtoInfo() const {
ExtProtoInfo EPI;
EPI.ExtInfo = getExtInfo();
EPI.Variadic = isVariadic();
EPI.HasTrailingReturn = hasTrailingReturn();
EPI.ExceptionSpec.Type = getExceptionSpecType();
EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
EPI.RefQualifier = getRefQualifier();
if (EPI.ExceptionSpec.Type == EST_Dynamic) {
EPI.ExceptionSpec.Exceptions = exceptions();
} else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
} else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
} else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
}
EPI.ExtParameterInfos = getExtParameterInfosOrNull();
return EPI;
}
/// Get the kind of exception specification on this function.
ExceptionSpecificationType getExceptionSpecType() const {
return static_cast<ExceptionSpecificationType>(
FunctionTypeBits.ExceptionSpecType);
}
/// Return whether this function has any kind of exception spec.
bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
/// Return whether this function has a dynamic (throw) exception spec.
bool hasDynamicExceptionSpec() const {
return isDynamicExceptionSpec(getExceptionSpecType());
}
/// Return whether this function has a noexcept exception spec.
bool hasNoexceptExceptionSpec() const {
return isNoexceptExceptionSpec(getExceptionSpecType());
}
/// Return whether this function has a dependent exception spec.
bool hasDependentExceptionSpec() const;
/// Return whether this function has an instantiation-dependent exception
/// spec.
bool hasInstantiationDependentExceptionSpec() const;
/// Return the number of types in the exception specification.
unsigned getNumExceptions() const {
return getExceptionSpecType() == EST_Dynamic
? getTrailingObjects<FunctionTypeExtraBitfields>()
->NumExceptionType
: 0;
}
/// Return the ith exception type, where 0 <= i < getNumExceptions().
QualType getExceptionType(unsigned i) const {
assert(i < getNumExceptions() && "Invalid exception number!");
return exception_begin()[i];
}
/// Return the expression inside noexcept(expression), or a null pointer
/// if there is none (because the exception spec is not of this form).
Expr *getNoexceptExpr() const {
if (!isComputedNoexcept(getExceptionSpecType()))
return nullptr;
return *getTrailingObjects<Expr *>();
}
/// If this function type has an exception specification which hasn't
/// been determined yet (either because it has not been evaluated or because
/// it has not been instantiated), this is the function whose exception
/// specification is represented by this type.
FunctionDecl *getExceptionSpecDecl() const {
if (getExceptionSpecType() != EST_Uninstantiated &&
getExceptionSpecType() != EST_Unevaluated)
return nullptr;
return getTrailingObjects<FunctionDecl *>()[0];
}
/// If this function type has an uninstantiated exception
/// specification, this is the function whose exception specification
/// should be instantiated to find the exception specification for
/// this type.
FunctionDecl *getExceptionSpecTemplate() const {
if (getExceptionSpecType() != EST_Uninstantiated)
return nullptr;
return getTrailingObjects<FunctionDecl *>()[1];
}
/// Determine whether this function type has a non-throwing exception
/// specification.
CanThrowResult canThrow() const;
/// Determine whether this function type has a non-throwing exception
/// specification. If this depends on template arguments, returns
/// \c ResultIfDependent.
bool isNothrow(bool ResultIfDependent = false) const {
return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
}
/// Whether this function prototype is variadic.
bool isVariadic() const { return FunctionTypeBits.Variadic; }
/// Determines whether this function prototype contains a
/// parameter pack at the end.
///
/// A function template whose last parameter is a parameter pack can be
/// called with an arbitrary number of arguments, much like a variadic
/// function.
bool isTemplateVariadic() const;
/// Whether this function prototype has a trailing return type.
bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
/// Retrieve the ref-qualifier associated with this function type.
RefQualifierKind getRefQualifier() const {
return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
}
using param_type_iterator = const QualType *;
using param_type_range = llvm::iterator_range<param_type_iterator>;
param_type_range param_types() const {
return param_type_range(param_type_begin(), param_type_end());
}
param_type_iterator param_type_begin() const {
return getTrailingObjects<QualType>();
}
param_type_iterator param_type_end() const {
return param_type_begin() + getNumParams();
}
using exception_iterator = const QualType *;
ArrayRef<QualType> exceptions() const {
return llvm::makeArrayRef(exception_begin(), exception_end());
}
exception_iterator exception_begin() const {
return reinterpret_cast<exception_iterator>(
getTrailingObjects<ExceptionType>());
}
exception_iterator exception_end() const {
return exception_begin() + getNumExceptions();
}
/// Is there any interesting extra information for any of the parameters
/// of this function type?
bool hasExtParameterInfos() const {
return FunctionTypeBits.HasExtParameterInfos;
}
ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
assert(hasExtParameterInfos());
return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
getNumParams());
}
/// Return a pointer to the beginning of the array of extra parameter
/// information, if present, or else null if none of the parameters
/// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
const ExtParameterInfo *getExtParameterInfosOrNull() const {
if (!hasExtParameterInfos())
return nullptr;
return getTrailingObjects<ExtParameterInfo>();
}
ExtParameterInfo getExtParameterInfo(unsigned I) const {
assert(I < getNumParams() && "parameter index out of range");
if (hasExtParameterInfos())
return getTrailingObjects<ExtParameterInfo>()[I];
return ExtParameterInfo();
}
ParameterABI getParameterABI(unsigned I) const {
assert(I < getNumParams() && "parameter index out of range");
if (hasExtParameterInfos())
return getTrailingObjects<ExtParameterInfo>()[I].getABI();
return ParameterABI::Ordinary;
}
bool isParamConsumed(unsigned I) const {
assert(I < getNumParams() && "parameter index out of range");
if (hasExtParameterInfos())
return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
return false;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void printExceptionSpecification(raw_ostream &OS,
const PrintingPolicy &Policy) const;
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionProto;
}
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
param_type_iterator ArgTys, unsigned NumArgs,
const ExtProtoInfo &EPI, const ASTContext &Context,
bool Canonical);
};
/// Represents the dependent type named by a dependently-scoped
/// typename using declaration, e.g.
/// using typename Base<T>::foo;
///
/// Template instantiation turns these into the underlying type.
class UnresolvedUsingType : public Type {
friend class ASTContext; // ASTContext creates these.
UnresolvedUsingTypenameDecl *Decl;
UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
: Type(UnresolvedUsing, QualType(), true, true, false,
/*ContainsUnexpandedParameterPack=*/false),
Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
public:
UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == UnresolvedUsing;
}
void Profile(llvm::FoldingSetNodeID &ID) {
return Profile(ID, Decl);
}
static void Profile(llvm::FoldingSetNodeID &ID,
UnresolvedUsingTypenameDecl *D) {
ID.AddPointer(D);
}
};
class TypedefType : public Type {
TypedefNameDecl *Decl;
protected:
friend class ASTContext; // ASTContext creates these.
TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
: Type(tc, can, can->isDependentType(),
can->isInstantiationDependentType(),
can->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false),
Decl(const_cast<TypedefNameDecl*>(D)) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
public:
TypedefNameDecl *getDecl() const { return Decl; }
bool isSugared() const { return true; }
QualType desugar() const;
static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
};
/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
class TypeOfExprType : public Type {
Expr *TOExpr;
protected:
friend class ASTContext; // ASTContext creates these.
TypeOfExprType(Expr *E, QualType can = QualType());
public:
Expr *getUnderlyingExpr() const { return TOExpr; }
/// Remove a single level of sugar.
QualType desugar() const;
/// Returns whether this type directly provides sugar.
bool isSugared() const;
static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
};
/// Internal representation of canonical, dependent
/// `typeof(expr)` types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via TypeOfExprType nodes.
class DependentTypeOfExprType
: public TypeOfExprType, public llvm::FoldingSetNode {
const ASTContext &Context;
public:
DependentTypeOfExprType(const ASTContext &Context, Expr *E)
: TypeOfExprType(E), Context(Context) {}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
Expr *E);
};
/// Represents `typeof(type)`, a GCC extension.
class TypeOfType : public Type {
friend class ASTContext; // ASTContext creates these.
QualType TOType;
TypeOfType(QualType T, QualType can)
: Type(TypeOf, can, T->isDependentType(),
T->isInstantiationDependentType(),
T->isVariablyModifiedType(),
T->containsUnexpandedParameterPack()),
TOType(T) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
public:
QualType getUnderlyingType() const { return TOType; }
/// Remove a single level of sugar.
QualType desugar() const { return getUnderlyingType(); }
/// Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
};
/// Represents the type `decltype(expr)` (C++11).
class DecltypeType : public Type {
Expr *E;
QualType UnderlyingType;
protected:
friend class ASTContext; // ASTContext creates these.
DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
public:
Expr *getUnderlyingExpr() const { return E; }
QualType getUnderlyingType() const { return UnderlyingType; }
/// Remove a single level of sugar.
QualType desugar() const;
/// Returns whether this type directly provides sugar.
bool isSugared() const;
static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
};
/// Internal representation of canonical, dependent
/// decltype(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via DecltypeType nodes.
class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
const ASTContext &Context;
public:
DependentDecltypeType(const ASTContext &Context, Expr *E);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
Expr *E);
};
/// A unary type transform, which is a type constructed from another.
class UnaryTransformType : public Type {
public:
enum UTTKind {
EnumUnderlyingType
};
private:
/// The untransformed type.
QualType BaseType;
/// The transformed type if not dependent, otherwise the same as BaseType.
QualType UnderlyingType;
UTTKind UKind;
protected:
friend class ASTContext;
UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
QualType CanonicalTy);
public:
bool isSugared() const { return !isDependentType(); }
QualType desugar() const { return UnderlyingType; }
QualType getUnderlyingType() const { return UnderlyingType; }
QualType getBaseType() const { return BaseType; }
UTTKind getUTTKind() const { return UKind; }
static bool classof(const Type *T) {
return T->getTypeClass() == UnaryTransform;
}
};
/// Internal representation of canonical, dependent
/// __underlying_type(type) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via UnaryTransformType nodes.
class DependentUnaryTransformType : public UnaryTransformType,
public llvm::FoldingSetNode {
public:
DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
UTTKind UKind);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getBaseType(), getUTTKind());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
UTTKind UKind) {
ID.AddPointer(BaseType.getAsOpaquePtr());
ID.AddInteger((unsigned)UKind);
}
};
class TagType : public Type {
friend class ASTReader;
/// Stores the TagDecl associated with this type. The decl may point to any
/// TagDecl that declares the entity.
TagDecl *decl;
protected:
TagType(TypeClass TC, const TagDecl *D, QualType can);
public:
TagDecl *getDecl() const;
/// Determines whether this type is in the process of being defined.
bool isBeingDefined() const;
static bool classof(const Type *T) {
return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
}
};
/// A helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of structs/unions/classes.
class RecordType : public TagType {
protected:
friend class ASTContext; // ASTContext creates these.
explicit RecordType(const RecordDecl *D)
: TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
explicit RecordType(TypeClass TC, RecordDecl *D)
: TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
public:
RecordDecl *getDecl() const {
return reinterpret_cast<RecordDecl*>(TagType::getDecl());
}
/// Recursively check all fields in the record for const-ness. If any field
/// is declared const, return true. Otherwise, return false.
bool hasConstFields() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) { return T->getTypeClass() == Record; }
};
/// A helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of enums.
class EnumType : public TagType {
friend class ASTContext; // ASTContext creates these.
explicit EnumType(const EnumDecl *D)
: TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
public:
EnumDecl *getDecl() const {
return reinterpret_cast<EnumDecl*>(TagType::getDecl());
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
};
/// An attributed type is a type to which a type attribute has been applied.
///
/// The "modified type" is the fully-sugared type to which the attributed
/// type was applied; generally it is not canonically equivalent to the
/// attributed type. The "equivalent type" is the minimally-desugared type
/// which the type is canonically equivalent to.
///
/// For example, in the following attributed type:
/// int32_t __attribute__((vector_size(16)))
/// - the modified type is the TypedefType for int32_t
/// - the equivalent type is VectorType(16, int32_t)
/// - the canonical type is VectorType(16, int)
class AttributedType : public Type, public llvm::FoldingSetNode {
public:
using Kind = attr::Kind;
private:
friend class ASTContext; // ASTContext creates these
QualType ModifiedType;
QualType EquivalentType;
AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
QualType equivalent)
: Type(Attributed, canon, equivalent->isDependentType(),
equivalent->isInstantiationDependentType(),
equivalent->isVariablyModifiedType(),
equivalent->containsUnexpandedParameterPack()),
ModifiedType(modified), EquivalentType(equivalent) {
AttributedTypeBits.AttrKind = attrKind;
}
public:
Kind getAttrKind() const {
return static_cast<Kind>(AttributedTypeBits.AttrKind);
}
QualType getModifiedType() const { return ModifiedType; }
QualType getEquivalentType() const { return EquivalentType; }
bool isSugared() const { return true; }
QualType desugar() const { return getEquivalentType(); }
/// Does this attribute behave like a type qualifier?
///
/// A type qualifier adjusts a type to provide specialized rules for
/// a specific object, like the standard const and volatile qualifiers.
/// This includes attributes controlling things like nullability,
/// address spaces, and ARC ownership. The value of the object is still
/// largely described by the modified type.
///
/// In contrast, many type attributes "rewrite" their modified type to
/// produce a fundamentally different type, not necessarily related in any
/// formalizable way to the original type. For example, calling convention
/// and vector attributes are not simple type qualifiers.
///
/// Type qualifiers are often, but not always, reflected in the canonical
/// type.
bool isQualifier() const;
bool isMSTypeSpec() const;
bool isCallingConv() const;
llvm::Optional<NullabilityKind> getImmediateNullability() const;
/// Retrieve the attribute kind corresponding to the given
/// nullability kind.
static Kind getNullabilityAttrKind(NullabilityKind kind) {
switch (kind) {
case NullabilityKind::NonNull:
return attr::TypeNonNull;
case NullabilityKind::Nullable:
return attr::TypeNullable;
case NullabilityKind::Unspecified:
return attr::TypeNullUnspecified;
}
llvm_unreachable("Unknown nullability kind.");
}
/// Strip off the top-level nullability annotation on the given
/// type, if it's there.
///
/// \param T The type to strip. If the type is exactly an
/// AttributedType specifying nullability (without looking through
/// type sugar), the nullability is returned and this type changed
/// to the underlying modified type.
///
/// \returns the top-level nullability, if present.
static Optional<NullabilityKind> stripOuterNullability(QualType &T);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
}
static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
QualType modified, QualType equivalent) {
ID.AddInteger(attrKind);
ID.AddPointer(modified.getAsOpaquePtr());
ID.AddPointer(equivalent.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Attributed;
}
};
class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these
// Helper data collector for canonical types.
struct CanonicalTTPTInfo {
unsigned Depth : 15;
unsigned ParameterPack : 1;
unsigned Index : 16;
};
union {
// Info for the canonical type.
CanonicalTTPTInfo CanTTPTInfo;
// Info for the non-canonical type.
TemplateTypeParmDecl *TTPDecl;
};
/// Build a non-canonical type.
TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
: Type(TemplateTypeParm, Canon, /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
Canon->containsUnexpandedParameterPack()),
TTPDecl(TTPDecl) {}
/// Build the canonical type.
TemplateTypeParmType(unsigned D, unsigned I, bool PP)
: Type(TemplateTypeParm, QualType(this, 0),
/*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false, PP) {
CanTTPTInfo.Depth = D;
CanTTPTInfo.Index = I;
CanTTPTInfo.ParameterPack = PP;
}
const CanonicalTTPTInfo& getCanTTPTInfo() const {
QualType Can = getCanonicalTypeInternal();
return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
}
public:
unsigned getDepth() const { return getCanTTPTInfo().Depth; }
unsigned getIndex() const { return getCanTTPTInfo().Index; }
bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
TemplateTypeParmDecl *getDecl() const {
return isCanonicalUnqualified() ? nullptr : TTPDecl;
}
IdentifierInfo *getIdentifier() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
}
static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
unsigned Index, bool ParameterPack,
TemplateTypeParmDecl *TTPDecl) {
ID.AddInteger(Depth);
ID.AddInteger(Index);
ID.AddBoolean(ParameterPack);
ID.AddPointer(TTPDecl);
}
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateTypeParm;
}
};
/// Represents the result of substituting a type for a template
/// type parameter.
///
/// Within an instantiated template, all template type parameters have
/// been replaced with these. They are used solely to record that a
/// type was originally written as a template type parameter;
/// therefore they are never canonical.
class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
friend class ASTContext;
// The original type parameter.
const TemplateTypeParmType *Replaced;
SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
: Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
Canon->isInstantiationDependentType(),
Canon->isVariablyModifiedType(),
Canon->containsUnexpandedParameterPack()),
Replaced(Param) {}
public:
/// Gets the template parameter that was substituted for.
const TemplateTypeParmType *getReplacedParameter() const {
return Replaced;
}
/// Gets the type that was substituted for the template
/// parameter.
QualType getReplacementType() const {
return getCanonicalTypeInternal();
}
bool isSugared() const { return true; }
QualType desugar() const { return getReplacementType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReplacedParameter(), getReplacementType());
}
static void Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
QualType Replacement) {
ID.AddPointer(Replaced);
ID.AddPointer(Replacement.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == SubstTemplateTypeParm;
}
};
/// Represents the result of substituting a set of types for a template
/// type parameter pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this type node is used to represent a template type
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
/// at the current pack substitution index.
class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
friend class ASTContext;
/// The original type parameter.
const TemplateTypeParmType *Replaced;
/// A pointer to the set of template arguments that this
/// parameter pack is instantiated with.
const TemplateArgument *Arguments;
SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
QualType Canon,
const TemplateArgument &ArgPack);
public:
IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
/// Gets the template parameter that was substituted for.
const TemplateTypeParmType *getReplacedParameter() const {
return Replaced;
}
unsigned getNumArgs() const {
return SubstTemplateTypeParmPackTypeBits.NumArgs;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
TemplateArgument getArgumentPack() const;
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
const TemplateArgument &ArgPack);
static bool classof(const Type *T) {
return T->getTypeClass() == SubstTemplateTypeParmPack;
}
};
/// Common base class for placeholders for types that get replaced by
/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
/// class template types, and (eventually) constrained type names from the C++
/// Concepts TS.
///
/// These types are usually a placeholder for a deduced type. However, before
/// the initializer is attached, or (usually) if the initializer is
/// type-dependent, there is no deduced type and the type is canonical. In
/// the latter case, it is also a dependent type.
class DeducedType : public Type {
protected:
DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
bool IsInstantiationDependent, bool ContainsParameterPack)
: Type(TC,
// FIXME: Retain the sugared deduced type?
DeducedAsType.isNull() ? QualType(this, 0)
: DeducedAsType.getCanonicalType(),
IsDependent, IsInstantiationDependent,
/*VariablyModified=*/false, ContainsParameterPack) {
if (!DeducedAsType.isNull()) {
if (DeducedAsType->isDependentType())
setDependent();
if (DeducedAsType->isInstantiationDependentType())
setInstantiationDependent();
if (DeducedAsType->containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
}
}
public:
bool isSugared() const { return !isCanonicalUnqualified(); }
QualType desugar() const { return getCanonicalTypeInternal(); }
/// Get the type deduced for this placeholder type, or null if it's
/// either not been deduced or was deduced to a dependent type.
QualType getDeducedType() const {
return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
}
bool isDeduced() const {
return !isCanonicalUnqualified() || isDependentType();
}
static bool classof(const Type *T) {
return T->getTypeClass() == Auto ||
T->getTypeClass() == DeducedTemplateSpecialization;
}
};
/// Represents a C++11 auto or C++14 decltype(auto) type.
class AutoType : public DeducedType, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these
AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
bool IsDeducedAsDependent)
: DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
IsDeducedAsDependent, /*ContainsPack=*/false) {
AutoTypeBits.Keyword = (unsigned)Keyword;
}
public:
bool isDecltypeAuto() const {
return getKeyword() == AutoTypeKeyword::DecltypeAuto;
}
AutoTypeKeyword getKeyword() const {
return (AutoTypeKeyword)AutoTypeBits.Keyword;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDeducedType(), getKeyword(), isDependentType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
AutoTypeKeyword Keyword, bool IsDependent) {
ID.AddPointer(Deduced.getAsOpaquePtr());
ID.AddInteger((unsigned)Keyword);
ID.AddBoolean(IsDependent);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Auto;
}
};
/// Represents a C++17 deduced template specialization type.
class DeducedTemplateSpecializationType : public DeducedType,
public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these
/// The name of the template whose arguments will be deduced.
TemplateName Template;
DeducedTemplateSpecializationType(TemplateName Template,
QualType DeducedAsType,
bool IsDeducedAsDependent)
: DeducedType(DeducedTemplateSpecialization, DeducedAsType,
IsDeducedAsDependent || Template.isDependent(),
IsDeducedAsDependent || Template.isInstantiationDependent(),
Template.containsUnexpandedParameterPack()),
Template(Template) {}
public:
/// Retrieve the name of the template that we are deducing.
TemplateName getTemplateName() const { return Template;}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
}
static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
QualType Deduced, bool IsDependent) {
Template.Profile(ID);
ID.AddPointer(Deduced.getAsOpaquePtr());
ID.AddBoolean(IsDependent);
}
static bool classof(const Type *T) {
return T->getTypeClass() == DeducedTemplateSpecialization;
}
};
/// Represents a type template specialization; the template
/// must be a class template, a type alias template, or a template
/// template parameter. A template which cannot be resolved to one of
/// these, e.g. because it is written with a dependent scope
/// specifier, is instead represented as a
/// @c DependentTemplateSpecializationType.
///
/// A non-dependent template specialization type is always "sugar",
/// typically for a \c RecordType. For example, a class template
/// specialization type of \c vector<int> will refer to a tag type for
/// the instantiation \c std::vector<int, std::allocator<int>>
///
/// Template specializations are dependent if either the template or
/// any of the template arguments are dependent, in which case the
/// type may also be canonical.
///
/// Instances of this type are allocated with a trailing array of
/// TemplateArguments, followed by a QualType representing the
/// non-canonical aliased type when the template is a type alias
/// template.
class alignas(8) TemplateSpecializationType
: public Type,
public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these
/// The name of the template being specialized. This is
/// either a TemplateName::Template (in which case it is a
/// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
/// TypeAliasTemplateDecl*), a
/// TemplateName::SubstTemplateTemplateParmPack, or a
/// TemplateName::SubstTemplateTemplateParm (in which case the
/// replacement must, recursively, be one of these).
TemplateName Template;
TemplateSpecializationType(TemplateName T,
ArrayRef<TemplateArgument> Args,
QualType Canon,
QualType Aliased);
public:
/// Determine whether any of the given template arguments are dependent.
static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
bool &InstantiationDependent);
static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
bool &InstantiationDependent);
/// True if this template specialization type matches a current
/// instantiation in the context in which it is found.
bool isCurrentInstantiation() const {
return isa<InjectedClassNameType>(getCanonicalTypeInternal());
}
/// Determine if this template specialization type is for a type alias
/// template that has been substituted.
///
/// Nearly every template specialization type whose template is an alias
/// template will be substituted. However, this is not the case when
/// the specialization contains a pack expansion but the template alias
/// does not have a corresponding parameter pack, e.g.,
///
/// \code
/// template<typename T, typename U, typename V> struct S;
/// template<typename T, typename U> using A = S<T, int, U>;
/// template<typename... Ts> struct X {
/// typedef A<Ts...> type; // not a type alias
/// };
/// \endcode
bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
/// Get the aliased type, if this is a specialization of a type alias
/// template.
QualType getAliasedType() const {
assert(isTypeAlias() && "not a type alias template specialization");
return *reinterpret_cast<const QualType*>(end());
}
using iterator = const TemplateArgument *;
iterator begin() const { return getArgs(); }
iterator end() const; // defined inline in TemplateBase.h
/// Retrieve the name of the template that we are specializing.
TemplateName getTemplateName() const { return Template; }
/// Retrieve the template arguments.
const TemplateArgument *getArgs() const {
return reinterpret_cast<const TemplateArgument *>(this + 1);
}
/// Retrieve the number of template arguments.
unsigned getNumArgs() const {
return TemplateSpecializationTypeBits.NumArgs;
}
/// Retrieve a specific template argument as a type.
/// \pre \c isArgType(Arg)
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
ArrayRef<TemplateArgument> template_arguments() const {
return {getArgs(), getNumArgs()};
}
bool isSugared() const {
return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
}
QualType desugar() const {
return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
}
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
Profile(ID, Template, template_arguments(), Ctx);
if (isTypeAlias())
getAliasedType().Profile(ID);
}
static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
ArrayRef<TemplateArgument> Args,
const ASTContext &Context);
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateSpecialization;
}
};
/// Print a template argument list, including the '<' and '>'
/// enclosing the template arguments.
void printTemplateArgumentList(raw_ostream &OS,
ArrayRef<TemplateArgument> Args,
const PrintingPolicy &Policy);
void printTemplateArgumentList(raw_ostream &OS,
ArrayRef<TemplateArgumentLoc> Args,
const PrintingPolicy &Policy);
void printTemplateArgumentList(raw_ostream &OS,
const TemplateArgumentListInfo &Args,
const PrintingPolicy &Policy);
/// The injected class name of a C++ class template or class
/// template partial specialization. Used to record that a type was
/// spelled with a bare identifier rather than as a template-id; the
/// equivalent for non-templated classes is just RecordType.
///
/// Injected class name types are always dependent. Template
/// instantiation turns these into RecordTypes.
///
/// Injected class name types are always canonical. This works
/// because it is impossible to compare an injected class name type
/// with the corresponding non-injected template type, for the same
/// reason that it is impossible to directly compare template
/// parameters from different dependent contexts: injected class name
/// types can only occur within the scope of a particular templated
/// declaration, and within that scope every template specialization
/// will canonicalize to the injected class name (when appropriate
/// according to the rules of the language).
class InjectedClassNameType : public Type {
friend class ASTContext; // ASTContext creates these.
friend class ASTNodeImporter;
friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
// currently suitable for AST reading, too much
// interdependencies.
CXXRecordDecl *Decl;
/// The template specialization which this type represents.
/// For example, in
/// template <class T> class A { ... };
/// this is A<T>, whereas in
/// template <class X, class Y> class A<B<X,Y> > { ... };
/// this is A<B<X,Y> >.
///
/// It is always unqualified, always a template specialization type,
/// and always dependent.
QualType InjectedType;
InjectedClassNameType(CXXRecordDecl *D, QualType TST)
: Type(InjectedClassName, QualType(), /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
/*ContainsUnexpandedParameterPack=*/false),
Decl(D), InjectedType(TST) {
assert(isa<TemplateSpecializationType>(TST));
assert(!TST.hasQualifiers());
assert(TST->isDependentType());
}
public:
QualType getInjectedSpecializationType() const { return InjectedType; }
const TemplateSpecializationType *getInjectedTST() const {
return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
}
TemplateName getTemplateName() const {
return getInjectedTST()->getTemplateName();
}
CXXRecordDecl *getDecl() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == InjectedClassName;
}
};
/// The kind of a tag type.
enum TagTypeKind {
/// The "struct" keyword.
TTK_Struct,
/// The "__interface" keyword.
TTK_Interface,
/// The "union" keyword.
TTK_Union,
/// The "class" keyword.
TTK_Class,
/// The "enum" keyword.
TTK_Enum
};
/// The elaboration keyword that precedes a qualified type name or
/// introduces an elaborated-type-specifier.
enum ElaboratedTypeKeyword {
/// The "struct" keyword introduces the elaborated-type-specifier.
ETK_Struct,
/// The "__interface" keyword introduces the elaborated-type-specifier.
ETK_Interface,
/// The "union" keyword introduces the elaborated-type-specifier.
ETK_Union,
/// The "class" keyword introduces the elaborated-type-specifier.
ETK_Class,
/// The "enum" keyword introduces the elaborated-type-specifier.
ETK_Enum,
/// The "typename" keyword precedes the qualified type name, e.g.,
/// \c typename T::type.
ETK_Typename,
/// No keyword precedes the qualified type name.
ETK_None
};
/// A helper class for Type nodes having an ElaboratedTypeKeyword.
/// The keyword in stored in the free bits of the base class.
/// Also provides a few static helpers for converting and printing
/// elaborated type keyword and tag type kind enumerations.
class TypeWithKeyword : public Type {
protected:
TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
QualType Canonical, bool Dependent,
bool InstantiationDependent, bool VariablyModified,
bool ContainsUnexpandedParameterPack)
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
ContainsUnexpandedParameterPack) {
TypeWithKeywordBits.Keyword = Keyword;
}
public:
ElaboratedTypeKeyword getKeyword() const {
return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
}
/// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
/// Converts a type specifier (DeclSpec::TST) into a tag type kind.
/// It is an error to provide a type specifier which *isn't* a tag kind here.
static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
/// Converts a TagTypeKind into an elaborated type keyword.
static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
/// Converts an elaborated type keyword into a TagTypeKind.
/// It is an error to provide an elaborated type keyword
/// which *isn't* a tag kind here.
static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
static StringRef getTagTypeKindName(TagTypeKind Kind) {
return getKeywordName(getKeywordForTagTypeKind(Kind));
}
class CannotCastToThisType {};
static CannotCastToThisType classof(const Type *);
};
/// Represents a type that was referred to using an elaborated type
/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
/// or both.
///
/// This type is used to keep track of a type name as written in the
/// source code, including tag keywords and any nested-name-specifiers.
/// The type itself is always "sugar", used to express what was written
/// in the source code but containing no additional semantic information.
class ElaboratedType final
: public TypeWithKeyword,
public llvm::FoldingSetNode,
private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
friend class ASTContext; // ASTContext creates these
friend TrailingObjects;
/// The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// The type that this qualified name refers to.
QualType NamedType;
/// The (re)declaration of this tag type owned by this occurrence is stored
/// as a trailing object if there is one. Use getOwnedTagDecl to obtain
/// it, or obtain a null pointer if there is none.
ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
: TypeWithKeyword(Keyword, Elaborated, CanonType,
NamedType->isDependentType(),
NamedType->isInstantiationDependentType(),
NamedType->isVariablyModifiedType(),
NamedType->containsUnexpandedParameterPack()),
NNS(NNS), NamedType(NamedType) {
ElaboratedTypeBits.HasOwnedTagDecl = false;
if (OwnedTagDecl) {
ElaboratedTypeBits.HasOwnedTagDecl = true;
*getTrailingObjects<TagDecl *>() = OwnedTagDecl;
}
assert(!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.");
}
public:
/// Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// Retrieve the type named by the qualified-id.
QualType getNamedType() const { return NamedType; }
/// Remove a single level of sugar.
QualType desugar() const { return getNamedType(); }
/// Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
/// Return the (re)declaration of this type owned by this occurrence of this
/// type, or nullptr if there is none.
TagDecl *getOwnedTagDecl() const {
return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
: nullptr;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
}
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, QualType NamedType,
TagDecl *OwnedTagDecl) {
ID.AddInteger(Keyword);
ID.AddPointer(NNS);
NamedType.Profile(ID);
ID.AddPointer(OwnedTagDecl);
}
static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
};
/// Represents a qualified type name for which the type name is
/// dependent.
///
/// DependentNameType represents a class of dependent types that involve a
/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
/// name of a type. The DependentNameType may start with a "typename" (for a
/// typename-specifier), "class", "struct", "union", or "enum" (for a
/// dependent elaborated-type-specifier), or nothing (in contexts where we
/// know that we must be referring to a type, e.g., in a base class specifier).
/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
/// mode, this type is used with non-dependent names to delay name lookup until
/// instantiation.
class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these
/// The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// The type that this typename specifier refers to.
const IdentifierInfo *Name;
DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
const IdentifierInfo *Name, QualType CanonType)
: TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
NNS->containsUnexpandedParameterPack()),
NNS(NNS), Name(Name) {}
public:
/// Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// Retrieve the type named by the typename specifier as an identifier.
///
/// This routine will return a non-NULL identifier pointer when the
/// form of the original typename was terminated by an identifier,
/// e.g., "typename T::type".
const IdentifierInfo *getIdentifier() const {
return Name;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getKeyword(), NNS, Name);
}
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
ID.AddInteger(Keyword);
ID.AddPointer(NNS);
ID.AddPointer(Name);
}
static bool classof(const Type *T) {
return T->getTypeClass() == DependentName;
}
};
/// Represents a template specialization type whose template cannot be
/// resolved, e.g.
/// A<T>::template B<T>
class alignas(8) DependentTemplateSpecializationType
: public TypeWithKeyword,
public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these
/// The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// The identifier of the template.
const IdentifierInfo *Name;
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
ArrayRef<TemplateArgument> Args,
QualType Canon);
const TemplateArgument *getArgBuffer() const {
return reinterpret_cast<const TemplateArgument*>(this+1);
}
TemplateArgument *getArgBuffer() {
return reinterpret_cast<TemplateArgument*>(this+1);
}
public:
NestedNameSpecifier *getQualifier() const { return NNS; }
const IdentifierInfo *getIdentifier() const { return Name; }
/// Retrieve the template arguments.
const TemplateArgument *getArgs() const {
return getArgBuffer();
}
/// Retrieve the number of template arguments.
unsigned getNumArgs() const {
return DependentTemplateSpecializationTypeBits.NumArgs;
}
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
ArrayRef<TemplateArgument> template_arguments() const {
return {getArgs(), getNumArgs()};
}
using iterator = const TemplateArgument *;
iterator begin() const { return getArgs(); }
iterator end() const; // inline in TemplateBase.h
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
}
static void Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *Qualifier,
const IdentifierInfo *Name,
ArrayRef<TemplateArgument> Args);
static bool classof(const Type *T) {
return T->getTypeClass() == DependentTemplateSpecialization;
}
};
/// Represents a pack expansion of types.
///
/// Pack expansions are part of C++11 variadic templates. A pack
/// expansion contains a pattern, which itself contains one or more
/// "unexpanded" parameter packs. When instantiated, a pack expansion
/// produces a series of types, each instantiated from the pattern of
/// the expansion, where the Ith instantiation of the pattern uses the
/// Ith arguments bound to each of the unexpanded parameter packs. The
/// pack expansion is considered to "expand" these unexpanded
/// parameter packs.
///
/// \code
/// template<typename ...Types> struct tuple;
///
/// template<typename ...Types>
/// struct tuple_of_references {
/// typedef tuple<Types&...> type;
/// };
/// \endcode
///
/// Here, the pack expansion \c Types&... is represented via a
/// PackExpansionType whose pattern is Types&.
class PackExpansionType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these
/// The pattern of the pack expansion.
QualType Pattern;
PackExpansionType(QualType Pattern, QualType Canon,
Optional<unsigned> NumExpansions)
: Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
/*InstantiationDependent=*/true,
/*VariablyModified=*/Pattern->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false),
Pattern(Pattern) {
PackExpansionTypeBits.NumExpansions =
NumExpansions ? *NumExpansions + 1 : 0;
}
public:
/// Retrieve the pattern of this pack expansion, which is the
/// type that will be repeatedly instantiated when instantiating the
/// pack expansion itself.
QualType getPattern() const { return Pattern; }
/// Retrieve the number of expansions that this pack expansion will
/// generate, if known.
Optional<unsigned> getNumExpansions() const {
if (PackExpansionTypeBits.NumExpansions)
return PackExpansionTypeBits.NumExpansions - 1;
return None;
}
bool isSugared() const { return !Pattern->isDependentType(); }
QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPattern(), getNumExpansions());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
Optional<unsigned> NumExpansions) {
ID.AddPointer(Pattern.getAsOpaquePtr());
ID.AddBoolean(NumExpansions.hasValue());
if (NumExpansions)
ID.AddInteger(*NumExpansions);
}
static bool classof(const Type *T) {
return T->getTypeClass() == PackExpansion;
}
};
/// This class wraps the list of protocol qualifiers. For types that can
/// take ObjC protocol qualifers, they can subclass this class.
template <class T>
class ObjCProtocolQualifiers {
protected:
ObjCProtocolQualifiers() = default;
ObjCProtocolDecl * const *getProtocolStorage() const {
return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
}
ObjCProtocolDecl **getProtocolStorage() {
return static_cast<T*>(this)->getProtocolStorageImpl();
}
void setNumProtocols(unsigned N) {
static_cast<T*>(this)->setNumProtocolsImpl(N);
}
void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
setNumProtocols(protocols.size());
assert(getNumProtocols() == protocols.size() &&
"bitfield overflow in protocol count");
if (!protocols.empty())
memcpy(getProtocolStorage(), protocols.data(),
protocols.size() * sizeof(ObjCProtocolDecl*));
}
public:
using qual_iterator = ObjCProtocolDecl * const *;
using qual_range = llvm::iterator_range<qual_iterator>;
qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
qual_iterator qual_begin() const { return getProtocolStorage(); }
qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
bool qual_empty() const { return getNumProtocols() == 0; }
/// Return the number of qualifying protocols in this type, or 0 if
/// there are none.
unsigned getNumProtocols() const {
return static_cast<const T*>(this)->getNumProtocolsImpl();
}
/// Fetch a protocol by index.
ObjCProtocolDecl *getProtocol(unsigned I) const {
assert(I < getNumProtocols() && "Out-of-range protocol access");
return qual_begin()[I];
}
/// Retrieve all of the protocol qualifiers.
ArrayRef<ObjCProtocolDecl *> getProtocols() const {
return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
}
};
/// Represents a type parameter type in Objective C. It can take
/// a list of protocols.
class ObjCTypeParamType : public Type,
public ObjCProtocolQualifiers<ObjCTypeParamType>,
public llvm::FoldingSetNode {
friend class ASTContext;
friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
/// The number of protocols stored on this type.
unsigned NumProtocols : 6;
ObjCTypeParamDecl *OTPDecl;
/// The protocols are stored after the ObjCTypeParamType node. In the
/// canonical type, the list of protocols are sorted alphabetically
/// and uniqued.
ObjCProtocolDecl **getProtocolStorageImpl();
/// Return the number of qualifying protocols in this interface type,
/// or 0 if there are none.
unsigned getNumProtocolsImpl() const {
return NumProtocols;
}
void setNumProtocolsImpl(unsigned N) {
NumProtocols = N;
}
ObjCTypeParamType(const ObjCTypeParamDecl *D,
QualType can,
ArrayRef<ObjCProtocolDecl *> protocols);
public:
bool isSugared() const { return true; }
QualType desugar() const { return getCanonicalTypeInternal(); }
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCTypeParam;
}
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
const ObjCTypeParamDecl *OTPDecl,
ArrayRef<ObjCProtocolDecl *> protocols);
ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
};
/// Represents a class type in Objective C.
///
/// Every Objective C type is a combination of a base type, a set of
/// type arguments (optional, for parameterized classes) and a list of
/// protocols.
///
/// Given the following declarations:
/// \code
/// \@class C<T>;
/// \@protocol P;
/// \endcode
///
/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
/// with base C and no protocols.
///
/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
/// protocol list.
/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
/// and protocol list [P].
///
/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
/// and no protocols.
///
/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
/// this should get its own sugar class to better represent the source.
class ObjCObjectType : public Type,
public ObjCProtocolQualifiers<ObjCObjectType> {
friend class ObjCProtocolQualifiers<ObjCObjectType>;
// ObjCObjectType.NumTypeArgs - the number of type arguments stored
// after the ObjCObjectPointerType node.
// ObjCObjectType.NumProtocols - the number of protocols stored
// after the type arguments of ObjCObjectPointerType node.
//
// These protocols are those written directly on the type. If
// protocol qualifiers ever become additive, the iterators will need
// to get kindof complicated.
//
// In the canonical object type, these are sorted alphabetically
// and uniqued.
/// Either a BuiltinType or an InterfaceType or sugar for either.
QualType BaseType;
/// Cached superclass type.
mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
CachedSuperClassType;
QualType *getTypeArgStorage();
const QualType *getTypeArgStorage() const {
return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
}
ObjCProtocolDecl **getProtocolStorageImpl();
/// Return the number of qualifying protocols in this interface type,
/// or 0 if there are none.
unsigned getNumProtocolsImpl() const {
return ObjCObjectTypeBits.NumProtocols;
}
void setNumProtocolsImpl(unsigned N) {
ObjCObjectTypeBits.NumProtocols = N;
}
protected:
enum Nonce_ObjCInterface { Nonce_ObjCInterface };
ObjCObjectType(QualType Canonical, QualType Base,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf);
ObjCObjectType(enum Nonce_ObjCInterface)
: Type(ObjCInterface, QualType(), false, false, false, false),
BaseType(QualType(this_(), 0)) {
ObjCObjectTypeBits.NumProtocols = 0;
ObjCObjectTypeBits.NumTypeArgs = 0;
ObjCObjectTypeBits.IsKindOf = 0;
}
void computeSuperClassTypeSlow() const;
public:
/// Gets the base type of this object type. This is always (possibly
/// sugar for) one of:
/// - the 'id' builtin type (as opposed to the 'id' type visible to the
/// user, which is a typedef for an ObjCObjectPointerType)
/// - the 'Class' builtin type (same caveat)
/// - an ObjCObjectType (currently always an ObjCInterfaceType)
QualType getBaseType() const { return BaseType; }
bool isObjCId() const {
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
}
bool isObjCClass() const {
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
}
bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
bool isObjCUnqualifiedIdOrClass() const {
if (!qual_empty()) return false;
if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
return T->getKind() == BuiltinType::ObjCId ||
T->getKind() == BuiltinType::ObjCClass;
return false;
}
bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
/// Gets the interface declaration for this object type, if the base type
/// really is an interface.
ObjCInterfaceDecl *getInterface() const;
/// Determine whether this object type is "specialized", meaning
/// that it has type arguments.
bool isSpecialized() const;
/// Determine whether this object type was written with type arguments.
bool isSpecializedAsWritten() const {
return ObjCObjectTypeBits.NumTypeArgs > 0;
}
/// Determine whether this object type is "unspecialized", meaning
/// that it has no type arguments.
bool isUnspecialized() const { return !isSpecialized(); }
/// Determine whether this object type is "unspecialized" as
/// written, meaning that it has no type arguments.
bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
/// Retrieve the type arguments of this object type (semantically).
ArrayRef<QualType> getTypeArgs() const;
/// Retrieve the type arguments of this object type as they were
/// written.
ArrayRef<QualType> getTypeArgsAsWritten() const {
return llvm::makeArrayRef(getTypeArgStorage(),
ObjCObjectTypeBits.NumTypeArgs);
}
/// Whether this is a "__kindof" type as written.
bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
/// Whether this ia a "__kindof" type (semantically).
bool isKindOfType() const;
/// Retrieve the type of the superclass of this object type.
///
/// This operation substitutes any type arguments into the
/// superclass of the current class type, potentially producing a
/// specialization of the superclass type. Produces a null type if
/// there is no superclass.
QualType getSuperClassType() const {
if (!CachedSuperClassType.getInt())
computeSuperClassTypeSlow();
assert(CachedSuperClassType.getInt() && "Superclass not set?");
return QualType(CachedSuperClassType.getPointer(), 0);
}
/// Strip off the Objective-C "kindof" type and (with it) any
/// protocol qualifiers.
QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCObject ||
T->getTypeClass() == ObjCInterface;
}
};
/// A class providing a concrete implementation
/// of ObjCObjectType, so as to not increase the footprint of
/// ObjCInterfaceType. Code outside of ASTContext and the core type
/// system should not reference this type.
class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
friend class ASTContext;
// If anyone adds fields here, ObjCObjectType::getProtocolStorage()
// will need to be modified.
ObjCObjectTypeImpl(QualType Canonical, QualType Base,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf)
: ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
public:
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Base,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf);
};
inline QualType *ObjCObjectType::getTypeArgStorage() {
return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
}
inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
return reinterpret_cast<ObjCProtocolDecl**>(
getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
}
inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
return reinterpret_cast<ObjCProtocolDecl**>(
static_cast<ObjCTypeParamType*>(this)+1);
}
/// Interfaces are the core concept in Objective-C for object oriented design.
/// They basically correspond to C++ classes. There are two kinds of interface
/// types: normal interfaces like `NSString`, and qualified interfaces, which
/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
///
/// ObjCInterfaceType guarantees the following properties when considered
/// as a subtype of its superclass, ObjCObjectType:
/// - There are no protocol qualifiers. To reinforce this, code which
/// tries to invoke the protocol methods via an ObjCInterfaceType will
/// fail to compile.
/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
/// T->getBaseType() == QualType(T, 0).
class ObjCInterfaceType : public ObjCObjectType {
friend class ASTContext; // ASTContext creates these.
friend class ASTReader;
friend class ObjCInterfaceDecl;
mutable ObjCInterfaceDecl *Decl;
ObjCInterfaceType(const ObjCInterfaceDecl *D)
: ObjCObjectType(Nonce_ObjCInterface),
Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
public:
/// Get the declaration of this interface.
ObjCInterfaceDecl *getDecl() const { return Decl; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCInterface;
}
// Nonsense to "hide" certain members of ObjCObjectType within this
// class. People asking for protocols on an ObjCInterfaceType are
// not going to get what they want: ObjCInterfaceTypes are
// guaranteed to have no protocols.
enum {
qual_iterator,
qual_begin,
qual_end,
getNumProtocols,
getProtocol
};
};
inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
QualType baseType = getBaseType();
while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
return T->getDecl();
baseType = ObjT->getBaseType();
}
return nullptr;
}
/// Represents a pointer to an Objective C object.
///
/// These are constructed from pointer declarators when the pointee type is
/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
/// types are typedefs for these, and the protocol-qualified types 'id<P>'
/// and 'Class<P>' are translated into these.
///
/// Pointers to pointers to Objective C objects are still PointerTypes;
/// only the first level of pointer gets it own type implementation.
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
QualType PointeeType;
ObjCObjectPointerType(QualType Canonical, QualType Pointee)
: Type(ObjCObjectPointer, Canonical,
Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {}
public:
/// Gets the type pointed to by this ObjC pointer.
/// The result will always be an ObjCObjectType or sugar thereof.
QualType getPointeeType() const { return PointeeType; }
/// Gets the type pointed to by this ObjC pointer. Always returns non-null.
///
/// This method is equivalent to getPointeeType() except that
/// it discards any typedefs (or other sugar) between this
/// type and the "outermost" object type. So for:
/// \code
/// \@class A; \@protocol P; \@protocol Q;
/// typedef A<P> AP;
/// typedef A A1;
/// typedef A1<P> A1P;
/// typedef A1P<Q> A1PQ;
/// \endcode
/// For 'A*', getObjectType() will return 'A'.
/// For 'A<P>*', getObjectType() will return 'A<P>'.
/// For 'AP*', getObjectType() will return 'A<P>'.
/// For 'A1*', getObjectType() will return 'A'.
/// For 'A1<P>*', getObjectType() will return 'A1<P>'.
/// For 'A1P*', getObjectType() will return 'A1<P>'.
/// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
/// adding protocols to a protocol-qualified base discards the
/// old qualifiers (for now). But if it didn't, getObjectType()
/// would return 'A1P<Q>' (and we'd have to make iterating over
/// qualifiers more complicated).
const ObjCObjectType *getObjectType() const {
return PointeeType->castAs<ObjCObjectType>();
}
/// If this pointer points to an Objective C
/// \@interface type, gets the type for that interface. Any protocol
/// qualifiers on the interface are ignored.
///
/// \return null if the base type for this pointer is 'id' or 'Class'
const ObjCInterfaceType *getInterfaceType() const;
/// If this pointer points to an Objective \@interface
/// type, gets the declaration for that interface.
///
/// \return null if the base type for this pointer is 'id' or 'Class'
ObjCInterfaceDecl *getInterfaceDecl() const {
return getObjectType()->getInterface();
}
/// True if this is equivalent to the 'id' type, i.e. if
/// its object type is the primitive 'id' type with no protocols.
bool isObjCIdType() const {
return getObjectType()->isObjCUnqualifiedId();
}
/// True if this is equivalent to the 'Class' type,
/// i.e. if its object tive is the primitive 'Class' type with no protocols.
bool isObjCClassType() const {
return getObjectType()->isObjCUnqualifiedClass();
}
/// True if this is equivalent to the 'id' or 'Class' type,
bool isObjCIdOrClassType() const {
return getObjectType()->isObjCUnqualifiedIdOrClass();
}
/// True if this is equivalent to 'id<P>' for some non-empty set of
/// protocols.
bool isObjCQualifiedIdType() const {
return getObjectType()->isObjCQualifiedId();
}
/// True if this is equivalent to 'Class<P>' for some non-empty set of
/// protocols.
bool isObjCQualifiedClassType() const {
return getObjectType()->isObjCQualifiedClass();
}
/// Whether this is a "__kindof" type.
bool isKindOfType() const { return getObjectType()->isKindOfType(); }
/// Whether this type is specialized, meaning that it has type arguments.
bool isSpecialized() const { return getObjectType()->isSpecialized(); }
/// Whether this type is specialized, meaning that it has type arguments.
bool isSpecializedAsWritten() const {
return getObjectType()->isSpecializedAsWritten();
}
/// Whether this type is unspecialized, meaning that is has no type arguments.
bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
/// Determine whether this object type is "unspecialized" as
/// written, meaning that it has no type arguments.
bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
/// Retrieve the type arguments for this type.
ArrayRef<QualType> getTypeArgs() const {
return getObjectType()->getTypeArgs();
}
/// Retrieve the type arguments for this type.
ArrayRef<QualType> getTypeArgsAsWritten() const {
return getObjectType()->getTypeArgsAsWritten();
}
/// An iterator over the qualifiers on the object type. Provided
/// for convenience. This will always iterate over the full set of
/// protocols on a type, not just those provided directly.
using qual_iterator = ObjCObjectType::qual_iterator;
using qual_range = llvm::iterator_range<qual_iterator>;
qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
qual_iterator qual_begin() const {
return getObjectType()->qual_begin();
}
qual_iterator qual_end() const {
return getObjectType()->qual_end();
}
bool qual_empty() const { return getObjectType()->qual_empty(); }
/// Return the number of qualifying protocols on the object type.
unsigned getNumProtocols() const {
return getObjectType()->getNumProtocols();
}
/// Retrieve a qualifying protocol by index on the object type.
ObjCProtocolDecl *getProtocol(unsigned I) const {
return getObjectType()->getProtocol(I);
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
/// Retrieve the type of the superclass of this object pointer type.
///
/// This operation substitutes any type arguments into the
/// superclass of the current class type, potentially producing a
/// pointer to a specialization of the superclass type. Produces a
/// null type if there is no superclass.
QualType getSuperClassType() const;
/// Strip off the Objective-C "kindof" type and (with it) any
/// protocol qualifiers.
const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
const ASTContext &ctx) const;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
ID.AddPointer(T.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCObjectPointer;
}
};
class AtomicType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
QualType ValueType;
AtomicType(QualType ValTy, QualType Canonical)
: Type(Atomic, Canonical, ValTy->isDependentType(),
ValTy->isInstantiationDependentType(),
ValTy->isVariablyModifiedType(),
ValTy->containsUnexpandedParameterPack()),
ValueType(ValTy) {}
public:
/// Gets the type contained by this atomic type, i.e.
/// the type returned by performing an atomic load of this atomic type.
QualType getValueType() const { return ValueType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getValueType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
ID.AddPointer(T.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Atomic;
}
};
/// PipeType - OpenCL20.
class PipeType : public Type, public llvm::FoldingSetNode {
friend class ASTContext; // ASTContext creates these.
QualType ElementType;
bool isRead;
PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
: Type(Pipe, CanonicalPtr, elemType->isDependentType(),
elemType->isInstantiationDependentType(),
elemType->isVariablyModifiedType(),
elemType->containsUnexpandedParameterPack()),
ElementType(elemType), isRead(isRead) {}
public:
QualType getElementType() const { return ElementType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), isReadOnly());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
ID.AddPointer(T.getAsOpaquePtr());
ID.AddBoolean(isRead);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Pipe;
}
bool isReadOnly() const { return isRead; }
};
/// A qualifier set is used to build a set of qualifiers.
class QualifierCollector : public Qualifiers {
public:
QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
/// Collect any qualifiers on the given type and return an
/// unqualified type. The qualifiers are assumed to be consistent
/// with those already in the type.
const Type *strip(QualType type) {
addFastQualifiers(type.getLocalFastQualifiers());
if (!type.hasLocalNonFastQualifiers())
return type.getTypePtrUnsafe();
const ExtQuals *extQuals = type.getExtQualsUnsafe();
addConsistentQualifiers(extQuals->getQualifiers());
return extQuals->getBaseType();
}
/// Apply the collected qualifiers to the given type.
QualType apply(const ASTContext &Context, QualType QT) const;
/// Apply the collected qualifiers to the given type.
QualType apply(const ASTContext &Context, const Type* T) const;
};
// Inline function definitions.
inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
SplitQualType desugar =
Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
desugar.Quals.addConsistentQualifiers(Quals);
return desugar;
}
inline const Type *QualType::getTypePtr() const {
return getCommonPtr()->BaseType;
}
inline const Type *QualType::getTypePtrOrNull() const {
return (isNull() ? nullptr : getCommonPtr()->BaseType);
}
inline SplitQualType QualType::split() const {
if (!hasLocalNonFastQualifiers())
return SplitQualType(getTypePtrUnsafe(),
Qualifiers::fromFastMask(getLocalFastQualifiers()));
const ExtQuals *eq = getExtQualsUnsafe();
Qualifiers qs = eq->getQualifiers();
qs.addFastQualifiers(getLocalFastQualifiers());
return SplitQualType(eq->getBaseType(), qs);
}
inline Qualifiers QualType::getLocalQualifiers() const {
Qualifiers Quals;
if (hasLocalNonFastQualifiers())
Quals = getExtQualsUnsafe()->getQualifiers();
Quals.addFastQualifiers(getLocalFastQualifiers());
return Quals;
}
inline Qualifiers QualType::getQualifiers() const {
Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
quals.addFastQualifiers(getLocalFastQualifiers());
return quals;
}
inline unsigned QualType::getCVRQualifiers() const {
unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
cvr |= getLocalCVRQualifiers();
return cvr;
}
inline QualType QualType::getCanonicalType() const {
QualType canon = getCommonPtr()->CanonicalType;
return canon.withFastQualifiers(getLocalFastQualifiers());
}
inline bool QualType::isCanonical() const {
return getTypePtr()->isCanonicalUnqualified();
}
inline bool QualType::isCanonicalAsParam() const {
if (!isCanonical()) return false;
if (hasLocalQualifiers()) return false;
const Type *T = getTypePtr();
if (T->isVariablyModifiedType() && T->hasSizedVLAType())
return false;
return !isa<FunctionType>(T) && !isa<ArrayType>(T);
}
inline bool QualType::isConstQualified() const {
return isLocalConstQualified() ||
getCommonPtr()->CanonicalType.isLocalConstQualified();
}
inline bool QualType::isRestrictQualified() const {
return isLocalRestrictQualified() ||
getCommonPtr()->CanonicalType.isLocalRestrictQualified();
}
inline bool QualType::isVolatileQualified() const {
return isLocalVolatileQualified() ||
getCommonPtr()->CanonicalType.isLocalVolatileQualified();
}
inline bool QualType::hasQualifiers() const {
return hasLocalQualifiers() ||
getCommonPtr()->CanonicalType.hasLocalQualifiers();
}
inline QualType QualType::getUnqualifiedType() const {
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
return QualType(getTypePtr(), 0);
return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
}
inline SplitQualType QualType::getSplitUnqualifiedType() const {
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
return split();
return getSplitUnqualifiedTypeImpl(*this);
}
inline void QualType::removeLocalConst() {
removeLocalFastQualifiers(Qualifiers::Const);
}
inline void QualType::removeLocalRestrict() {
removeLocalFastQualifiers(Qualifiers::Restrict);
}
inline void QualType::removeLocalVolatile() {
removeLocalFastQualifiers(Qualifiers::Volatile);
}
inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
"Fast bits differ from CVR bits!");
// Fast path: we don't need to touch the slow qualifiers.
removeLocalFastQualifiers(Mask);
}
/// Return the address space of this type.
inline LangAS QualType::getAddressSpace() const {
return getQualifiers().getAddressSpace();
}
/// Return the gc attribute of this type.
inline Qualifiers::GC QualType::getObjCGCAttr() const {
return getQualifiers().getObjCGCAttr();
}
inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
if (const auto *PT = t.getAs<PointerType>()) {
if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
return FT->getExtInfo();
} else if (const auto *FT = t.getAs<FunctionType>())
return FT->getExtInfo();
return FunctionType::ExtInfo();
}
inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
return getFunctionExtInfo(*t);
}
/// Determine whether this type is more
/// qualified than the Other type. For example, "const volatile int"
/// is more qualified than "const int", "volatile int", and
/// "int". However, it is not more qualified than "const volatile
/// int".
inline bool QualType::isMoreQualifiedThan(QualType other) const {
Qualifiers MyQuals = getQualifiers();
Qualifiers OtherQuals = other.getQualifiers();
return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
}
/// Determine whether this type is at last
/// as qualified as the Other type. For example, "const volatile
/// int" is at least as qualified as "const int", "volatile int",
/// "int", and "const volatile int".
inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
Qualifiers OtherQuals = other.getQualifiers();
// Ignore __unaligned qualifier if this type is a void.
if (getUnqualifiedType()->isVoidType())
OtherQuals.removeUnaligned();
return getQualifiers().compatiblyIncludes(OtherQuals);
}
/// If Type is a reference type (e.g., const
/// int&), returns the type that the reference refers to ("const
/// int"). Otherwise, returns the type itself. This routine is used
/// throughout Sema to implement C++ 5p6:
///
/// If an expression initially has the type "reference to T" (8.3.2,
/// 8.5.3), the type is adjusted to "T" prior to any further
/// analysis, the expression designates the object or function
/// denoted by the reference, and the expression is an lvalue.
inline QualType QualType::getNonReferenceType() const {
if (const auto *RefType = (*this)->getAs<ReferenceType>())
return RefType->getPointeeType();
else
return *this;
}
inline bool QualType::isCForbiddenLValueType() const {
return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
getTypePtr()->isFunctionType());
}
/// Tests whether the type is categorized as a fundamental type.
///
/// \returns True for types specified in C++0x [basic.fundamental].
inline bool Type::isFundamentalType() const {
return isVoidType() ||
// FIXME: It's really annoying that we don't have an
// 'isArithmeticType()' which agrees with the standard definition.
(isArithmeticType() && !isEnumeralType());
}
/// Tests whether the type is categorized as a compound type.
///
/// \returns True for types specified in C++0x [basic.compound].
inline bool Type::isCompoundType() const {
// C++0x [basic.compound]p1:
// Compound types can be constructed in the following ways:
// -- arrays of objects of a given type [...];
return isArrayType() ||
// -- functions, which have parameters of given types [...];
isFunctionType() ||
// -- pointers to void or objects or functions [...];
isPointerType() ||
// -- references to objects or functions of a given type. [...]
isReferenceType() ||
// -- classes containing a sequence of objects of various types, [...];
isRecordType() ||
// -- unions, which are classes capable of containing objects of different
// types at different times;
isUnionType() ||
// -- enumerations, which comprise a set of named constant values. [...];
isEnumeralType() ||
// -- pointers to non-static class members, [...].
isMemberPointerType();
}
inline bool Type::isFunctionType() const {
return isa<FunctionType>(CanonicalType);
}
inline bool Type::isPointerType() const {
return isa<PointerType>(CanonicalType);
}
inline bool Type::isAnyPointerType() const {
return isPointerType() || isObjCObjectPointerType();
}
inline bool Type::isBlockPointerType() const {
return isa<BlockPointerType>(CanonicalType);
}
inline bool Type::isReferenceType() const {
return isa<ReferenceType>(CanonicalType);
}
inline bool Type::isLValueReferenceType() const {
return isa<LValueReferenceType>(CanonicalType);
}
inline bool Type::isRValueReferenceType() const {
return isa<RValueReferenceType>(CanonicalType);
}
inline bool Type::isFunctionPointerType() const {
if (const auto *T = getAs<PointerType>())
return T->getPointeeType()->isFunctionType();
else
return false;
}
inline bool Type::isMemberPointerType() const {
return isa<MemberPointerType>(CanonicalType);
}
inline bool Type::isMemberFunctionPointerType() const {
if (const auto *T = getAs<MemberPointerType>())
return T->isMemberFunctionPointer();
else
return false;
}
inline bool Type::isMemberDataPointerType() const {
if (const auto *T = getAs<MemberPointerType>())
return T->isMemberDataPointer();
else
return false;
}
inline bool Type::isArrayType() const {
return isa<ArrayType>(CanonicalType);
}
inline bool Type::isConstantArrayType() const {
return isa<ConstantArrayType>(CanonicalType);
}
inline bool Type::isIncompleteArrayType() const {
return isa<IncompleteArrayType>(CanonicalType);
}
inline bool Type::isVariableArrayType() const {
return isa<VariableArrayType>(CanonicalType);
}
inline bool Type::isDependentSizedArrayType() const {
return isa<DependentSizedArrayType>(CanonicalType);
}
inline bool Type::isBuiltinType() const {
return isa<BuiltinType>(CanonicalType);
}
inline bool Type::isRecordType() const {
return isa<RecordType>(CanonicalType);
}
inline bool Type::isEnumeralType() const {
return isa<EnumType>(CanonicalType);
}
inline bool Type::isAnyComplexType() const {
return isa<ComplexType>(CanonicalType);
}
inline bool Type::isVectorType() const {
return isa<VectorType>(CanonicalType);
}
inline bool Type::isExtVectorType() const {
return isa<ExtVectorType>(CanonicalType);
}
inline bool Type::isDependentAddressSpaceType() const {
return isa<DependentAddressSpaceType>(CanonicalType);
}
inline bool Type::isObjCObjectPointerType() const {
return isa<ObjCObjectPointerType>(CanonicalType);
}
inline bool Type::isObjCObjectType() const {
return isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isObjCObjectOrInterfaceType() const {
return isa<ObjCInterfaceType>(CanonicalType) ||
isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isAtomicType() const {
return isa<AtomicType>(CanonicalType);
}
inline bool Type::isObjCQualifiedIdType() const {
if (const auto *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedIdType();
return false;
}
inline bool Type::isObjCQualifiedClassType() const {
if (const auto *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedClassType();
return false;
}
inline bool Type::isObjCIdType() const {
if (const auto *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCIdType();
return false;
}
inline bool Type::isObjCClassType() const {
if (const auto *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCClassType();
return false;
}
inline bool Type::isObjCSelType() const {
if (const auto *OPT = getAs<PointerType>())
return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
return false;
}
inline bool Type::isObjCBuiltinType() const {
return isObjCIdType() || isObjCClassType() || isObjCSelType();
}
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
inline bool Type::is##Id##Type() const { \
return isSpecificBuiltinType(BuiltinType::Id); \
}
#include "clang/Basic/OpenCLImageTypes.def"
inline bool Type::isSamplerT() const {
return isSpecificBuiltinType(BuiltinType::OCLSampler);
}
inline bool Type::isEventT() const {
return isSpecificBuiltinType(BuiltinType::OCLEvent);
}
inline bool Type::isClkEventT() const {
return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
}
inline bool Type::isQueueT() const {
return isSpecificBuiltinType(BuiltinType::OCLQueue);
}
inline bool Type::isReserveIDT() const {
return isSpecificBuiltinType(BuiltinType::OCLReserveID);
}
inline bool Type::isImageType() const {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
return
#include "clang/Basic/OpenCLImageTypes.def"
false; // end boolean or operation
}
inline bool Type::isPipeType() const {
return isa<PipeType>(CanonicalType);
}
inline bool Type::isOpenCLSpecificType() const {
return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
isQueueT() || isReserveIDT() || isPipeType();
}
inline bool Type::isTemplateTypeParmType() const {
return isa<TemplateTypeParmType>(CanonicalType);
}
inline bool Type::isSpecificBuiltinType(unsigned K) const {
if (const BuiltinType *BT = getAs<BuiltinType>())
if (BT->getKind() == (BuiltinType::Kind) K)
return true;
return false;
}
inline bool Type::isPlaceholderType() const {
if (const auto *BT = dyn_cast<BuiltinType>(this))
return BT->isPlaceholderType();
return false;
}
inline const BuiltinType *Type::getAsPlaceholderType() const {
if (const auto *BT = dyn_cast<BuiltinType>(this))
if (BT->isPlaceholderType())
return BT;
return nullptr;
}
inline bool Type::isSpecificPlaceholderType(unsigned K) const {
assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
if (const auto *BT = dyn_cast<BuiltinType>(this))
return (BT->getKind() == (BuiltinType::Kind) K);
return false;
}
inline bool Type::isNonOverloadPlaceholderType() const {
if (const auto *BT = dyn_cast<BuiltinType>(this))
return BT->isNonOverloadPlaceholderType();
return false;
}
inline bool Type::isVoidType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
return false;
}
inline bool Type::isHalfType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Half;
// FIXME: Should we allow complex __fp16? Probably not.
return false;
}
inline bool Type::isFloat16Type() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Float16;
return false;
}
inline bool Type::isFloat128Type() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Float128;
return false;
}
inline bool Type::isNullPtrType() const {
if (const auto *BT = getAs<BuiltinType>())
return BT->getKind() == BuiltinType::NullPtr;
return false;
}
bool IsEnumDeclComplete(EnumDecl *);
bool IsEnumDeclScoped(EnumDecl *);
inline bool Type::isIntegerType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
return IsEnumDeclComplete(ET->getDecl()) &&
!IsEnumDeclScoped(ET->getDecl());
}
return false;
}
inline bool Type::isFixedPointType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::ShortAccum &&
BT->getKind() <= BuiltinType::SatULongFract;
}
return false;
}
inline bool Type::isSaturatedFixedPointType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::SatShortAccum &&
BT->getKind() <= BuiltinType::SatULongFract;
}
return false;
}
inline bool Type::isUnsaturatedFixedPointType() const {
return isFixedPointType() && !isSaturatedFixedPointType();
}
inline bool Type::isSignedFixedPointType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return ((BT->getKind() >= BuiltinType::ShortAccum &&
BT->getKind() <= BuiltinType::LongAccum) ||
(BT->getKind() >= BuiltinType::ShortFract &&
BT->getKind() <= BuiltinType::LongFract) ||
(BT->getKind() >= BuiltinType::SatShortAccum &&
BT->getKind() <= BuiltinType::SatLongAccum) ||
(BT->getKind() >= BuiltinType::SatShortFract &&
BT->getKind() <= BuiltinType::SatLongFract));
}
return false;
}
inline bool Type::isUnsignedFixedPointType() const {
return isFixedPointType() && !isSignedFixedPointType();
}
inline bool Type::isScalarType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() > BuiltinType::Void &&
BT->getKind() <= BuiltinType::NullPtr;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
// Enums are scalar types, but only if they are defined. Incomplete enums
// are not treated as scalar types.
return IsEnumDeclComplete(ET->getDecl());
return isa<PointerType>(CanonicalType) ||
isa<BlockPointerType>(CanonicalType) ||
isa<MemberPointerType>(CanonicalType) ||
isa<ComplexType>(CanonicalType) ||
isa<ObjCObjectPointerType>(CanonicalType);
}
inline bool Type::isIntegralOrEnumerationType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
// Check for a complete enum type; incomplete enum types are not properly an
// enumeration type in the sense required here.
if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
return IsEnumDeclComplete(ET->getDecl());
return false;
}
inline bool Type::isBooleanType() const {
if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Bool;
return false;
}
inline bool Type::isUndeducedType() const {
auto *DT = getContainedDeducedType();
return DT && !DT->isDeduced();
}
/// Determines whether this is a type for which one can define
/// an overloaded operator.
inline bool Type::isOverloadableType() const {
return isDependentType() || isRecordType() || isEnumeralType();
}
/// Determines whether this type can decay to a pointer type.
inline bool Type::canDecayToPointerType() const {
return isFunctionType() || isArrayType();
}
inline bool Type::hasPointerRepresentation() const {
return (isPointerType() || isReferenceType() || isBlockPointerType() ||
isObjCObjectPointerType() || isNullPtrType());
}
inline bool Type::hasObjCPointerRepresentation() const {
return isObjCObjectPointerType();
}
inline const Type *Type::getBaseElementTypeUnsafe() const {
const Type *type = this;
while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
type = arrayType->getElementType().getTypePtr();
return type;
}
inline const Type *Type::getPointeeOrArrayElementType() const {
const Type *type = this;
if (type->isAnyPointerType())
return type->getPointeeType().getTypePtr();
else if (type->isArrayType())
return type->getBaseElementTypeUnsafe();
return type;
}
/// Insertion operator for diagnostics. This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
QualType T) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
DiagnosticsEngine::ak_qualtype);
return DB;
}
/// Insertion operator for partial diagnostics. This allows sending QualType's
/// into a diagnostic with <<.
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
QualType T) {
PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
DiagnosticsEngine::ak_qualtype);
return PD;
}
// Helper class template that is used by Type::getAs to ensure that one does
// not try to look through a qualified type to get to an array type.
template <typename T>
using TypeIsArrayType =
std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
std::is_base_of<ArrayType, T>::value>;
// Member-template getAs<specific type>'.
template <typename T> const T *Type::getAs() const {
static_assert(!TypeIsArrayType<T>::value,
"ArrayType cannot be used with getAs!");
// If this is directly a T type, return it.
if (const auto *Ty = dyn_cast<T>(this))
return Ty;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<T>(CanonicalType))
return nullptr;
// If this is a typedef for the type, strip the typedef off without
// losing all typedef information.
return cast<T>(getUnqualifiedDesugaredType());
}
template <typename T> const T *Type::getAsAdjusted() const {
static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
// If this is directly a T type, return it.
if (const auto *Ty = dyn_cast<T>(this))
return Ty;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<T>(CanonicalType))
return nullptr;
// Strip off type adjustments that do not modify the underlying nature of the
// type.
const Type *Ty = this;
while (Ty) {
if (const auto *A = dyn_cast<AttributedType>(Ty))
Ty = A->getModifiedType().getTypePtr();
else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
Ty = E->desugar().getTypePtr();
else if (const auto *P = dyn_cast<ParenType>(Ty))
Ty = P->desugar().getTypePtr();
else if (const auto *A = dyn_cast<AdjustedType>(Ty))
Ty = A->desugar().getTypePtr();
else
break;
}
// Just because the canonical type is correct does not mean we can use cast<>,
// since we may not have stripped off all the sugar down to the base type.
return dyn_cast<T>(Ty);
}
inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
// If this is directly an array type, return it.
if (const auto *arr = dyn_cast<ArrayType>(this))
return arr;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType))
return nullptr;
// If this is a typedef for the type, strip the typedef off without
// losing all typedef information.
return cast<ArrayType>(getUnqualifiedDesugaredType());
}
template <typename T> const T *Type::castAs() const {
static_assert(!TypeIsArrayType<T>::value,
"ArrayType cannot be used with castAs!");
if (const auto *ty = dyn_cast<T>(this)) return ty;
assert(isa<T>(CanonicalType));
return cast<T>(getUnqualifiedDesugaredType());
}
inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
assert(isa<ArrayType>(CanonicalType));
if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
return cast<ArrayType>(getUnqualifiedDesugaredType());
}
DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
QualType CanonicalPtr)
: AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
#ifndef NDEBUG
QualType Adjusted = getAdjustedType();
(void)AttributedType::stripOuterNullability(Adjusted);
assert(isa<PointerType>(Adjusted));
#endif
}
QualType DecayedType::getPointeeType() const {
QualType Decayed = getDecayedType();
(void)AttributedType::stripOuterNullability(Decayed);
return cast<PointerType>(Decayed)->getPointeeType();
}
// Get the decimal string representation of a fixed point type, represented
// as a scaled integer.
void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
unsigned Scale);
} // namespace clang
#endif // LLVM_CLANG_AST_TYPE_H